Report No.: POCE240425010RL001
RF TEST REPORT
TECHNOLOGY (SHENZHEN) CO., LTD oduct Name: Wireless Earphone
Test Model(s).: T12
: POCE240425010RL001
: 2ATU8-T12
: BESING TECHNOLOGY (SHENZHEN) CO., LTD
2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
: Shenzhen DACE Testing Technology Co., Ltd.
102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao′an District, Shenzhen, Guangdong, China
: 47 CFR Part 15.247
: April 25, 2024
: April 25, 2024 to April 30, 2024
: April 30, 2024
: Pass
eproduced except in full, without the written approval of Shenzhen DACE his document may be altered or revised by Shenzhen DACE Testing Technology hall be noted in the revision section of the document. The test results in the sample

Web: http://www.dace-lab.com

Ì

Tel: +86-755-23010613

E-mail: service@dace-lab.com

)DC

Report No.: POCE240425010RL001

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE240425010RL001	April 30, 2024
	24	. 6	
	OF I	200	(
		U	

NOTE1:

DAG

DΔ

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

NE

Compiled by:

Ben Tang /Test Engineer

Tom Chen Tom Chen / Project Engineer

AC

AC

DAG

Supervised by:

Approved by:

ø

Machael MJ

Machael Mo / Manager

4

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

NE

26

Page 2 of 95

CONTENTS

V1.0	Report No.: POCE240425010RL001
CONTENTS	
	200
ST SUMMARY	
1.1 TEST STANDARDS	
1.2 SUMMARY OF TEST RESULT	
NERAL INFORMATION	
2.1 CLIENT INFORMATION	
2.2 DESCRIPTION OF DEVICE (EUT)	
2.3 DESCRIPTION OF TEST MODES 2.4 DESCRIPTION OF SUPPORT UNITS	
2.5 EQUIPMENTS USED DURING THE TEST	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 ANNOUNCEMENT	
ALUATION RESULTS (EVALUATION)	
3.1 ANTENNA REQUIREMENT	
3.1.1 Conclusion:	
DIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	1
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram:	
4.1.3 Test Data:	
4.2 OCCUPIED BANDWIDTH	
4.2.1 E.U.T. Operation:	
4.2.2 Test Setup Diagram:	
4.2.3 Test Data: 4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4.1 E.U.T. Operation: 4.4.2 Test Setup Diagram:	
4.4.2 Test Setup Diagram.	
4.5 NUMBER OF HOPPING FREQUENCIES	
4.5.1 E.U.T. Operation:	
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6 DWELL TIME	
4.6.1 E.U.T. Operation:	
4.6.2 Test Setup Diagram:	
4.6.3 Test Data:	
4.7 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
4.7.1 E.U.T. Operation:	
4.7.2 Test Setup Diagram:	
4.7.3 Test Data:	
4.8 BAND EDGE EMISSIONS (RADIATED)	
4.8.1 E.U.T. Operation:	
4.8.1 E.U.T. Operation: ding H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Gu http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com	angdong, China

	Report No.: POCE240425010RL001
4.8.2 Test Setup Diagram:	
4.8.3 Test Data:	
4.9 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	
4.9.1 E.U.T. Operation:	
4.9.2 Test Data:	
4.10 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ)	
4.10.1 E.U.T. Operation:	
4.10.2 Test Data:	
5 TEST SETUP PHOTOS	38
6 PHOTOS OF THE EUT	
APPENDIX	
120DB BANDWIDTH	55
2. 99% Occupied Bandwidth	
3. PEAK OUTPUT POWER	
4. SPURIOUS EMISSIONS	
5. BANDEDGE	
6. CARRIER FREQUENCIES SEPARATION (HOPPING)	
7. NUMBER OF HOPPING CHANNEL (HOPPING)	
	90

)DE

)AC

)DE

DAG

NE

DAG

3

DAG

DAE

DAG

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

DAE

DAG

)DE

)DE

-

1 TEST SUMMARY

1.1 Test Standards

DVC

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

D76	V1.0	Report No.: POCE240425010RL001
2 GENERAL	INFC	
2.1 Client Informat	ion	
Applicant's Name	:	BESING TECHNOLOGY (SHENZHEN) CO., LTD
Address		2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
Manufacturer	:	BESING TECHNOLOGY (SHENZHEN) CO., LTD
Address	:	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
2.2 Description of	Devic	e (EUT)

Product Name: 🛛 💙	Wireless Earphone				
Model/Type reference:	T12				
Series Model:	N/A				
Trade Mark:	N/A				
Power Supply:	DC 5V/1A from adapter Battery:DC3.7V 65mAH				
Operation Frequency:	2402MHz to 2480MHz				
Number of Channels:	79				
Modulation Type:	GFSK, π/4 DQPSK, 8DPSK				
Antenna Type:	Chip antenna				
Antenna Gain:	1.8dBi				
Hardware Version:	V1.0				
Software Version:	V1.0				

(Remark: The Antenna Gain is supplied by the customer. DACE is not responsible for This data and the related calculations associated with it)

Operation	Frequency	each	of channel
-----------	-----------	------	------------

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32 🗸	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 E-mail: service@dace-lab.com

Web: http://www.dace-lab.com

Page 6 of 95

Report No.: POCE240425010RL001

V1.0

16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

DAG

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
	BDR/EDR
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz

2.3 Description of Test Modes

	Description
TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.
TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.
	Hopping) TX-Pi/4DQPSK (Non- Hopping) TX-GFSK (Hopping) TX-Pi/4DQPSK

2.4 Description of Support Units

)De

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	Jr Jr

20

C

.

)DE

2.5 Equipments Used During The Test

AC power line Manufacturer EVERFINE	Model No LLA-2	Inventory No	Cal Date	Cal Due Date
EVERFINE		,	Cal Date	Cal Due Date
	LLA-2			
		80900L-C	2024-02-19	2025-02-18
BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24
SCHWARZ BECK	CAT5 8158	CAT5 8158#207	/	16
SCHWARZ / /		/	2024-03-20	2025-03-19
SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11
50ΩCoaxial Switch Anritsu		M20531	/	/
Test Receiver Rohde & Schwarz		ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12
L.I.S.N R&S ES		831.5518.52	2023-12-12	2024-12-11
	SCHWARZ BECK SCHWARZ BECK SCHWARZ BECK Anritsu Rohde & Schwarz	BECKELEKTRONIKSCHWARZ BECKCAT5 8158SCHWARZ BECK/SCHWARZ BECKVTSD 9561-F Pulse limiter 10dB AteennatorAnritsuMP59BRohde & SchwarzESPI TEST RECEIVER	BECKELEKTRONIK/SCHWARZ BECKCAT5 8158CAT5 8158#207SCHWARZ BECK//SCHWARZ BECK//SCHWARZ BECKVTSD 9561-F Pulse limiter 10dB Ateennator561-G071AnritsuMP59BM20531Rohde & SchwarzESPI TEST RECEIVERID:1164.6607K 03-102109- MH	BECKELEKTRONIK/2024-03-25SCHWARZ BECKCAT5 8158CAT5 8158#207/SCHWARZ BECK//2024-03-20SCHWARZ

Dwell Time

DVC

Emissions in non-restricted frequency bands Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies

Auniber of Hopping Frequencies									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RF Test Software	TACHOY	RTS-01	V2.0.0.0	1	/				
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	/				
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10				
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	DAC				
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12				
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08				
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08				
Spectrum Analyzer	bectrum Analyzer Keysight		MY53420323	2023-12-12	2024-12-11				

.

Report No.: POCE240425010RL001

DVC

2

2

DAE

٩.

Band edge emissions (Radiated)								
Emissions in frequency bands (below 1GHz)								
Emissions in frequence	y bands (above 10		22					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
EMI Test software	Farad	EZ -EMC	V1.1.42	1	1			
Positioning Controller	<u> </u>	MF-7802	<u>e</u> 1	/	1			
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	/				
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04			
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04			
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04			
Cable(LF)#2	Schwarzbeck	/	1.0	2024-02-19	2025-02-18			
Cable(LF)#1	Schwarzbeck	/		2024-02-19	2025-02-18			
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19			
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-03-20	2025-03-19			
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12			
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12			
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12			
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13			
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12			
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20			
Test Receiver R&S		ESCI	102109	2023-06-13	2024-06-12			

)DE

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

Page 9 of 95

DE

DA

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
Duty cycle	±3.1%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
	nended uncertainty expressed at encryptimentally the OFO/

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.					
	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,					
Address:	Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China					
Phone Number:	+86-13267178997					
Fax Number:	86-755-29113252					
Identification of the Respons	ible Testing Location					
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.					
Address:	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,					
	Tangtou, Shiyan, Bao′ an District, Shenzhen, Guangdong, China					
Phone Number:	+86-13267178997					
Fax Number:	86-755-29113252					
FCC Registration Number:	0032847402					
Designation Number:	CN1342					
Test Firm Registration Number:	778666					
A2LA Certificate Number:	6270.01					

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

)De

NC

Report No.: POCE240425010RL001

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

)DE

NE

)AC

3.1.1 Conclusion:

1

DAG

Test Requirement:

DΔC

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

NG

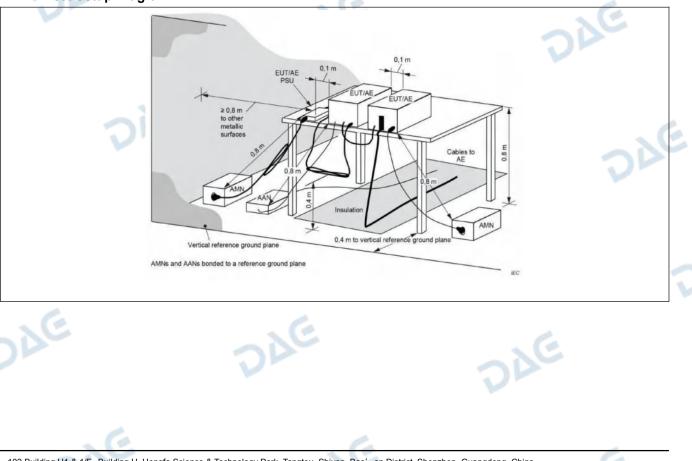
Report No.: POCE240425010RL001

4 Radio Spectrum Matter Test Results (RF)

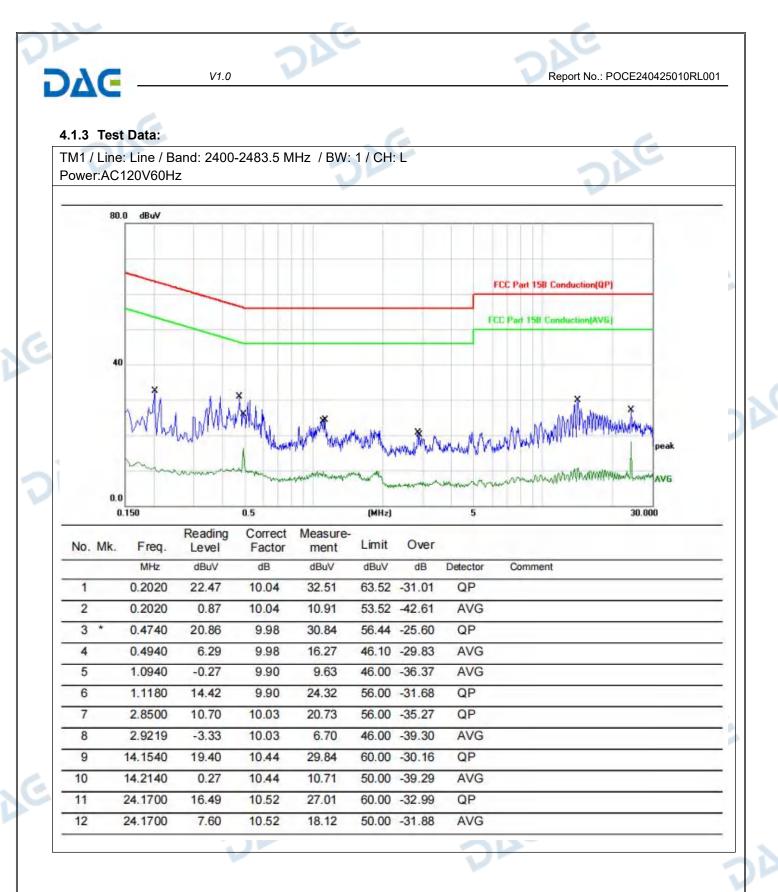
4.1 Conducted Emission at AC power line

D.G	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).	
		_

Test Limit:	Frequency of emission (MHz)	Conducted limit (dE	βμV)					
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	*Decreases with the logarithm of the frequency.							
Test Method:	ANSI C63.10-2013 section 6.2	ANSI C63.10-2013 section 6.2						
Procedure:		Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						

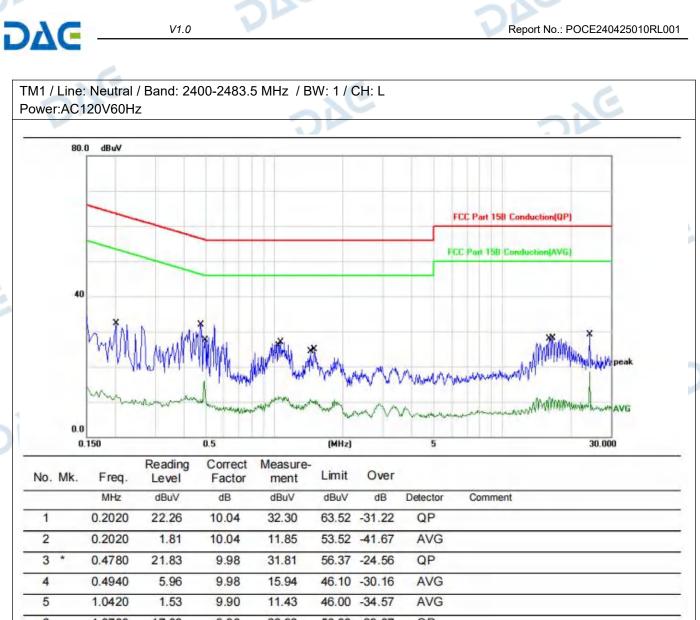

4.1.1 E.U.T. Operation:

DAG


Test Requirement:

Operating Environment:						
Temperature:	22.5 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1			V	
Final test mode:		TM1				

