

Issue Date : March 4, 2004 Page 1 of 22

EMC SAR - TEST REPORT

Final Judgement	: Passed
Receive date of EUT	: February 9, 2004
Address	: <u>2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,</u> 739-0192, Japan
Manufacturer	: Sharp Corporation, Communication Systems Group
Address	: <u>2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,</u> 739-0192, Japan
Applicant	: Sharp Corporation, Communication Systems Group
FCC ID	: APYHRO00032
Model/Type No.	: <u>V801SH</u>
Name of Product	: GSM-WCDMA Dual Cellular Phone
JQA APPLICATION No.	: <u>KL80030710</u>

0

TEST RESULTS IN THIS REPORT are obtained in use of equipment that is traceable to National Institute of Advanced Industrial Science and Technology (AIST) under METI Japan, Communications Research Lab. (CRL) under MPHPT Japan, and Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zürich, Switzerland.

THE TEST RESULTS only responds to the test sample. This test report shall not be reproduced except in full.

Authorized by:

Takashi Yamanaka, Director JQA KITA-KANSAI Testing Center

Page 2 of 22

DIRECTORY

	Page
A) Documentation	
Directory	2
Test Regulation / General Information	3 - 5
SAR Measurement Set-up	6
Test Configuration Positions	_7 - 9
Measurement Process	10
Measurement Uncertainties	11
Test Conditions	12
EUT Tune-up Procedure	13
EUT Modification / Responsible Party / Deviation from Standard	14
Test results	15
Summary	16
EUT Photographs	17
B) Test data	
Test System Validation	18
Tissue Simulant Verification	19
SAR Measurement Data	20 - 21
Appendix	22

Page 3 of 22

TEST REGULATION

FCC Rules and Regulations Parts 2 Subpart J (October 1, 2002)

- - Mobile Devices (§2.1091)
- - Portable Devices (§2.1093)
- - Occupational/Controlled Exposure
- - General Population/Uncontrolled Exposure

Test procedure:

The SAR measurement procedures were specified in FCC/OET Bulletin 65 Supplement C (July, 2001) and IEEE Std. 1528-200X (Draft 6.5, January 2002). The exposure limits were specified in ANSI/IEEE C95.1-1999.

GENERAL INFORMATION

Description of the Equipment Under Test (EUT):

1) Na	ame :	(GSM-WCDMA Dual Cellular Phone
2) M	odel/Type No. :	1	V801SH
3) Pr	roduct Type :]	Pre-production (S/N: 350228/00/004002/5)
4) EU	UT Authorization :		\bigcirc - Verification \bigcirc - Certification \bigcirc - D.o.C.
5) Tr	cansmitting Frequency :		1850.20 MHz - 1909.80 MHz
6) Re	eceiving Frequency :		1930.20 MHz - 1989.80 MHz
7) M	ax. RF Output Power :	2	29.34 dBm
8) Po	ower Rating :	4	4.0VDC

Note : This device contains GSM 900 MHz, DCS 1800 MHz and WCDMA functions not operational in U.S. territories. This report is only appliance for PCS 1900 MHz band.

Definitions for symbols used in this test report:

- - Black box indicates that the listed condition, standard or equipment is applicable for this Report.
- \bigcirc Blank box indicates that the listed condition, standard or equipment is not applicable for this Report.

Page 4 of 22

Description of the Antenna:

Туре	:	Fixed mono-pole and	tenna
Dimensions	:	Maximum width	5.1 mm
		Maximum length	34.0 mm
Location	:	Left side	

Battery Option:

Lithium-ion Battery Pack SHBR01 (740mAh)

Probe Specification:

Construction	: Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static changes			
Calibration	In air form 10 MHz to 2.5 GHz In head tissue simulating liquid (HSL) and muscle tissue simulating liquid 900 MHz (accuracy ± 11.3%; k=2) 1800 MHz (accuracy ± 11.7%; k=2) 2450 MHz (accuracy ± 9.7%; k=2)			
Frequency	10 MHz to 3 GHz (dosimetry); Linearity: ±0.2 dB (30 MHz to 3 GHz)			
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal probe axis)			
Dynamic Range	5 μ W/g to >100 mW/g; Linearity: ± 0.2 dB			
Surface Detection	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces			
Dimensions	: Overall length 330 mm Tip length 16 mm Body diameter 12 mm Tip diameter 6.8 mm Distance from probe tip to dipole centers 2.7 mm			

