

CFR 47 FCC PART 15 SUBPART C CERTIFICATION TEST REPORT

For

Motion Sensor Pet immunity

MODEL NUMBER: AMS220

FCC ID: 2AB2QM604MOTION

REPORT NUMBER: 4789931897-1

ISSUE DATE: May 18, 2021

Prepared for

Leedarson Light Co., Ltd.

Xingtai Industrial Zone, Economic Development Zone, Changtai County
,Zhangzhou City, Fujian Province, P.R.China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Page 2 of 82

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	05/18/2021	Initial Issue	

Summary of Test Results					
Clause	Test Items	FCC Rules	Test Results		
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2)	Pass		
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3)	Pass		
3	Power Spectral Density	FCC Part 15.247 (e)	Pass		
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass		
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass		
6	Antenna Requirement	FCC Part 15.203	Pass		

Note:

^{1.} This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{2.} The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1. AT	TTESTATION OF TEST RESULTS	6
2. TE	ST METHODOLOGY	7
3. FA	ACILITIES AND ACCREDITATION	7
4. CA	ALIBRATION AND UNCERTAINTY	8
4.1.	MEASURING INSTRUMENT CALIBRATION	8
4.2.	MEASUREMENT UNCERTAINTY	8
5. EG	QUIPMENT UNDER TEST	9
5.1.	DESCRIPTION OF EUT	9
5.2.	CHANNEL LIST	9
5.3.	MAXIMUM PEAK OUTPUT POWER	9
<i>5.4.</i>	TEST CHANNEL CONFIGURATION	9
5.5.	THE WORSE CASE POWER SETTING PARAMETER	9
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.7.	DESCRIPTION OF TEST SETUP	11
6. ME	EASURING INSTRUMENT AND SOFTWARE USED	12
7. AN	NTENNA PORT TEST RESULTS	14
7.1.	ON TIME AND DUTY CYCLE	14
7.2.	6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH	15
7.3.	CONDUCTED OUTPUT POWER	17
7.4.	POWER SPECTRAL DENSITY	18
7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	20
8. RA	ADIATED TEST RESULTS	22
8.1.	RESTRICTED BANDEDGE	28
8.2.	SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)	40
8.3.	SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)	48
8.4.	SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)	56
8.5.	SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)	58
8.6.	SPURIOUS EMISSIONS BELOW 30 MHz	60
9. AN	NTENNA REQUIREMENTS	63
10.	Appendix	64
10.1. 10	. Appendix A: DTS Bandwidth	
10	TITLE TOOL I COURTE CONTROL OF THE PROPERTY OF	

Page 5 of 82

10.1.2.	Test Graphs	
	pendix B: Occupied Channel Bandwidth Test Result	
	Test Graphs	
	pendix C: Maximum conducted output power Test Result	
10.4. App	pendix D: Maximum power spectral density	71
10.4.1.	Test Result	71
10.4.2.	Test Graphs	72
10.5. App	pendix E: Band edge measurements	74
	Test Result	
10.5.2.	Test Graphs	75
10.6. Apr	pendix F: Conducted Spurious Emission	76
10.6.1.		76
10.6.2.	Test Graphs	
10.7. Apr	pendix G: Duty Cycle	81
	Test Result	
10.7.2.	Test Graphs	82

Page 6 of 82

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Leedarson Light Co., Ltd.

Address: Xingtai Industrial Zone, Economic Development Zone, Changtai

County , Zhangzhou City, Fujian Province, P.R. China

Manufacturer Information

Company Name: Leedarson Light Co., Ltd.

Address: Xingtai Industrial Zone, Economic Development Zone, Changtai

County , Zhangzhou City, Fujian Province, P.R. China

EUT Information

EUT Name: Motion Sensor Pet immunity

Model: AMS220
Brand: LEEDARSON
Sample Received Date: May 8, 2021
Sample Status: Normal
Sample ID: 3890584

Date of Tested: May 8, 2021~ May 14, 2021

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	PASS		

Prepared By:	Checked By:
Kebo. zhang.	Shemmelier
Kebo Zhang Senior Project Engineer	Shawn Wen Laboratory Leader

Approved By:

Stephen Guo Laboratory Manager

REPORT NO.: 4789931897-1 Page 7 of 82

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:
	·

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

REPORT NO.: 4789931897-1 Page 8 of 82

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62 dB
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)
Duty Cycle	±0.028%
DTS and 99% Occupied Bandwidth	±0.0196%
Maximum Conducted Output Power	±0.686 dB
Maximum Power Spectral Density Level	±0.743 dB
Conducted Band-edge Compliance	±1.328 dB
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 82

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Motion Sensor Pet immunity		
Model	AMS220		
	Operation Frequency	2405 MHz ~ 2480 MHz	
Product Description	Modulation Type	Data Rate	
	O-QPSK	250kbps	
Rated Input	DC 3 V		

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
11	2405	15	2425	19	2445	23	2465
12	2410	16	2430	20	2450	24	2470
13	2415	17	2435	21	2455	25	2475
14	2420	18	2440	22	2460	26	2480

5.3. MAXIMUM PEAK OUTPUT POWER

Mode	Frequency (MHz)	Channel Number	Max Output PEAK Power (dBm)
Zigbee	2405-2480	11-26 [19]	9.93

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
Zighoo	CH 11(Low Channel), CH 19(MID Channel),	2405MHz, 2445MHz,
Zigbee	CH 25(High Channel), CH 26	2475MHz, 2480MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software UartAssis					
Modulation Type	Transmit Antenna	Test Channel			
Woddiation Type	Number	CH 11	CH 19	CH 25	CH 26
O-QPSK	1	11	11	11	4

Page 10 of 82

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2405-2480	Integral Antenna	2.41

Test Mode	Transmit and Receive Mode	Description
ZigBee	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.

Note: 1. The value of the antenna gain was declared by customer.

Page 11 of 82

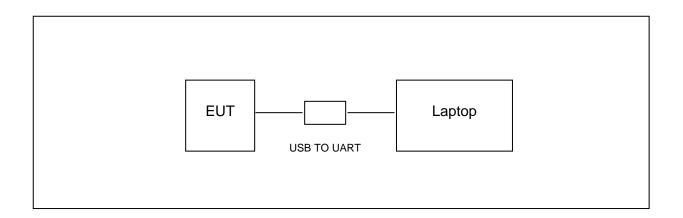
DESCRIPTION OF TEST SETUP 5.7.

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	T460S	SL10K24796 JS
2	USB TO RS232	/	1	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1	N/A


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT can work in an engineer mode with a software through a PC.

SETUP DIAGRAM FOR TESTS

6. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Nov. 12, 2020	Nov. 11, 2021
Two-Line V- Network	R&S	ENV216	101983	Nov. 12, 2020	Nov. 11, 2021
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Nov. 12, 2020	Nov. 11, 2021
	Software				
Description			Manufacturer	Name	Version
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1

Radiated Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Nov. 12, 2020	Nov. 11, 2021
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Aug. 11, 2018	Aug. 10, 2021
Preamplifier	HP	8447D	2944A09099	Nov. 12, 2020	Nov. 11, 2021
EMI Measurement Receiver	R&S	ESR26	101377	Nov. 12, 2020	Nov. 11, 2021
Horn Antenna	TDK	HRN-0118	130939	Sept. 17, 2018	Sept. 17, 2021
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Nov. 20, 2020	Nov. 19, 2021
Horn Antenna	Schwarzbeck	BBHA9170	#691	Aug. 11, 2018	Aug. 11, 2021
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Nov. 12, 2020	Nov. 11, 2021
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Nov. 12, 2020	Nov. 11, 2021
Loop antenna	Schwarzbeck	1519B	80000	Jan.17, 2019	Jan.17,2022
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Nov. 12, 2020	Nov. 11, 2021
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Nov. 20, 2020	Nov. 19, 2021
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Nov. 12, 2020	Nov. 11, 2021
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Nov. 12, 2020	Nov. 11, 2021
		Sof	tware		

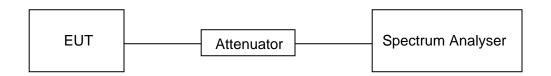
Page 13 of 82

Description	Manufacturer	Name	Version
Test Software for Radiated Emissions	Farad	EZ-EMC	Ver. UL-3A1

Other instruments					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	Keysight	N9030A	MY55410512	Nov. 20, 2020	Nov. 19, 2021
Dual Channel Power Meter	Keysight	N1912A	MY55416024	Nov. 20, 2020	Nov. 19, 2021
Power Sensor	Keysight	USB Wideband Power Sensor	MY5100022	Nov. 20, 2020	Nov. 19, 2021

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only.

