TEST REPORT DT&C Co., Ltd. 42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664 1. Report No: DRRFCC1901-0009 2. Customer · Name : LG Electronics USA, Inc. · Address: 1000 Sylvan Ave. Englewood Cliffs, New Jersey, United States 07632 3. Use of Report: FCC Original Grant 4. Product Name / Model Name : Mobile Phone / LM-G820V FCC ID: ZNFG820V 5. Test Method Used: IEEE 1528-2013, FCC SAR KDB Publications (Details in test report) Test Specification: CFR §2.1093 6. Date of Test: 2019.01.21 ~ 2019.01.24 7. Testing Environment: Refer to appended test report. 8. Test Result: Refer to attached test report. | Affirmation | Tested by | | Reviewed by | | |-------------|------------------|---|-------------------|---------| | Ammation | Name : HoSik Sim | 3 | Name : HakMin Kim | Sommune | The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd. 2019.01.29. DT&C Co., Ltd. If this report is required to confirmation of authenticity, please contact to report@dtnc.net ## **Test Report Version** | Test Report No. | Date | Description | |-----------------|---------------|---------------| | DRRFCC1901-0009 | Jan. 29, 2019 | Initial issue | ### **Table of Contents** | 1. DESCRIPTION OF DEVICE | 4 | |---|--------| | 1.1 General Information | | | 1.2 Power Reduction for SAR | | | 1.3 Nominal and Maximum Output Power Specifications | | | 1.5 Miscellaneous SAR Test Considerations | | | 1.6 Guidance Applied | 5 | | 1.7 Device Serial Numbers | | | 2. INTROCUCTION | | | 3. DOSIMETRIC ASSESSMENT | | | 3.1 Measurement Procedure | 7
9 | | 4.1 Ear Reference Point | | | 4.2 Handset Reference Points | | | | | | 5.1 Device Holder | | | 5.3 Positioning for Ear / 15 ° Tilt | | | 5.4 Body-Worn Accessory Configurations | 11 | | 5.5 Extremity Exposure Configurations | 11 | | 6. RF EXPOSURE LIMITS | | | 7. FCC MEASUREMENT PROCEDURES | | | 7.1 Measured and Reported SAR | | | 7.2 SAR Testing with 802.11 Transmitters | | | 7.2.2 Initial Test Position Procedure | | | 7.2.3 2.4 GHz SAR Test Requirements | | | 7.2.4 OFDM Transmission Mode and SAR Test Channel Selection | | | 7.2.5 Initial Test Configuration Procedure | | | 7.2.6 Subsequent Test Configuration Procedures | | | 8. RF CONDUCTED POWERS | | | 8.1 WLAN Nominal and Maximum Output Power Spec and Conducted Powers | | | 8.2 Bluetooth Conducted Powers | | | 9 SYSTEM VERIFICATION | | | 9.1 Tissue Verification | | | 9.2 Test System Verification | | | 10. SAR TEST RESULTS | | | 10.1 Head SAR Results | 19 | | 10.2 Standalone Body-Worn SAR Worn SAR Results | | | 10.4 SAR Test Notes | 20 | | 11. SAR MEASUREMENT VARIABILITY | | | 11.1 Measurement Variability | | | 11.2 Measurement Uncertainty | | | 12. EQUIPMENT LIST | | | 13. MEASUREMENT UNCERTAINTIES | | | | | | 15. REFERENCES | | | APPENDIX A. – Probe Calibration Data | | | APPENDIX B. – Dipole Calibration Data | | | APPENDIX C. – SAR Tissue Specifications | | | APPENDIX D. – SAR SYSTEM VALIDATION | | | APPENDIX E. – Description of Test Equipment | 93 | ## 1. DESCRIPTION OF DEVICE ### 1.1 General Information | EUT type | Mobile Phone | | | | | | | | |--------------------------|---|----------------------------|---------------|-----------------------|-----------------|-----------------|--|--| | FCC ID | ZNFG820V | | | | | | | | | Equipment model name | LM-G820V | | | | | | | | | Equipment add model name | LMG820V, G820V | | | | | | | | | Equipment serial no. | Identical prototype | | | | | | | | | Mode(s) of Operation | 2.4 G W-LAN (802.11b/g/r | n-HT20/ac-VHT20), Bluetoot | h | | | | | | | | Band Mode Operating Modes Bandwidth Frequency | | | | | | | | | TX Frequency Range | 2.4 GHz W-LAN | 802.11b/g/n/ac | Voice/Data | HT20/VHT20 2412 ~ 246 | | 2412 ~ 2462 MHz | | | | | Bluetooth | - | Data | - | 2402 ~ 2480 MHz | | | | | DV Fraguency Denge | 2.4 GHz W-LAN | 802.11b/g/n/ac | Voice/Data | HT20/VHT20 | | 2412 ~ 2462 MHz | | | | RX Frequency Range | Bluetooth | - | Data | - 2402 ~ 2480 MHz | | | | | | | | | Report | ted SAR | | | | | | Equipment
Class | Band | | 1g SAR (W/kg) | | | 10g SAR (W/kg) | | | | | | Head | Body | -Worn | | Phablet | | | | DTS | 2.4 GHz W-LAN | 0.40 | 0. | 17 | | 0.83 | | | | FCC Equipment
Class | Part 15 Spread Spectrum Transmitter(DSS) Digital Transmission System(DTS) | | | | | | | | | Date(s) of Tests | 2019.01.21 ~ 2019.01.24 | | | | | | | | | Antenna Type | Internal Antenna | | | | | | | | | Functions | VoIP is supported | d. | | | | _ | | | Report No.: DRRFCC1901-0009 ### 1.2 Power Reduction for SAR There is no power reduction used for any band/mode implemented in this device for SAR purposes. ### 1.3 Nominal and Maximum Output Power Specifications The Nominal and Maximum Output Power Specifications are in section 8 of this test report. ### 1.4 DUT Antenna Locations The overall dimensions of this device are $> 9 \times 5$ cm. A diagram showing the location of the device of the device antenna can be found in ZNFG820V_Antenna Location. Since the diagonal dimension of this device is > 160 mm and < 200 mm. it is considered a "phablet". | Mode | Device Sides for SAR Testing | | | | | | |------------|------------------------------|--------|-------|------|-------|------| | Mode | Тор | Bottom | Front | Rear | Right | Left | | 2.4G W-LAN | 0 | X | 0 | 0 | X | 0 | Note 1: Particular DUT edges were not required to be evaluated for Phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 648474 D04v01r03. The antenna document shows the distances between the transmit antennas and the edges of the device. Note 2: O - Test / X - Not test. ### 1.5 Miscellaneous SAR Test Considerations BT Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances < 50 mm is defined by the following equation: $$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \le 3.0$$ Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn **Bluetooth SAR was not required**; **[(16/10)*\sqrt{2.480}] = 2.5 (< 3.0)**. Per KDB Publication 447498 D01 v06, the maximum power of the channel was rounded to the nearest mW before calculation. Per FCC KDB 447498 D01v06, the 10g SAR exclusion threshold for distance < 50 mm is defined by the following equation: $$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 7.5$$ Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, phablet **Bluetooth SAR was not required**; **[(16/5)*\sqrt{2.480}] = 5.0 (< 7.5)**. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation. ## 1.6 Guidance Applied - IEEE 1528-2013 - FCC KDB Publication 248227 D01v02r02 (802.11 Wi-Fi SAR) - FCC KDB Publication 447498 D01v06 (General RF Exposure Guidance) - FCC KDB Publication 648474 D04v01r03 (Handset SAR) - FCC KDB Publication 690783 D01v01r03 (SAR Listings on Grants) - FCC KDB Publication 865664 D01v01r04 (SAR Measurement 100 MHz to 6 GHz) - FCC KDB Publication 865664 D02v01r02 (RF Exposure Reporting) ### 1.7 Device Serial Numbers The serial numbers used for each test are indicated alongside the results in Section 10. ## 2. INTROCUCTION The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. ### **SAR Definition** Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 3.1) $$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$ Fig. 2.1 SAR Mathematical Equation SAR is expressed in units of Watts per Kilogram (W/kg). $$SAR =
\frac{\sigma \cdot E^2}{\rho}$$ where: σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³) E = Total RMS electric field strength (V/m) NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane. ## 3. DOSIMETRIC ASSESSMENT ### 3.1 Measurement Procedure The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013: - 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3.1) and IEEE1528-2013. - 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value. Figure 3.1 Sample SAR Area Scan 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3.1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details): Report No.: DRRFCC1901-0009 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3.1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell). - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR. - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated. | | | | ≤3 GHz | >3 GHz | |--|--|---|--|---| | Maximum distance fro
(geometric center of p | | measurement point
ers) to phantom surface | 5 mm ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom
surface normal at the measurement location | | | 30°±1° | 20°±1° | | | | | ≤ 2 GHz: ≤ 15 mm
2 – 3 GHz: ≤ 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | Maximum area scan spatial resolution; $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$ | | When the x or y dimension of the test device, in the
measurement plane orientation, is smaller than the
above, the measurement resolution must be ≤ the
corresponding x or y dimension of the test device with
at least one measurement point on the test device. | | | | Maximum zoom scan | spatial res | olution: Δx _{Zoom} , Δy _{Zoom} | ≤ 2 GHz: ≤ 8 mm
2 – 3 GHz: ≤ 5 mm | 3 – 4 GHz: ≤ 5 mm*
4 – 6 GHz: ≤ 4 mm* | | | uniform grid: Δz _{Zoon} (n) | | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | Maximum zoom
scan spatial
resolution, normal to
phantom surface | graded | Δz _{Zoom} (1): between
1 st two points closest
to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤3 mm
4 – 5 GHz: ≤2.5 mm
5 – 6 GHz: ≤2 mm | | | grid Δz _{Zoom} (n>1):
 between subsequent
 points | | $\leq 1.5 \cdot \Delta z_{Z_{DOM}}(n-1) \text{ mm}$ | | | Minimum zoom
scan volume x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details. Table 3.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04* ^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 4. DEFINITION OF REFERENCE POINTS ### 4.1 Ear Reference Point Figure 4.1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the Ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 4.1. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck- Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 4.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning. Figure 4.1 Close-up side view of ERP ### 4.2 Handset Reference Points Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 4.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point. Figure 4.2 Front, back and side view SAM Twin Phantom Figure 4.3 Handset Vertical Center & Horizontal Line Reference Points ## 5. TEST CONFIGURATION POSITIONS FOR HANDSETS ### 5.1 Device Holder The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. ### 5.2 Positioning for Cheek/Touch 1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 5.1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom. Figure 5.1 Front, Side and Top View of Cheek/Touch Position - 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear. - 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane). - 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF. - 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Figure 5.2) ### 5.3 Positioning for Ear / 15 ° Tilt With the test device aligned in the "Cheek/Touch Position": - 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree. - 2. The phone was then rotated around the horizontal line by 15 degree. - 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 5.3). Figure 5.3 Front, Side and Top View of Ear/15° Position ### 5.4 Body-Worn Accessory Configurations Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a