JQA Application No.	: KL80030710
Model No.	: V801SH
FCC ID	: APYHRO00032

Page 5 of 22

Twin SAM Phantom:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right head phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness	$2 \pm 0.2 \text{ mm}$
Filling Volume	: Volume Approx. 25 liters
Dimensions	: $810 \times 1000 \times 500 \text{ mm} (\text{H} \times \text{L} \times \text{W})$

Mounting Device for Transmitters:

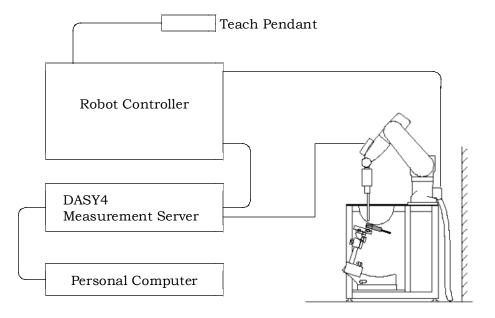
The Mounting Device enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Typical Composition of Ingredients for Liquid Tissue:

Ingredients	Frequency (MHz)					
(% by weight)	835		1900		2450	
	Head	Body	Head	Body	Head	Body
Water	41.45	52.40	54.90	40.40	62.70	73.20
Salt (NaCl)	1.45	1.40	0.18	0.50	0.50	0.04
Sugar	56.00	45.00	0.00	58.00	0.00	0.00
HEC	1.00	1.00	0.00	1.00	0.00	0.00
Bactericide	0.10	0.10	0.00	0.10	0.00	0.00
Triton X-100	0.00	0.00	0.00	0.00	36.80	0.00
DGBE	0.00	0.00	44.92	0.00	0.00	26.70

Salt: 99⁺% Pure Sodium ChlorideSugar: 98⁺% Pure SucroseWater: De-ionized, 16 MΩ⁺ resistivityHEC: Hydroxyethyl CelluloseDGBE: 99⁺% Di (ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbuthyl)phenyl]ether

The composition of ingredients is according to FCC/OET Bulletin 65 Supplement C (July, 2001).


JQA Application No.	: KL80030710
Model No.	: V801SH
FCC ID	: APYHRO00032

Page 6 of 22

SAR MEASUREMENT SET-UP

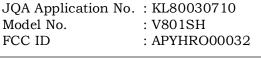
These measurements are performed using the DASY4 automated dosimetric assessment system (manufactured by Schmid & Partner Engineering AG (SPEAG) in Zürich, Switzerland). It consists of high precision robotics system, cell controller system, DASY4 measurement server, personal computer with DASY4 software, data acquisition electronic (DAE) circuit, the Electro-optical coupler (EOC), near-field probe, and the twin SAM phantom containing the equivalent tissue. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF).

The Robot is connected to the cell controller to allow software manipulation of the robot. The DAE is connected to the EOC. The DAE performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server.

Page 7 of 22

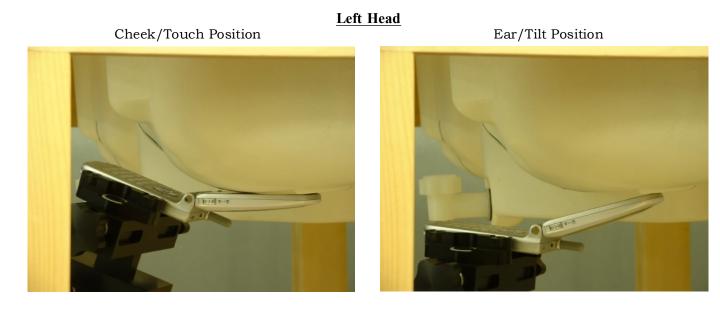
TEST CONFIGURATION POSITIONS

Cheek/Touch Position:


- 1. Position the device with the vertical center line of the body of the device and the horizontal line crossing the center of the ear piece in a plane parallel to the sagittal plane of the phantom.
- 2. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the center of the ear piece with the line RE-LE.
- 3. Translate the mobile phone box towards the phantom with the ear piece aligned with the line RE-LE until the phone touches the ear.
- Vertical center line Horizontal line Mobile phone box
- 4. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Ear/Tilt Position:

- 1. Position the device in the "Cheek/Touch Position".
- 2. While maintaining the device in the reference plane and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.



