TEST REPORT # KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0097 Page (1) of (33) 1. Client Name : elssen Inc. Address : 435, 65, Techno 3-ro, Yuseong-gu, Daejeon, Republic of Korea Date of Receipt : 2020-01-17 2. Use of Report : Certification 3. Name of Product and Model : Thermometer / FC1 4. Manufacturer and Country of Origin: elssen Inc. / Korea 5. FCC ID : 2AVRF-FC1 6. Date of Test : 2020-02-13 to 2020-02-20 7. Test Standards : FCC Part 15 Subpart C, 15.247 8. Test Results : Refer to the test result in the test report Tested by Technical Manager **Affirmation** Name : Eunseong Lim Name: Heesu Ahn 2020-03-16 # KCTL Inc. As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0097 Page (2) of (33) Report revision history | toport revision mistory | | | |-------------------------|----------------|---------| | Date | Revision | Page No | | 2020-03-16 | Initial report | - | This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a General report that does not use the KOLAS accreditation mark and is not related to KOLAS accreditation. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (3) of (33) # **CONTENTS** | 1. | General Information | 4 | |-----|--|----| | 2. | Device information | 4 | | 2.1 | 1. Accessory information | 4 | | 2.2 | 2. Frequency/channel operations | 5 | | 2.3 | 3. Duty Cycle | 5 | | 3. | Antenna requirement | 6 | | 4. | Summary of tests | 7 | | 5. | Measurement uncertainty | 8 | | 6. | Measurement results explanation example | g | | 7. | Test results | 10 | | 7.1 | 1. Maximum peak output power | 10 | | 7.2 | 2. Peak Power Spectral Density | 13 | | 7.3 | 3. 6 dB Bandwidth(DTS Channel Bandwidth) | 15 | | 7.4 | 4. Spurious Emission, Band Edge and Restricted bands | 17 | | 7.5 | 5. Conducted Spurious Emission | 29 | | 7.6 | | | | 8. | Measurement equipment | 33 | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (4) of (33) # 1. General information Client : elssen Inc. Address : 435, 65, Techno 3-ro, Yuseong-gu, Daejeon, Republic of Korea Manufacturer : elssen Inc. Address : 435, 65, Techno 3-ro, Yuseong-gu, Daejeon, Republic of Korea Laboratory : KCTL Inc. Address : 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea Accreditations : FCC Site Designation No: KR0040, FCC Site Registration No: 687132 VCCI Registration No.: R-20080, G-20078, C-20059, T-20056 Industry Canada Registration No.: 8035A KOLAS No.: KT231 # 2. Device information Equipment under test : Thermometer Model : FC1 Frequency range : $2402 \text{ MHz} \sim 2480 \text{ MHz}$ Modulation technique : GFSK Number of channels : 40 ch Power source : DC 3.7 V Antenna specification : Chip Antenna Antenna gain : 0 dBi Software version : FC1 V1.0 Hardware version : MINAEL-T-V3.3.2 Test device serial No. : N/A Operation temperature : -40 ~ 125 °C #### 2.1. Accessory information | Equipment | Manufacturer | Model | Serial No. | Power source | |-------------------------|--------------|-------|------------|----------------| | Lithium polymer battery | N/A | N/A | N/A | 3.7 V, 200 mAh | | Temperature
Sensor | N/A | N/A | N/A | N/A | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0097 Page (5) of (33) # 2.2. Frequency/channel operations This device contains the following capabilities: Bluetooth Low Energy | Ch. | Frequency (Mb) | |-----|----------------| | 00 | 2 402 | | | | | 19 | 2 440 | | | | | 39 | 2 480 | Table 2.2.1. Bluetooth Low Energy # 2.3. Duty Cycle - BLE (1MBits/s, Packet length 37) Note₁₎: BLE (1MBits/s, Packet length 37) is a continuous transmission (duty cycle ≥ 98 %) 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0097 Page (6) of (33) # 3. Antenna requirement Requirement of FCC part section 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. - The transmitter has permanently attached Chip Antenna (internal antenna) on board. - The E.U.T Complies with the requirement of §15.203, §15.247. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr #### Report No.: KR20-SRF0097 Page (7) of (33) 4. Summary of tests | FCC Part section(s) | Parameter | Test results | |--------------------------|-----------------------------|--------------| | 15.247(b)(3) | Maximum Peak Output Power | Pass | | 15.247(e) | Peak Power Spectral Density | Pass | | 15.247(a)(2) | 6 dB Channel Bandwidth | Pass | | 15.247(d),
15.205(a), | Spurious emission | Pass | | 15.209(a), | Band-edge, restricted band | Pass | | 15.207(a) | Conducted Emissions | Pass | #### Notes: - 1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions. - 2. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788. - 3. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that X orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in X orientation - 4. The test procedure(s) in this report were performed in accordance as following. - ANSI C63.10-2013 - KDB 558074 D01 v05r02 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (8) of (33) # Measurement uncertainty The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance. | Parameter | Exp | panded uncertainty | |------------------------------|---------------------|--------------------| | Conducted RF power | 1.23 dB
1.24 dB | | | Conducted spurious emissions | | | | | 9 kHz ~ 30 MHz | 2.28 dB | | Radiated spurious emissions | 30 MHz ~ 300 MHz | 4.98 dB | | | 300 MHz ~ 1 000 MHz | 5.14 dB | | | 1 GHz ~ 6 GHz | 6.70 dB | | | Above 6 GHz | 6.60 dB | | Conducted emissions | 9 kHz ~ 150 kHz | 3.66 dB | | Conducted emissions | 150 kHz ~ 30 MHz | 3.26 dB | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (9) of (33) # Measurement results explanation example The offset level is set in the spectrum analyzer to compensate the RF cable loss factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level. | Frequency (Mb) | Factor(dB) | Frequency (쌘) | Factor(dB) | |----------------|------------|---------------|------------| | 30 | 9.95 | 10 000 | 13.57 | | 100 | 10.14 | 11 000 | 13.85 | | 200 | 10.19 | 12 000 | 13.50 | | 300 | 10.44 | 13 000 | 13.63 | | 400 | 10.55 | 14 000 | 13.42 | | 500 | 10.56 | 15 000 | 13.42 | | 600 | 10.58 | 16 000 | 13.33 | | 700 | 10.59 | 17 000 | 13.31 | | 800 | 10.74 | 18 000 | 13.73 | | 900 | 10.82 | 19 000 | 13.53 | | 1 000 | 11.03 | 20 000 | 13.59 | | 2 000 | 11.29 | 21 000 | 13.79 | | 3 000 | 11.46 | 22 000 | 14.88 | | 4 000 | 11.51 | 23 000 | 15.24 | | 5 000 | 11.86 | 24 000 | 14.86 | | 6 000 | 11.99 | 25 000 | 14.52 | | 7 000 | 12.19 | 26 000 | 15.24 | | 8 000 | 12.38 | 26500 | 16.16 | | 9 000 | 12.60 | | | #### Note Offset(dB) = RF cable loss(dB) + Attenuator(dB) 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr #### Report No.: KR20-SRF0097 Page (10) of (33) | 7. Test rest 7.1. Maximum Test setup | power | | |--------------------------------------|------------|--------------| | EUT | Attenuator | Power sensor | #### Limit According to §15.247(b)(3), For systems using digital modulation in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. According to §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### **Test procedure** ANSI C63.10-2013 - Section 11.9 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr #### Report No.: KR20-SRF0097 Page (11) of (33) #### **Test settings** #### General Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth (see ANSI C63.10 for measurement