flat phantom in a normal use configuration (see Figure 5.4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when Figure 5.4 Sample Body-Worn Diagram applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration. ## 5.5 Extremity Exposure Configurations Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements. Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device. ## 6. RF EXPOSURE LIMITS ### **Uncontrolled Environment:** UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: DRRFCC1901-0009 ### **Controlled Environment:** CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Table 6.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 | | HUMAN EXPOSURE LIMITS | | | | | |--|---|---|--|--|--| | | General Public Exposure
(W/kg) or (mW/g) | Occupational Exposure
(W/kg) or (mW/g) | | | | | SPATIAL PEAK SAR *
(Brain) | 1.60 | 8.00 | | | | | SPATIAL AVERAGE SAR **
(Whole Body) | 0.08 | 0.40 | | | | | SPATIAL PEAK SAR ***
(Hands / Feet / Ankle / Wrist) | 4.00 | 20.0 | | | | - 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. - 2. The Spatial Average value of the SAR averaged over the whole body. - 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). ## 7. FCC MEASUREMENT PROCEDURES ## 7.1 Measured and Reported SAR Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03. ### 7.2 SAR Testing with 802.11 Transmitters The normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227D01v02r02 for more details. ### 7.2.1 General Device Setup Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements. A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the in the transmission, a maximum transmission duty factor of 92-96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. ### 7.2.2 Initial Test Position Procedure For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured. ## 7.2.3 2.4 GHz SAR Test Requirements SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following: Report No.: DRRFCC1901-0009 - 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. - 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest
measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing. 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. ### 7.2.4 OFDM Transmission Mode and SAR Test Channel Selection For the 2.4 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n is used for SAR measurement. When the maximum output power ware the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel. ### 7.2.5 Initial Test Configuration Procedure For OFDM, in 2.4 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration. When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. ### 7.2.6 Subsequent Test Configuration Procedures For OFDM configurations, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration, adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power is ≤ 1.2 W/kg, no additional SAR testing for the subsequent test configurations is required. ## 8. RF CONDUCTED POWERS This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06 ## 8.1 WLAN Nominal and Maximum Output Power Spec and Conducted Powers | Band | Mode | Ch | Modulated A | verage[dBm] | |-------|----------|-------|-------------|-------------| | (GHz) | Mode | OII - | Maximum | Nominal | | | 802.11b | 1-11 | 16.5 | 15.5 | | 2.4 | 802.11g | 1-11 | 13.5 | 12.5 | | 2.4 | 802.11n | 1-11 | 13.5 | 12.5 | | | 802.11ac | 1-11 | 13.5 | 12.5 | Table 8.1.1 Nominal and Maximum Output Power Spec | Mode | Freq.
(MHz) | Channel | IEEE 802.11 (2.4 GHz) Conducted Power[dBm] | |----------------------|----------------|---------|--| | | 2412 | 1 | 15.98 | | 802.11b | 2437 | 6 | 16.35 | | | 2462 | 11 | 16.37 | | | 2412 | 1 | 13.08 | | 802.11g | 2437 | 6 | 13.25 | | | 2462 | 11 | 13.30 | | 000.44 | 2412 | 1 | 12.79 | | 802.11n
(HT-20) | 2437 | 6 | 13.04 | | (11-20) | 2462 | 11 | 12.98 | | 000 1100 | 2412 | 1 | 12.85 | | 802.11ac
(VHT-20) | 2437 | 6 | 13.02 | | (111-20) | 2462 | 11 | 12.92 | Table 8.1.2 IEEE 802.11 Average RF Power ### 8.2 Bluetooth Conducted Powers | | Burst Modulated Average[dBm] | | | | | | |-----------|------------------------------|------|--|--|--|--| | Bluetooth | Maximum | 12.0 | | | | | | 1 Mbps | Nominal | 11.0 | | | | | | Bluetooth | Maximum | 12.0 | | | | | | 2 Mbps | Nominal | 11.0 | | | | | | Bluetooth | Maximum | 12.0 | | | | | | 3 Mbps | Nominal | 11.0 | | | | | | Bluetooth | Maximum | 5.0 | | | | | | LE | Nominal | 4.0 | | | | | Table 8.2.1 Nominal and Maximum Output Power Spec (Burst) | | Frame Modulated Average[dBm] | | | | | | |--------------|------------------------------|-------|--|--|--|--| | Bluetooth | Maximum | 10.85 | | | | | | 1 Mbps | Nominal | 9.85 | | | | | | Bluetooth | Maximum | 10.85 | | | | | | 2 Mbps | Nominal | 9.85 | | | | | | Bluetooth | Maximum | 10.85 | | | | | | 3 Mbps | Nominal | 9.85 | | | | | | Bluetooth | Maximum | 4.31 | | | | | | (LE / 1Mbps) | Nominal | 3.31 | | | | | | Bluetooth | Maximum | 2.59 | | | | | | (LE / 2Mbps) | Nominal | 1.59 | | | | | Table 8.2.2 Nominal and Maximum Output Power Spec (Frame) | Channel | Frequency | Burst AVG
Output Power
(1Mbps) | Frame AVG
Output Power
(1Mbps) | Burst AVG
Output Power
(2Mbps) | Frame AVG
Output Power
(2Mbps) | Burst AVG
Output Power
(3Mbps) | Frame AVG
Output Power
(3Mbps) | |---------|-----------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | (MHz) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | | Low | 2402 | 11.05 | 9.90 | 10.35 | 9.20 | 10.34 | 9.19 | | Mid | 2441 | 10.72 | 9.57 | 10.66 | 9.51 | 10.66 | 9.51 | | High | 2480 | 11.20 | 10.05 | 10.48 | 9.33 | 10.47 | 9.32 | Table 8.2.3 Bluetooth Burst and Frame Average RF Power | Channel | Frequency | Burst AVG Output
Power(LE / 1Mbps) | Frame AVG Output
Power(LE / 1Mbps) | Burst AVG Output
Power(LE / 2Mbps) | Frame AVG Output
Power(LE / 2Mbps) | |---------|-----------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | | (MHz) | (dBm) | (dBm) | (dBm) | (dBm) | | Low | 2402 | 4.92 | 4.23 | 4.89 | 2.48 | | Mid | 2440 | 4.51 | 3.82 | 4.49 | 2.08 | | High | 2480 | 4.98 | 4.29 | 4.93 | 2.52 | Table 8.2.4 Bluetooth LE Burst and Frame Average RF Power #### Bluetooth Conducted Powers procedures - 1. Bluetooth (BDR, EDR) - 1) Enter DUT mode in EUT and operate it. - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed. - 2) Instruments and EUT were connected like Figure 8.2.1(A). - 3) The maximum output powers of BDR(1 Mbps), EDR(2, 3 Mbps) and each frequency were set by a Bluetooth Tester. - 4) Power levels were measured by a Power Meter. - 2. Bluetooth (LE) - 1) Enter LE mode in EUT and operate it. - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed. - 2) Instruments and EUT were connected like Figure 8.2.1(B). - 3) The average conducted output powers of LE and each frequency can measurement according to setting program in EUT. - 4) Power levels were measured by a Power Meter. Figure 8.2.1 Average Power Measurement Setup ## 9.1 Tissue Verification 9 SYSTEM VERIFICATION | | | | | | MEASURED TISSUE PA | ARAMETERS | | | | | |----------------|----------------|----------------------|---------------------|--------------------------------|--------------------------------------|------------------------------------|--|--------------------------------------|------------------------|--------------------| | Date(s) | Tissue
Type | Ambient
Temp.[°C] | Liquid
Temp.[°C] | Measured
Frequency
[MHz] | Target
Dielectric
Constant, εr | Target
Conductivity,
σ (S/m) | Measured
Dielectric
Constant, ɛr | Measured
Conductivity,
σ (S/m) | Er
Deviation
[%] | σ
Deviation [%] | | | | | | 2402.0 | 39.282 | 1.757 | 38.400 | 1.744 | -2.25 | -0.74 | | | | | | 2412.0 | 39.265 | 1.766 | 38.375 | 1.755 | -2.27 | -0.62 | | | 0.450 | | | 2437.0 | 39.222 | 1.788 | 38.297 | 1.781 | -2.36 | -0.39 | | Jan. 23. 2019 | 2450 | 21.5 | 21.6 | 2441.0 | 39.215 | 1.792 | 38.282 | 1.785 | -2.38 | -0.39 | | Head | пеац | | | 2450.0 | 39.200 | 1.800 | 38.248 | 1.795 | -2.43 | -0.28 | | | | | | 2462.0 | 39.184 | 1.813 | 38.220 | 1.808 | -2.46 | -0.28 | | | | | | 2480.0 | 39.160 | 1.832 | 38.173 | 1.827 | -2.52 | -0.27 | | | | | | 2402.0 | 52.764 | 1.904 | 52.563 | 1.849 | -0.38 | -2.89 | | | | | | 2412.0 | 52.751 | 1.914 | 52.538 | 1.860 | -0.40 | -2.82 | | | | | | 2437.0 | 52.717 | 1.938 | 52.473 | 1.889 | -0.46 | -2.53 | | Jan. 24. 2019 | 2450 | 20.3 | 20.5 | 2441.0 | 52.712 | 1.941 | 52.461 | 1.893 | -0.48 | -2.47 | | Juli. 24. 2019 | Body | | | 2450.0 | 52.700 | 1.950 | 52.434 | 1.904 | -0.50 | -2.36 | | | | | | 2462.0 | 52.685 | 1.967 | 52.416 | 1.918 | -0.51 | -2.49 | | | | | | 2480.0 | 52.662 | 1.993 | 52.382 | 1.938 | -0.53 | -2.76 | Report No.: DRRFCC1901-0009 The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software. #### Measurement Procedure for Tissue verification: - 1) The network analyzer and probe system was configured and calibrated. - The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle. - 3) The complex admittance with respect
to the probe aperture was measured - The complex relative permittivity , for example from the below equation (Pournaropoulos and Misra): $$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$ where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $f = \sqrt{-1}$. ## 9.2 Test System Verification Prior to assessment, the system is verified to the \pm 10 % of the specifications at using the SAR Dipole kit(s). (Graphic Plots Attached) Table 9.2.1 System Verification Results (1g) | | | | S | YSTEM DIF | POLE VERIFI | CATION TAR | GET & ME | ASURED | | | | | |--------------------|----------------|---------------------|---------------|----------------|--------------------------|-------------------------|--------------|------------------------|--|---|--|------------------| | SAR
System
| Freq.