4.1.2 Test Setup Diagram:


102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

DAG

DAE

Page 13 of 95

DAG

5	1.0420	1.53	9.90	11.43	46.00 -34.57	AVG
6	1.0700	17.03	9.90	26.93	56.00 -29.07	QP
7	1.4340	0.77	9.93	10.70	46.00 -35.30	AVG
8	1.4980	15.05	9.93	24.98	56.00 -31.02	QP
9	16.1340	0.77	10.46	11.23	50.00 -38.77	AVG
10	16.6020	17.65	10.47	28.12	60.00 -31.88	QP
11	24.1820	18.57	10.52	29.09	60.00 -30.91	QP
12	24.1820	7.95	10.52	18.47	50.00 -31.53	AVG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

DAG

Page 14 of 95

DAG

Report No.: POCE240425010RL001

4.2 Occupied Bandwidth

DΔC

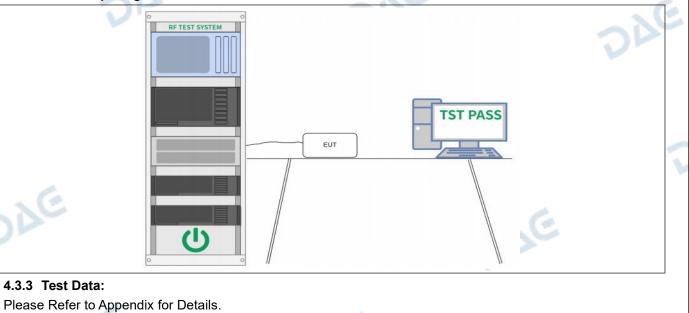
4.2 Occupied Ban		6
Test Requirement:	47 CFR 15.215(c)	200
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under provisions to the general emission limits, as contained in §§ 15 and in subpart E of this part, must be designed to ensure that the of the emission, or whatever bandwidth may otherwise be spect rule section under which the equipment operates, is contained band designated in the rule section under which the equipment	.217 through 15.257 he 20 dB bandwidth ified in the specific within the frequency
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth mea procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02	asurements, use the
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal center frequency. The span range for the EMI receiver or spect be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the ratio of the OBW and video bandwidth (VBW) shall be approximately the unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping 	rum analyzer shall ange of 1% to 5% of nree times RBW, g the signal from
	 exceeding the maximum input mixer level for linear operation. I of the spectral envelope shall be more than [10 log (OBW/RBW reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the tolerances. e) The dynamic range of the instrument at the selected RBW sl dB below the target "-xx dB down" requirement; that is, if the remeasuring the -20 dB OBW, the instrument noise floor at the selected remeasure the selected remeasure. 	/)] below the e specified hall be more than 10 equirement calls for
	 be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an u or modulated signal, as applicable. Allow the trace to stabilize. analyzer marker to the highest level of the displayed trace (this value). h) Determine the "-xx dB down amplitude" using [(reference value). h) Determine the scalculation may be made by using the marker intervence. 	Set the spectrum is the reference llue) – xx].
	 instrument. i) If the reference value is determined by an unmodulated carrier modulation ON, and either clear the existing trace or start a new spectrum analyzer and allow the new trace to stabilize. Otherwistep g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other frequency of the envelope of the spectral display, such that each slightly below the "-xx dB down amplitude" determined in step h below this "-xx dB down amplitude" value, then it shall be as clean this value. The occupied bandwidth is the frequency difference 	w trace on the ise, the trace from r at the highest ch marker is at or n). If a marker is ose as possible to between the two
AE	markers. Alternatively, set a marker at the lowest frequency of t spectral display, such that the marker is at or slightly below the amplitude" determined in step h). Reset the marker-delta function marker to the other side of the emission until the delta marker a same level as the reference marker amplitude. The marker-delt at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot(s instrument display; the plot axes and the scale units per division labeled. Tabular data may be reported in addition to the plot(s).	"-xx dB down on and move the amplitude is at the ta frequency reading s) of the measuring n shall be clearly
4.2.1 E.U.T. Operation:		
Operating Environment:		

¹⁰² Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com

Temperate	ıre: 22.5 °C	Humidity:	51 %	Atmospheric Pressure:	101 kPa
Pretest m		TM1, TM2	200		200
Final test		TM1, TM2	V		VE
4.2.2 Tes	t Setup Diagrai	n:			
C			EUT	TST PASS	E
4.2.3 Tes Please Re	t Data: fer to Appendix	for Details.	DYG		DAE
E					

DAG

4.3 Maximum Conducted Output Power


Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured.
de de	 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.
4.3.1 E.U.T. Operation:	SE G

6

4.3.1 E.U.T. Operation:

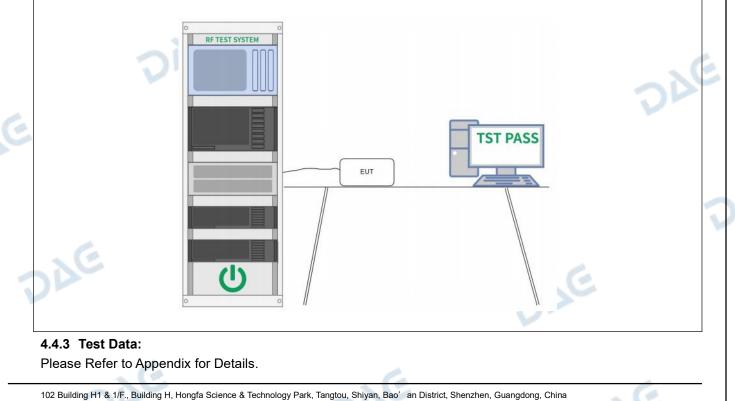
Operating Environment:							
Temperature:	22.5 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa	
Pretest mode: TM1, TM2			TM2				
Final test mode: TM1, TM2							
,					6		

4.3.2 Test Setup Diagram:

Report No.: POCE240425010RL001

4.4 Channel Separation

DAG


7 CFR 15.247(a)(1) Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB pandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping
channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency
channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW.
 a) Sweep: Auto. b) Detector function: Peak. c) Trace: Max hold. c) Allow the trace to stabilize. c) Jse the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

. 6

4.4.1 E.U.T. Operation:

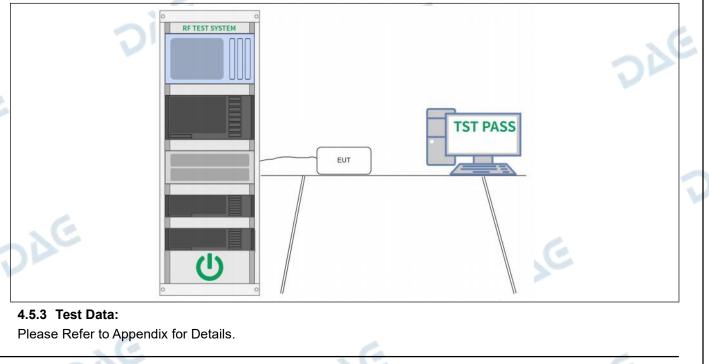
Operating Environment:							
Temperature:	22.5 °C		Humidity:	51 %		Atmospheric Pressure:	101 kPa
Pretest mode:		ТМ3,	TM4		C		. 6
Final test mode:		ТМ3,	TM4	2			2

4.4.2 Test Setup Diagram:

Web: http://www.dace-lab.com

Tel: +86-755-23010613 E-mail: service@dace-lab.com

DVC


Report No.: POCE240425010RL001

4.5 Number of Hopping Frequencies Test Requirement: 47 CFR 15.247(a)(1)(iii) Test Limit: Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Test Method: ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW \geq RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

4.5.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.5 °C		Humidity:	51 %	3	Atmospheric Pressure:	101 kPa
Pretest mode:		ТМЗ,	TM4				21-
Final test mode:		ТМЗ,	TM4				

4.5.2 Test Setup Diagram:

Report No.: POCE240425010RL001

4.6 Dwell Time

DΔC

Test Requirement: Test Limit:	47 CFR 15.247(a)(1)(iii)	
Test Limit:		
	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hoppi MHz band shall use at least 15 channels. The ave channel shall not be greater than 0.4 seconds with multiplied by the number of hopping channels emp systems may avoid or suppress transmissions on provided that a minimum of 15 channels are used.	erage time of occupancy on any hin a period of 0.4 seconds ployed. Frequency hopping a particular hopping frequency
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	20
Procedure:	The EUT shall have its hopping function enabled. analyzer settings: a) Span: Zero span, centered on a hopping chann b) RBW shall be <= channel spacing and where por T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell where possible use a video trigger and trigger dela starts a little to the right of the start of the plot. The adjustment to prevent triggering when the system second plot might be needed with a longer sweep hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the tra varies with different modes of operation (data rate hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep tir hops over the period specified in the requirements to, or less than, the period specified in the requirements. Determine the number of hops over total number of hops in the period specified in the requation: (Number of hops in the period specified in the requirements analyzer sweep time) The average time of occupancy is calculated from multiplied by the number of hops in the period specified rate number of hops in a specific time varies with differ rate, modulation format, number of hopping channel each variation.	el. ossible RBW should be set >> 1 / Il time per hopping channel; ay so that the transmitted signal e trigger level might need slight hops on an adjacent channel; a time to show two successive ansmit time per hop. If this value , modulation format, number of a. The sweep time the number of a. The sweep time shall be equal the sweep time and calculate the requirements, using the following quirements) = specified in the requirements / the transmit time per hop ecified in the requirements. If the rent modes of operation (data hels, etc.), then repeat this test for
	The measured transmit time and time between ho values described in the operational description for	

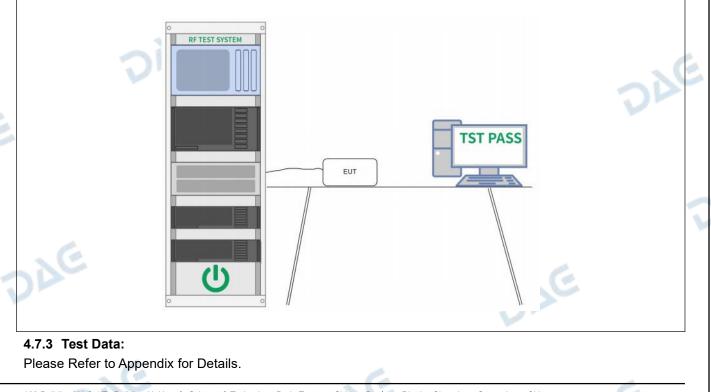
4.6.1 E.U.T. Operation:

Operating Envir	ronment:	V			JP.		
Temperature:	22.5 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa	
Pretest mode:		ТМ3,	TM4				
Final test mode	Final test mode: TM3, TM4						
4.6.2 Test Setup Diagram:					.e		
			V	200			

			246	
DAC -	V1.0		Report No.: POCE240425	010RL001
- Ne	O RF TEST SYSTEM	0	6	
1 DE				
			TST PASS	
5		EUT		- C.
				DAT
-			\mathbb{N}	
	•	• //	N	
			*	
4.6.3 Test Data: Please Refer to Ap	nendix for Details			
	V			
6				
		. 6		

DAG

Report No.: POCE240425010RL001


4.7 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.7.1 E.U.T. Operation:

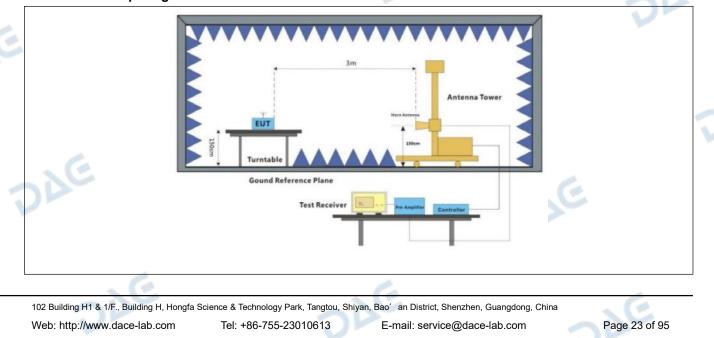
Operating Environment:						
Temperature: 22.5 °C		Humidity:	51 %	1	Atmospheric Pressure:	101 kPa
Pretest mode:	TM1, TM2, TM3, TM4					. 6
Final test mode: TM1, TM2, TM3, TM4						2

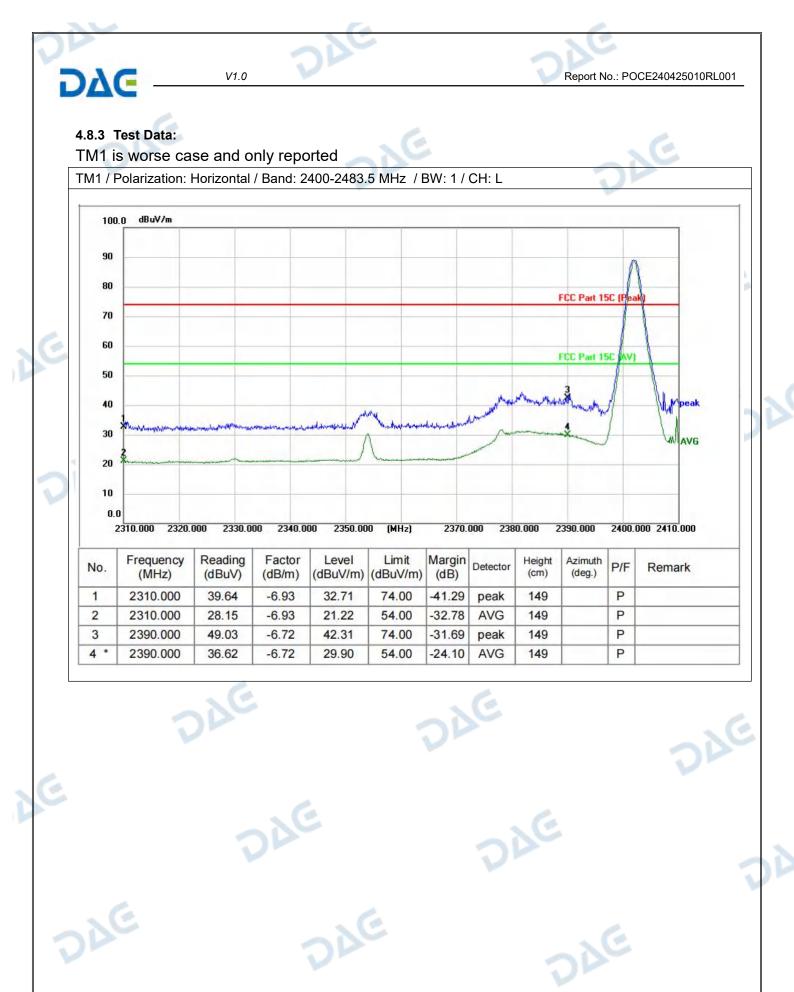
4.7.2 Test Setup Diagram:

Report No.: POCE240425010RL001

4.8 Band edge emissions (Radiated)

DAG

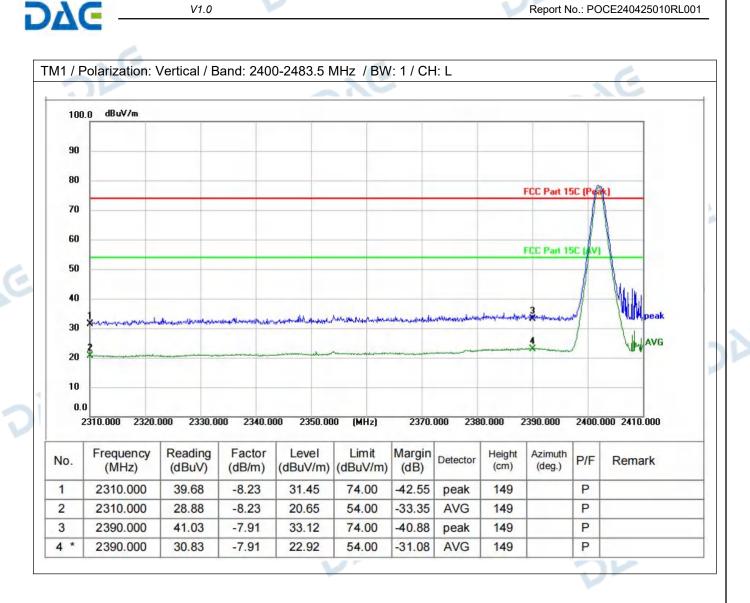

Test Requirement:	restricted bands, as def	7(d), In addition, radiated emission ined in § 15.205(a), must also co d in § 15.209(a)(see § 15.205(c)	omply with the radiated			
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
26	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
) à c	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 					
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.24	tion 6.10 P7 Meas Guidance v05r02				
Procedure:	ANSI C63.10-2013 sec	tion 6.10.5.2	.C			
4.8.1 E.U.T. Operation						


. 6

4.8.1 E.U.T. Operation:

Temperature: 22.5 °C Humidity: 51 % Atmospheric Pressure: 101 kPa Pretest mode: TM1, TM2 TM1 TM1 TM1 TM1	Operating Environment:									
	Temperature:	22.5 °C		Humidity:	51 %	Atmosphe	ric Pressure:	101 kPa		
Final test mode: TM1	Pretest mode:		TM1,	TM2		. 6				
	Final test mode:	2P	TM1			200				2

4.8.2 Test Setup Diagram:



102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

Page 24 of 95

Report No.: POCE240425010RL001

DAE

4

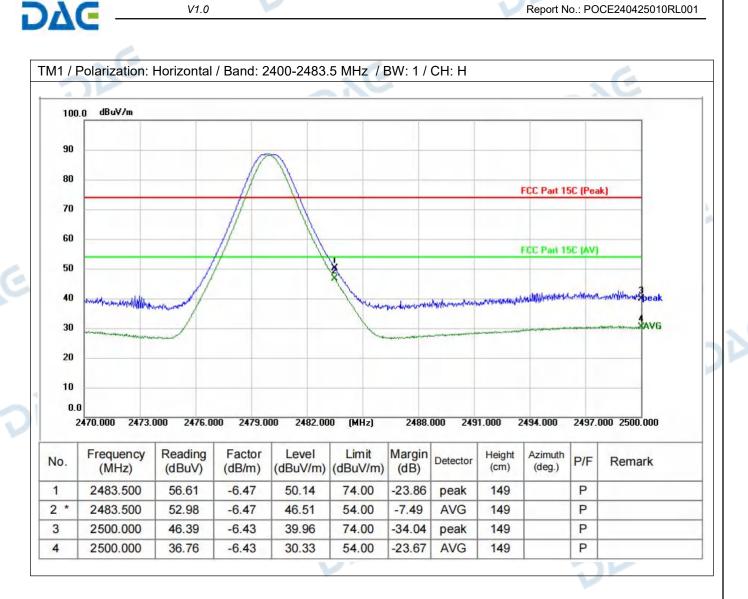
DAG

DAG

)AC

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


)AC

)AC

NE

Report No.: POCE240425010RL001

DAE

DAG

4

DAG

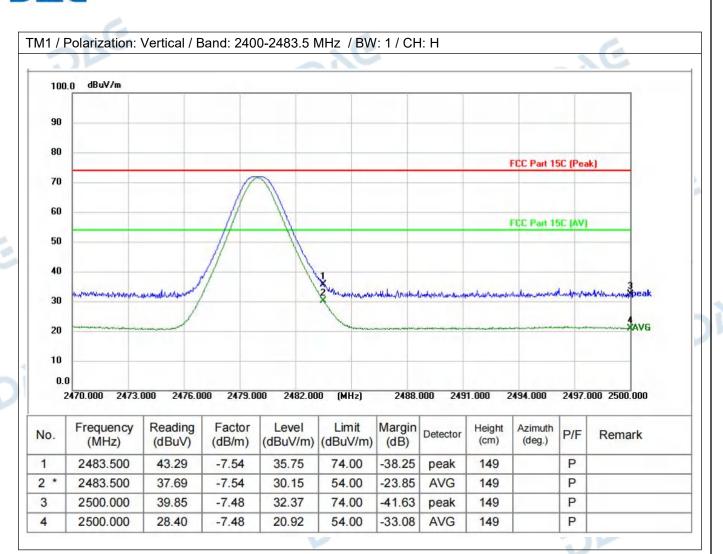
DAG

)AC

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAE


NE

DAC

1

DAG

Report No.: POCE240425010RL001

Remark: The test software will only record the worst test angle and height, and only the worst case will be displayed in the test report

)De

NE

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

)De

NE

C

Report No.: POCE240425010RL001

V1.0

DΔC

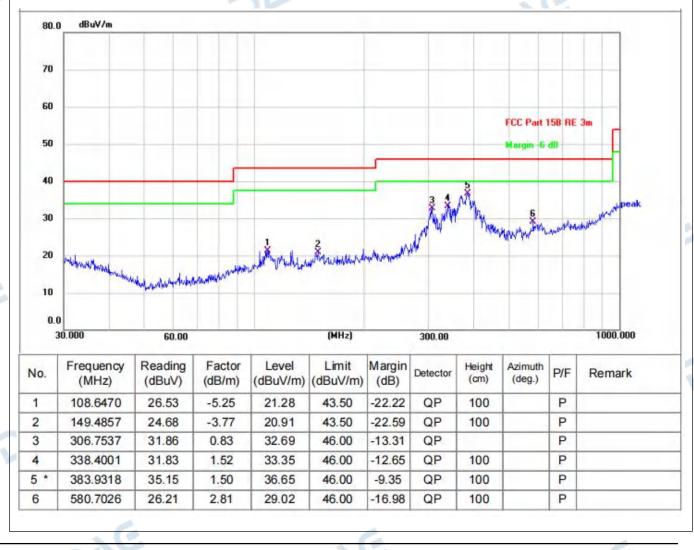
4.9 Emissions in frequency bands (below 1GHz)

Test Requirement:	restricted bands, as defin	(d), In addition, radiated emission ned in § 15.205(a), must also con in § 15.209(a)(see § 15.205(c)).`	nply with the radiated		
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
Test Method:	The emission limits show employing a CISPR quas 110–490 kHz and above are based on measurem	ove, the tighter limit applies at the vn in the above table are based o si-peak detector except for the fre 1000 MHz. Radiated emission lir ents employing an average detector	n measurements equency bands 9–90 kHz, nits in these three bands		
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02				
Procedure:	above the ground at a 3 360 degrees to determin b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on t d. The antenna height is determine the maximum polarizations of the anter e. For each suspected et the antenna was tuned to below 30MHz, the anten was turned from 0 degre f. The test-receiver syste Bandwidth with Maximur g. If the emission level of specified, then testing co reported. Otherwise the tested one by one using reported in a data sheet. h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedu	f the EUT in peak mode was 10dl buld be stopped and the peak valu emissions that did not have 10dB peak, quasi-peak or average met	ber. The table was rotated ation. otating table 1.5 meters ne table was rotated 360 ence-receiving antenna, na tower. eters above the ground to norizontal and vertical ment. o its worst case and then rs (for the test frequency of and the rotatable table ximum reading. on and Specified B lower than the limit ues of the EUT would be margin would be re- thod as specified and then the Highest channel. kis positioning for h it is the worst case.		
6	Remark: 1) For emission below 10	GHz, through pre-scan found the	worst case is the lowest		

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

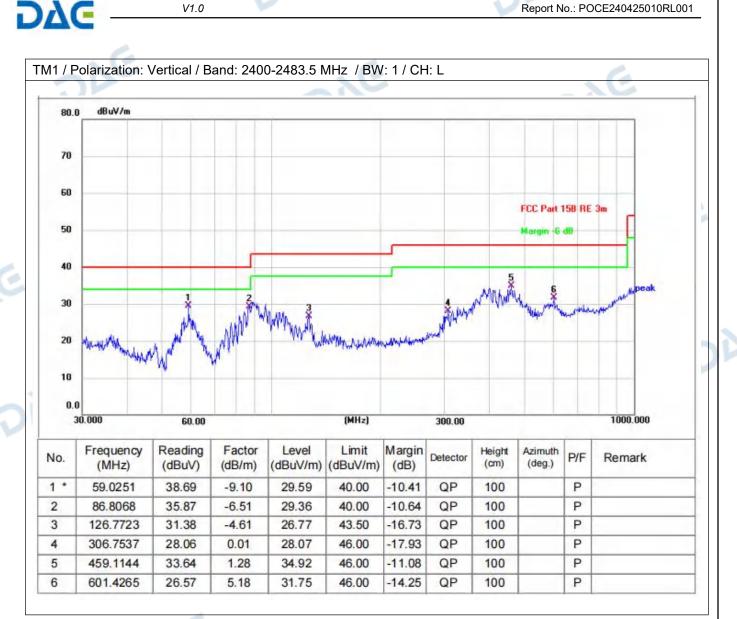
Page 28 of 95

DAG —	V1.0	Report No.: POCE240425010RL0
DAE	Preamplifier. The basic equation Final Test Level =Receiver Re Preamplifier Factor 3) Scan from 9kHz to 25GHz, was very low. The points mark found when testing, so only at spurious emissions from the ra	s recorded in the report. ted by adding the Antenna Factor, Cable Factor & on with a sample calculation is as follows: ading + Antenna Factor + Cable Factor "C the disturbance above 12.75GHz and below 30MHz ted on above plots are the highest emissions could be ove points had been displayed. The amplitude of adiator which are attenuated more than 20dB below Fundamental frequency is blocked by filter, and only


4.9.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.5 °C	~	Humidity:	51 %	Atmospheric Pressure:	101 kPa	
Pretest mode:	Pretest mode: TM1,TM2						
Final test mode:		TM1					

4.9.2 Test Data:


TM1 is worse case and only reported

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Report No.: POCE240425010RL001

Remark: The test software will only record the worst test angle and height, and only the worst case will be displayed in the test report

)De

)AC

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

DAG

DAG

Page 30 of 95

-

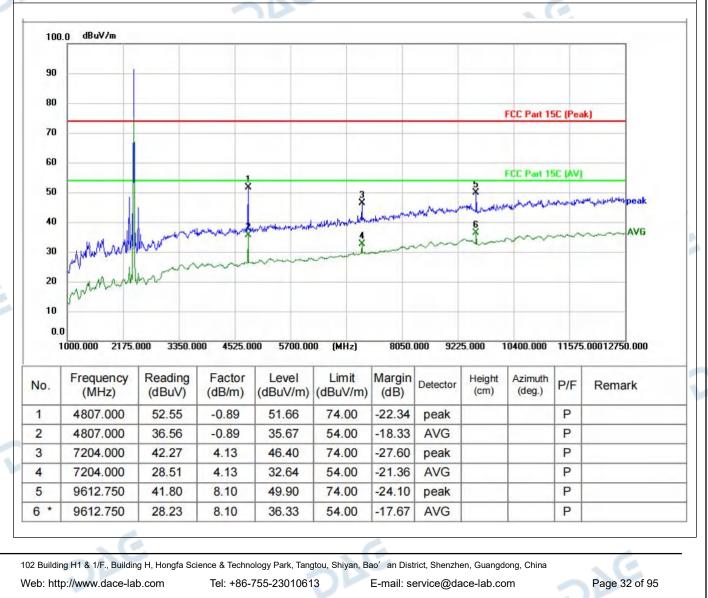
DγG

Report No.: POCE240425010RL001

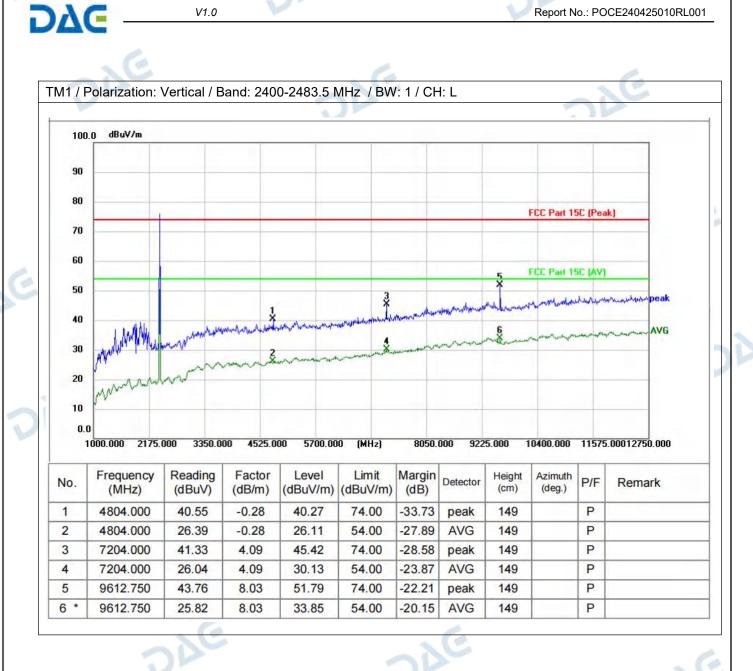
4.10 Emissions in frequency bands (above 1GHz)