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 °C	Relative Humidity	52.4 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

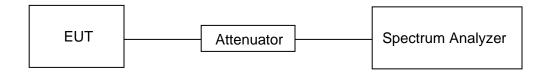
Please refer to appendix G.

REPORT NO.: 4789931897-1 Page 15 of 82

7.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)		
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5		
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5		


TEST PROCEDURE

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

- a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

Page 16 of 82

TEST ENVIRONMENT

Temperature	25.1 °C	Relative Humidity	52.4 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

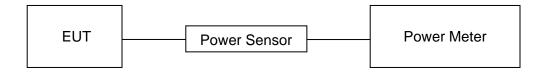
RESULTS

Please refer to appendix A & B.

Page 17 of 82

7.3. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3)	Peak Conducted Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 °C	Relative Humidity	52.4 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

Please refer to appendix C.

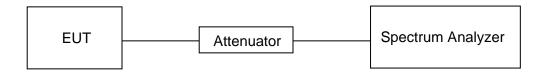
Page 18 of 82

7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 °C	Relative Humidity	52.4 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

Page 19 of 82

RESULTS

Please refer to appendix D.

REPORT NO.: 4789931897-1 Page 20 of 82

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

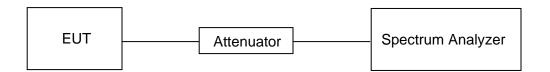
CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit			
Conducted at least 20 dB below that in the 100 kHz CFR 47 FCC §15.247 (d) Bandedge and Spurious Emissions highest level of the desired power			

TEST PROCEDURE

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.


Change the settings for emission level measurement:

ISnan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 °C	Relative Humidity	52.4 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

Please refer to appendix E & F.

Page 22 of 82

8. RADIATED TEST RESULTS

LIMITS

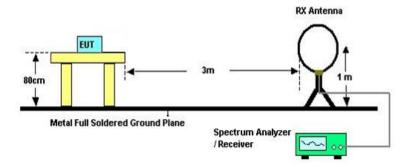
Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Strength Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m	
(1411 12)	(4 7/11) at 3 111	Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz							
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meter							
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30.0	30	30					

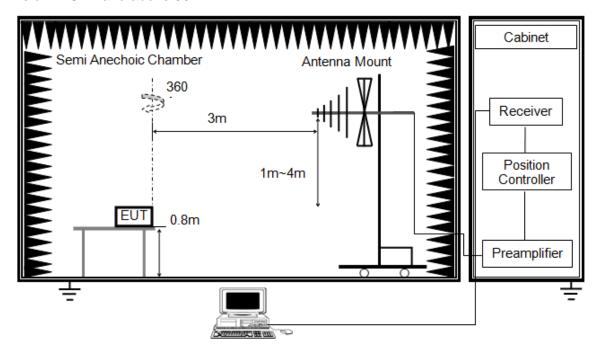
FCC Restricted bands of operation refer to FCC §15.205 (a):


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

TEST SETUP AND PROCEDURE

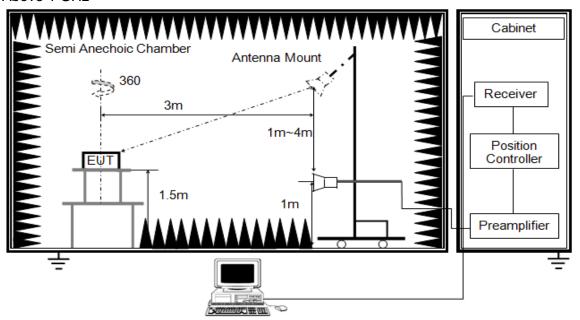
Below 30 MHz


The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

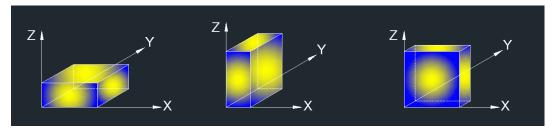
Below 1 GHz and above 30 MHz


The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz


The setting of the spectrum analyser

RBW	1 MHz
1VBVV	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

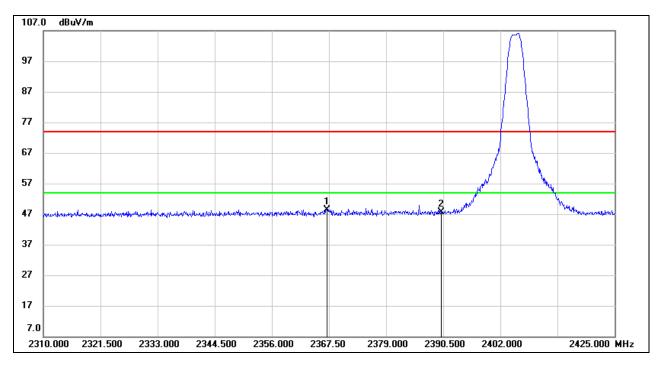
X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	22.8 °C	Relative Humidity	51 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

RESULTS

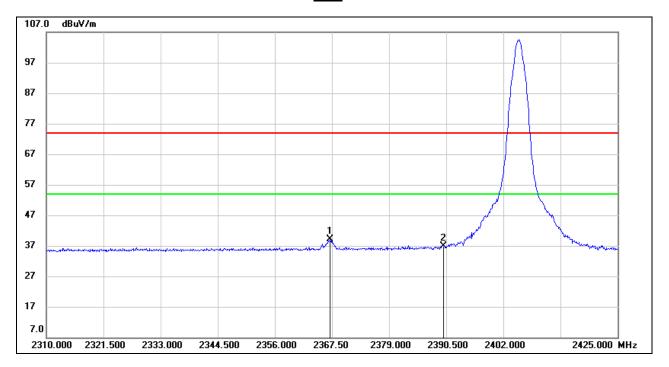


REPORT NO.: 4789931897-1 Page 28 of 82

8.1. RESTRICTED BANDEDGE

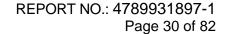
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

PEAK



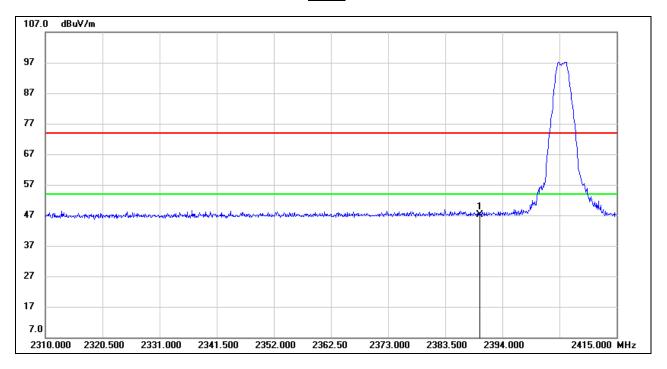
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2367.155	15.01	33.37	48.38	74.00	-25.62	peak
2	2390.000	14.16	33.42	47.58	74.00	-26.42	peak

- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



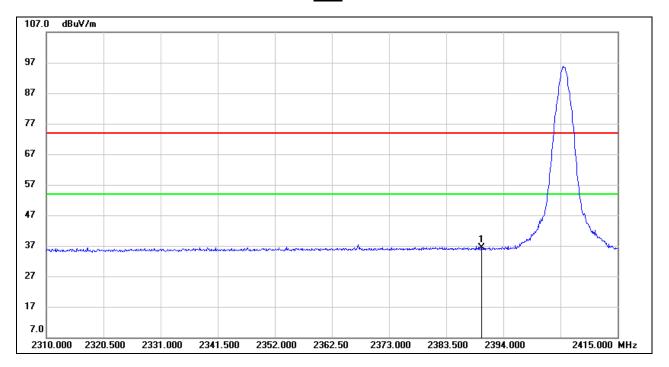
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2367.155	5.68	33.37	39.05	54.00	-14.95	AVG
2	2390.000	3.44	33.42	36.86	54.00	-17.14	AVG


- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

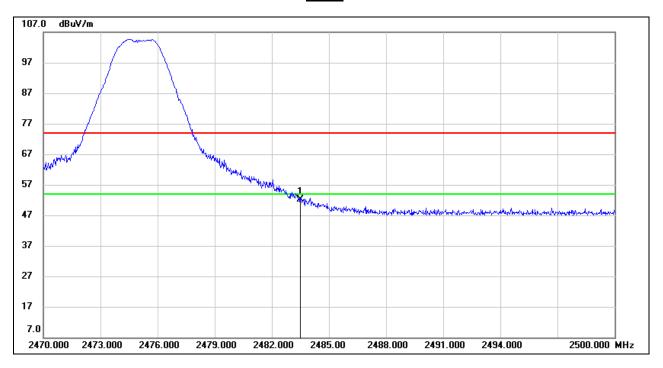
PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	13.71	33.42	47.13	74.00	-26.87	peak

- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

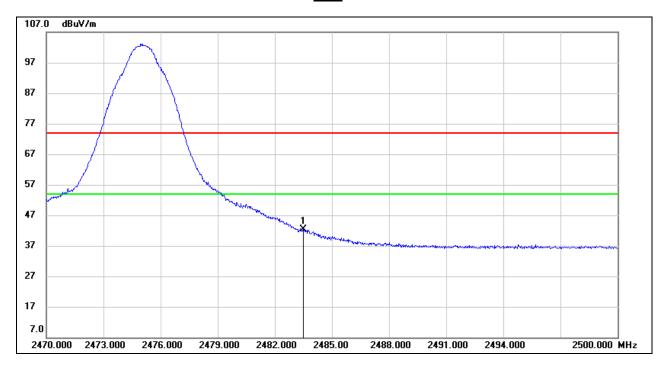
<u>AVG</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	2.84	33.42	36.26	54.00	-17.74	AVG

- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

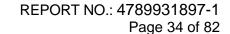
RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

PEAK



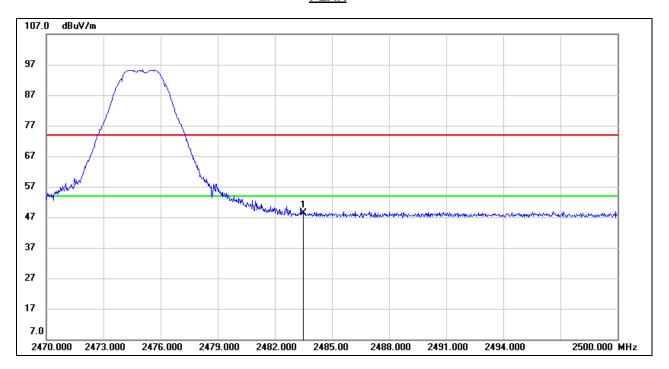
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.73	33.52	52.25	74.00	-21.75	peak

- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



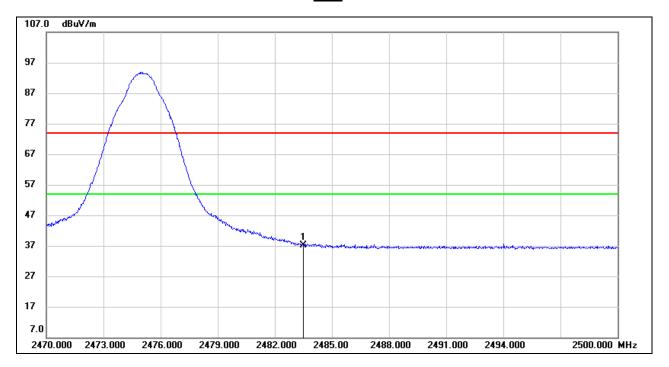
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	8.92	33.52	42.44	54.00	-11.56	AVG


- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

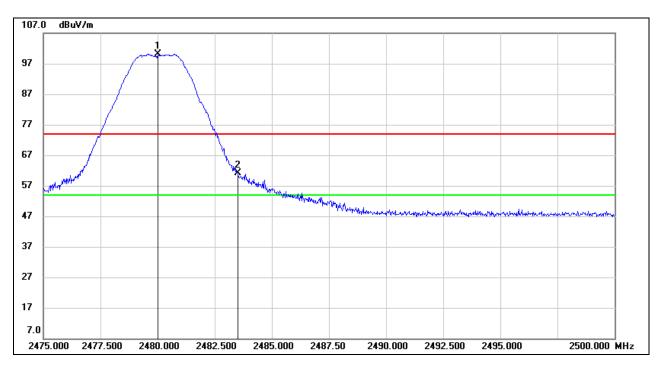
PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.84	33.52	48.36	74.00	-25.64	peak

- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

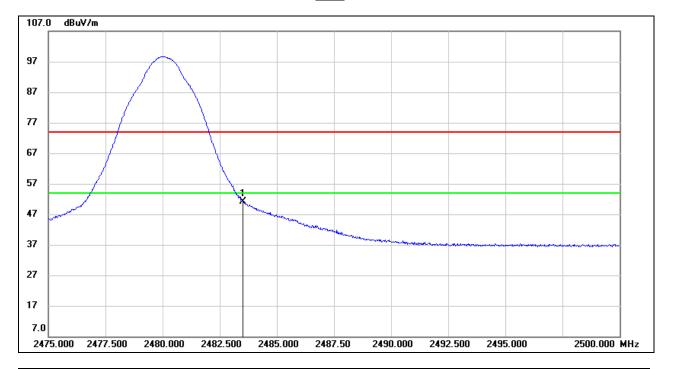
<u>AVG</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	3.58	33.52	37.10	54.00	-16.90	AVG

- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

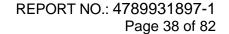
RESTRICTED BANDEDGE (CH26 CHANNEL, HORIZONTAL)

PEAK



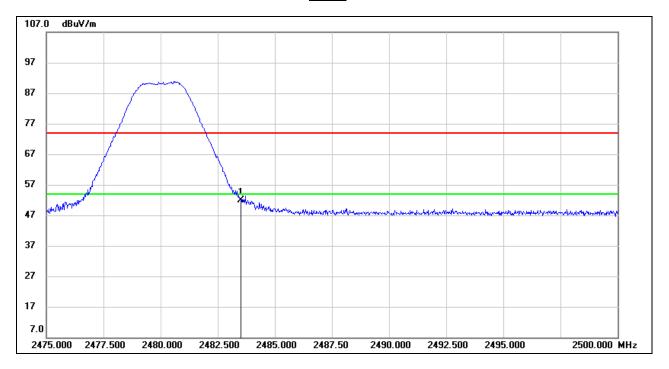
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.000	66.58	33.51	100.09	/	/	Fundamental
2	2483.500	27.68	33.52	61.20	74.00	-12.80	peak

- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



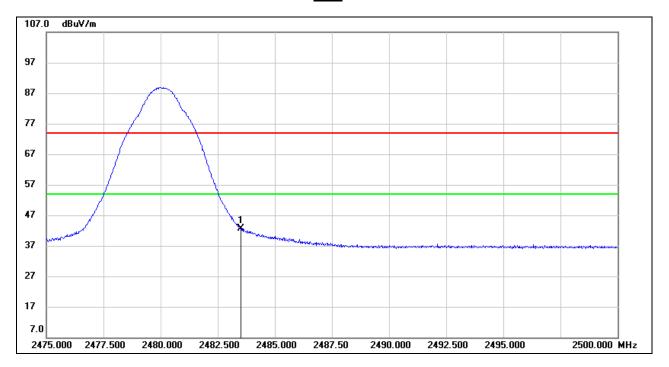
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.59	33.52	51.11	54.00	-2.89	AVG


- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (CH26 CHANNEL, VERTICAL)

PEAK

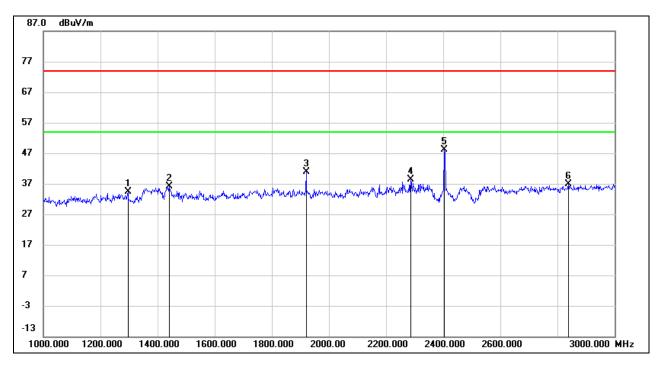


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.27	33.52	51.79	74.00	-22.21	peak

- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>AVG</u>

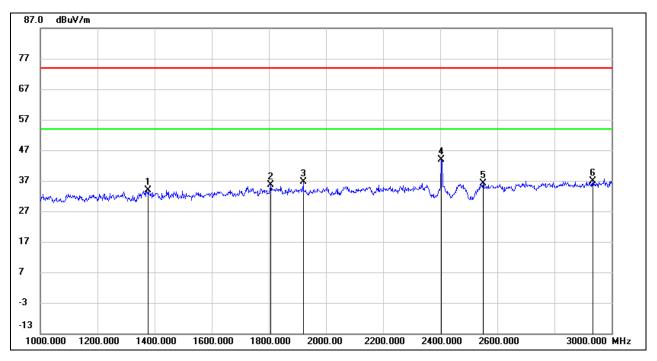
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	9.17	33.52	42.69	54.00	-11.31	AVG


- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT NO.: 4789931897-1 Page 40 of 82

8.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)

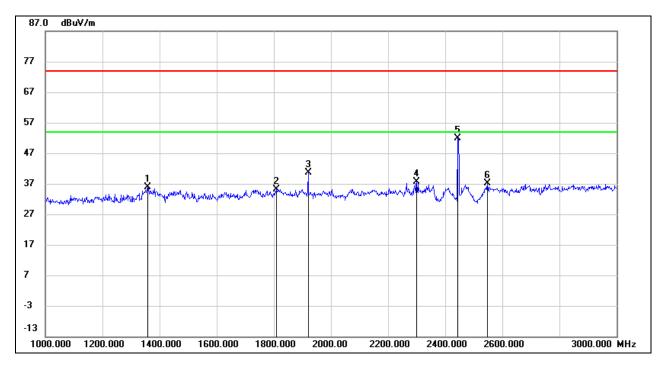
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1296.000	47.15	-12.85	34.30	74.00	-39.70	peak
2	1440.000	48.75	-12.51	36.24	74.00	-37.76	peak
3	1920.000	50.89	-10.13	40.76	74.00	-33.24	peak
4	2286.000	47.10	-8.78	38.32	74.00	-35.68	peak
5	2405.000	56.48	-8.38	48.10	74.00	-25.90	peak
6	2838.000	43.18	-6.37	36.81	74.00	-37.19	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

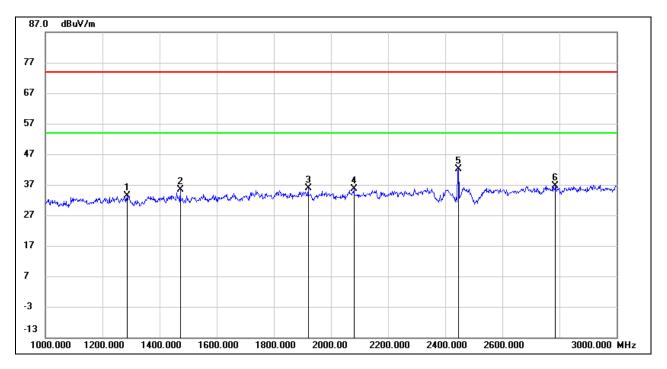
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1378.000	46.72	-12.74	33.98	74.00	-40.02	peak
2	1806.000	45.68	-10.06	35.62	74.00	-38.38	peak
3	1920.000	46.66	-10.13	36.53	74.00	-37.47	peak
4	2405.000	52.37	-8.38	43.99	74.00	-30.01	peak
5	2550.000	44.18	-8.04	36.14	74.00	-37.86	peak
6	2934.000	42.77	-5.91	36.86	74.00	-37.14	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

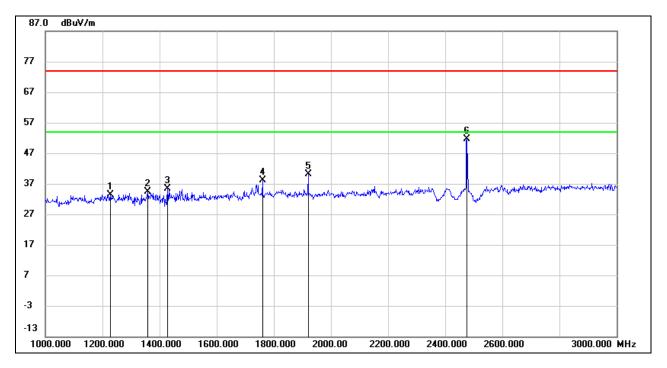
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1358.000	48.72	-12.77	35.95	74.00	-38.05	peak
2	1808.000	45.06	-10.05	35.01	74.00	-38.99	peak
3	1920.000	50.66	-10.13	40.53	74.00	-33.47	peak
4	2300.000	46.30	-8.72	37.58	74.00	-36.42	peak
5	2445.000	60.19	-8.31	51.88	74.00	-22.12	peak
6	2548.000	45.18	-8.05	37.13	74.00	-36.87	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

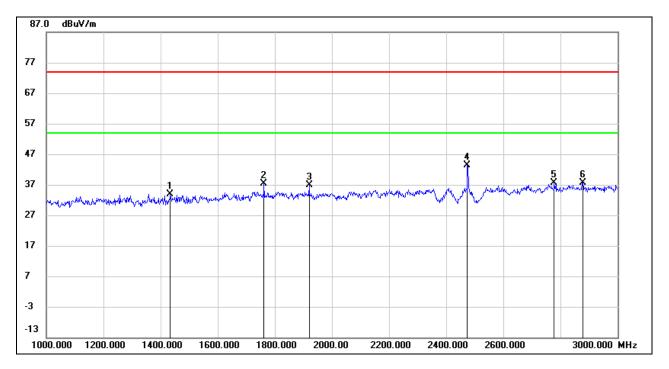
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1286.000	46.36	-12.87	33.49	74.00	-40.51	peak
2	1472.000	47.65	-12.36	35.29	74.00	-38.71	peak
3	1920.000	46.12	-10.13	35.99	74.00	-38.01	peak
4	2080.000	45.31	-9.73	35.58	74.00	-38.42	peak
5	2445.000	50.36	-8.32	42.04	74.00	-31.96	peak
6	2786.000	43.26	-6.65	36.61	74.00	-37.39	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

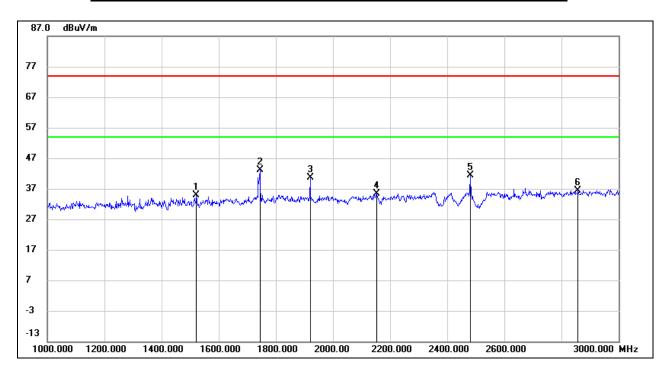
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1228.000	46.42	-12.95	33.47	74.00	-40.53	peak
2	1358.000	47.16	-12.77	34.39	74.00	-39.61	peak
3	1428.000	47.90	-12.57	35.33	74.00	-38.67	peak
4	1760.000	48.54	-10.35	38.19	74.00	-35.81	peak
5	1920.000	50.16	-10.13	40.03	74.00	-33.97	peak
6	2475.000	59.84	-8.26	51.58	74.00	-22.42	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

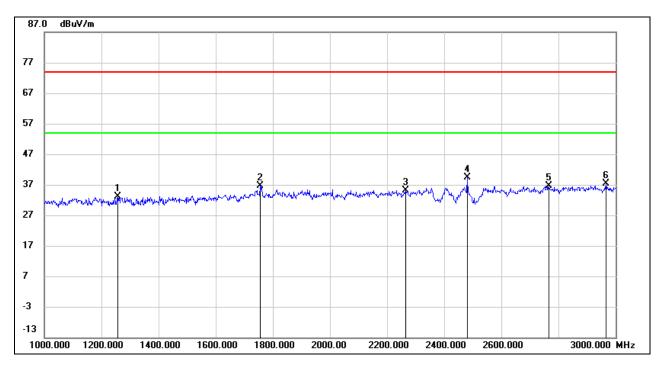
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1434.000	46.53	-12.54	33.99	74.00	-40.01	peak
2	1762.000	47.61	-10.33	37.28	74.00	-36.72	peak
3	1920.000	47.10	-10.13	36.97	74.00	-37.03	peak
4	2475.000	51.64	-8.26	43.38	74.00	-30.62	peak
5	2778.000	44.27	-6.69	37.58	74.00	-36.42	peak
6	2878.000	43.92	-6.18	37.74	74.00	-36.26	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