[MHz] | SAR
Dipole kits | Date(s) | Tissue
Type | Ambient
Temp.
[°C] | Liquid
Temp.
[°C] | Probe
S/N | Input
Power
(mW) | 1 W
Target
SAR _{1g}
(W/kg) | Measured
SAR _{1g}
(W/kg) | 1 W
Normalized
SAR _{1g}
(W/kg) | Deviation
[%] | | А | 2450 | D2450V2,
SN: 920 | Jan. 23. 2019 | Head | 21.5 | 21.6 | 3866 | 100 | 51.9 | 5.03 | 50.30 | -3.08 | | Α | 2450 | D2450V2,
SN: 920 | Jan. 24. 2019 | Body | 20.3 | 20.5 | 3327 | 100 | 52.1 | 4.96 | 49.60 | -4.80 | Table 10.2.2 System Verification Results (10g) | | | | s | YSTEM DIF | OLE VERIFI | CATION TAR | GET & MEA | ASURED | | | | | |--------------------|----------------|---------------------|---------------|----------------|--------------------------|-------------------------|--------------|------------------------|---|--|---|------------------| | SAR
System
| Freq.
[MHz] | SAR
Dipole kits | Date(s) | Tissue
Type | Ambient
Temp.
[°C] | Liquid
Temp.
[°C] | Probe
S/N | Input
Power
(mW) | 1 W
Target
SAR _{10g}
(W/kg) | Measured
SAR _{10g}
(W/kg) | 1 W
Normalized
SAR _{10g}
(W/kg) | Deviation
[%] | | A | 2450 | D2450V2,
SN: 920 | Jan. 24. 2019 | Body | 20.3 | 20.5 | 3327 | 100 | 24.6 | 2.32 | 23.20 | -5.69 | Note1 : System Verification was measured with input 100 mW and normalized to 1W. Note2 : Full system validation status and results can be found in Attachment 3. Figure 9.1 Dipole Verification Test Setup Diagram & Photo FCC ID: ZNFG820V ## **10. SAR TEST RESULTS** ### 10.1 Head SAR Results ### Table 10.1.1 DTS Head SAR | MEASUREMENT RESULTS | | | | | | | | | | | | | | | |---------------------|-----------|--|--------------------|-----------------------------------|--|--|---|---|--
--|---|--|--|--| | ICY | Mode | Maximum
Allowed | Conducted
Power | Drift
Power | Phantom | Device
Serial | Peak SAR of | Data
Rate | Duty | 1g
SAR | Scaling | Scaling
Factor | 1g
Scaled | Plot
s | | Ch | (Antenna) | [dBm] | [dBm] | [dB] | Position | Number | Area Scan | [Mbps] | Cycle | (W/kg) | Factor | Cycle) | SAR
(W/kg) | # | | 11 | 802.11b | 16.50 | 16.37 | 0.020 | Left Touch | FCC #1 | 0.206 | 1 | 99.2 | 0.195 | 1.030 | 1.008 | 0.202 | | | 11 | 802.11b | 16.50 | 16.37 | -0.050 | Right Touch | FCC #1 | 0.435 | 1 | 99.2 | 0.384 | 1.030 | 1.008 | 0.399 | A1 | | 11 | 802.11b | 16.50 | 16.37 | -0.130 | Left Tilt | FCC #1 | 0.065 | 1 | 99.2 | 0.067 | 1.030 | 1.008 | 0.070 | | | 11 | 802.11b | 16.50 | 16.37 | -0.190 | Right Tilt | FCC #1 | 0.189 | 1 | 99.2 | 0.180 | 1.030 | 1.008 | 0.187 | | | | 11
11 | Ch (Antenna) 11 802.11b 11 802.11b 11 802.11b | Ch | CY Mode (Antenna) Power [dBm] | CY Mode (Antenna) Power (Bm) Power (Bm) Power (Bm) | Note Mode Allowed Power [dBm] Phantom Position | Note | Note | Note Mode Allowed Power CdBm Number Power CdBm Number | Note Mode Allowed Power CdBm Position Position Position Power Power Power Power CdBm Power CdBm Power | Name | Note Mode Allowed Power CdBm | Note Mode Allowed Power CBM Ch Ch Ch Ch Ch Ch Ch C | Nation N | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Head 1.6 W/kg (mW/g) averaged over 1 gram | | | | | | Adjusted | SAR results for O | FDM SAR | | | | | | |---------------|---|---------------|---------|--------------------------------------|-------------------------------|--------------------
----------|---------|-------------------------------------|-----------------------------|---------------------------------|-----------------------| | FREQUI
MHz | Ch | Mode/ Antenna | Service | Maximum
Allowed
Power
[dBm] | 1g
Scaled
SAR
(W/kg) | FREQUENCY
[MHz] | Mode | Service | Maximum
Allowed
Power
[dBm | Ratio of
OFDM to
DSSS | 1g
Adjusted
SAR
(W/kg) | Determine
OFDM SAR | | 2462.0 | 11 | 802.11b | DSSS | 16.5 | 0.399 | 2437 | 802.11g | OFDM | 13.5 | 0.501 | 0.200 | X | | 2462.0 | 11 | 802.11b | DSSS | 16.5 | 0.399 | 2437 | 802.11n | OFDM | 13.5 | 0.501 | 0.200 | X | | 2462.0 | 11 | 802.11b | DSSS | 16.5 | 0.399 | 2437 | 802.11ac | OFDM | 13.5 | 0.501 | 0.200 | X | | Un | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure | | | | | | | | Head
W/kg (mW/g | | <u>-</u> | | Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. ## 10.2 Standalone Body-Worn SAR Worn SAR Results Table 10.2.1 DTS Body-Worn SAR | | | | | | | MEASURE | MENT RESULT | rs | | | | | | | | |--------|--|---------|-----------------------------|--------------------|----------------|---------------------|------------------|--------------------------|--------------|---------------|-----------|-------------------|----------------------------|---------------|-------| | FREQUE | NCY | Mode | Maximum
Allowed
Power | Conducted
Power | Drift
Power | Phantom
Position | Device
Serial | Peak SAR of
Area Scan | Data
Rate | Duty
Cycle | 1g
SAR | Scaling
Factor | Scaling
Factor
(Duty | SAR
(W/kg) | Plots | | MHz | Ch | | [dBm] | [dBm] | [dB] | 1 00.1.0.1 | Number | 7 ii da Goaii | [Mbps] | 5,0.0 | (W/kg) | , actor | Cycle) | (17.119) | | | 2462.0 | 11 | 802.11b | 16.50 | 16.37 | 0.100 | 10 mm
[Front] | FCC #1 | 0.071 | 1 | 99.2 | 0.074 | 1.030 | 1.008 | 0.077 | | | 2462.0 | 11 | 802.11b | 16.50 | 16.37 | 0.020 | 10 mm
[Rear] | FCC #1 | 0.160 | 1 | 99.2 | 0.163 | 1.030 | 1.008 | 0.169 | A2 | | | ANSI / IEEE C95.1-1992- SAFETY LIMIT | | | | | | | Body | | | | | | | | | | Spatial Peak | | | | | | | 1.6 W/kg (mW/g) | | | | | | | | | | Spatial Peak Uncontrolled Exposure/General Population Exposure | | | | | | | averaged over 1 gram | | | | | | | | | | | | | | Adjusted | SAR results for O | FDM SAR | | | | | | | | |--------|---|---------------|--------------|---------------------------|-------------------------|-------------------------|----------|---------|--------------------------|-----------------|---------------------------|-----------------------|--|--| | FREQUE | NCY | | | Maximum | 1g | | | | Maximum | Ratio of | 1g | | | | | MHz | Ch | Mode/ Antenna | 802.11b DSSS | Allowed
Power
[dBm] | Scaled
SAR
(W/kg) | FREQUENCY
[MHz] | Mode | Service | Allowed
Power
[dBm | OFDM to
DSSS | Adjusted
SAR
(W/kg) | Determine
OFDM SAR | | | | 2462.0 | 11 | 802.11b | DSSS | 16.5 | 0.169 | 2437 | 802.11g | OFDM | 13.5 | 0.501 | 0.085 | X | | | | 2462.0 | 11 | 802.11b | DSSS | 16.5 | 0.169 | 2437 | 802.11n | OFDM | 13.5 | 0.501 | 0.085 | X | | | | 2462.0 | 11 | 802.11b | DSSS | 16.5 | 0.169 | 2437 | 802.11ac | OFDM | 13.5 | 0.501 | 0.085 | X | | | | | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak | | | | | Body
1.6 W/kg (mW/g) | | | | | | | | | Spatial Peak Uncontrolled Exposure/General Population Exposure Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. ### 10.3 Standalone Phablet SAR Results Table 10.3.1 DTS Phablet SAR Report No.: DRRFCC1901-0009 | | | | | | | MEASUREM | MENT RESU | LTS | | | | | | | | |--------|--|---------|-----------------------------|--------------------|----------------|---------------------|------------------|-----------------|--------------|---------------|------------|-------------------|----------------------------|----------------------|-------| | FREQUE | NCY | Mode | Maximum
Allowed
Power | Conducted
Power | Drift
Power | Phantom
Position | Device
Serial | Peak SAR
of | Data
Rate | Duty
Cycle | 10g
SAR | Scaling
Factor | Scaling
Factor
(Duty | 10g
Scaled
SAR | Plots | | MHz | Ch | | [dBm] | [dBm] | [dB] | . conton | Number | Area Scan | [Mbps] | 0 ,0.0 | (W/kg) | i doto. | Cycle) | (W/kg) | | | 2462.0 | 11 | 802.11b | 16.50 | 16.37 | 0.050 | 0 mm [Top] | FCC #1 | 0.066 | 1 | 99.2 | 0.071 | 1.030 | 1.008 | 0.074 | | | 2462.0 | 11 | 802.11b | 16.50 | 16.37 | 0.120 | 0 mm [Front] | FCC #1 | 0.288 | 1 | 99.2 | 0.275 | 1.030 | 1.008 | 0.286 | | | 2462.0 | 11 | 802.11b | 16.50 | 16.37 | -0.010 | 0 mm [Rear] | FCC #1 | 0.609 | 1 | 99.2 | 0.603 | 1.030 | 1.008 | 0.626 | | | 2462.0 | 11 | 802.11b | 16.50 | 16.37 | 0.150 | 0 mm [Left] | FCC #1 | 0.744 | 1 | 99.2 | 0.802 | 1.030 | 1.008 | 0.833 | A3 | | | ANSI / IEEE C95.1-1992- SAFETY LIMIT | | | | | | | Phablet | | | | | | | | | | Spatial Peak | | | | | | | 4.0 W/kg (mW/g) | | | | | | | | | | Spatial Peak Uncontrolled Exposure/General Population Exposure | | | | | | | | | a | veraged o | ver 10 gr | am | | | | | | | | | Ac | djusted SAR results | for OFDM SAR | | | | | | |---|------|---------------|---------|---------------------------|-------------------------|---------------------|--------------|---------|--------------------------|-------------------------------------|---------------------------|-----------------------| | FREQUE | ENCY | | | Maximum | 10g | | | | Maximum | Ratio of | 10g | | | MHz | Ch | Mode/ Antenna | Service | Allowed