Test Requirement:		ssions which fall in the restricted by here the second sec				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
Test Method:	 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2013 section 6.6.4 					
200	KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	above the ground at a 3 360 degrees to determine b. For above 1GHz, the f above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on th d. The antenna height is determine the maximum polarizations of the anter e. For each suspected en the antenna was tuned to below 30MHz, the antenna was turned from 0 degree f. The test-receiver syste Bandwidth with Maximum g. If the emission level of specified, then testing co- reported. Otherwise the a tested one by one using reported in a data sheet. h. Test the EUT in the low i. The radiation measured Transmitting mode, and the	the EUT in peak mode was 10de uld be stopped and the peak valu emissions that did not have 10dB peak, quasi-peak or average met west channel, the middle channel ments are performed in X, Y, Z ax found the X axis positioning which	ber. The table was rotate ation. batting table 1.5 meters be table was rotated 360 ence-receiving antenna, ha tower. ters above the ground to horizontal and vertical ment. b its worst case and then s (for the test frequency of and the rotatable table kimum reading. bn and Specified B lower than the limit ues of the EUT would be margin would be re- thod as specified and then , the Highest channel. tis positioning for n it is the worst case.			
×E	Remark: 1) For emission below 10	res until all frequencies measured GHz, through pre-scan found the	worst case is the lowest			

	240	246
DVC —	V1.0	Report No.: POCE240425010RL001
DAC	Preamplifier. The basic equat Final Test Level =Receiver Re Preamplifier Factor 3) Scan from 9kHz to 25GHz was very low. The points man found when testing, so only a spurious emissions from the	is recorded in the report. ated by adding the Antenna Factor, Cable Factor & ion with a sample calculation is as follows: eading + Antenna Factor + Cable Factor "C , the disturbance above 12.75GHz and below 30MHz ked on above plots are the highest emissions could be bove points had been displayed. The amplitude of radiator which are attenuated more than 20dB below I. Fundamental frequency is blocked by filter, and only


4.10.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.5 °C	- >	Humidity:	51 %	Atmospheric Pres	ssure:	101 kPa	
Pretest mode: TM1, TM2								
Final test mode:		TM1,	TM2	M2				


4.10.2 Test Data:

TM1 is worse case and only reported

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

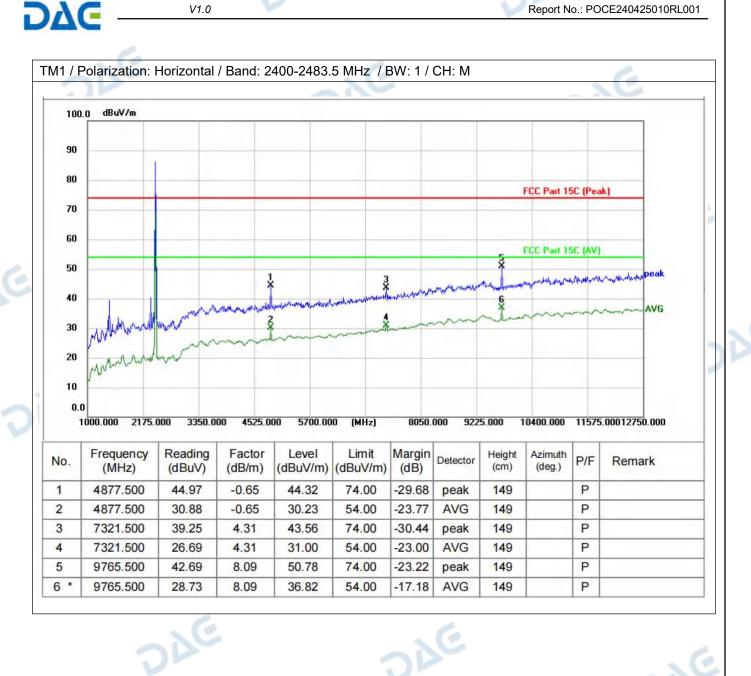
Report No.: POCE240425010RL001

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)DE

)AC

DAG


)De

DAG

4

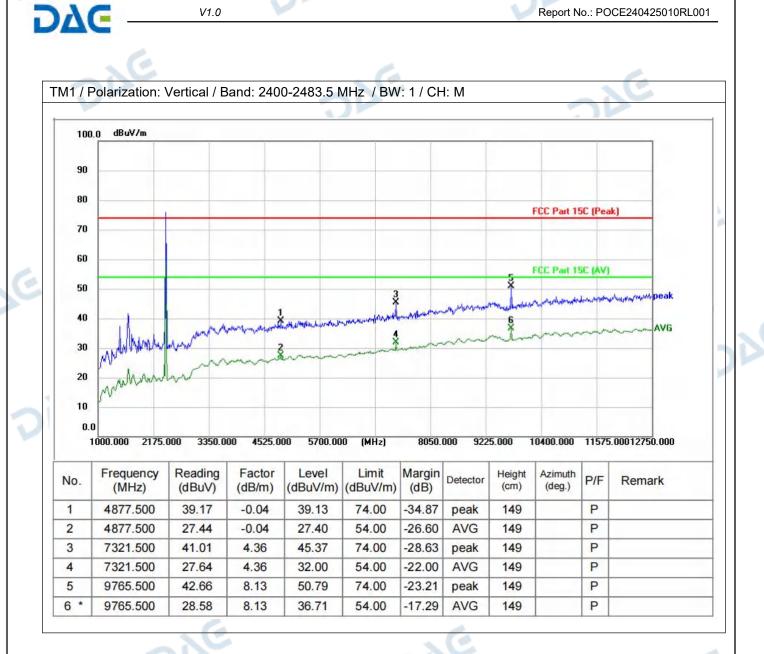
DAG

Report No.: POCE240425010RL001

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)AC


Page 34 of 95

)De

DAG

NE

Report No.: POCE240425010RL001

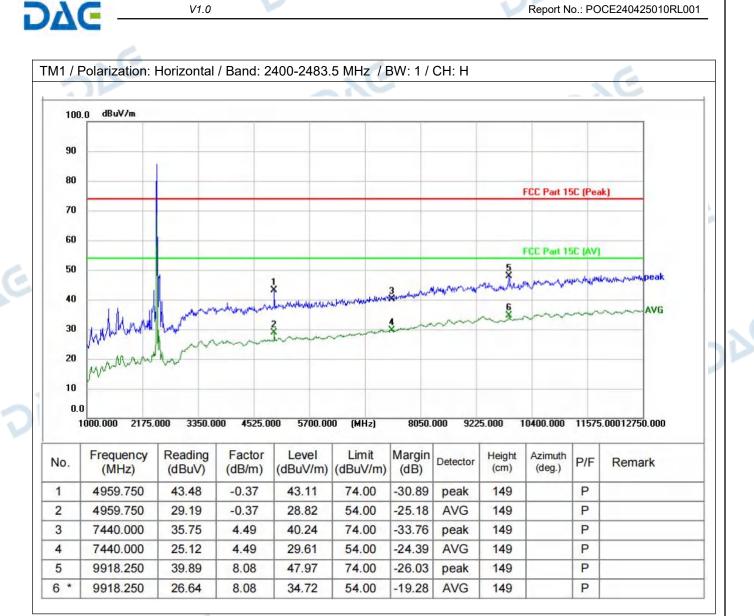
102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)DE

)De

DAG

)AC


DAG

4

4

DAG

Report No.: POCE240425010RL001

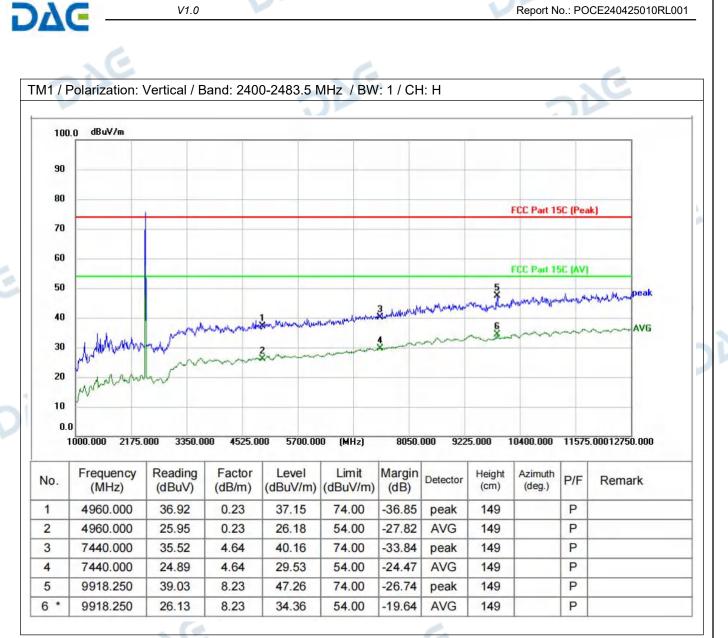
)AC

)De

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC


)AC

Page 36 of 95

NE

V1.0

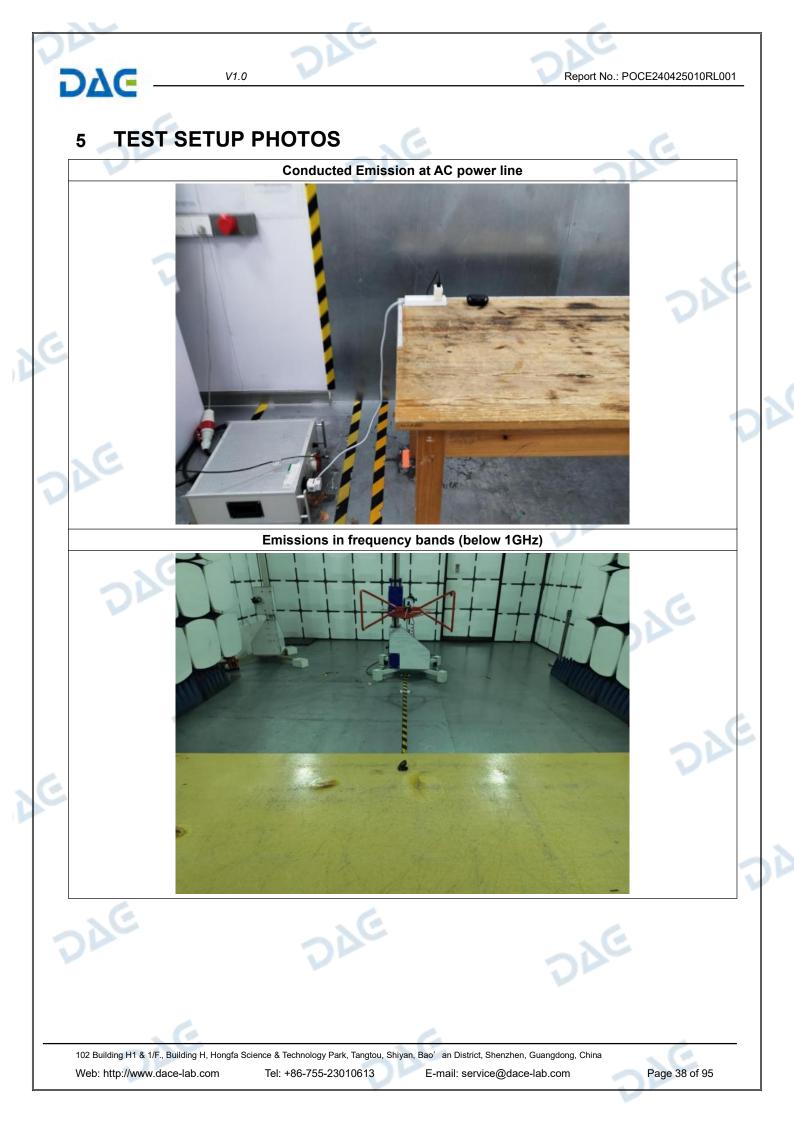
Report No.: POCE240425010RL001

Remark: The test software will only record the worst test angle and height, and only the worst case will be displayed in the test report.