guidance). When using a spectrum analyzer or EMI receiver to perform these measurements, it shall be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW to set a bin-to-bin spacing of ≤ RBW/2 so that narrowband signals are not lost between frequency bins. If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level. The intent is to test at 100 % duty cycle; however a small reduction in duty cycle (to no lower than 98 %) is permitted, if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation. If continuous transmission (or at least 98 % duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level, with the transmit duration as long as possible, and the duty cycle as high as possible during which sweep triggering/signal gating techniques may be used to perform the measurement over the transmission duration. #### 11.9.1. Maximum peak conducted output power One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT. #### 11.9.1. 1. RBW ≥ DTS bandwidth The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement: - a) Set the RBW ≥ DTS bandwidth. - b) Set VBW \geq [3 \times RBW]. - c) Set span ≥ [3 × RBW]. - d) Sweep time = auto couple. - e) Detector = peak. - f) Trace mode = max hold. - g) Allow trace to fully stabilize. - h) Use peak marker function to determine the peak amplitude level. #### 11.9.1.3 PKPM1 Peak power meter method The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr #### Report No.: KR20-SRF0097 Page (12) of (33) #### 11.9.2.3.1. Measurement using a power meter (PM) Method AVGPM is a measurement using an RF average power meter, as follows: - a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied: - 1) The EUT is configured to transmit continuously, or to transmit with a constant duty cycle. - 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level. - 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. - b) If the transmitter does not transmit continuously, measure the duty cycle, D, of the transmitter output signal as described in 11.6. - c) Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter. - d) Adjust the measurement in dBm by adding [10 log(1/D)], where D is the duty cycle. #### Notes: A peak responding power sensor is used, where the power sensor system video bandwidth is greater than the occupied bandwidth of the EUT. #### **Test results** | Test mode | Test mode Frequency(쌘) | | Conducted output power (dBm) | | |---------------------------|------------------------|-------|------------------------------|--------------------| | | Troquonoy() | Peak | Average | Power Limit (dB m) | | | 2 402 | -5.11 | -7.10 | | | BLE
1 Mbps / 37 packet | 2 440 | -5.84 | -8.19 | 30.00 | | | 2 480 | -6.34 | -9.59 | | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr #### Report No.: KR20-SRF0097 Page (13) of (33) # 7.2. Peak Power Spectral Density | <u>Test setup</u> | _ | | _ | | |-------------------|---|------------|---|-------------------| | EUT | | Attenuator | | Spectrum analyzer | | 201 | | Attendator | | opectrum analyzer | #### <u>Limit</u> According to §15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 $\,\mathrm{dBm}$ in any 3 $\,\mathrm{kHz}$ band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. #### Test procedure ANSI C63.10-2013 - Section 11.10.2 #### Test settings #### Method PKPSD (peak PSD) The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance: - 1) Set analyzer center frequency to DTS channel center frequency. - 2) Set the span to 1.5 times the DTS bandwidth. - 3) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz. - 4) Set the VBW \geq 3 x RBW. - 5) Detector = peak. - 6) Sweep time = auto couple. - 7) Trace mode = max hold. - 8) Allow trace to fully stabilize. - 9) Use the peak marker function to determine the maximum amplitude level within the RBW. - 10) If measured value exceeds limit, reduce RBW (no less than 3 klb) and repeat. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (14) of (33) #### **Test results** | Eroguepov/////s) | Data rate | Packet length | PSD(dBm/3 kHz) | Limit/dDm/2 klk) | | |------------------------|-----------|---------------|------------------|------------------|--| | Frequency(M b) | (Bits/s) | (Bytes) | PSD(QDIII/3 KIZ) | Limit(dBm/3 klz) | | | 2 402 | | | -18.23 | | | | 2 440 | 1M | 37 | -19.04 | 8 | | | 2 480 | | | -19.72 | | | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr #### Report No.: KR20-SRF0097 Page (15) of (33) # 7.3. 6 dB Bandwidth(DTS Channel Bandwidth) | <u>Test setup</u> | | _ | | |-------------------|-------------|---|-------------------| | EUT | Attenuator | | Spectrum analyzer | | LOT | Atteridator | | opectrum analyzer | #### **Limit** According to §15.247(a)(2), For Systems using digital modulation techniques may operate in the 902–928 Mb, 2 400–2 483.5 Mb, and 5 725–5 850 Mb bands. The minimum 6 dB bandwidth shall be at least 500 kb. #### Test procedure ANSI C63.10-2013 - Section 11.8 #### Test settings #### **DTS** bandwidth One of the following procedures may be used to determine the modulated DTS bandwidth. #### Option 1 - 1) Set RBW = 100 kHz. - 2) Set the video bandwidth (VBW) \geq 3 x RBW. - 3) Detector = Peak. - 4) Trace mode = max hold. - 5) Sweep = auto couple. - 6) Allow the trace to stabilize. - 7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. #### Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 \times RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (16) of (33) **Test results** | Frequency | Data rate | Packet length | 6 dB bandwidth | Limit | |-----------|-----------|---------------|----------------|-------| | (MHz) | (Bits/s) | (Bytes) | (MHz) | (MHz) | | 2 402 | | | 0.70 | | | 2 440 | 1M | 37 | 0.68 | ≥0.5 | | 2 480 | | | 0.69 | | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0097 Page (17) of (33) # 7.4. Spurious Emission, Band Edge and Restricted bands Test setup The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mb to 1 Gb emissions. The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mbox{ }$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mbox{ }$ emissions, whichever is lower. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr #### Report No.: KR20-SRF0097 Page (18) of (33) #### Limit According to section 15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | Frequency (Mb) | Field strength (μV/m) | Measurement distance (m) | |----------------|-----------------------|--------------------------| | 0.009 - 0.490 | 2 400/F(kHz) | 300 | | 0.490 - 1.705 | 24 000/F(kHz) | 30 | | 1.705 - 30 | 30 | 30 | | 30 - 88 | 100** | 3 | | 88 - 216 | 150** | 3 | | 216 - 960 | 200** | 3 | | Above 960 | 500 | 3 | ^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 Mb, 76–88 Mb, 174–216 Mb or 470–806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., Section15.231 and 15.241. According to section 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below: | MHz | MHz | MHz | GHz | |-----------------------|-----------------------|-------------------|---------------| | 0.009 - 0.110 | 16.42 - 16.423 | 399.9 - 410 | 4.5 - 5.15 | | 0.495 - 0.505 | 16.694 75 - 16.695 25 | 608 - 614 | 5.35 - 5.46 | | 2.173 5 - 2.190 5 | 16.804 25 - 16.804 75 | 960 – 1 240 | 7.25 - 7.75 | | 4.125 - 4.128 | 25.5 - 25.67 | 1 300 – 1 427 | 8.025 - 8.5 | | 4.177 