Power
[dBm] | Scaled
SAR
(W/kg) | FREQUENCY
[MHz] | Mode | Service | Allowed
Power
[dBm | OFDM to
DSSS | Adjusted
SAR
(W/kg) | Determine OFDM
SAR | | 2462.0 | 11 | 802.11b | DSSS | 16.5 | 0.833 | 2437 | 802.11g | OFDM | 13.5 | 0.501 | 0.417 | X | | 2462.0 | 11 | 802.11b | DSSS | 16.5 | 0.833 | 2437 | 802.11n | OFDM | 13.5 | 0.501 | 0.417 | X | | 2462.0 | 11 | 802.11b | DSSS | 16.5 | 0.833 | 2437 | 802.11ac | OFDM | 13.5 | 0.501 | 0.417 | X | | ANSI / IEEE C95.1-1992– SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population Exposure | | | | | | | | | 4.0 W/ | hablet
kg (mW/g)
over 10 grar | m | | Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 3.0 \text{ W/kg}$. ### 10.4 SAR Test Notes #### General Notes: - 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06. - 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements. - 3. Liquid tissue depth was at least 15.0 cm for all frequencies. - 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units - 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06. - 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance. - 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported boy-worn SAR was not > 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were performed. - 8. SAR measurements were performed using the DASY5 automated system. The procedure for spatial peak SAR evaluation has been implemented according to the IEEE 1528 standard. During a maximum search, global and local maxima searches are automatically performed in 2-D after each area scan measurement. The algorithm will find the global maximum and all local maxima within 2 dB of the global maximum for all SAR distributions. All local maxima within 2 dB of the global maximum were searched and passed for the Zoom Scan measurement. ### WLAN Notes: The initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. Report No.: DRRFCC1901-0009 - 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required duo to the maximum allowed powers and the highest reported DSSS SAR when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output and the adjust SAR is ≤ 1.2 W/kg. - 3. When the maximum reported 1g averaged SAR ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test
channels were measured. - 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor to determine compliance. ## 11. SAR MEASUREMENT VARIABILITY ### 11.1 Measurement Variability Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. Report No.: DRRFCC1901-0009 SAR Measurement Variability was assessed using the following procedures for each frequency band: - 1. When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once. - 2. A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit). - A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. - 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg - 5. The same procedures should be adapted for measurements according to extremity exposure limits by applying a factor of 2.5 for extremity exposure to the corresponding SAR thresholds. ### 11.2 Measurement Uncertainty The measured SAR was < 1.5 W/kg for 1g and < 3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required. ## 12. EQUIPMENT LIST **Table 14.1.1 Test Equipment Calibration** Report No.: DRRFCC1901-0009 | | Туре | Manufacturer | Model | Cal.Date | Next.Cal.Date | S/N | |-------------|--|--------------|------------|------------|---------------|-----------------| | X | SEMITEC Engineering | SEMITEC | N/A | N/A | N/A | Shield Room | | \boxtimes | Robot | SPEAG | TX60L | N/A | N/A | F12/5LP5A1/A/01 | | \boxtimes | Robot Controller | SPEAG | CS8C | N/A | N/A | F12/5LP5A1/C/01 | | \boxtimes | Joystick | SPEAG | N/A | N/A | N/A | S-12030401 | | \boxtimes | Intel Core i7-2600 3.40 GHz Windows 7 Professional | N/A | N/A | N/A | N/A | N/A | | \boxtimes | Probe Alignment Unit LB | N/A | N/A | N/A | N/A | SE UKS 030 AA | | \boxtimes | Device Holder | SPEAG | Holder | N/A | N/A | SD000H01KA | | × | Twin SAM Phantom | SPEAG | QD000P40CD | N/A | N/A | 1679 | | \boxtimes | Data Acquisition Electronics | SPEAG | DAE4V1 | 2018-04-24 | 2019-04-24 | 1391 | | \boxtimes | Data Acquisition Electronics | SPEAG | DAE4V1 | 2018-09-19 | 2019-09-19 | 1453 | | \boxtimes | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 2018-05-31 | 2019-05-31 | 3866 | | \boxtimes | Dosimetric E-Field Probe | SPEAG | ES3DV3 | 2018-08-28 | 2019-08-28 | 3327 | | \boxtimes | 2450MHz SAR Dipole | SPEAG | D2450V2 | 2018-08-24 | 2020-08-24 | 920 | | \boxtimes | Network Analyzer | Agilent | E5071C | 2018-02-02 | 2019-02-02 | MY46111534 | | \boxtimes | Signal Generator | Agilent | E4438C | 2018-07-04 | 2019-07-04 | US41461520 | | \boxtimes | Amplifier | EMPOWER | BBS3Q7ELU | 2018-07-10 | 2019-07-10 | 1020 | | \boxtimes | High Power RF Amplifier | EMPOWER | BBS3Q8CCJ | 2018-07-06 | 2019-07-06 | 1005 | | \boxtimes | Power Meter | HP | EPM-442A | 2018-12-19 | 2019-12-19 | GB37170267 | | \boxtimes | Power Meter | HP | EPM-442A | 2018-12-18 | 2019-12-18 | GB37170413 | | \boxtimes | Power Meter | Anritsu | ML2495A | 2018-07-04 | 2019-07-04 | 1435003 | | \boxtimes | Power Sensor | Anritsu | MA2490A | 2018-07-04 | 2019-07-04 | 1409034 | | \boxtimes | Power Sensor | HP | 8481A | 2018-12-18 | 2019-12-18 | US37294267 | | \boxtimes | Power Sensor | HP | 8481A | 2018-12-19 | 2019-12-19 | 3318A96566 | | \boxtimes | Power Sensor | HP | 8481A | 2018-12-19 | 2019-12-19 | 2702A65976 | | X | Directional Coupler | HP | 772D | 2018-07-03 | 2019-07-03 | 2889A01064 | | \boxtimes | Low Pass Filter 3.0GHz | Micro LAB | LA-30N | 2018-07-05 | 2019-07-05 | 2 | | \boxtimes | Attenuators(3 dB) | Agilent | 8491B | 2018-12-19 | 2019-12-19 | MY39260700 | | \boxtimes | Attenuators(10 dB) | WEINSCHEL | 23-10-34 | 2018-12-19 | 2019-12-19 | BP4387 | | \boxtimes | Dielectric Probe kit | SPEAG | DAK-3.5 | 2018-07-24 | 2019-07-24 | 1046 | | \boxtimes | Power Splitter | Anritsu | K241B | 2018-12-18 | 2019-12-18 | 1301183 | | \boxtimes | Bluetooth Tester | TESCOM | TC-3000B | 2018-12-18 | 2019-12-18 | 3000B770243 | NOTE(S): 1. The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DT&C before each test. The brain and muscle simulating material are calibrated by DT&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain and muscle-equivalent material. Each equipment item was used solely within its respective calibration period. 