NC

)AC

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

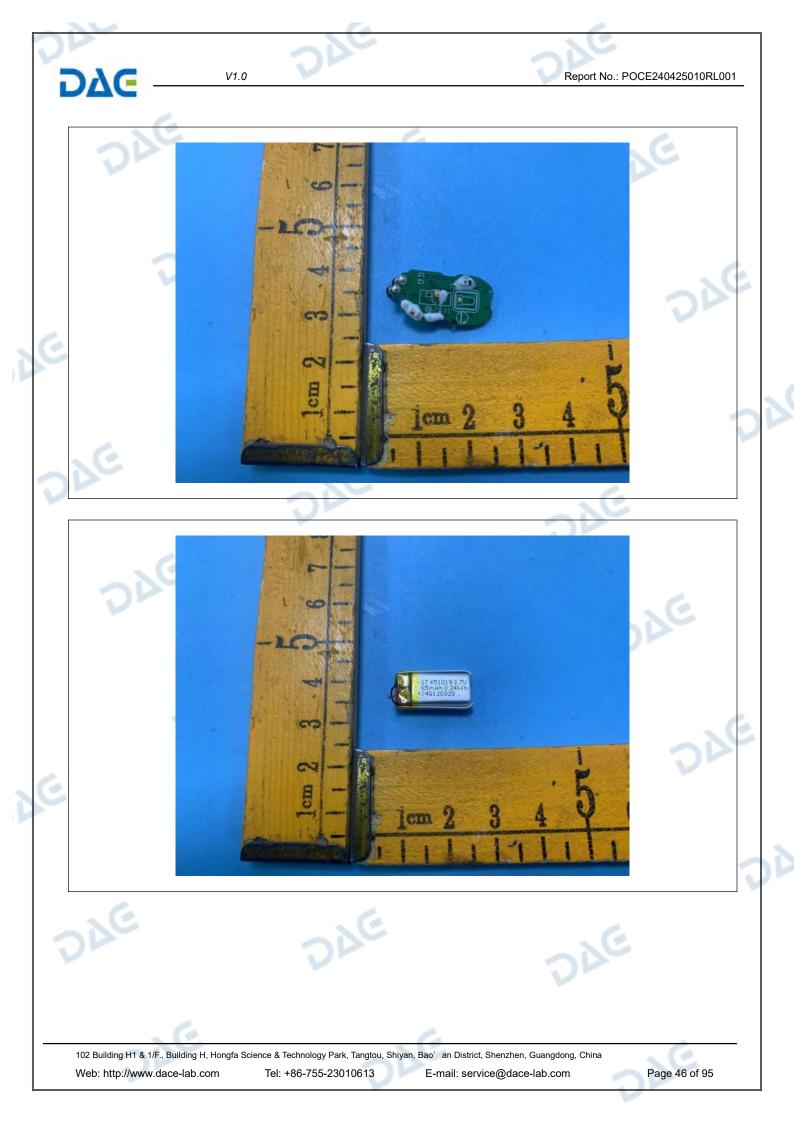

NE

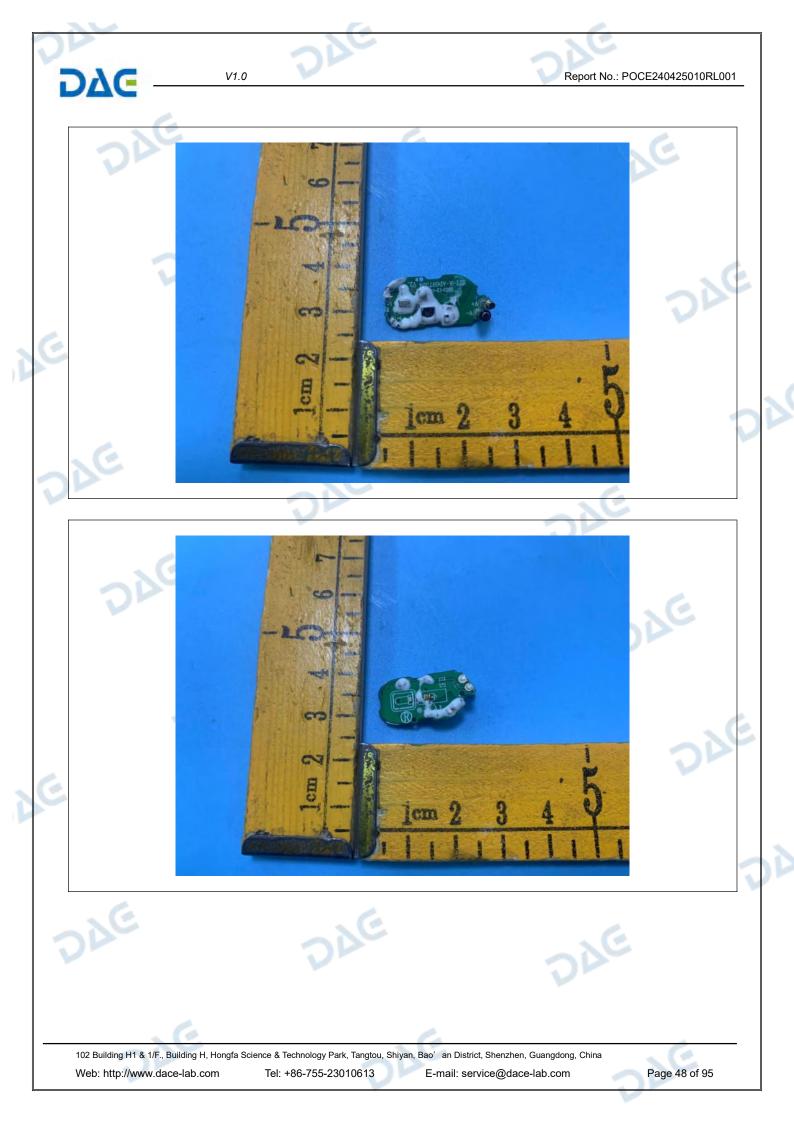
)AC

DAE

ø







DAC -	V1.0	Report No.: POCE240425010RL001
DAG		
2		
	Appe	
	ng H, Hongfa Science & Technology Park, Tangtou, Shiyan, ab.com Tel: +86-755-23010613	Bao' an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com Page 54 of 95

Report No.: POCE240425010RL001

e

HT240424006--T12--EDR--FCC FCC_BT (Part15.247) Test Data

1. -20dB Bandwidth

V1.0

DAG

Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2402.00	1.028	Yes
NVNT	ANT1	1-DH5	2441.00	1.035	Yes
NVNT 🔰	ANT1	1-DH5	2480.00	1.029	Yes
NVNT	ANT1	2-DH5	2402.00	1.314	Yes
NVNT	ANT1	2-DH5	2441.00	1.315	Yes
NVNT	ANT1	2-DH5	2480.00	1.317	Yes

DAG -	V1.0	Report No.: POCE240425010RL001
DAC	-20dB_Bandwidth_NVNT_ANT1_2-DH5	_2480
	Trig: Free Run Avg Hold: 10/10	10726:111 PM Apr29, 2024 Radio Std: None Radio Device: BTS
2	10 dB/div Ref 8.70 dBm	Center Freq 2.480000000 GHz
	31.3 41.3 61.3	man Di
3	71.3 81.3 Center 2.48 GHz #Res BW 30 kHz #VBW 100 kHz	Span 3 MHz Sweep 3.2 ms 300.000 kHz
	Occupied Bandwidth Total Power 3.57 1.1973 MHz Transmit Freq Error 39.656 kHz % of OBW Power 99.	Auto Man
E	x dB Bandwidth 1.317 MHz x dB -20.0	00 %
	MSG Costatus	Align Now All required

2. 99% Occupied Bandwidth

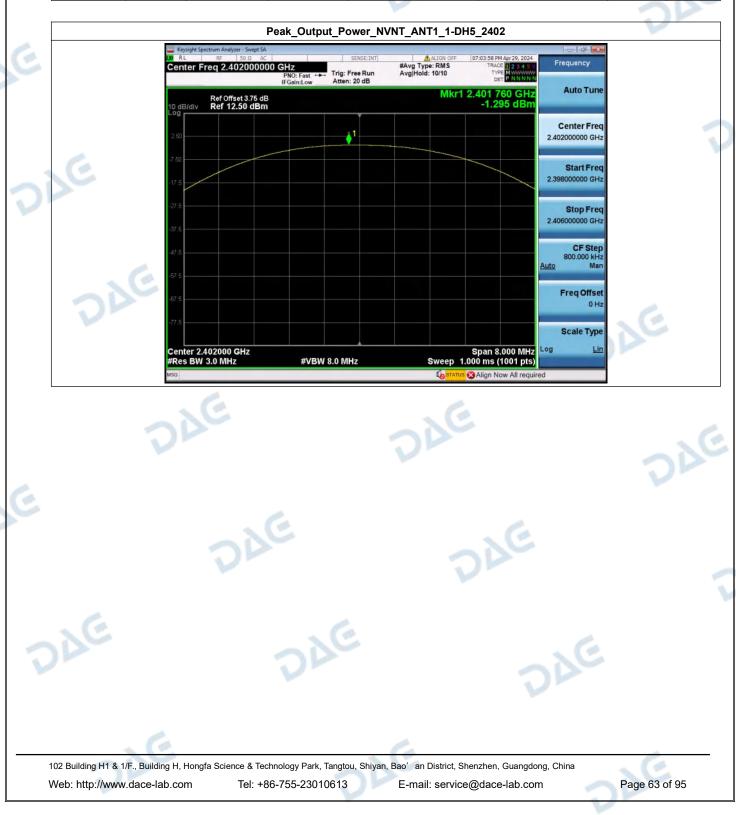
DVC

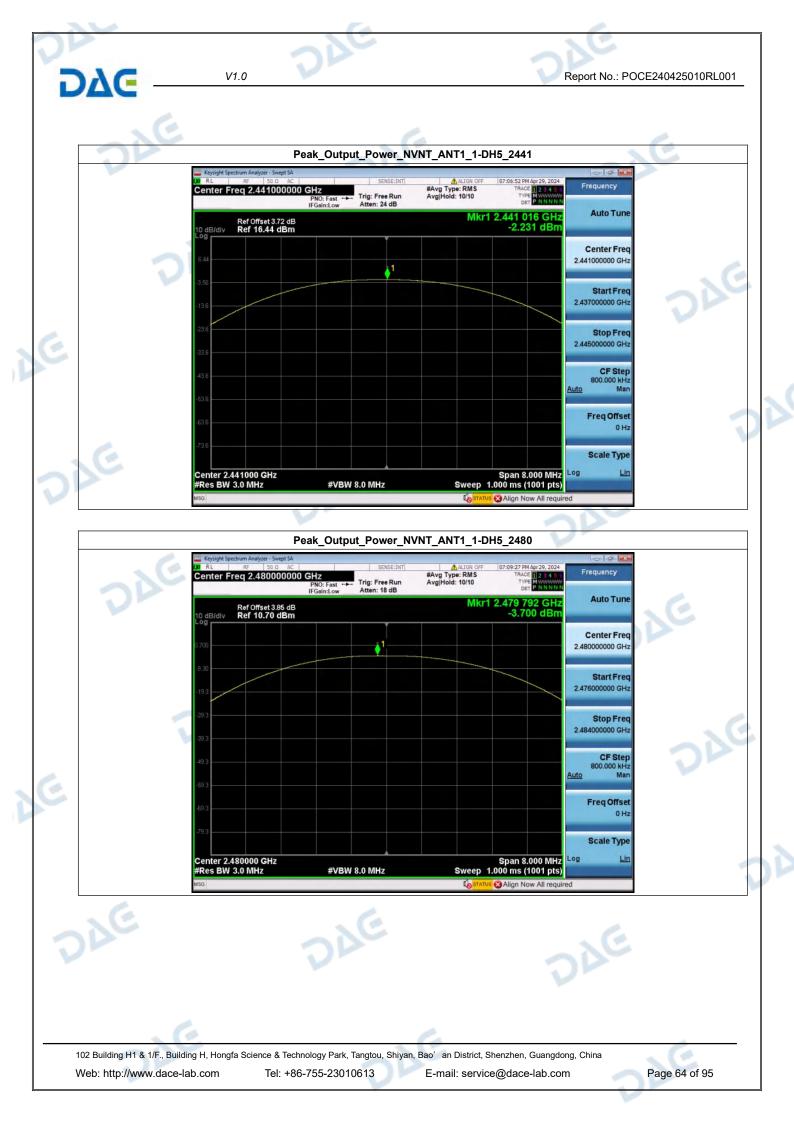
Condition	Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.905
NVNT	ANT1	1-DH5	2441.00	0.914
NVNT	ANT1	1-DH5	2480.00	0.908
NVNT	ANT1	2-DH5	2402.00	1.192
NVNT	ANT1	2-DH5	2441.00	1.197
NVNT	ANT1	2-DH5	2480.00	1.195

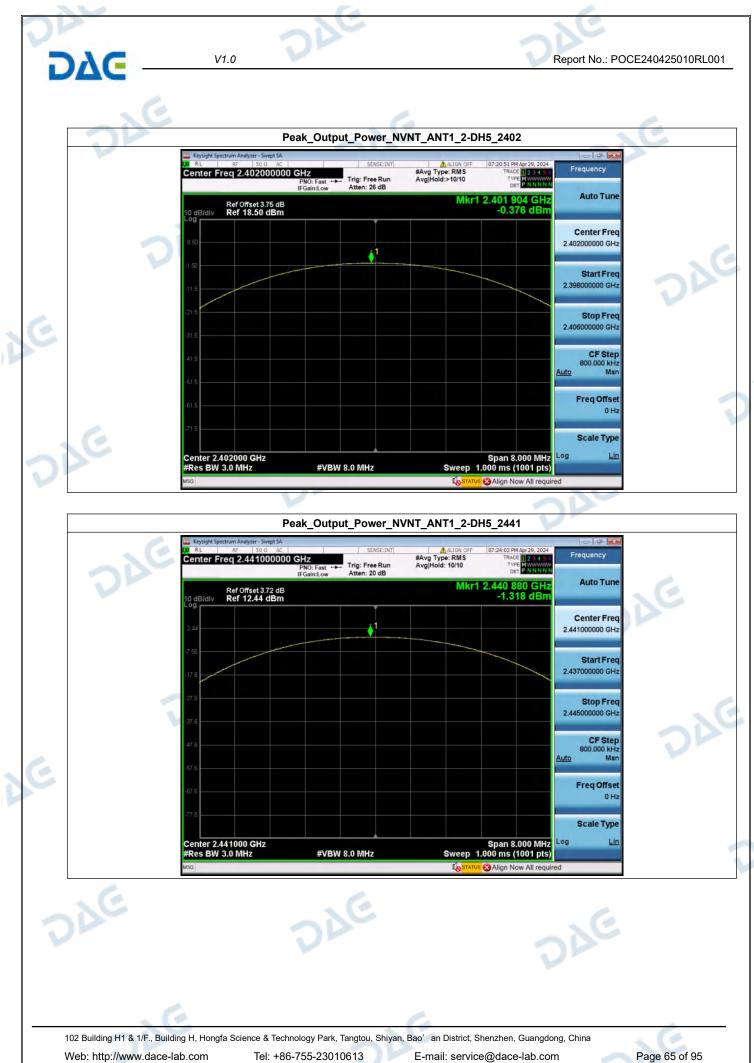
		DAG
DVG —	V1.0	Report No.: POCE240425010RL001
26	99%_Occupied_Bandwidth_NVNT_AN	NT1 2-DH5 2480
	Keysight Spectrum Analyzer - Occupied BW 20 RL RF 50.0 AC SENSE:INT ALAULT	CH OFF 07:26:29 DM Apr/29 2024
	Center Freq 2.480000000 GHz #FGain:Low #FGain:Low	Radio Std: None Frequency /10 Radio Device: BTS
	Ref Offset 3.85 dB 10 dB/div Ref 8.70 dBm	
~	1.30 1.13	Center Freq 2.48000000 GHz
	213	
	413 613 martin and a second s	man al
	613	
2	ena	
	Center 2.48 GHz #Res BW 30 kHz #VBW 100 kHz	Span 3 MHz Sweep 3.2 ms Auto Auto Man
	Occupied Bandwidth Total Power 1.1948 MHz	3.59 dBm
	Transmit Freq Error 38.515 kHz % of OBW Power	99.00 % 0 Hz
.C.	x dB Bandwidth 1.398 MHz x dB	-26.00 dB
	MSG L	Status CAlign Now All required
	6	

V1.0

٩.