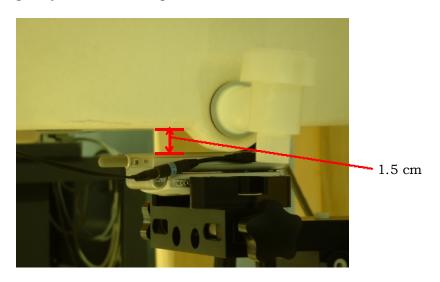
JQA Application No.	: KL80030710
Model No.	: V801SH
FCC ID	: APYHRO00032

Page 8 of 22

Test Set-up (Photographs):

<u>Right Head</u>

Ear/Tilt Position



JQA Application No.	: KL80030710
Model No.	: V801SH
FCC ID	: APYHRO00032

Page 9 of 22

Body Worn Configuration:

For body-worn operating configurations, the device is tested against a flat phantom representing the user body. A headset is connected to the device. Belt-clips or holsters are not supplied with the device as an accessory, then the device is 1.5 cm on distance from the flat phantom. It is recommended for testing body-worn SAR compliance.

Page 10 of 22

MEASUREMENT PROCESS

Area Scan for Maximum Search:

The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 10 mm \times 10 mm. The evaluation on the measured area scan gives the interpolated maximum (hot spot) of the measured area.

Cube Scan for Spatial Peak SAR Evaluation:

The 1g and 10g peak evaluations were available for the predefined cube $5 \times 5 \times 7$ scans. The grid spacing was 8 mm × 8 mm × 5 mm. The first procedure is an extrapolation to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (35000 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is moved around until the highest averaged SAR is found. This last procedure is repeated for a 10g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

Extrapolation:

The extrapolation is based on a least square algorithm. Through the points in the first 3 cm in all z-axis, polynomials of order four are calculated. This polynomial is then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from one another.

Interpolation:

The maximum interpolated value is serched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) are computed by the 3D spline algorithm. The 3D spline is composed of three one-dimensional splines with the "Not a knot"-condition (x, y and z -directions). The volume is integrated with the trapezoidal algorithm.

JQA Application No.	: KL80030710
Model No.	: V801SH
FCC ID	: APYHRO00032

Page 11 of 22

MEASUREMENT UNCERTAINTIES

Uncertainty Component	Uncertainty value (%)	Probability distribution	Divisor	Сі	Standard uncertainty 1g (%)	Vi
Measurement System						
Probe calibration	4.8	Normal	1	1	4.8	∞
Axial isotropy	4.7	Rectangular	√3	0.7	1.9	∞
Hemispherical isotropy	9.6	Rectangular	√3	0.7	3.9	∞
Boundary effect	1.0	Rectangular	√3	1	0.6	∞
Linearity	4.7	Rectangular	√3	1	2.7	∞
Detection limits	1.0	Rectangular	√3	1	0.6	∞
Readout electronics	1.0	Normal	1	1	1.0	∞
Response time	0.8	Rectangular	√3	1	0.5	~
Integration time	2.6	Rectangular	√3	1	1.5	~
RF ambient conditions	3.0	Rectangular	√3	1	1.7	~
Mechanical tolerance	0.4	Rectangular	√3	1	0.2	~
Probe positioning	2.9	Rectangular	√3	1	1.7	~
Extrapolation, interpolation and	1.0	Rectangular	√3	1	0.6	~
integration algorithms		_				
Test Sample Related						
Device positioning	3.4	Normal	1	1	3.4	23
Device holder uncertainty	4.6	Normal	1	1	4.6	5
Output power drift	5.0	Rectangular	√3	1	2.9	∞
Physical parameters						
Phantom uncertainty	4.0	Rectangular	√3	1	2.3	∞
Liquid conductivity -	5.0	Rectangular	√3	0.6	1.7	∞
deviation from target values						
Liquid Conductivity -	10.0	Rectangular	√3	0.6	3.5	∞
measurement uncertainty						
Liquid Permittivity -	5.0	Rectangular	√3	0.6	1.7	∞
deviation from target values						
Liquid Permittivity -	5.0	Rectangular	√3	0.6	1.7	∞
measurement uncertainty						
Combined Standard					11.3	
Uncertainty						
Expanded Uncertainty (k=2) (confidence interval of 95%)					22.5	