2. CBT(Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. ## 13. MEASUREMENT UNCERTAINTIES ## 2450 MHz Head (SN: 3866) | | Uncertainty | Probability | | (Ci) | (Ci) | Standard | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|------|----------|----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | 10g | (1g) | (10g) | Veff | | Measurement System | | | | | • | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | ∞ | | Isotropy | ± 1.3 | Normal | 1 | 1 | 1 | ± 1.3 % | ± 1.3 % | ∞ | | Boundary Effects | ± 2.0 | Rectangular | √3 | 1 | 1 | ± 1.2 % | ± 1.2 % | ∞ | | Probe Linearity | ± 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | ∞ | | Probe modulation response | ± 0.0 | Rectangular | √3 | 1 | 1 | ± 0.0 % | ± 0.0 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | 1 | ± 0.14 % | ± 0.14 % | ∞ | | Readout Electronics | ± 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | 1 | ± 0.46 % | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | Probe Positioner | ± 0.8 | Rectangular | √3 | 1 | 1 | ± 0.46 % | ± 0.46 % | ∞ | | Probe Positioning | ± 6.7 | Rectangular | √3 | 1 | 1 | ± 3.9 % | ± 3.9 % | ∞ | | Algorithms for Max. SAR Eval. | ± 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | ∞ | | Test Sample Related | | | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | ∞ | | SAR Scaling | ± 0.0 | Rectangular | √3 | 1 | 1 | ± 0.0 % | ± 0.0 % | ∞ | | Physical Parameters | | | | | | | | 4 | | Phantom Shell | ± 7.6 | Rectangular | √3 | 1 | 1 | ± 4.4 % | ± 4.4 % | ∞ | | SAR correction | ± 0.0 | Normal | 1 | 1 | 0.84 | ± 0.0 % | ± 0.0 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | ∞ | | Liquid conductivity (Meas.) | ± 3.8 | Normal | 1 | 0.78 | 0.71 | ± 3.0 % | ± 2.7 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.60 | 0.49 | ± 1.7 % | ± 1.4 % | ∞ | | Liquid permittivity (Meas.) | ± 4.3 | Normal | 1 | 0.23 | 0.26 | ± 1.0 % | ± 1.1 % | 10 | | Temp. unc Conductivity | ± 1.8 | Rectangular | √3 | 0.78 | 0.71 | ± 0.8 % | ± 0.7 % | ∞ | | Temp. unc Permittivity | ± 2.0 | Rectangular | √3 | 0.23 | 0.26 | ± 0.3 % | ± 0.3 % | ∞ | | Combined Standard Uncertainty | | | | | | ± 11.6 % | ± 11.4 % | 330 | | Expanded Uncertainty (k=2) | | | | | | ± 23.2 % | ± 22.8 % | | Report No.: DRRFCC1901-0009 The above measurement uncertainties are according to IEEE Std 1528 ## 2450 MHz Body (SN: 3327) | | Uncertainty | Probability | | (Ci) | (Ci) | Standard | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|------|----------|----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | 10g | (1g) | (10g) | Veff | | Measurement System | | | | | | | 1 | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | ∞ | | Isotropy | ± 1.3 | Normal | 1 | 1 | 1 | ± 1.3 % | ± 1.3 % | ∞ | | Boundary Effects | ± 2.0 | Rectangular | √3 | 1 | 1 | ± 1.2 % | ± 1.2
% | ∞ | | Probe Linearity | ± 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | ∞ | | Probe modulation response | ± 0.0 | Rectangular | √3 | 1 | 1 | ± 0.0 % | ± 0.0 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | 1 | ± 0.14 % | ± 0.14 % | ∞ | | Readout Electronics | ± 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | 1 | ± 0.46 % | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | Probe Positioner | ± 0.8 | Rectangular | √3 | 1 | 1 | ± 0.46 % | ± 0.46 % | ∞ | | Probe Positioning | ± 6.7 | Rectangular | √3 | 1 | 1 | ± 3.9 % | ± 3.9 % | ∞ | | Algorithms for Max. SAR Eval. | ± 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | ∞ | | Test Sample Related | | | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | ∞ | | SAR Scaling | ± 0.0 | Rectangular | √3 | 1 | 1 | ± 0.0 % | ± 0.0 % | ∞ | | Physical Parameters | | | | | | | | | | Phantom Shell | ± 7.6 | Rectangular | √3 | 1 | 1 | ± 4.4 % | ± 4.4 % | ∞ | | SAR correction | ± 0.0 | Normal | 1 | 1 | 0.84 | ± 0.0 % | ± 0.0 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | ∞ | | Liquid conductivity (Meas.) | ± 4.2 | Normal | 1 | 0.78 | 0.71 | ± 3.3 % | ± 3.0 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.60 | 0.49 | ± 1.7 % | ± 1.4 % | ∞ | | Liquid permittivity (Meas.) | ± 3.9 | Normal | 1 | 0.23 | 0.26 | ± 0.9 % | ± 1.0 % | 10 | | Temp. unc Conductivity | ± 2.0 | Rectangular | √3 | 0.78 | 0.71 | ± 0.9 % | ± 0.8 % | ∞ | | Temp. unc Permittivity | ± 1.8 | Rectangular | √3 | 0.23 | 0.26 | ± 0.2 % | ± 0.3 % | ∞ | | Combined Standard Uncertainty | | | | | | ± 11.7 % | ± 11.5 % | 330 | | Expanded Uncertainty (k=2) | | | | | | ± 23.4 % | ± 23.0 % | | Report No.: DRRFCC1901-0009 The above measurement uncertainties are according to IEEE Std 1528 ## 14. CONCLUSION ### **Measurement Conclusion** The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested. Report No.: DRRFCC1901-0009 Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. ### 15. REFERENCES [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996. Report No.: DRRFCC1901-0009 - [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006. - [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992. - [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002. - [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 IEEE Std. 1528-2003,Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices. - [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995. - [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113. - [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124. - [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175. - [10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2. - [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873. - [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23. - [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36. - [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995. - [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992. - [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992. - [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652. - [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995. - [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone. [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), Feb. 2005. [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 5, March 2015. [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2009 [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225,D01-D07 [24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02 [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474D02-D04 [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04 [27] FCC SAR Measurement and Reporting Requirements for 100MHz - 6 GHz, KDB Publications 865664 D01-D02 [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02 [29] 615223 D01 802 16e WI-Max SAR Guidance v01, Nov. 13, 2009 [30] Anexo à Resolução No. 533, de 10 de September de 2009. [31] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), Mar. 2010. ## **APPENDIX A. – Probe Calibration Data** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client DT&C (Dymstec) Certificate No: ES3-3327_Aug18 ## **CALIBRATION CERTIFICATE** Object ES3DV3 - SN:3327 Calibration procedure(s) QA CAL-01.v9, QA CAL-23 v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: August 28, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-17 (No. ES3-3013_Dec17) | Dec-18 | | DAE4 | SN: 660 | 21-Dec-17 (No. DAE4-660_Dec17) | Dec-18 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: August 30, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: ES3-3327_Aug18 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ES3-3327_Aug18 Page 2 of 11 ES3DV3 - SN:3327 August 28, 2018 # Probe ES3DV3 SN:3327 Manufactured: Calibrated: January 10, 2012 August 28, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ES3-3327_Aug18 Page 3 of 11 ES3DV3-SN:3327 August 28, 2018 ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3327 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 1.15 | 1.10 | 1.03 | ± 10.1 % | | DCP (mV) ^B | 104.8 | 103.1 | 108.7 | | #### Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^b
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 197.7 | ±3.0 % | | | | Y | 0.0 | 0.0 | 1.0 | | 199.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 193.5 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ES3DV3-SN:3327 August 28, 2018 ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3327 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 6.57 | 6.57 | 6.57 | 0.67 | 1.25 | ± 12.0 % | | 835 | 41.5 | 0.90 | 6.35 | 6.35 | 6.35 | 0.80 | 1.14 | ± 12.0 % | | 900 | 41.5 | 0.97 | 6.18 | 6.18 | 6.18 | 0.44 | 1.51 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.50 | 5.50 | 5.50 | 0.80 | 1.30 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.27 | 5.27 | 5.27 | 0.80 | 1.25 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.56 | 4.56 | 4.56 | 0.76 | 1.33 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.48 | 4.48 | 4.48 | 0.80 | 1.35 | ± 12.0 % | ^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Certificate No: ES3-3327_Aug18 the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ES3DV3-SN:3327 August 28, 2018 ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3327 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 6.38 | 6.38 | 6.38 | 0.80 | 1.16 | ± 12.0 % | | 835 | 55.2 | 0.97 | 6.24 | 6.24 | 6.24 | 0.80 | 1.15 | ± 12.0 % | | 900 | 55.0 |