25 - 4.177 75 | 37.5 - 38.25 | 1 435 – 1 626.5 | 9.0 - 9.2 | | 4.207 25 - 4.207 75 | 73 - 74.6 | 1 645.5 – 1 646.5 | 9.3 - 9.5 | | 6.215 - 6.218 | 74.8 - 75.2 | 1 660 – 1 710 | 10.6 - 12.7 | | 6.267 75 - 6.268 25 | 108 - 121.94 | 1 718.8 – 1 722.2 | 13.25 - 13.4 | | 6.311 75 - 6.312 25 | 123 - 138 | 2 200 – 2 300 | 14.47 - 14.5 | | 8.291 - 8.294 | 149.9 - 150.05 | 2 310 – 2 390 | 15.35 - 16.2 | | 8.362 - 8.366 | 156.524 75 - 156.525 | 2 483.5 – 2 500 | 17.7 - 21.4 | | 8.376 25 - 8.386 75 | 25 | 2 690 – 2 900 | 22.01 - 23.12 | | 8.414 25 - 8.414 75 | 156.7 - 156.9 | 3 260 – 3 267 | 23.6 - 24.0 | | 12.29 - 12.293 | 162.012 5 - 167.17 | 3 332 – 3 339 | 31.2 - 31.8 | | 12.519 75 - 12.520 25 | 167.72 - 173.2 | 3 345.8 – 3 358 | 36.43 - 36.5 | | 12.576 75 - 12.577 25 | 240 - 285 | 3 600 – 4 400 | Above 38.6 | | 13.36 - 13.41 | 322 - 335.4 | | | The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1 000 Mb, compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr #### Report No.: KR20-SRF0097 Page (19) of (33) #### Test procedure ANSI C63.10-2013 #### Test settings #### Peak field strength measurements - 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest - 2. RBW = as specified in table - 3. VBW ≥ (3×RBW) - 4. Detector = peak - 5. Sweep time = auto - 6. Trace mode = max hold - 7. Allow sweeps to continue until the trace stabilizes Table. RBW as a function of frequency | Frequency | RBW | |---------------------|--------------------| | 9 kHz to 150 kHz | 200 Hz to 300 Hz | | 0.15 Mb to 30 Mb | 9 kHz to 10 kHz | | 30 MHz to 1 000 MHz | 100 kHz to 120 kHz | | > 1 000 MHz | 1 MHz | #### Average field strength measurements #### Trace averaging with continuous EUT transmission at full power If the EUT can be configured or modified to transmit continuously (D ≥ 98%), then the average emission levels shall be measured using the following method (with EUT transmitting continuously): - 1. RBW = 1 Mb (unless otherwise specified). - 2. VBW ≥ (3×RBW). - 3. Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak. - 4. Averaging type = power (i.e., rms): - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging. - 2) Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used. - 5. Sweep time = auto. - 6. Perform a trace average of at least 100 traces. # Trace averaging across ON and OFF times of the EUT transmissions followed by duty cycle correction If continuous transmission of the EUT (D \geq 98%) cannot be achieved and the duty cycle is constant (duty cycle variations are less than \pm 2%), then the following procedure shall be used: - 1. The EUT shall be configured to operate at the maximum achievable duty cycle. - 2. Measure the duty cycle D of the transmitter output signal as described in 11.6. - 3. RBW = 1 Mb (unless otherwise specified). - 4. $VBW \ge [3 \times RBW]$. - 5. Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr #### Report No.: KR20-SRF0097 Page (20) of (33) - 6. Averaging type = power (i.e., rms): - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging. - 2) Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used. - 7. Sweep time = auto. - 8. Perform a trace average of at least 100 traces. - 9. A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows: - 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log (1 / D)], where D is the duty cycle. - 2) If linear voltage avera ging mode was used in step f), then the applicable correction factor is [20 log (1 / D)], where D is the duty cycle. - 3) If a specific emission is demonstrated to be continuous (D ≥ 98%) rather than turning ON and OFF with with the transmit cycle, then no duty cycle correction is required for that emission. #### Notes: 1. f < 30 Mb, extrapolation factor of 40 dB/decade of distance. $F_d = 40log(D_m/Ds)$ $f \ge 30$ MHz, extrapolation factor of 20 dB/decade of distance. F_d = 20log(D_m/Ds) Where: F_d= Distance factor in dB D_m= Measurement distance in meters D_s= Specification distance in meters - 2. Factors(dB) = Antenna Factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or $F_d(dB)$ - 3. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported. - 4. Average test would be performed if the peak result were greater than the average limit. - 5. 1) means restricted band. - 6. According to part 15.31(f)(2), an extrapolation factor of 40 dB/decade is applied because measured distance of radiated emission is 3 m. - 7. Below 30 Mb frequency range, In order to search for the worst result, all orientations about parallel, perpendicular, and ground-parallel were investigated then reported. when the emission level was higher than 20 dB of the limit, then the following statement shall be made: "No spurious emissions were detected within 20 dB of the limit." 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (21) of (33) ## Test results (Below 30 №)_GFSK Lowest frequency | Frequency | Pol. | Reading | Cable
Loss | Amp
Gain | Antenna
Factor | DCCF | Result | Limit | Margin | |-----------|-------|----------|---------------|-------------|-------------------|------|------------|------------|--------| | [MHz] | [V/H] | [dB(µV)] | [dB] | [dB] | [dB] | [dB] | [dB(µV/m)] | [dB(µV/m)] | [dB] | No spurious emissions were detected within 20 $\,\mathrm{d}B\,$ of the limit. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (22) of (33) Test results (Below 1 000 贮)_GFSK Lowest frequency | Frequency | Pol. | Reading | Ant. Factor | Amp. + Cable | DCCF | Result | Limit | Margin | |-----------|-------|----------|-------------|---------------|------|------------|------------|--------| | (MHz) | (V/H) | (dB(μV)) | (dB) | (dB) | (dB) | (dB(μV/m)) | (dB(μV/m)) | (dB) | | | | | (| Quasi peak da | ta | | | | | 34.37 | V | 23.00 | 17.39 | -30.57 | - | 9.82 | 40.00 | 30.18 | | 36.43 | V | 25.70 | 17.69 | -30.52 | - | 12.87 | 40.00 | 27.13 | | 40.55 | V | 26.10 | 18.40 | -30.44 | - | 14.06 | 40.00 | 25.94 | | 79.96 | V | 27.40 | 14.41 | -29.69 | - | 12.12 | 40.00 | 27.88 | | 97.78 | Н | 25.20 | 14.69 | -29.41 | - | 10.48 | 43.50 | 33.02 | | 191.51 | V | 22.50 | 16.05 | -28.24 | - | 10.31 | 43.50 | 33.19 | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (23) of (33) ## Test results (Above 1 000 N股) #### **Low Channel** | Frequency | Pol. | Reading | Ant. Factor | Amp. + Cable | DCCF | Result | Limit | Margin | |------------|-------|-------------|-------------|---------------|-------------|---------------|------------|--------| | (MHz) | (V/H) | (dB(μV)) | (dB) | (dB) | (dB) | (dB(μV/m)) | (dB(μV/m)) | (dB) | | Peak data | | | | | | | | | | 2 389.711) | Н | 43.63 | 31.88 | -29.04 | - | 46.47 | 74.00 | 27.53 | | 4 805.911) | Н | 62.84 | 33.92 | -53.07 | - | 43.69 | 74.00 | 30.31 | | 7 207.02 | Н | 61.65 | 35.40 | -53.08 | - | 43.97 | 74.00 | 30.03 | | | • | • | • | Average Dat | a | • | | | | | 1 | do enurious | e amissions | were detected | within 20 d | R of the limi | + | | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0097 Page (24) of (33) #### Horizontal/Vertical for 18 础 ~ 26.5 础 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (25) of (33) #### **Middle Channel** | Frequency | Pol. | Reading | Ant. Factor | Amp. + Cable | DCCF | Result | Limit | Margin | |------------------------|--|----------|-------------|--------------|------|------------|------------|--------| | (MHz) | (V/H) | (dB(μV)) | (dB) | (dB) | (dB) | (dB(μV/m)) | (dB(μV/m)) | (dB) | | | Peak data | | | | | | | | | 4 881.58 ¹⁾ | Н | 67.31 | 33.95 | -55.21 | - | 46.05 | 74.00 | 27.95 | | 7 320.751) | Н | 64.37 | 35.40 | -52.65 | - | 47.12 | 74.00 | 26.88 | | | Average Data | | | | | | | | | | No spurious emissions were detected within 20 dB of the limit. | | | | | | | | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0097 Page (26) of (33) #### Horizontal/Vertical for 18 础 ~ 26.5 础 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr # Report No.: KR20-SRF0097 Page (27) of (33) **High Channel** | Frequency | Pol. | Reading | Ant. Factor | Amp. + Cable | DCCF | Result | Limit | Margin | | |------------------------|--------------|----------|-------------|--------------|------|------------|------------|--------|--| | (MHz) | (V/H) | (dB(μV)) | (dB) | (dB) | (dB) | (dB(μV/m)) | (dB(μV/m)) | (dB) | | | | Peak data | | | | | | | | | | 2 483.51 ¹⁾ | Н | 50.39 | 32.07 | -29.21 | - | 53.25 | 74.00 | 20.75 | | | 4 958.16 ¹⁾ | Н | 67.40 | 33.98 | -54.70 | - | 46.68 | 74.00 | 27.32 | | | 7 439.471) | Н | 61.41 | 35.40 | -52.21 | - | 44.60 | 74.00 | 29.40 | | | | Average Data | | | | | | | | | No spurious emissions were detected within 20 $\,\mathrm{d}\mathrm{B}\,$ of the limit. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0097 Page (28) of (33) 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr #### Report No.: KR20-SRF0097 Page (29) of (33) # 7.5. Conducted Spurious Emission ## <u>Limit</u> According to §15.247(d), In any 100 & bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operation, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation specified in §15.209(a) is not required. In addition, radiated emission limits specified in §15.209(a) (see §15.205(c)). Limit: 20 dBc #### **Test procedure** ANSI C63.10-2013 - Section 6.10.4, 7.8.8 #### **Test settings** #### Band-edge - Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation - 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log(OBW/RBW)] below the reference level. - 3) Attenuation: Auto (at least 10 dB preferred) - 4) Sweep time = Coupled - 5) RBW: 100 kHz6) VBW: 300 kHz7) Detector: Peak8) Trace: Max hold #### Spurious emissions 1) Span: 30 Mb to 10 times the operating frequency in Gb 2) RBW: 100 kHz 3) VBW: 300 kHz 4) Sweep time: Coupled 5) Detector: Peak 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (30) of (33) #### **Test results** ### BLE_1 MBit/s(37 Bytes) 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr #### Report No.: KR20-SRF0097 Page (31) of (33) # 7.6. AC Conducted emission Test setup ## **Limit** According to 15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 kHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges. | Frequency of Emission (贮) | Conducted I | imit (dBµV/m) | |-----------------------------|-------------|---------------| | Frequency of Emission (MIZ) | Quasi-peak | Average | | 0.15 – 0.50 | 66 - 56* | 56 - 46* | | 0.50 – 5.00 | 56 | 46 | | 5.00 – 30.0 | 60 | 50 | #### Test procedure ANSI C63.10-2013 - Section 6.2 #### Test settings - 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room. - 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu H$ LISN, which is an input transducer to a spectrum analyzer or an EMI/Field Intensity Meter, to the input power source. - 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement. - 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 Mb to 30 Mb. - 5. The measurements were made with the detector set to peak amplitude within a bandwidth of 10 kHz or to quasi-peak and average within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (32) of (33) #### Test results #### Worst case: GFSK / Lowest frequency | Final Resul | | | | | | | | | | |----------------------------|----------------------|------------------------|----------------------|------------------------|-------------------------|------------------------|------------------------|----------------------|----------------------| | N_A Pha