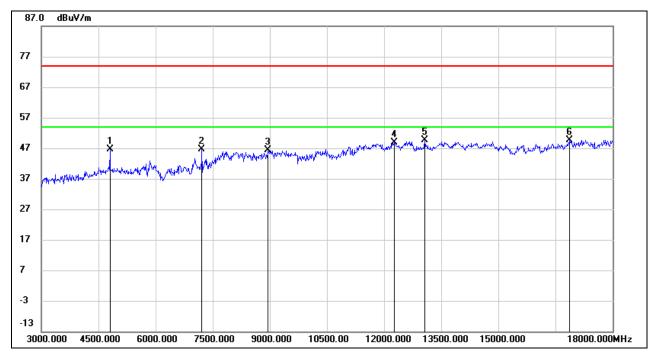
HARMONICS AND SPURIOUS EMISSIONS (CH26 CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1522.000	46.96	-12.09	34.87	74.00	-39.13	peak
2	1744.000	53.70	-10.47	43.23	74.00	-30.77	peak
3	1920.000	50.80	-10.13	40.67	74.00	-33.33	peak
4	2152.000	44.81	-9.32	35.49	74.00	-38.51	peak
5	2480.000	49.76	-8.26	41.50	74.00	-32.50	peak
6	2858.000	42.75	-6.28	36.47	74.00	-37.53	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

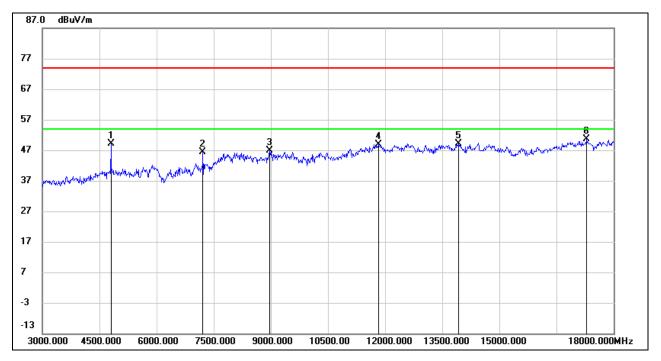
HARMONICS AND SPURIOUS EMISSIONS (CH26 CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1256.000	45.92	-12.91	33.01	74.00	-40.99	peak
2	1756.000	46.91	-10.38	36.53	74.00	-37.47	peak
3	2264.000	44.08	-8.84	35.24	74.00	-38.76	peak
4	2480.000	47.76	-8.26	39.50	74.00	-34.50	peak
5	2766.000	43.47	-6.77	36.70	74.00	-37.30	peak
6	2966.000	43.05	-5.75	37.30	74.00	-36.70	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)

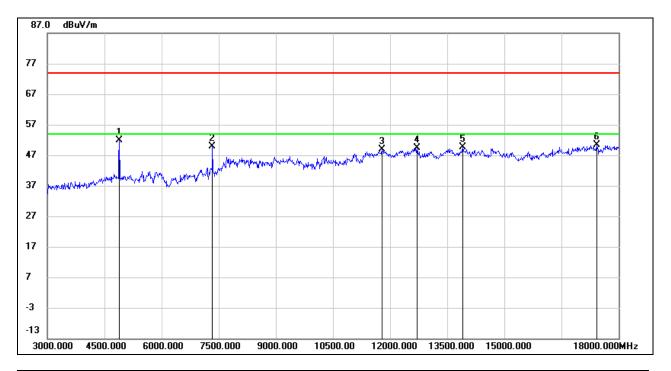
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	46.44	0.19	46.63	74.00	-27.37	peak
2	7215.000	40.58	6.02	46.60	74.00	-27.40	peak
3	8955.000	37.20	9.15	46.35	74.00	-27.65	peak
4	12270.000	34.44	14.33	48.77	74.00	-25.23	peak
5	13065.000	35.35	14.39	49.74	74.00	-24.26	peak
6	16860.000	30.44	19.15	49.59	74.00	-24.41	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

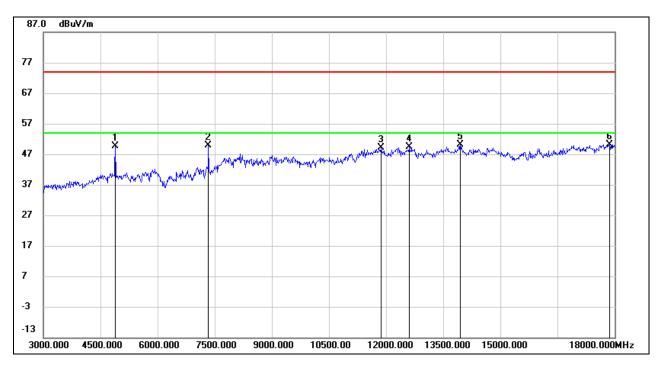
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	48.97	0.19	49.16	74.00	-24.84	peak
2	7215.000	40.25	6.02	46.27	74.00	-27.73	peak
3	8970.000	37.35	9.45	46.80	74.00	-27.20	peak
4	11820.000	35.20	13.80	49.00	74.00	-25.00	peak
5	13920.000	33.31	15.82	49.13	74.00	-24.87	peak
6	17295.000	30.01	20.59	50.60	74.00	-23.40	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.1.
- 6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

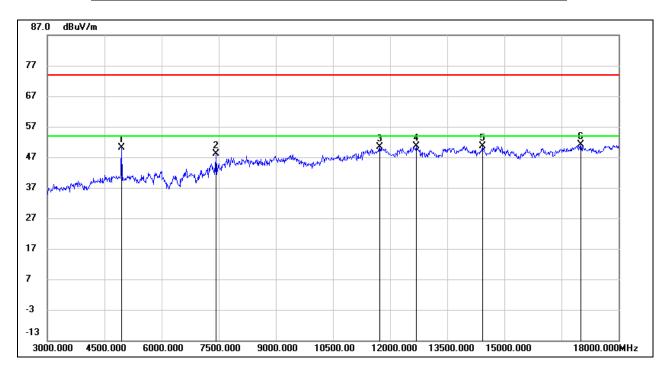
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4890.000	51.69	0.08	51.77	74.00	-22.23	peak
2	7335.000	43.77	6.21	49.98	74.00	-24.02	peak
3	11790.000	35.08	13.71	48.79	74.00	-25.21	peak
4	12705.000	35.44	14.04	49.48	74.00	-24.52	peak
5	13905.000	33.80	15.84	49.64	74.00	-24.36	peak
6	17430.000	30.27	20.00	50.27	74.00	-23.73	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

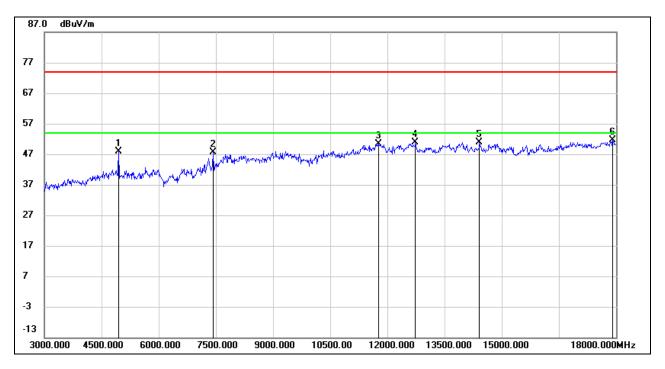
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4890.000	49.59	0.08	49.67	74.00	-24.33	peak
2	7335.000	43.75	6.21	49.96	74.00	-24.04	peak
3	11865.000	35.12	13.92	49.04	74.00	-24.96	peak
4	12615.000	35.29	14.13	49.42	74.00	-24.58	peak
5	13950.000	34.30	15.82	50.12	74.00	-23.88	peak
6	17865.000	28.38	21.84	50.22	74.00	-23.78	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