1.05 | 6.21 | 6.21 | 6.21 | 0.63 | 1.29 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 5.15 | 5.15 | 5.15 | 0.71 | 1.40 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.91 | 4.91 | 4.91 | 0.55 | 1.65 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.50 | 4.50 | 4.50 | 0.77 | 1.35 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 4.30 | 4.30 | 4.30 | 0.80 | 1.25 | ± 12.0 % | ^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Certificate No: ES3-3327_Aug18 measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ES3DV3- SN:3327 August 28, 2018 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) ES3DV3- SN:3327 August 28, 2018 ## Receiving Pattern (\$\phi\$), 9 = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ES3DV3- SN:3327 August 28, 2018 ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ES3-3327_Aug18 ES3DV3- SN:3327 August 28, 2018 ## **Conversion Factor Assessment** ## Deviation from Isotropy in Liquid Certificate No: ES3-3327_Aug18 Page 10 of 11 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) ES3DV3-SN:3327 August 28, 2018 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3327 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 8.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm | Certificate No: ES3-3327_Aug18 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client DT&C (Dymstec) Certificate No: EX3-3866_May18 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3866 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: May 31, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-17 (No. ES3-3013_Dec17) | Dec-18 | | DAE4 | SN: 660 | 21-Dec-17 (No. DAE4-660_Dec17) | Dec-18 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | | | | Calibrated by: Name Function Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: May 31, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3866_May18 Page 1 of 39 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3866_May18 Page 2 of 39 EX3DV4 - SN:3866 May 31, 2018 # Probe EX3DV4 SN:3866 Manufactured: Calibrated: February 2,
2012 May 31, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3866_May18 Page 3 of 39 EX3DV4-SN:3866 May 31, 2018 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3866 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.43 | 0.32 | 0.35 | ± 10.1 % | | DCP (mV) ^B | 98.7 | 101.4 | 105.4 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 129.5 | ±3.3 % | | 7.2 | | Y | 0.0 | 0.0 | 1.0 | | 142.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 132.3 | | Note: For details on UID parameters see Appendix. #### Sensor Model Parameters | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|-------| | X | 61.34 | 450.3 | 34.79 | 20.71 | 0.897 | 5.071 | 0.953 | 0.532 | 1.007 | | Υ | 35.97 | 270.0 | 35.93 | 7.616 | 0.990 | 4.996 | 0.120 | 0.508 | 1.005 | | Z | 34.59 | 248.7 | 33.42 | 8.463 | 0.617 | 4.987 | 2.000 | 0.071 | 1.005 | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the EX3DV4-SN:3866 May 31, 2018 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3866 Report No.: DRRFCC1901-0009 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.16 | 10.16 | 10.16 | 0.49 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.62 | 9.62 | 9.62 | 0.39 | 0.93 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.40 | 9.40 | 9.40 | 0.40 | 0.92 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.38 | 8.38 | 8.38 | 0.34 | 0.84 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.03 | 8.03 | 8.03 | 0.27 | 0.87 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.86 | 7.86 | 7.86 | 0.30 | 0.85 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.45 | 7.45 | 7.45 | 0.34 | 0.82 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.22 | 7.22 | 7.22 | 0.38 | 0.85 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.89 | 6.89 | 6.89 | 0.20 | 1.25 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.14 | 5.14 | 5.14 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.95 | 4.95 | 4.95 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.61 | 4.61 | 4.61 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.52 | 4.52 | 4.52 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.69 | 4.69 | 4.69 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. FAt frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3866 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 9.69 | 9.69 | 9.69 | 0.33 | 0.97 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.43 | 9.43 | 9.43 | 0.42 | 0.80 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.57 | 9.57 | 9.57 | 0.48 | 0.80 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.95 | 7.95 | 7.95 | 0.39 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.68 | 7.68 | 7.68 | 0.30 | 0.85 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.50 | 7.50 | 7.50 | 0.39 | 0.85 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.40 | 7.40 | 7.40 | 0.43 | 0.90 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.28 | 7.28 | 7.28 | 0.25 | 1.05 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.43 | 6.43 | 6.43 | 0.28 | 1.20 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.69 | 4.69 | 4.69 | 0.50 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.50 | 4.50 | 4.50 | 0.50 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.95 | 3.95 | 3.95 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.87 | 3.87 | 3.87 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.16 | 4.16 | 4.16 | 0.50 | 1.90 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** ## Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz Certificate No: EX3-3866_May18 Page 10 of 39 EX3DV4- SN:3866 May 31, 2018 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3866 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 61.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | | | | Certificate No: EX3-3866_May18 Page 11 of 39 Appendix: Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
Unc ^E
(k=2) | |---------------|---|--------|-----------------|------------------|----------------|---------|---------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 129.5 | ± 3.3 % | | | | Y | 0.00 | 0.00 | 1.00 | | 142.9 | | | | | Z | 0.00 | 0.00 | 1.00 | | 132.3 | | | 10010-
CAA | SAR Validation (Square, 100ms, 10ms) | X | 4.96 | 74.03 | 14.55 | 10.00 | 20.0 | ± 9.6 % | | | | Υ | 1.96 | 62.67 | 8.25 | | 20.0 | | | | | Z | 1.98 | 63.61 | 8.75 | | 20.0 | | | 10011-
CAB | UMTS-FDD (WCDMA) | X | 1.46 | 74.36 | 19.19 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.84 | 66.93 | 14.18 | | 150.0 | | | 10010 | 1555 000 441 M/S 0 4 011 (5000 4 | Z | 1.06 | 69.91 | 16.41 | | 150.0 | | | 10012-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1
Mbps) | X | 1.27 | 66.19 | 17.07 | 0.41 | 150.0 | ± 9.6 % | | | | Y | 1.01 | 63.39 | 14.61 | | 150.0 | | | 10012 | IEEE 902 44- WIEL 2 4 CH- (DOOS | Z | 1.12 | 64.44 | 15.48 | 4 10 | 150.0 | | | 10013-
CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps) | X | 5.02 | 66.95 | 17.37 | 1.46 | 150.0 | ± 9.6 % | | | | Y | 4.56 | 66.54 | 16.75 | | 150.0 | | | 10001 | COM EDD (TDMA CHOIC | Z | 4.61 | 66.83 | 16.87 | | 150.0 | | | 10021-
DAC | GSM-FDD (TDMA, GMSK) | X | 100.00 | 116.34 | 28.99 | 9.39 | 50.0 | ± 9.6 % | | | | Y | 4.35
| 71.51 | 13.58 | | 50.0 | | | 10000 | | Z | 10.49 | 82.17 | 17.30 | | 50.0 | | | 10023-
DAC | GPRS-FDD (TDMA, GMSK, TN 0) | × | 100.00 | 116.24 | 28.99 | 9.57 | 50.0 | ± 9.6 % | | | | Y | 4.08 | 70.51 | 13.19 | | 50.0 | | | 10024-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | X | 7.34
100.00 | 77.92
114.37 | 15.91
27.13 | 6.56 | 50.0