Report No.: POCE240425010RL001


3. Peak Output Power

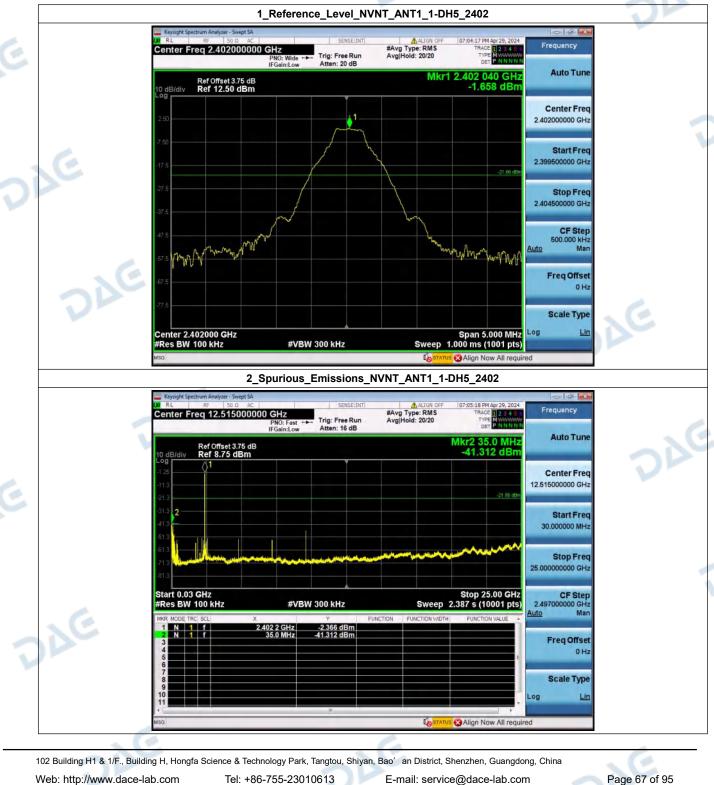

DVC

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	-1.29	0.74	125	Pass
NVNT	ANT1	1-DH5	2441.00	-2.23	0.60	125	Pass
NVNT	ANT1	1-DH5	2480.00	-3.70	0.43	125	Pass
NVNT	ANT1	2-DH5	2402.00	-0.38	0.92	125	Pass
NVNT	ANT1	2-DH5	2441.00	-1.32	0.74	125	Pass
NVNT	ANT1	2-DH5	2480.00	-2.56	0.56	125	Pass

6

DAG -	V1.0	Report	No.: POCE240425010RL001
Se	Peak Output Power I	VVNT_ANT1_2-DH5_2480	.6
	Keysight Spectrum Analyzer - Swept SA	A ALTEN OFE 07:25:48 DM Anr 29, 2024	Liency
	Ref Offset 3.85 dB 10 dB/div Ref 16.70 dBm	DET PNNNNN	uto Tune
2	6.70		nter Freq 00000 GHz
	-13.3		Start Freq 00000 GHz
	-23.3		Stop Freq 00000 GHz
	-43.3	Auto 8	CF Step 00.000 kHz Man
	-63.3	F	eq Offset 0 Hz
E	-73.0		cale Type
	Center 2.480000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz Iso	Span 8.000 MHz Sweep 1.000 ms (1001 pts)	

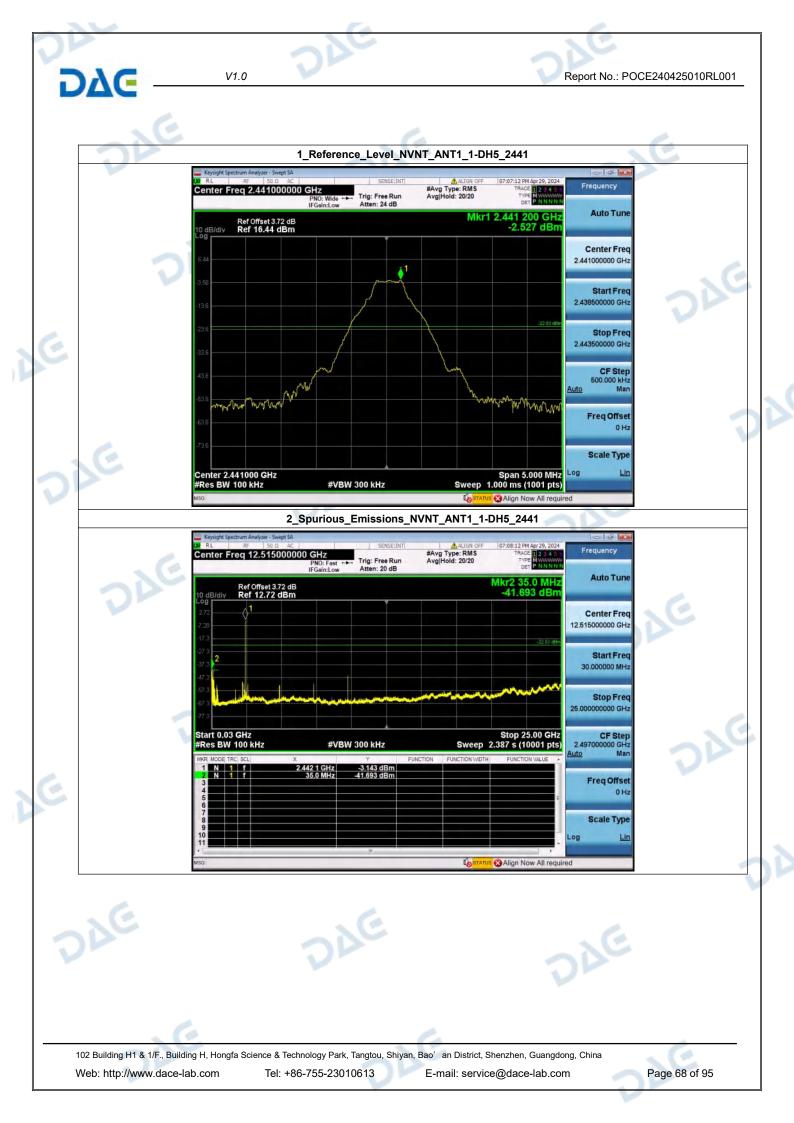
Report No.: POCE240425010RL001

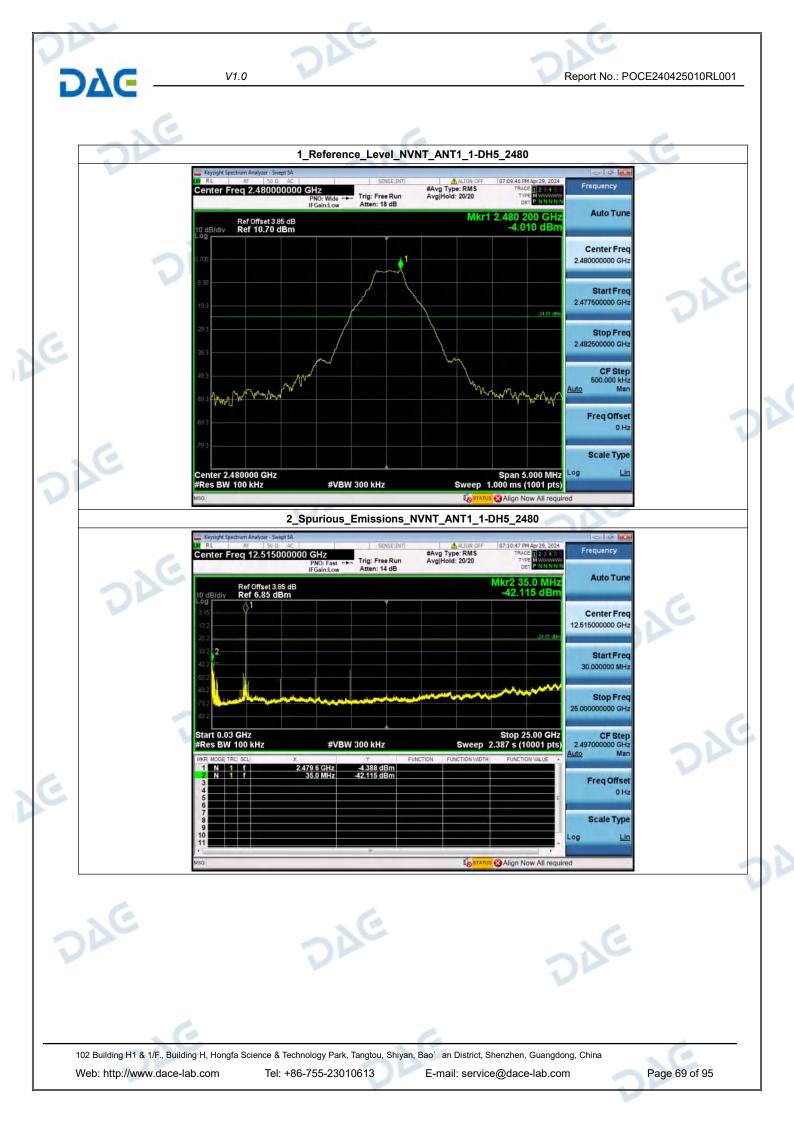

V1.0

4. Spurious Emissions

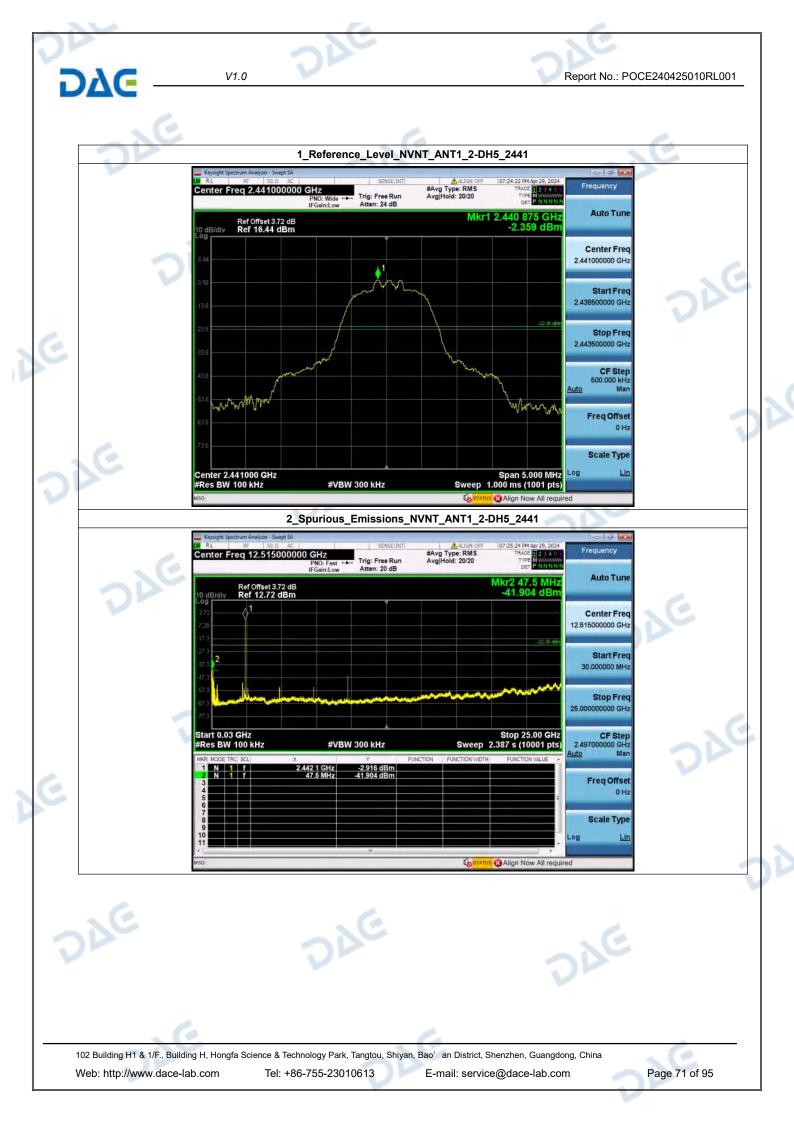
DVC

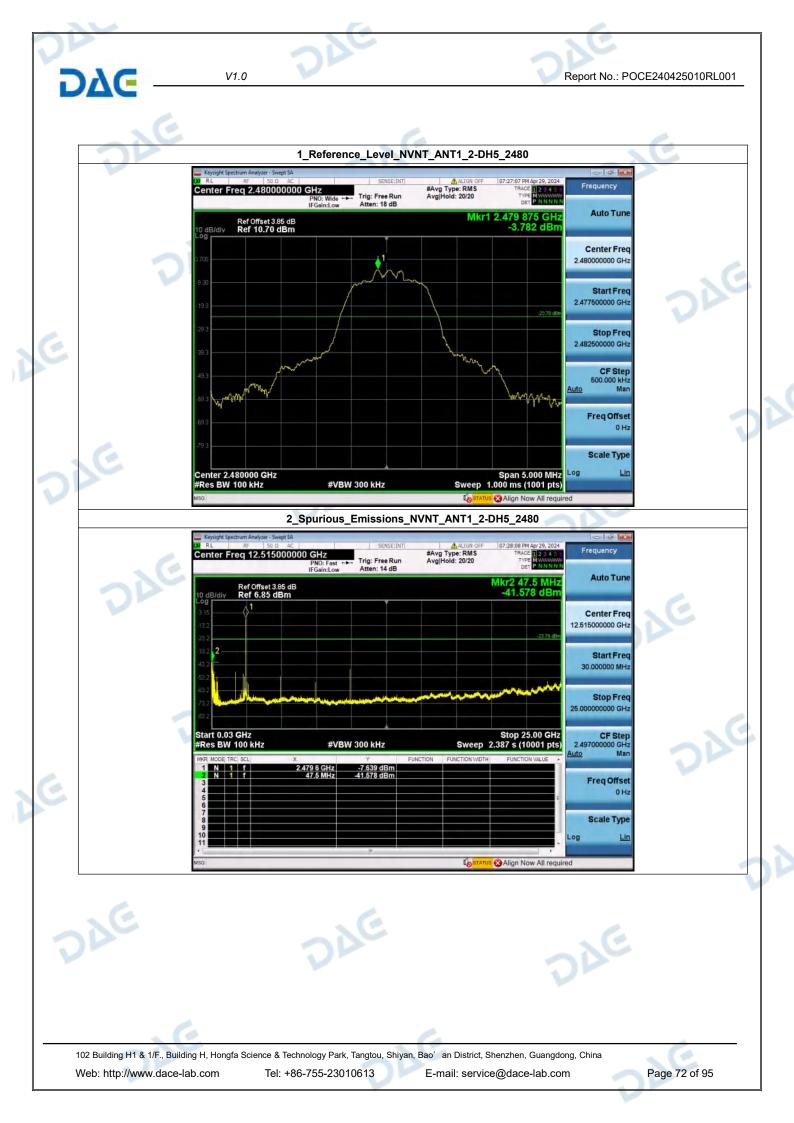
Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-41.312	-21.658	Pass
NVNT	ANT1	1-DH5	2441.00	-41.693	-22.527	Pass
NVNT	ANT1	1-DH5	2480.00	-42.115	-24.010	Pass
NVNT	ANT1	2-DH5	2402.00	-41.593	-21.481	Pass
NVNT	ANT1	2-DH5	2441.00	-41.904	-22.359	Pass
NVNT	ANT1	2-DH5	2480.00	-41.578	-23.782	Pass