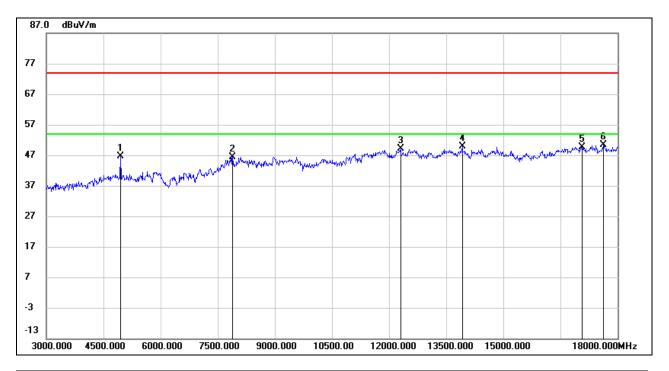
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	49.35	0.82	50.17	74.00	-23.83	peak
2	7425.000	40.48	7.70	48.18	74.00	-25.82	peak
3	11730.000	35.05	15.23	50.28	74.00	-23.72	peak
4	12690.000	35.26	15.45	50.71	74.00	-23.29	peak
5	14430.000	33.94	16.80	50.74	74.00	-23.26	peak
6	17010.000	30.88	20.27	51.15	74.00	-22.85	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

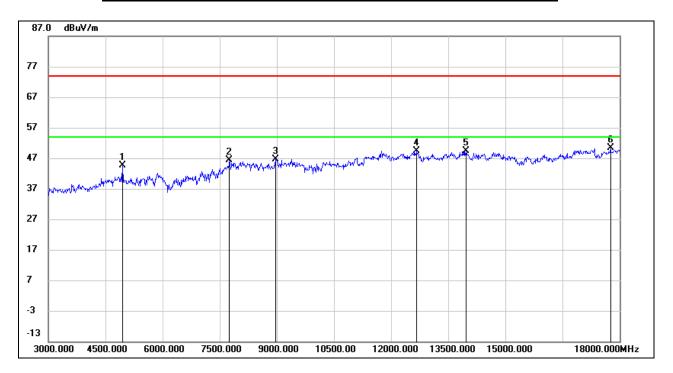
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	46.97	0.82	47.79	74.00	-26.21	peak
2	7425.000	39.93	7.70	47.63	74.00	-26.37	peak
3	11760.000	34.90	15.40	50.30	74.00	-23.70	peak
4	12735.000	35.36	15.53	50.89	74.00	-23.11	peak
5	14415.000	34.08	16.82	50.90	74.00	-23.10	peak
6	17910.000	29.01	22.69	51.70	74.00	-22.30	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

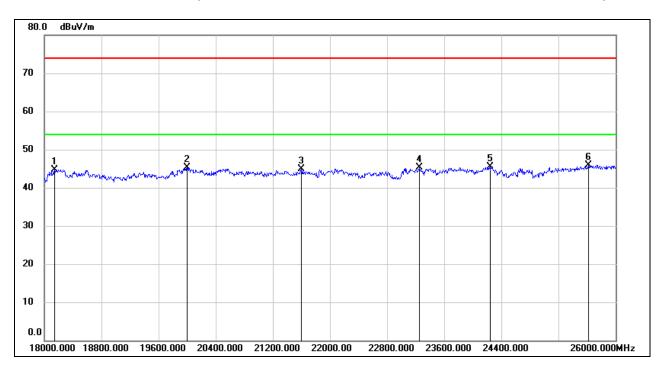
HARMONICS AND SPURIOUS EMISSIONS (CH26 CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	46.04	0.55	46.59	74.00	-27.41	peak
2	7890.000	38.83	7.64	46.47	74.00	-27.53	peak
3	12300.000	34.59	14.43	49.02	74.00	-24.98	peak
4	13920.000	34.06	15.82	49.88	74.00	-24.12	peak
5	17070.000	30.21	19.51	49.72	74.00	-24.28	peak
6	17625.000	29.81	20.59	50.40	74.00	-23.60	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.1.
- 6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

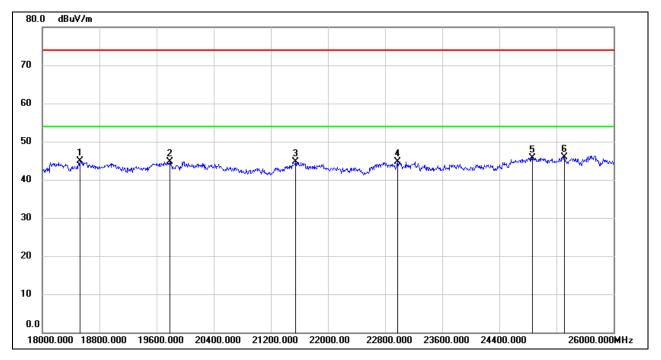
HARMONICS AND SPURIOUS EMISSIONS (CH26 CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	44.04	0.55	44.59	74.00	-29.41	peak
2	7755.000	38.84	7.63	46.47	74.00	-27.53	peak
3	8970.000	37.27	9.45	46.72	74.00	-27.28	peak
4	12675.000	35.43	14.06	49.49	74.00	-24.51	peak
5	13965.000	33.59	15.81	49.40	74.00	-24.60	peak
6	17760.000	28.81	21.67	50.48	74.00	-23.52	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.1.
- 6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)

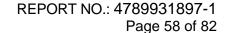
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18144.000	50.27	-5.48	44.79	74.00	-29.21	peak
2	20000.000	50.81	-5.45	45.36	74.00	-28.64	peak
3	21600.000	49.52	-4.54	44.98	74.00	-29.02	peak
4	23256.000	48.72	-3.35	45.37	74.00	-28.63	peak
5	24248.000	48.32	-2.83	45.49	74.00	-28.51	peak
6	25616.000	47.18	-1.24	45.94	74.00	-28.06	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

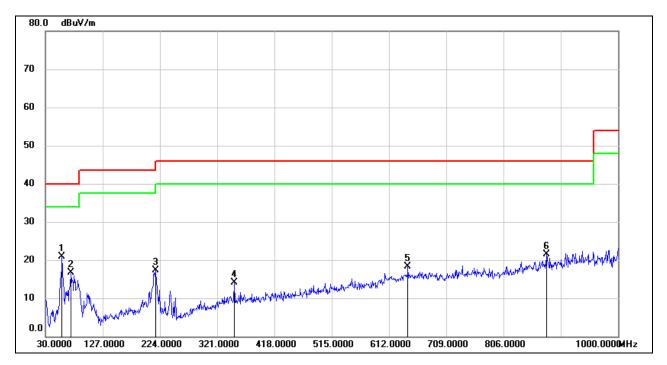
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18528.000	50.11	-5.26	44.85	74.00	-29.15	peak
2	19784.000	50.07	-5.28	44.79	74.00	-29.21	peak
3	21544.000	49.26	-4.63	44.63	74.00	-29.37	peak
4	22976.000	48.26	-3.46	44.80	74.00	-29.20	peak
5	24864.000	48.03	-2.23	45.80	74.00	-28.20	peak
6	25312.000	47.70	-1.70	46.00	74.00	-28.00	peak

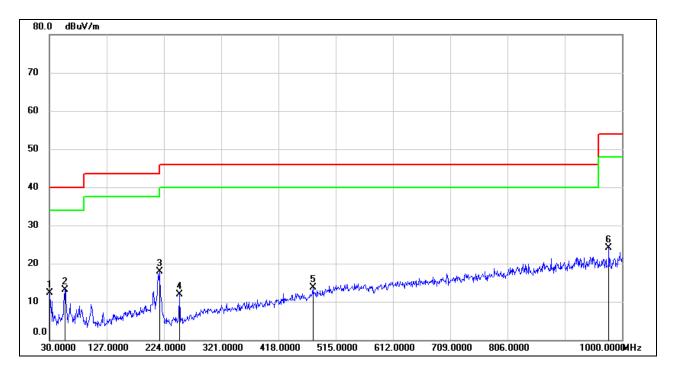
Note: 1. Peak Result = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.


Note: All the channels have been tested, only the worst data was recorded in the report.

8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	58.1300	41.45	-20.55	20.90	40.00	-19.10	QP
2	73.6500	37.50	-20.84	16.66	40.00	-23.34	QP
3	216.2400	35.12	-17.84	17.28	46.00	-28.72	QP
4	350.1000	28.33	-14.32	14.01	46.00	-31.99	QP
5	644.0100	27.25	-9.04	18.21	46.00	-27.79	QP
6	878.7500	27.09	-5.55	21.54	46.00	-24.46	QP

Note: 1. Result Level = Read Level + Correct Factor.