60.0 | ± 9.6 % | | DAC | | Y | 2.47 | 68.27 | 11.00 | | 60.0 | | | | | Ż | 99.64 | 104.22 | 21.52 | | 60.0 | | | 10025-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | X | 7.29 | 85.63 | 33.51 | 12.57 | 50.0 | ± 9.6 % | | | | Υ | 3.34 | 62.89 | 20.63 | | 50.0 | | | | | Z | 4.59 | 72.89 | 26.66 | | 50.0 | | | 10026-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | Х | 19.51 | 108.37 | 37.98 | 9.56 | 60.0 | ± 9.6 % | | | | Y | 6.99 | 84.48 | 28.68 | | 60.0 | | | | | Z | 7.40 | 87.18 | 30.26 | | 60.0 | | | 10027-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | Х | 100.00 | 114.69 | 26.54 | 4.80 | 80.0 | ± 9.6 % | | | | Υ | 1.47 | 65.78 | 9.10 | | 80.0 | | | 10028- | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | Z
X | 100.00 | 103.55
116.57 | 20.47
26.68 | 3.55 | 80.0
100.0 | ± 9.6 % | | DAC | | | | | | | | | | | | Y | 0.75 | 62.53 | 6.91 | | 100.0 | | | | | Z | 100.00 | 103.86 | 19.98 | | 100.0 | | | 10029-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | X | 10.84 | 94.12 | 31.96 | 7.80 | 80.0 | ± 9.6 % | | | | Υ | 4.68 | 76.74 | 24.63 | | 80.0 | | | 10030-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | X | 4.76
100.00 | 77.76
113.28 | 25.40
26.21 | 5.30 | 70.0 | ± 9.6 % | | CAA | | Y | 1.50 | 64.87 | 8.87 | | 70.0 | | | | | | | | | | 70.0 | | | 10031- | IEEE 802.15.1 Bluetooth (GFSK, DH3) | X | 14.61
100.00 | 85.51
120.46 | 16.17
26.88 | 1.88 | 100.0 | ± 9.6 % | | CAA | | Y | 0.28 | 60.00 | 3.77 | | 100.0 | | | 10032-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | X | 100.00 | 134.94 | 31.61 | 1.17 | 100.0 | ± 9.6 % | |---------------|---|---|--------|--------|-------|-------|-------|---------| | | | Y | 2.98 | 214.36 | 19.03 | | 100.0 | | | | | Z | 100.00 | 96.12 | 15.00 | | 100.0 | | | 10033-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | X | 100.00 | 129.71 | 35.52 | 5.30 | 70.0 | ± 9.6 % | | | | Y | 3.37 | 73.07 | 15.63 | | 70.0 | | | | | Z | 5.18 | 79.83 | 18.59 | | 70.0 | | | 10034-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Х | 38.25 | 116.38 | 31.11 | 1.88 | 100.0 | ± 9.6 % | | | | Y | 1.32 | 66.13 | 11.17 | | 100.0 | | | | | Z | 2.19 | 72.52 | 14.56 | | 100.0 | | | 10035-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Х | 10.07 | 97.58 | 26.00 | 1.17 | 100.0 | ± 9.6 % | | | | Y | 1.02 | 64.74 | 10.26 | | 100.0 | | | | | Z | 1.68 | 70.82 | 13.73 | | 100.0 | | | 10036-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | X | 100.00 | 130.10 | 35.71 | 5.30 | 70.0 | ± 9.6 % | | | | Y | 3.79 | 74.73 | 16.33 | | 70.0 | | | 1000 | | Z | 6.44 | 82.95 | 19.72 | | 70.0 | | | 10037-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | X | 33.36 | 114.28 | 30.54 | 1.88 | 100.0 | ± 9.6 % | | | | Υ | 1.25 | 65.67 | 10.94 | | 100.0 | | | | | Z | 1.95 | 71.33 | 14.08 | | 100.0 | | | 10038-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Х | 11.00 | 99.37 | 26.64 | 1.17 | 100.0 | ± 9.6 % | | | | Υ | 1.03 | 65.03 | 10.52 | | 100.0 | | | | | Z | 1.72 | 71.30 | 14.06 | | 100.0 | | | 10039-
CAB | CDMA2000 (1xRTT, RC1) | Х | 4.41 | 85.41 | 21.99 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.86 | 64.63 | 9.97 | | 150.0 | | | | | Z | 1.99 | 74.44 | 15.11 | | 150.0 | | | 10042-
CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-
DQPSK, Halfrate) | Х | 100.00 | 112.07 | 26.26 | 7.78 | 50.0 | ± 9.6 % | | | | Y | 2.24 | 65.83 | 9.99 | | 50.0 | | | | | Z | 4.60 | 73.72 | 13.31 | | 50.0 | | | 10044-
CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | Х | 0.01 | 122.05 | 4.07 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.35 | 142.03 | 0.00 | | 150.0 | | | | | Z | 0.02 | 123.73 | 10.80 | | 150.0 | | | 10048-
CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | Х | 100.00 | 117.95 | 31.07 | 13.80 | 25.0 | ± 9.6 % | | | | Υ | 4.50 | 67.37 | 13.41 | | 25.0 | | | | | Z | 5.19 | 70.06 | 14.31 | | 25.0 | | | 10049-
CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | Х | 100.00 | 116.36 | 29.33 | 10.79 | 40.0 | ± 9.6 % | | | | Υ | 4.23 | 69.49 | 13.02 | | 40.0 | | | | | Z | 5.27 | 72.87 | 14.27 | | 40.0 | | | 10056-
CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | Х | 77.81 | 121.32 | 33.78 | 9.03 | 50.0 | ± 9.6 % | | | | Υ | 6.03 | 75.76 | 17.19 | | 50.0 | | | | | Z | 9.07 | 82.59 | 19.86 | | 50.0 | | | 10058-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | Х | 7.57 | 86.51 | 28.41 | 6.55 | 100.0 | ± 9.6 % | | | | Υ | 3.72 | 73.02 | 22.40 | | 100.0 | | | | | Z | 3.78 | 73.63 | 22.92 | | 100.0 | | | 10059-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2
Mbps) | Х | 1.41 | 68.44 | 18.21 | 0.61 | 110.0 | ± 9.6 % | | | | Υ | 1.03 | 64.26 | 15.02 | | 110.0 | | | | | Z | 1.14 | 65.37 | 15.93 | | 110.0 | | | 10060-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | Х | 100.00 | 140.28 | 36.98 | 1.30 | 110.0 | ± 9.6 % | | | | Υ | 5.52 | 92.10 | 22.15 | | 110.0 | | | | | Z | 23.32 | 116.45 | 30.29 | | 110.0 | | | | | | | | | | | | | 10061-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | Х | 32.15 | 121.96 | 35.02 | 2.04 | 110.0 | ± 9.6 % | |---------------|--|---|--------------|--------|-------|------|-------|---------| | | | Y | 2.04 | 75.39 | 19.12 | | 110.0 | | | | | Z | 2.36 | 78.14 | 20.85 | | 110.0 | | | 10062-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | Х | 4.83 | 66.99 | 16.83 | 0.49 | 100.0 | ± 9.6 % | | | | Y | 4.37 | 66.55 | 16.24 | | 100.0 | | | | | Z | 4.43 | 66.90 | 16.40 | | 100.0 | | | 10063-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | Х | 4.85 | 67.11 | 16.95 | 0.72 | 100.0 | ± 9.6 % | | | | Υ | 4.38 | 66.62 | 16.31 | | 100.0 | | | 10001 | | Z | 4.44 | 66.97 | 16.47 | | 100.0 | | | 10064-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | X | 5.19 | 67.41 | 17.17 | 0.86 | 100.0 | ± 9.6 % | | | | Y | 4.62 | 66.81 | 16.50 | | 100.0 | | | 10065- | IEEE 000 44 - /- WEEE E OU L (OFFILM 40 | Z | 4.67 | 67.13 | 16.63 | | 100.0 | | | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | X | 5.05 | 67.34 | 17.29 | 1.21 | 100.0 | ± 9.6 % | | | | Y | 4.49 | 66.66 | 16.55 | | 100.0 | | | 10066 | IEEE 900 44-/h WIEE E OLI- (OED): 0: | Z | 4.54 | 66.96 | 16.68 | 4.10 | 100.0 | | | 10066-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | X | 5.08 | 67.39 | 17.47 | 1.46 | 100.0 | ± 9.6 % | | | | Y | 4.50 | 66.65 | 16.68 | | 100.0 | | | 10067- | IEEE 000 44-/h WEELE OUT- (OED): 00 | Z | 4.54 | 66.92 | 16.80 | | 100.0 | | | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | X | 5.35 | 67.39 | 17.83 | 2.04 | 100.0 | ± 9.6 % | | | | Y | 4.79 | 66.90 | 17.13 | | 100.0 | | | 10000 | IEEE 000 44 - #- WEE: 5 OUT (OED) 4 40 | Z | 4.82 | 67.14 | 17.23 | | 100.0 | | | 10068-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | X | 5.44 | 67.63 | 18.14 | 2.55 | 100.0 | ± 9.6 % | | | | Y | 4.82 | 66.81 | 17.26 | | 100.0 | | | | | Z | 4.85 | 67.03 | 17.35 | | 100.0 | | | 10069-
CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | Х | 5.51 | 67.49 | 18.27 | 2.67 | 100.0 | ± 9.6 % | | | | Υ | 4.89 | 66.85 | 17.46 | | 100.0 | | | 40074 | TEEE COO 11 MIE C 1 CH | Z | 4.91 | 67.04 | 17.53 | | 100.0 | | | 10071-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 9 Mbps) | × | 5.12 | 67.05 | 17.68 | 1.99 | 100.0 | ± 9.6 % | | | | Y | 4.66 | 66.59 | 17.01 | | 100.0 | | | | | Z | 4.70 | 66.85 | 17.11 | | 100.0 | | | 10072-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 12 Mbps) | X | 5.14 | 67.52 | 17.95 | 2.30 | 100.0 | ± 9.6 % | | | | Y | 4.62 | 66.83 | 17.17 | | 100.0 | | | 100m | | Z | 4.65 | 67.08 | 17.27 | | 100.0 | | | 10073-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 18 Mbps) | X | 5.21 | 67.69 | 18.29 | 2.83 | 100.0 | ± 9.6 % | | | | Υ | 4.68 | 67.01 | 17.47 | | 100.0 | | | 100m: | | Z | 4.71 | 67.23 | 17.56 | | 100.0 | | | 10074-
CAB | IEEE
802.11g WiFi 2.4 GHz