6




Web: http://www.dace-lab.com


E-mail: service@dace-lab.com


Page 67 of 95

V1.0

DAG

)De

Report No.: POCE240425010RL001

5. Bandedge

DΔC

DAG

3

DAG

DAG

DAE

DAG

Condition Antenna		Modulation	TX Mode	Bandedge MAX.Value	Limit	Result	
NVNT	ANT1	1-DH5	2402.00	-52.693	-21.658	Pass	
NVNT	ANT1	1-DH5	Hopping_LCH	-56.138	-21.846	Pass	
NVNT	ANT1	1-DH5	2480.00	-64.411	-24.010	Pass	
NVNT	ANT1	1-DH5	Hopping_HCH	-53.769	-21.496	Pass	
NVNT	ANT1	2-DH5	2402.00	-52.331	-21.481	Pass	
NVNT	ANT1	2-DH5	Hopping_LCH	-57.169	-21.633	Pass	
NVNT	ANT1	2-DH5	2480.00	-65.836	-23.782	Pass	
NVNT	ANT1	2-DH5	Hopping_HCH	-53.562	-21.536	Pass	

)De

DAG

)AC

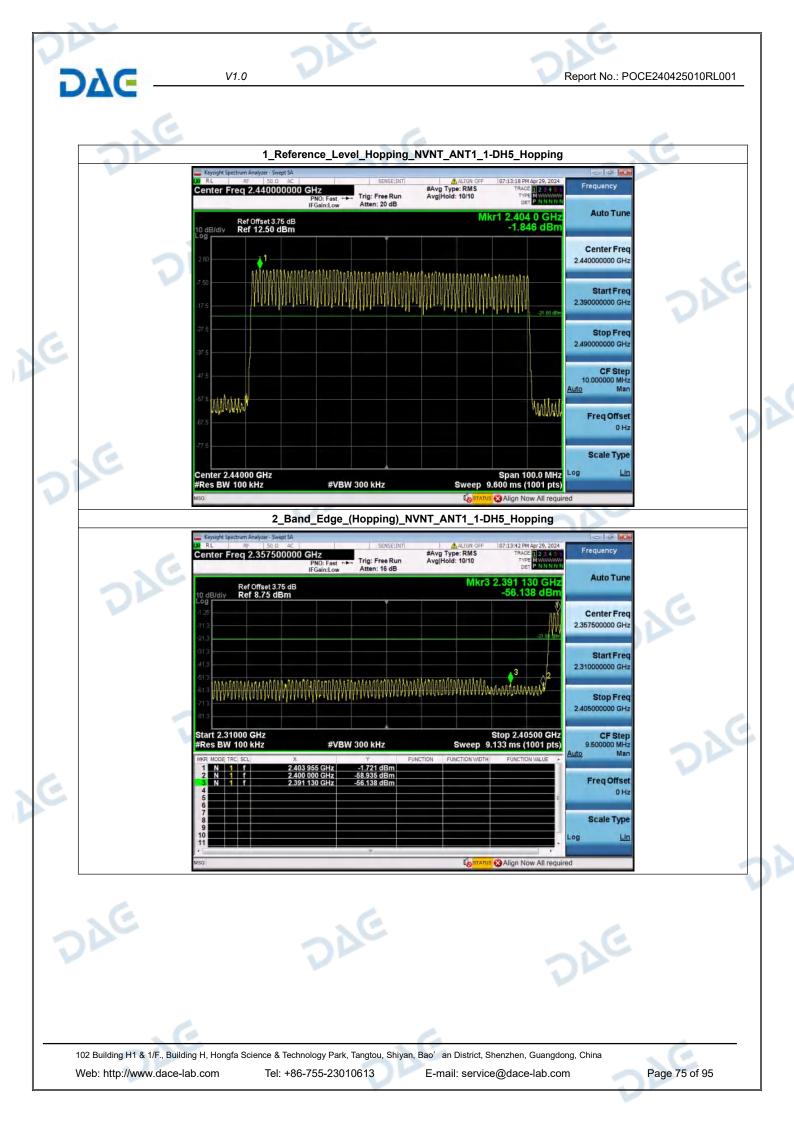
DAG

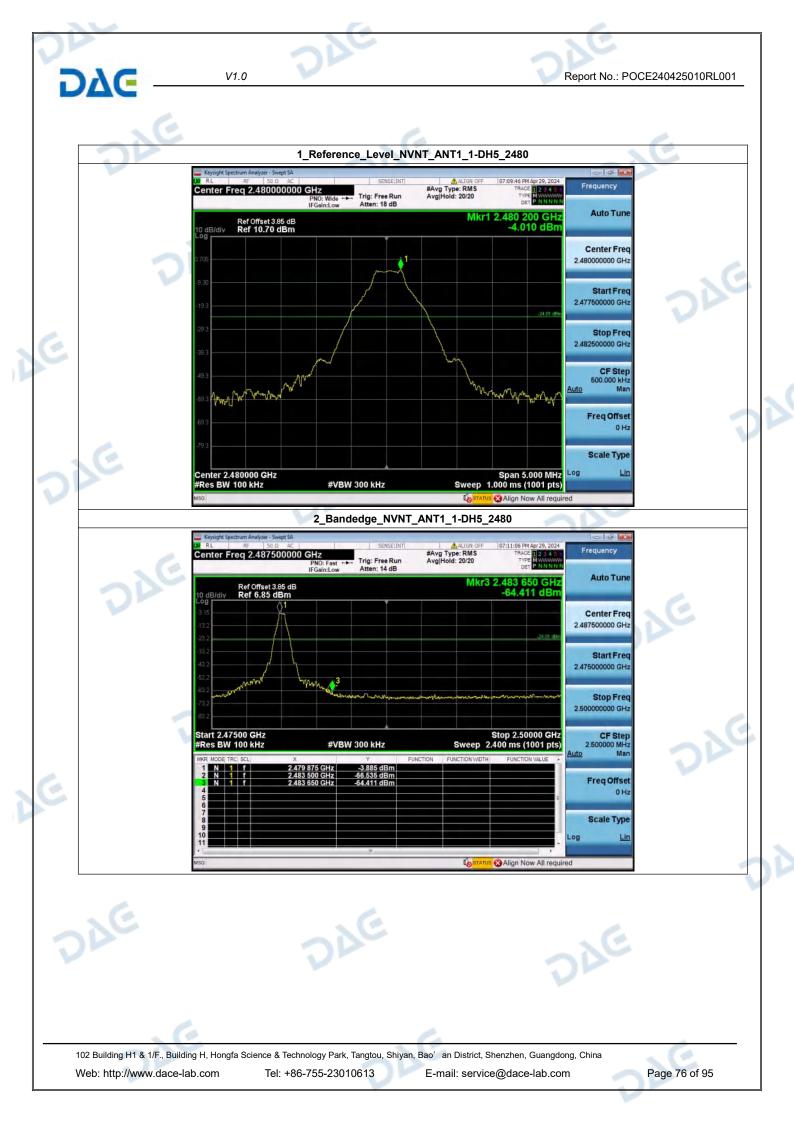
DAG

DAG

DAG

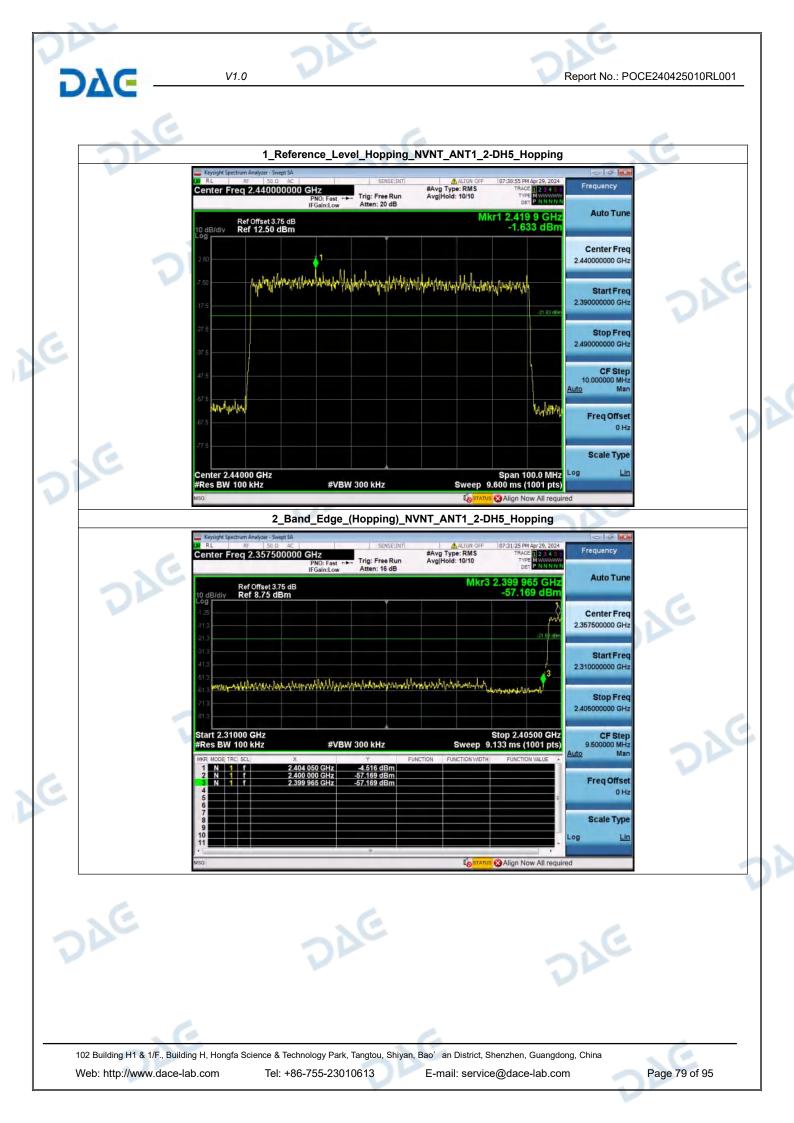
)AC


C


 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

DAE



Report No.: POCE240425010RL001

Limit(MHz)

0.685

0.690

Result

Pass

Pass

Pass

Pass

Pass

Pass

NG

Carrier Frequencies Separation(MHz)

0.82

1.02

V1.0

1-DH5

1-DH5

Antenna

ANT1

ANT1

6. Carrier Frequencies Separation (Hopping)

Modulation Frequency(MHz)

2402.00

2441.00

DVC

Condition

NVNT

NVNT

				2441.00	2441.033	2442.000	1	.02	0.030	1 '
Γ	NVNT	ANT1	1-DH5	2480.00	2479.035	2480.073	1.	.04	0.686	Р
Γ	NVNT	ANT1	2-DH5	2402.00	2401.864	2403.043	1.	.18	0.876	Р
	NVNT	ANT1	2-DH5	2441.00	2440.939	2441.950	1.	.01	0.877	Р
[NVNT	ANT1	2-DH5	2480.00	2478.870	2480.061	1.	.19	0.878	Ρ
[Carrier_	_Frequencies_S	Separation_(He	opping)_NVN	IT_ANT1_1-DH5_	Hopping		
			Keysight Spectrum Analyz	ter - Swept SA 50 Ω AC	SENSE:INT	A ALTON	0FF 07:12:05 PM Apr 29, 202			
			Center Freq 2.4	02500000 GHz	Trig: Free Run	#Avg Type: RM Avg Hold: 10/10	S TRACE 234	Frequency		
				IFGain:Low	Atten: 20 dB		ΔMkr1 816 kH	Auto Tuno		
			Ref Offs 10 dB/div Ref 12 Log	et 3.75 dB .50 dBm			-0.064 d			
						140		Center Freq		
			2.60	- mom	~X2	142	h Martin	2.402500000 GHz		
			-7.50	~~~	the	~~~	he and	Start Freq		
\sim			-17.5	A NY	Manner		man	2.401000000 GHz		
2			-27.5					Stop Freq		
			-37.5					2.404000000 GHz		
			man					CF Step		
			-47.5					300.000 kHz Auto Man		
			-57.5					-		
			-67,5					Freq Offset 0 Hz		
			-77.5							
								Scale Type		
			Center 2.402500 #Res BW 100 kHz		BW 300 kHz	Swe	Span 3.000 MH ep 1.000 ms (1001 pt	iz ^{Log <u>Lin</u> S)}		
			MSG			Ú0	STATUS Align Now All rec	uired		
1	02 Building H1	& 1/F., Buildir	ng H, Hongfa Scien	ce & Technology Pa	ırk, Tangtou, Shiya	n, Bao′an Distr	ict, Shenzhen, Guang	dong, China	.6	
	Veb: http://w			Tel: +86-755-23			ervice@dace-lab.c		Page 82 of	95