Page 12 of 22

TEST CONDITIONS

SAR Measurement

was performed in the following test site.

Test location:

KAMEOKA EMC Branch Shielded Room 9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan

Test instruments used in SAR measurement:

Name	Model No.	Device ID	Last Cal. Date	Cal. Interval
• - E-Field Probe	ET3DV6	S - 1	February, 2004	1 Year
 ○ - E-Field Probe ● - DASY3 DAE 	ET3DV6 DAE3 V1	S - 2 S - 3	February, 2004	1 Year
 ○ - Validation Dipole ● - Validation Dipole 	D900V2 D1800V2	S - 4 S - 5	February, 2003	2 Years
 Validation Dipole 	D2450V2	S - 6	1 cordary, 2000	2 10010

Additional instruments used in test system validation:

Name	Model No.	Device ID	Last Cal. Date	Cal. Interval
● - Signal Generator ○ - Signal Generator	8673D MG3681A	B - 2 B - 3	April, 2003	1 Year
• - Power Meter	E4417A	B - 51	August, 2003	1 Year
 Power Sensor 	E9300B	B - 32	June, 2003	1 Year
 Power Amplifier 	A0840-3833-R	A - 34	N/A	N/A
 Network Analyzer 	8719ET	В - 53	September, 2003	1 Year
 Dielectric Probe Kit 	85070D	B - 54	N/A	N/A

Test instruments used to measure conducted power output:

Name	Model No.	Device ID	Last Cal. Date	Cal. Interval
 Power Meter Power Sensor Fixed Attenuator Fixed Attenuator 	E4417A	B - 51	August, 2003	1 Year
	E9321A	B - 52	May, 2003	1 Year
	54-10	D - 82	November, 2003	1 Year
	54-10	D - 83	November, 2003	1 Year

Page 13 of 22

EUT TUNE-UP PROCEDURE

The following procedures had been used to prepare the EUT for the SAR test.

To setup the desire channel frequency and the maximum output power, a Radio Communication Tester "Rohde & Schwarz, CMU-200" was used to program the EUT.

SM Mobile Station	 : GSM 1900 : GSM Mode - Circuit Switched
Network Support	GPRS Mode - Packet Data (GPRS Level 8 / 1 slot)
Power Control Level (PC	CL) : 0 (30.0 dBm)
Channel	Frequency
0512	1850.20
0661	1880.00
0810	1909.80

Maximum conducted power was measured by replacing the antenna with an adapter for conductive measurements, before and after the SAR measurements was done.

Page 14 of 22

EUT Modification

- - No modifications were conducted by JQA to achieve compliance to applied levels.
- \bigcirc To achieve compliance to applied levels, the following change(s) were made by JQA during the compliance test.

-The modification(s) will be implemented in all production models of this equipment	t
---	---

Applicant :	 N/A	Date	:	N/A
Typed Name :	N/A	Position	ι:	N/A

Responsible Party

	Fest Item(Product)		
Responsible party	:		
Contact Person	:	Signatory	

Deviation from Standard

- - No deviations from the standard described in page 3.
- \odot The following deviations were employed from the standard described in page 3.