(DSSS/OFDM, 24 Mbps) | X | 5.18 | 67.59 | 18.46 | 3.30 | 100.0 | ± 9.6 % | | | | Υ | 4.69 | 66.95 | 17.60 | | 100.0 | | | 100= | LEES AND ALL MARKET STATE OF THE TH | Z | 4.71 | 67.17 | 17.70 | | 100.0 | | | 10075-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 36 Mbps) | X | 5.26 | 67.87 | 18.86 | 3.82 | 90.0 | ± 9.6 % | | | | Y | 4.73 | 66.99 | 17.83 | | 90.0 | | | 10070 | IEEE 000 44 - MEE' C 1 CU | Z | 4.74 | 67.18 | 17.92 | | 90.0 | | | 10076-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 48 Mbps) | Х | 5.23 | 67.53 | 18.89 | 4.15 | 90.0 | ± 9.6 % | | | | Υ | 4.77 | 66.89 | 18.00 | | 90.0 | | | | | Z | 4.78 | 67.06 | 18.08 | | 90.0 | | | 10077-
CAB | IEEE 802.11g WiFi 2.4 GHz | X | 5.25 | 67.58 | 18.98 | 4.30 | 90.0 | ± 9.6 % | | CAB | (DSSS/OFDM, 54 Mbps) | | | | | | | | | CAB | (DSSS/OFDM, 54 Mbps) | Y | 4.81
4.81 | 66.98 | 18.11 | | 90.0 | | | 10081-
CAB | CDMA2000 (1xRTT, RC3) | X | 1.61 | 75.86 | 18.26 | 0.00 | 150.0 | ± 9.6 % | |---------------|---|---|--------|--------|-------|------|-------|---------| | | | Y | 0.40 | 60.59 | 6.95 | | 150.0 | | | | | Z | 0.70 | 65.91 | 10.99 | | 150.0 | | | 10082-
CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-
DQPSK, Fullrate) | Х | 0.97 | 60.00 | 5.20 | 4.77 | 80.0 | ± 9.6 % | | | | Y | 6.26 | 66.77 | 5.69 | | 80.0 | | | | | Z | 1.47 | 63.08 | 5.04 | | 80.0 | | | 10090-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | X | 100.00 | 114.42 | 27.18 | 6.56 | 60.0 | ± 9.6 % | | | | Y | 2.51 | 68.39 | 11.07 | | 60.0 | | | | | Z | 91.59 | 103.46 | 21.38 | | 60.0 | | | 10097-
CAB | UMTS-FDD (HSDPA) | Х | 2.10 | 70.41 | 17.58 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.66 | 67.98 | 15.08 | | 150.0 | | | | | Z | 1.92 | 70.17 | 16.49 | | 150.0 | | | 10098-
CAB | UMTS-FDD (HSUPA, Subtest 2) | X | 2.06 | 70.42 | 17.57 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.62 | 67.91 | 15.04 | | 150.0 | | | | | Z | 1.88 | 70.12 | 16.47 | | 150.0 | | | 10099-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | X | 19.63 | 108.47 | 38.01 | 9.56 | 60.0 | ± 9.6 % | | | | Y | 7.02 | 84.55 | 28.70 | | 60.0 | | | | | Z | 7.45 | 87.29 | 30.29 | | 60.0 | | | 10100-
CAD | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, QPSK) | X | 3.76 | 73.52 | 18.27 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.83 | 69.91 | 16.35 | | 150.0 | | | | | Z | 3.08 | 71.35 | 17.24 | | 150.0 | La Lyon | | 10101-
CAD | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM) | X | 3.49 | 68.90 | 16.77 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.97 | 67.19 | 15.62 | | 150.0 | | | | | Z | 3.10 | 67.97 | 16.12 | | 150.0 | | | 10102-
CAD | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM) | X | 3.59 | 68.75 | 16.81 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.08 | 67.24 | 15.76 | | 150.0 | | | | | Z | 3.21 | 67.97 | 16.22 | | 150.0 | | | 10103-
CAD | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, QPSK) | Х | 8.41 | 79.82 | 22.06 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 4.84 | 71.96 | 18.48 | | 65.0 | | | | | Z | 5.42 | 74.19 | 19.53 | | 65.0 | | | 10104-
CAD | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM) | X | 7.70 | 76.73 | 21.71 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 5.32 | 71.47 | 19.01 | | 65.0 | | | | | Z | 5.48 | 72.25 | 19.42 | | 65.0 | | | 10105-
CAD | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM) | X | 7.04 | 74.96 | 21.27 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 4.70 | 68.99 | 18.19 | | 65.0 | | | | | Z | 5.14 | 70.85 | 19.09 | | 65.0 | | | 10108-
CAE | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, QPSK) | Х | 3.28 | 72.58 | 18.09 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.43 | 69.27 | 16.18 | | 150.0 | | | | | Z | 2.65 | 70.70 | 17.10 | | 150.0 | | | 10109-
CAE | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM) | Х | 3.17 | 68.85 | 16.81 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.61 | 67.16 | 15.46 | | 150.0 | | | | | Z | 2.76 | 68.08 | 16.06 | | 150.0 | | | 10110-
CAE | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | Х | 2.68 | 71.66 | 17.86 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 1.91 | 68.41 | 15.56 | | 150.0 | | | | | Z | 2.13 | 70.09 | 16.68 | | 150.0 | | | 10111-
CAE | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | Х | 2.94 | 70.01 | 17.44 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.36 | 68.46 | 15.69 | | 150.0 | | | | | Z | 2.60 | 69.97 | 16.63 | | 150.0 | | | | | | | | | | | | EX3DV4- SN:3866 May 31, 2018 | 10112-
CAE | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM) | X | 3.28 | 68.68 | 16.79 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---|------|-------|-------|--|-------|---------| | | | Y | 2.74 | 67.25 | 15.57 | | 150.0 | | | | | Z | 2.89 | 68.13 | 16.13 | | 150.0 | - | | 10113-
CAE | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | X | 3.09 | 69.94 | 17.46 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.52 | 68.70 | 15.88 | | 150.0 | | | | | Z | 2.75 | 70.13 | 16.75 | | 150.0 | | | 10114-
CAC | IEEE 802.11n (HT Greenfield, 13.5
Mbps, BPSK) | X | 5.23 | 67.48 | 16.65 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.84 | 67.00 | 16.28 | | 150.0 | | | | | Z | 4.90 | 67.34 | 16.43 | | 150.0 | | | 10115-
CAC | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | Х | 5.59 | 67.72 | 16.77 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.08 | 67.08 | 16.32 | | 150.0 | | | | | Z | 5.13 | 67.37 | 16.44 | | 150.0 | | | 10116-
CAC | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | Х | 5.36 | 67.74 | 16.70 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.92 | 67.20 | 16.31 | | 150.0 | | | | | Z | 4.98 | 67.52 | 16.45 | | 150.0 | | | 10117-
CAC | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | Х | 5.24 | 67.49 | 16.68 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.83 | 66.95 | 16.28 | | 150.0 | | | | | Z | 4.89 | 67.29 | 16.43 | | 150.0 | | | 10118-
CAC | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | Х | 5.66 | 67.87 | 16.85 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.16 | 67.27 | 16.43 | | 150.0 | | | | | Z | 5.20 | 67.52 | 16.53 | | 150.0 | | | 10119-
CAC | IEEE 802.11n (HT Mixed, 135 Mbps, 64-
QAM) | Х | 5.33 | 67.68 | 16.69 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.92 | 67.19 | 16.31 | | 150.0 | | | | | Z | 4.97 | 67.51 | 16.46 | | 150.0 | | | 10140-
CAD | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, 16-QAM) | Х | 3.64 | 68.73 | 16.72 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.10 | 67.23 | 15.65 | | 150.0 | | | | | Z | 3.23 | 67.98 | 16.12 | | 150.0 | | | 10141-
CAD | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM) | Х | 3.75 | 68.73 | 16.84 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.23 | 67.43 | 15.88 | | 150.0 | | | | | Z | 3.36 | 68.16 | 16.32 | | 150.0 | | | 10142-
CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | X | 2.50 | 72.12 | 17.94 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 1.65 | 68.10 | 14.67 | | 150.0 | | | | | Z | 1.94 | 70.53 | 16.23 | | 150.0 | | | 10143-
CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | Х | 2.95 | 71.49 | 17.71 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.12 | 68.46 | 14.53 | | 150.0 | | | | | Z | 2.52 | 71.14 | 16.09 | | 150.0 | | | 10144-
CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | X | 2.62 | 68.66 | 15.91 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.78 | 65.25 | 12.38 | | 150.0 | | | | | Z | 2.00 | 66.87 | 13.49 | | 150.0 | | | 10145-
CAE | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, QPSK) | X | 2.08 | 72.58 | 16.71 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.62 | 60.00 | 6.54 | | 150.0 | | | | | Z | 0.76 | 61.85 | 8.27 | | 150.0 | | | 10146-
CAE | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, 16-QAM) | X | 4.74 | 77.79 | 17.95 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.91 | 59.91 | 6.14 | | 150.0 | | | | | | 1.03 | 60.93 | 6.75 | | 150.0 | | | | | Z | 1.03 | 00.93 | 0.70 | | 100.0 | | | 10147-
CAE | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, 64-QAM) | X | 8.02 | 85.30 | 20.79 | 0.00 | 150.0 | ± 9.6 % | | 10147-
CAE | The state of s | | | | | 0.00 | | ± 9.6 % |