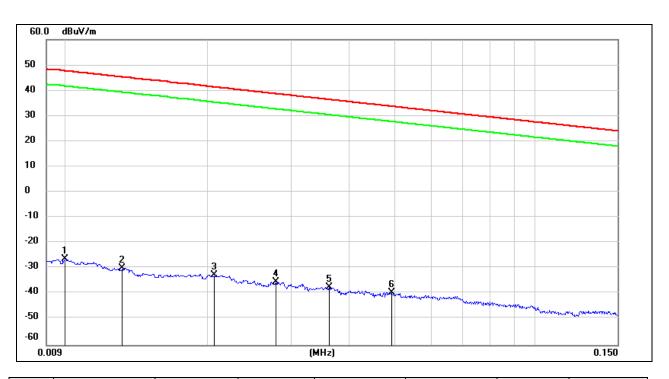
- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.0000	31.18	-18.94	12.24	40.00	-27.76	QP
2	56.1900	33.70	-20.61	13.09	40.00	-26.91	QP
3	216.2400	35.81	-17.84	17.97	46.00	-28.03	QP
4	250.1900	30.80	-18.91	11.89	46.00	-34.11	QP
5	476.2000	25.57	-11.88	13.69	46.00	-32.31	QP
6	977.6900	28.52	-4.36	24.16	54.00	-29.84	QP

Note: 1. Result Level = Read Level + Correct Factor.

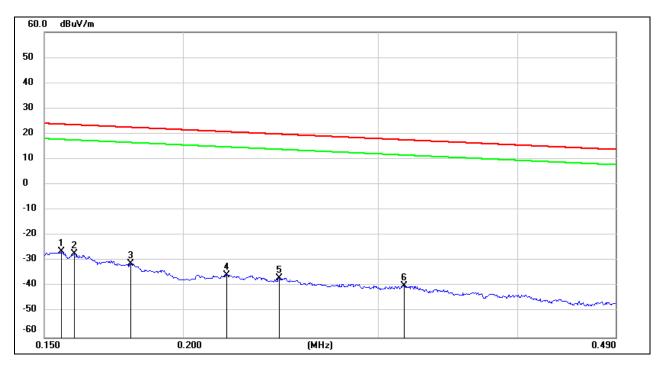
- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto


Note: All the channels have been tested, only the worst data was recorded in the report.

8.6. SPURIOUS EMISSIONS BELOW 30 MHz

SPURIOUS EMISSIONS (MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

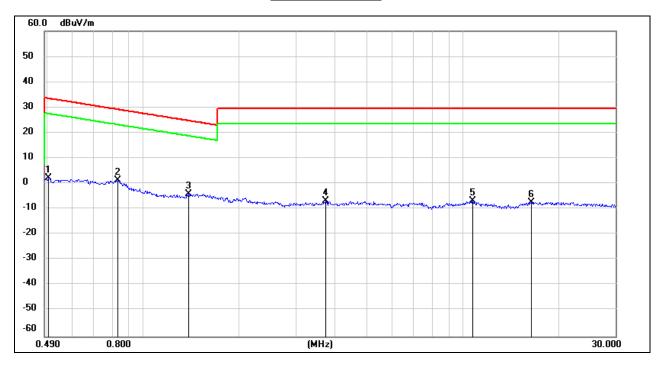
9 kHz~ 150 kHz



No.	Frequency	Reading	Correct	FCC Result	FCC Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0100	75.22	-101.40	-26.18	47.6	-73.78	peak
2	0.0131	71.47	-101.38	-29.91	45.25	-75.16	peak
3	0.0206	68.92	-101.35	-32.43	41.32	-73.75	peak
4	0.0279	66.17	-101.38	-35.21	38.69	-73.90	peak
5	0.0362	64.01	-101.42	-37.41	36.43	-73.84	peak
6	0.0492	62.05	-101.47	-39.42	33.76	-73.18	peak

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

150 kHz ~ 490 kHz



No.	Frequency	Reading	Correct	FCC Result	FCC Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1554	75.27	-101.65	-26.38	23.77	-50.15	peak
2	0.1595	74.36	-101.65	-27.29	23.55	-50.84	peak
3	0.1794	70.77	-101.68	-30.91	22.53	-53.44	peak
4	0.2190	66.27	-101.75	-35.48	20.79	-56.27	peak
5	0.2442	65.03	-101.79	-36.76	19.85	-56.61	peak
6	0.3163	62.20	-101.87	-39.67	17.6	-57.27	peak

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

490 kHz ~ 30 MHz

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5039	64.44	-62.07	2.37	33.56	-31.19	peak
2	0.8296	63.44	-62.17	1.27	29.23	-27.96	peak
3	1.3810	57.97	-62.10	-4.13	24.8	-28.93	peak
4	3.7100	54.70	-61.41	-6.71	29.54	-36.25	peak
5	10.7299	53.98	-60.83	-6.85	29.54	-36.39	peak
6	16.3959	53.67	-60.96	-7.29	29.54	-36.83	peak

Note: 1. Measurement = Reading Level + Correct Factor

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the channels have been tested, only the worst data was recorded in the report.

REPORT NO.: 4789931897-1

Page 63 of 82

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

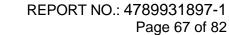
REPORT NO.: 4789931897-1

Page 64 of 82

10. Appendix

10.1. Appendix A: DTS Bandwidth 10.1.1. Test Result

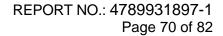
Test Mode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2405	1.620	2404.205	2405.825	0.5	PASS
Zigbee		2445	1.620	2444.210	2445.830	0.5	PASS
Zigbee		2475	1.715	2474.215	2475.930	0.5	PASS
		2480	1.585	2479.225	2480.810	0.5	PASS


10.1.2. Test Graphs

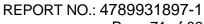
Page 66 of 82

10.2. Appendix B: Occupied Channel Bandwidth 10.2.1. Test Result

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
	Ant1	2405	2.2720	2403.866	2406.138	PASS
Zighoo		2445	2.2594	2443.866	2446.125	PASS
Zigbee		2475	2.2692	2473.870	2476.139	PASS
		2480	2.2850	2478.856	2481.141	PASS

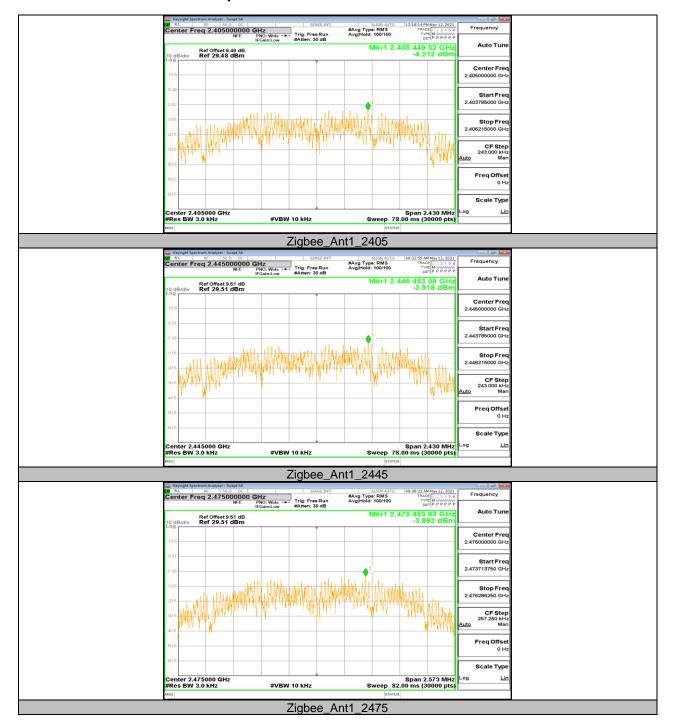


10.2.2. Test Graphs


0/100 Radio Device: BTS Mkr1 2.480025 GHz 5.6062 dBm Center Fre 2.480000000 GH enter 2.48 GHz Res BW 100 kHz CF Step 500.000 kHz Mar #VBW 360 kHz Occupied Bandwidth Total Power 14.1 dBm 2.2850 MHz Freq Offset -1.068 kHz Transmit Freq Error % of OBW Power 99.00 % x dB Bandwidth 3.115 MHz -26.00 dB Zigbee_Ant1_2480

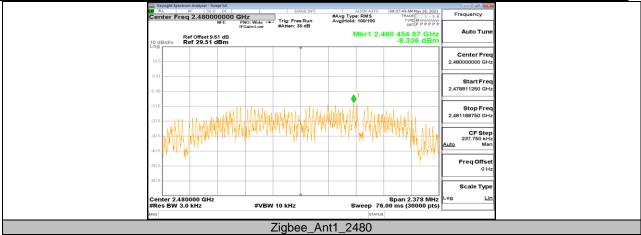
10.3. Appendix C: Maximum conducted output power 10.3.1. Test Result