Page 15 of 22

TEST RESULTS

Head Configuration

The requirements are	• - Passed	\circ - Not Passed
The Maximum SAR (1g) is	<u>0.489</u> mW/g at _	<u>1880.00</u> MHz
Phantom Position	● - Left Head	\bigcirc - Right Head
Device Position	● - Cheek/Touch	\bigcirc - Ear/Tilt
Antenna Position	0 - In 0 - Ou	it • - Fixed
Modulation Type	-	GSM
Measurement Uncertainty	-	22.5 %
Remarks:		

Body-worn Configuration

The requirements are	• - Passed	\odot - Not Passed
The Maximum SAR (1g) is	<u>0.284</u> mW/g at	1909.80 MHz
Modulation Type		GSM
Measurement Uncertainty		22.5 %

Remarks:

Page 16 of 22

SUMMARY

GENERAL REMARKS :

The EUT was tested according to the requirements of FCC Rules and Regulations Part 2 Subpart J (October 1, 2002) under the test configuration, as shown in page 7.

The conclusion for the test items of which are required by the applied regulation is indicated under the final judgement.

FINAL JUDGEMENT :

The "as received" sample;

- - fulfill the test requirements of the regulation mentioned on page 3.
- - fulfill the test requirements of the regulation mentioned on page 3, but with certain qualifications.
- \odot doesn't fulfill the test regulation mentioned on page 3.

:

Begin of testing

February 27, 2004

End of testing

: <u>March 1, 2004</u>

- JAPAN QUALITY ASSURANCE ORGANIZATION -

Approved by :

Akio Hosoda Manager EMC Div. JQA KITA-KANSAI Testing Center

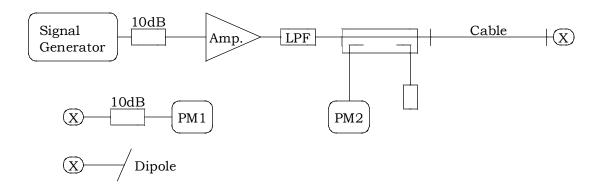
Issued by :

Shigeru Kinoshita Deputy Manager EMC Div. JQA KITA-KANSAI Testing Center

JQA Application No.	: KL80030710
Model No.	: V801SH
FCC ID	: APYHRO00032

Page 17 of 22

EUT PHOTOGRAPHS


JQA Application No.	: KL80030710
Model No.	: V801SH
FCC ID	: APYHRO00032

Page 18 of 22

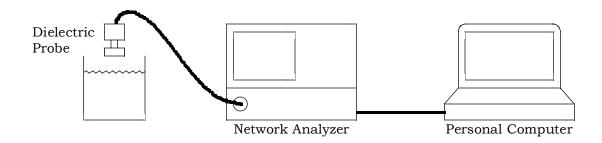
TEST SYSTEM VALIDATION

The power meter PM1 (including 10dB Attenuator) measures the forward power at the location of the validation dipole connector. The signal generator is adjusted for 250 mW at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

The dipole antenna is matched to be used near flat phantom filled with tissue simulating solution. A specific distance holder is used in the positioning of the antenna to ensure correct spacing between the phantom and the dipole.

System Validation Results:

System Validation Dipole: D1800V2, S/N: 2d038Ambient Conditions: 20°C 30%Depth of Liquid: 15.0 cmTest Date: February 27, 2004							
Liquid		D			D 10/1	T	
Medium	Temp. [°C]	Parameters	Target	Measured	Deviation [%]	Limit [%]	
Head 1800MHz	21.0	દન T 1g SAR (mW/g)	40.00 1.40 9.62	38.39 1.454 10.2	-4.03 +3.86 +6.03	± 5 ± 5 ± 10	
Ambient Conditions: 19	Depth of Liquid:	15.0 cm		Test Date: M	arch 1, 2004		
Muscle 1800MHz	20.5	ε. σ 1g SAR (mW/g)	53.30 1.52 9.21	53.92 1.555 9.66	+1.16 +2.30 +4.89	± 5 ± 5 ± 10	


Note) Please refer to Appendix for the result presentation in plot format.

JQA Application No.	: KL80030710
Model No.	: V801SH
FCC ID	: APYHRO00032

Page 19 of 22

TISSUE SIMULANT VERIFICATION

The tissue dielectric parameters of the tissue medium at the middle of a device transmission band should be within $\pm 5\%$ of the parameters specified at that target frequency. It is verified by using the dielectric probe and the network analyzer.