Hopping NO.1 (MHz)


2403.025

2442.055

Hopping NO.0 (MHz)

2402.209

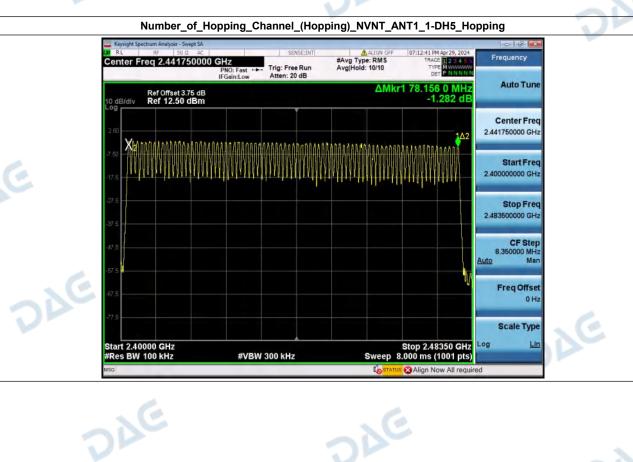
2441.035

DAG -	V1.0			Report No.: POCI	E240425010RL001
Die	Carrier_Frequencies	s_Separation_(Hopp	ing)_NVNT_ANT1_2-I	DH5_Hopping	e
	Keysight Spectrum Analyzer - Swept SA KR RL RF 50 Q AC Center Freq 2.479500000 GHz PNO: IFGair	Wide +++ Trig: Free Run	ALIGN OFF 07:35:51 PM A #Avg Type: RMS TRACE Avg[Hold: 10/10 TYPE] Det	1 2 3 4 5 5 Frequency	
	Ref Offset 3.85 dB 10 dB/div Ref 8.70 dBm			Auto Tune	
2	-11.30 M. A	mann	122	2.479500000 GHz Start Freq	
	-21.3		умуумуумуумуумуумууму	2.478000000 GHz	
e	-41.3			2.481000000 GHz CF Step 300.000 KHz	
	-61.3			Auto Man Freq Offset	
6	-81,3			0 Hz Scale Type	
OAC	Center 2.479500 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 3.0 Sweep 1.000 ms (10 Costatus & Align Now		
	V			DA	
				6	

V1.0

DΔG

-


.

1

DAG

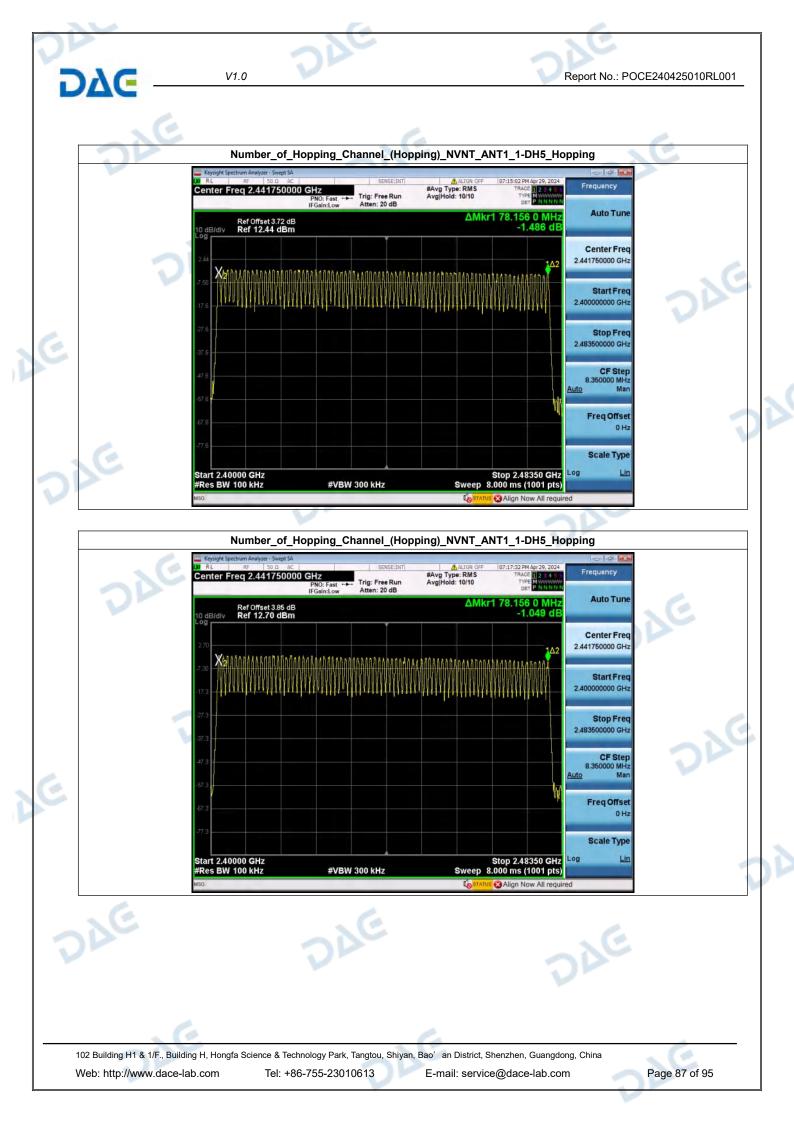
7. Number of Hopping Channel (Hopping)

Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass

)DE

DAG

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China


 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

DAG

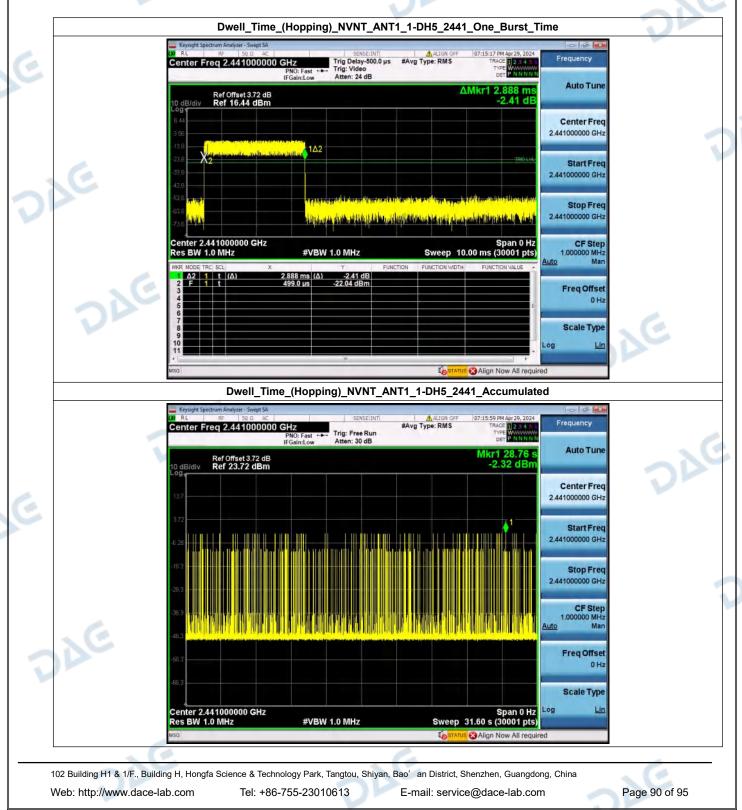
DAG

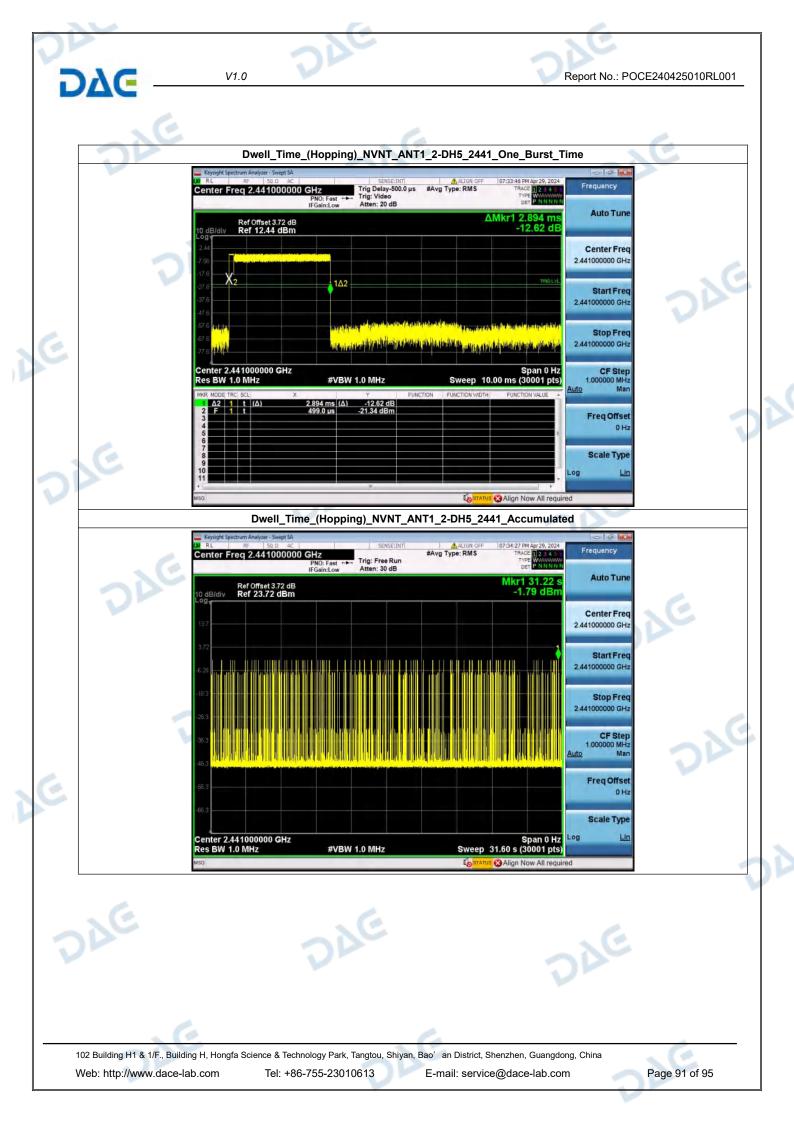
Page 86 of 95

NE

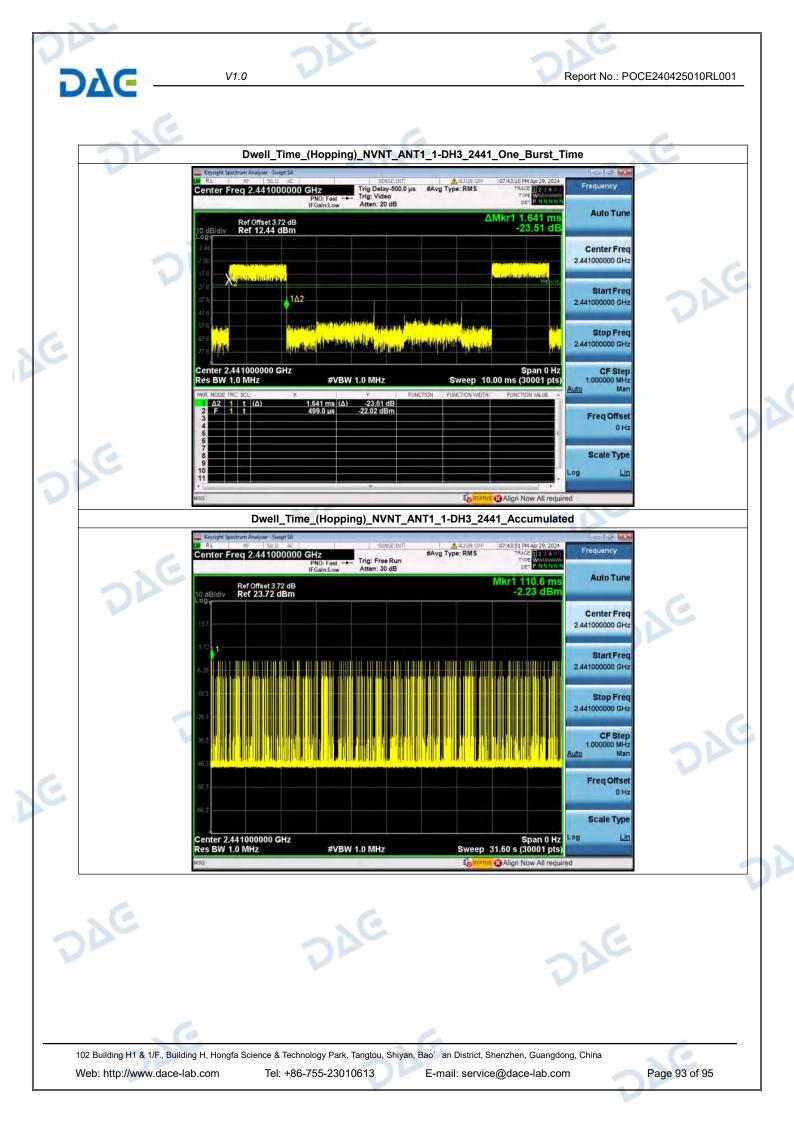
DAC	Number_of_Hopping_Channel_(Hopping)_I 	ALIGN OFF 07:36:37 PM Apr 29, 2024
Ð	PNO: Fast → Trig: Free Run IFGain:Low Atten: 20 dB 10 dB/div Ref 12.70 dBm 2.70	Ype: RMS TRACE 12 2 4 3 5 Det Prequency AMkr1 78.240 0 MHz Auto Tune -0.048 dB Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq 2.483500000 GHz CF Step
DIE	47.3 57.3 67.3 27.3 Start 2.40000 GHz #Res BW 100 kHz #VBW 300 kHz MSO	Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)

Report No.: POCE240425010RL001


V1.0


8. Dwell Time (Hopping)

DAG


Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.888	102.00	294.576	0.40	Pass
NVNT	ANT1	2-DH5	2.894	109.00	315.446	0.40	Pass
NVNT	ANT1	1-DH1	0.385	320.00	123.200	0.40	Pass
NVNT	ANT1	1-DH3	1.641	159.00	260.919	0.40	Pass
NVNT	ANT1	2-DH1	0.394	321.00	126.474	0.40	Pass
NVNT 👘	ANT1	2-DH3	1.646	167.00	274.882	0.40	Pass

6