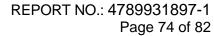
Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	2405	9.80	<=30	PASS
Zighoo		2445	9.93	<=30	PASS
Zigbee		2475	9.29	<=30	PASS
		2480	3.45	<=30	PASS


Page 71 of 82

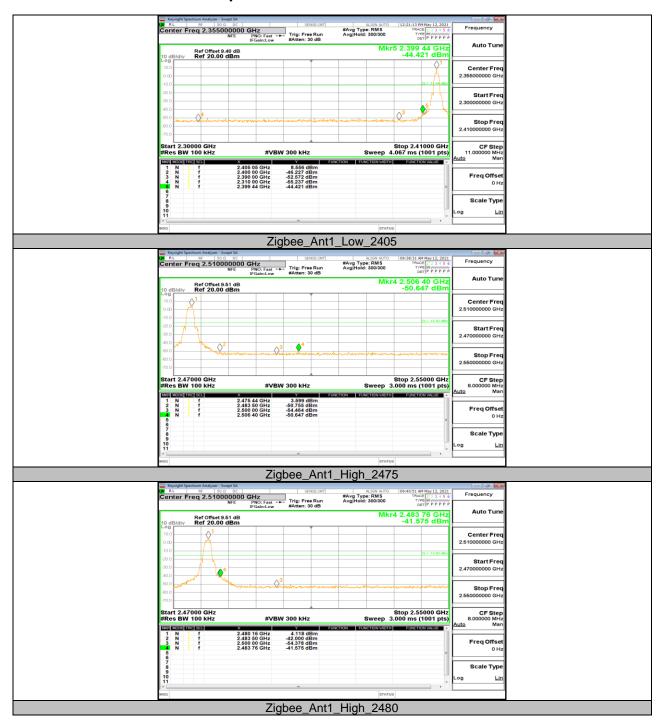
10.4. Appendix D: Maximum power spectral density 10.4.1. Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
	Ant1	2405	-4.21	<=8	PASS
Zighaa		2445	-3.92	<=8	PASS
Zigbee		2475	-3.89	<=8	PASS
		2480	-8.34	<=8	PASS




10.4.2. Test Graphs

Page 73 of 82

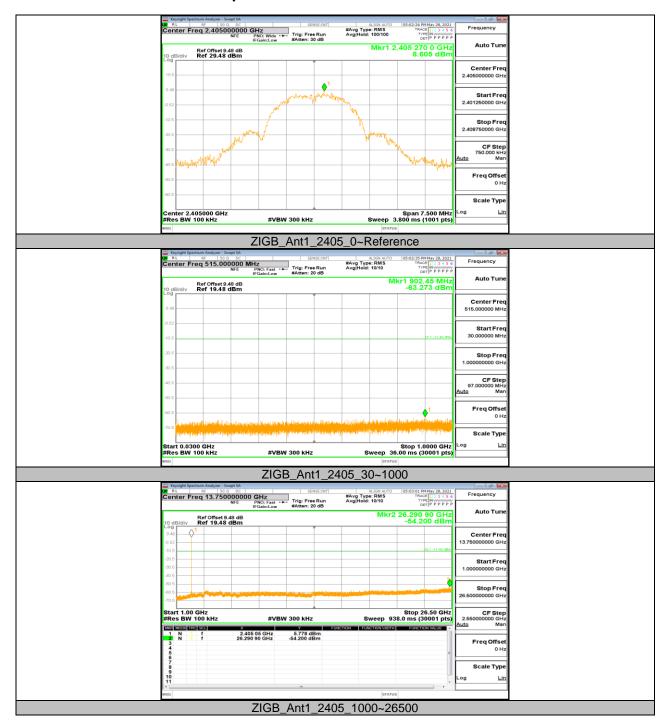


10.5. Appendix E: Band edge measurements 10.5.1. Test Result

Test Mode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
Zigbee	Ant1	Low	2405	8.56	-44.42	<=-11.44	PASS
		Lliab	2475	3.60	-50.65	<=-16.4	PASS
		High	2480	4.12	-41.58	<=-15.88	PASS

10.5.2. Test Graphs

REPORT NO.: 4789931897-1 Page 76 of 82



10.6. Appendix F: Conducted Spurious Emission 10.6.1. Test Result

Test Mode	Antenna	Channel	Freq Range [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
			Reference	8.61	8.61		PASS
		2405	30~1000		-63.27	<=-11.4	PASS
			1000~26500		-54.2	<=-11.4	PASS
	Ant1	2445	Reference	10.83	10.83		PASS
			30~1000		-63.59	<=-9.17	PASS
Zighoo			1000~26500		-54.95	<=-9.17	PASS
Zigbee		2475	Reference	5.48	5.48		PASS
			30~1000		-62.81	<=-14.52	PASS
			1000~26500		-54.77	<=-14.52	PASS
		2480	Reference	6.97	6.97		PASS
			30~1000		-62.87	<=-13.03	PASS
			1000~26500		-54.93	<=-13.03	PASS

10.6.1. Test Graphs

RL RF 50 0 DC | SEROSCIONCenter Freq 2.445000000 GHz


NFE | PNO; Wide | Free Run | #Atten: 30 dB #Avg Type: RMS Avg|Hold: 78/100 Start Fre 2.441250000 GH Freq Offse Scale Typ enter 2.445000 GHz Res BW 100 kHz #VBW 300 kHz ZIGB_Ant1_2445_0~Reference 29 PM May 28, 2021 TRACE 1 2 3 4 5 TYPE M WWWWW DET P P P P P P #Avg Type: RMS Avg|Hold: 10/10 Auto Tur /kr1 867.82 MHz -63.592 dBm Ref Offset 9.51 dB Ref 19.51 dBm Center Free Stop Fre CF Step Freq Offse Scale Type Stop 1.0000 GHz Sweep 36.00 ms (30001 pts) ZIGB_Ant1_2445_30~1000 #Avg Type: RMS Avg|Hold: 10/10 Ref Offset 9.51 dB Ref 19.51 dBm Center Free Start Free Stop Fre Stop 26.50 GHz Sweep 938.0 ms (30001 pts) #VBW 300 kHz 2.445 00 GHz 25.756 25 GHz 6.758 dBm -54.954 dBm ZIGB_Ant1_2445_1000~26500

RL RF 50 0 DC | SEROSCIONCenter Freq 2.47500000 GHz

NFE | PNO; Wide | Makter: 30 dB | Makte #Avg Type: RMS Avg|Hold: 66/100 Start Fre 2.471250000 GH Freq Offse Scale Typ #VBW 300 kHz ZIGB_Ant1_2475_0~Reference 23 PM May 28, 2021 TRACE 1 2 3 4 5 TYPE M WWWWW DET P P P P P P #Avg Type: RMS Avg|Hold: 10/10 Auto Tur lkr1 716.63 MHz -62.808 dBm Ref Offset 9.51 dB Ref 19.51 dBm Center Free Stop Fre CF Step Freq Offse Scale Type Stop 1.0000 GHz Sweep 36.00 ms (30001 pts) ZIGB_Ant1_2475_30~1000 #Avg Type: RMS Avg|Hold: 10/10 Ref Offset 9.51 dB Ref 19.51 dBm Center Free Start Free Stop Fre Stop 26.50 GHz Sweep 938.0 ms (30001 pts) #VBW 300 kHz 4.887 dBm -54.768 dBm ZIGB_Ant1_2475_1000~26500

REPORT NO.: 4789931897-1

Page 81 of 82

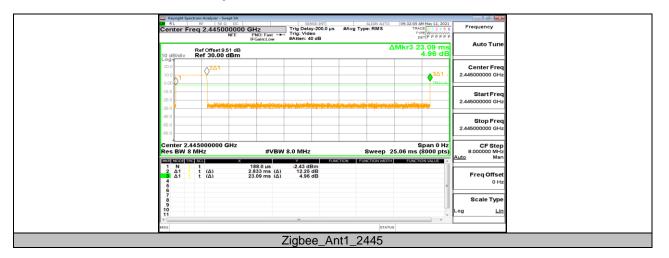
10.7. Appendix G: Duty Cycle 10.7.1. Test Result

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
Zigbee	2.83	23.09	0.1226	12.26	9.12	0.35	0.5

Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)


Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be

used.

10.7.2. Test Graphs

END OF REPORT