Tissue Verification Results:

Ambient Conditions: 20°C 30% Test Date: February 27, 2004						
Liquid		D (The second se		D . (* 10/1	T 10/1
Medium	Temp. [°C]	Parameters	Target	Measured	Deviation [%]	Limit [%]
Head 1900MHz	21.0	Er	40.00	38.16	-4.60	± 5
		σ	1.40	1.441	+2.93	± 5
Ambient Conditions: 19°C 39%Test Date: March 1, 2004						
Muscle 1900MHz	20.0	Er	53.30	52.03	-2.38	± 5
MUSCIE 1900MHZ	20.9	σ	1.52	1.567	+3.09	± 5

JQA Application No.	: KL80030710
Model No.	: V801SH
FCC ID	: APYHRO00032

Page 20 of 22

SAR MEASUREMENT DATA

Head Configuration Results:

Modulation Ty Left Head Pos		ity Cycle: 11	.8 %, Crest Fa Depth of Liqu	,		Test D	ate: February	27, 2004
EUT Set-up C	onfiguration	Free	quency	Power [dBm]		Limit	SAR (1g)	Tissue
EUT Position	Antenna	Channel	MHz	Start	End	- [mW/g]	[mW/g]	Temp. [°C]
		0512	1850.20	29.27	29.18		0.394	20.9
Cheek/Touch	Fixed	0661	1880.00	29.34	29.24	1.6	0.489	20.9
		0810	1909.80	29.32	29.23		0.468	21.0
		0512	1850.20	29.27	29.18		0.130	20.8
Ear/Tilt	Fixed	0661	1880.00	29.34	29.24	1.6	0.154	20.7
		0810	1909.80	29.32	29.23		0.128	20.7
Right Head Position Depth of Liquid: 15.0 cm					Test D	ate: February	27, 2004	
		0512	1850.20	29.27	29.18		0.356	20.8
Cheek/Touch	Fixed	0661	1880.00	29.34	29.24	1.6	0.427	20.6
		0810	1909.80	29.32	29.23		0.401	20.8
		0512	1850.20	29.27	29.18		0.149	20.7
Ear/Tilt	Fixed	0661	1880.00	29.34	29.24	1.6	0.172	20.9
		0810	1909.80	29.32	29.23		0.144	20.8

Note 1) Power Measured : • - Conducted • - ERP • - EIRP

2) Please refer to Appendix for the result presentation in plot format.

Tester : Yasuhisa Sakai

JQA Application No.	: KL80030710
Model No.	: V801SH
FCC ID	: APYHRO00032

Page 21 of 22

SAR MEASUREMENT DATA

Body-worn Configuration Results:

Flat Position			Depth of Liqu	id: 15.0 cm		Test	Date: March 1	, 2004
EUT Set-up C	onfiguration	Free	quency	Power	[dBm]	Limit	SAR (1g) [mW/g]	Liquid Temp. [°C]
Separation	Antenna	Channel	MHz	Start	End	[mW/g]		
1.5 cm	Fixed	0512 0661 0810	1850.20 1880.00 1909.80	29.27 29.34 29.32	29.18 29.24 29.23	1.6	0.267 0.283 0.284	20.6 20.7 20.7
Modulation Ty Flat Position	ype: GSM+GI		ycle: 11.8 %, C Depth of Liqu	Crest Factor:		Test	Date: March 1	
Flat Position		0510			20.25	I est		,
1.5 cm	Fixed	0512 0661 0810	1850.20 1880.00 1909.80	29.30 29.34 29.33	29.25 29.30 29.29	1.6	0.255 0.276 0.269	20.4 20.5 20.5

Note 1) Power Measured : \bullet - Conducted \bigcirc - ERP \bigcirc - EIRP

2) Please refer to Appendix for the result presentation in plot format.

Tester : <u>Yasuhisa Sakai</u>

Page 22 of 22

APPENDIX

Exhibit	Content	No. of page(s)
1	System Validation Plots	2
2	SAR Test Plots	19
3	Dosimetric E-Field Probe - ET3DV6, S/N: 1678	8
4	System Validation Dipole - D1800V2, S/N: 2d038	9
5	Transmitted Duty Cycle Plots	2