No. Freque | ncy Reading | | c.f | Result | Result | Limit | Limit | Margin | Margin | | [MHz
1 0.16 | | CAV
[dB(uV)]
4.3 | [dB]
10.3 | QP
[dB(uV)]
27.0 | CAV
[dB(uV)]
14.6 | QP
[dB(uV)]
65.3 | AV
[dB(uV)]
55.3 | QP
[dB]
38.3 | CAV
[dB]
40.7 | | 2 0.1
3 0.2 | 336 15.2 | 3.8
6.1 | 10.3 | 25.9
25.1 | 14.1
16.0 | 64.3
61.3 | 54.3
51.3 | 38.4
36.2 | 40.2
35.3 | | 4 0.41
5 0.74
6 2.57 | 277 14.5 | 15.5
5.5
3.9 | 10.2
10.2
10.3 | 35.2
24.7
24.0 | 25.7
15.7
14.2 | 57.6
56.0
56.0 | 47.6
46.0
46.0 | 22.4
31.3
32.0 | 21.9
30.3
31.8 | | L1_A Ph | ise | | | | | | | | | | No. Freque | ncy Reading
QP | Reading
CAV | c.f | Result
QP | Result
CAV | Limit
QP | Limit
AV | Margin
QP | Margin
CAV | | [MHz
1 0.18 | [dB(uV)]
377 13.0 | [dB(uV)]
2.5 | [dB]
10.3 | [dB(uV)]
23.3 | [dB(uV)]
12.8 | [dB(uV)]
64.3 | [dB(uV)]
54.3 | [dB]
41.0 | [dB]
41.5 | | 2 0.31
3 0.40
4 0.40 | 548 25.1 | 3.5
15.0
14.4 | 10.0
10.2
10.2 | 22.7
35.3
35.2 | 13.5
25.2
24.6 | 59.8
57.7
57.6 | 49.8
47.7
47.6 | 37.1
22.4
22.4 | 36.3
22.5
23.0 | | 5 1.21
6 2.57 | 384 16.8 | 7.5
5.4 | 10.3 | 27.1
26.4 | 17.8
15.7 | 56.0
56.0 | 46.0
46.0 | 28.9
29.6 | 28.2
30.3 | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr ## Report No.: KR20-SRF0097 Page (33) of (33) 8. Measurement equipment | o. Measurenne | ent equipment | | | | |-----------------------------|----------------------|----------------------------|-------------|----------------| | Equipment Name | Manufacturer | Model No. | Serial No. | Next Cal. Date | | Spectrum Analyzer | R&S | FSV30 | 100806 | 20.07.30 | | Spectrum Analyzer | R&S | FSV40 | 100988 | 21.01.03 | | Pulse Power Meter | ANRITSU | ML2495A | 1608009 | 20.07.31 | | Attenuator | API Inmet | 40AH2W-10 | 17 | 20.05.15 | | Signal Generator | R&S | SMR40 | 100007 | 20.05.13 | | EMI TEST RECEIVER | R&S | ESCI7 | 100732 | 20.08.22 | | Bi-Log Antenna | SCHWARZBECK | VULB 9168 | 583 | 20.05.04 | | Amplifier | SONOMA
INSTRUMENT | 310N | 284608 | 20.08.22 | | COAXIAL FIXED
ATTENUATOR | Agilent | 8491B-003 | 2708A18758 | 20.05.04 | | Horn antenna | ETS.lindgren | 3116 | 00086632 | 21.02.17* | | Horn antenna | ETS.lindgren | 3117 | 155787 | 20.10.24 | | Attenuator | API Inmet | 40AH2W-10 | 12 | 20.05.15 | | Broadband
PreAmplifier | SCHWARZBECK | BBV9718 | 216 | 20.07.30 | | AMPLIFIER | L-3 Narda-MITEQ | AMF-7D-01001800
-22-10P | 2031196 | 21.02.12 | | AMPLIFIER | L-3 Narda-MITEQ | JS44-18004000-33-8P | 2000996 | 21.01.22 | | LOOP Antenna | R&S | HFH2-Z2 | 100355 | 20.08.24 | | Antenna Mast | Innco Systems | MA4640-XP-ET | - | - | | Turn Table | Innco Systems | DT2000 | 79 | - | | Antenna Mast | Innco Systems | MA4000-EP | 303 | - | | Turn Table | Innco Systems | DT2000 | 79 | - | | Highpass Filter | WT | WT-A1698-HS | WT160411001 | 20.05.14 | | Vector Signal
Generator | R&S | SMBV100A | 257566 | 20.07.16 | | Cable Assembly | RadiAll | 2301761768000PJ | 1724.659 | - | | Cable Assembly | gigalane | RG-400 | | - | | Cable Assembly | HUER+SUHNER | SUCOFLEX 104 | MY4342/4 | - | | TWO-LINE V -
NETWORK | R&S | ENV216 | 101358 | 20.04.05 | | EMI TEST RECEIVER | R&S | ESCI | 100001 | 20.08.22 | | | | | | | ^{*}The equipment was used before finished calibration. **End of test report**