

TEST REPORT

Applicant: TECNO MOBILE LIMITED

Address: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Product Name: Mobile Phone

FCC ID: 2ADYY-KL6

Standard(s):47 CFR Part 15, Subpart E(15.407)
ANSI C63.10-2013
KDB 789033 D02 General U-NII Test Procedures New Rules
v02r01Report Number:2402V85515E-RF-00D

Report Date: 2024/8/9

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

GanitXn

Reviewed By: Gavin Xu Title: RF Engineer

fron Cas

Approved By: Ivan Cao Title: EMC Manager

Bay Area Compliance Laboratories Corp. (Dongguan) No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

> Tel: +86-769-86858888 Fax: +86-769-86858891

www.baclcorp.com.cn

Note: The information marked \blacktriangle is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with \bigstar . This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

CONTENTS

DOCUMENT REVISION HISTORY	•••••4
1. GENERAL INFORMATION ······	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 ACCESSORY INFORMATION ·····	5
1.3 ANTENNA INFORMATION DETAIL	6
1.4 EQUIPMENT MODIFICATIONS ······	
2. SUMMARY OF TEST RESULTS ······	7
3. DESCRIPTION OF TEST CONFIGURATION	•••••8
3.1 OPERATION FREQUENCY DETAIL ·····	
3.2 EUT OPERATION CONDITION	
3.3 SUPPORT EQUIPMENT LIST AND DETAILS ·····	10
3.4 SUPPORT CABLE LIST AND DETAILS	10
3.5 BLOCK DIAGRAM OF TEST SETUP	11
3.6 TEST FACILITY	
3.7 MEASUREMENT UNCERTAINTY	12
4. REQUIREMENTS AND TEST PROCEDURES	13
4.1 AC LINE CONDUCTED EMISSIONS ······	13
4.1.1 Applicable Standard ·····	13
4.1.2 EUT Setup	······ 14
4.1.3 EMI Test Receiver Setup 4.1.4 Test Procedure	15
4.1.5 Corrected Amplitude & Margin Calculation	15
4.1.6 Test Result ····································	16
4.2.1 Applicable Standard	
4.2.1 Applicable Standard 4.2.2 EUT Setup	
4.2.3 EMI Test Receiver & Spectrum Analyzer Setup 4.2.4 Test Procedure	
4.2.4 Test Procedure	19
4.2.5 Corrected Result & Margin Calculation 4.2.6 Test Result	
4.3 EMISSION BANDWIDTH ······	
4.3.1 Applicable Standard ·····	20
4.3.2 EUT Setup	20
4.3.3 Test Procedure	
4.3.4 Test Result ······ 4.4 MAXIMUM CONDUCTED OUTPUT POWER ······	
4.4.1 Applicable Standard ······ 4.4.2 EUT Setup ·····	
4.4.3 Test Procedure	22
4.4.4 Test Result	
4.5 MAXIMUM POWER SPECTRAL DENSITY ·····	
4.5.1 Applicable Standard ·····	
Report Template Version: FCC-WiFi5-Client-V1.2Page 2 of 90	

	4.5.2 EUT Setup 23
	4.5.3 Test Procedure 23
	4.5.4 Test Result
4	4.6 DUTY CYCLE
	4.6.1 EUT Setup
	4.6.2 Test Procedure
	4.6.3 Judgment
4	4.7 ANTENNA REQUIREMENT ······ 26
	4.7.1 Applicable Standard ······ 26
	4.7.2 Judgment
5.	Test DATA AND RESULTS ······ 27
4	5.1 AC LINE CONDUCTED EMISSIONS 27
4	5.2 RADIATION SPURIOUS EMISSIONS 30
:	5.3 Emission Bandwidth ····· 54
4	5.4 99% Occupied Bandwidth······64
4	5.5 MAXIMUM CONDUCTED OUTPUT POWER ······74
4	5.6 POWER SPECTRAL DENSITY ······ 77
:	5.7 DUTY CYCLE
ЕХ	KHIBIT A - EUT PHOTOGRAPHS ······ 89
	KHIBIT B - TEST SETUP PHOTOGRAPHS 90
\mathbf{L}_{2}	MIDII D - IESI SETUF FININGKAFIS

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2402V85515E-RF-00D	Original Report	2024/8/9

Report Template Version: FCC-WiFi5-Client-V1.2

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Mobile phone
EUT Model:	KL6
Operation Frequency:	Band1: 5180-5240 MHz(802.11a/n ht20/ac vht20) 5190-5230 MHz(802.11n ht40/ac vht40) 5210 MHz(802.11ac vht80) Band2: 5260-5320 MHz (802.11a/n ht20/ac vht20) 5270-5310 MHz(802.11n ht40/ac vht40) 5290 MHz(802.11ac vht80) Band3: 5500-5720 MHz (802.11a/n ht20/ac vht20) 5510-5710 MHz(802.11n ht40/vht40) 5530-5690MHz(802.11ac vht80) Band4: 5745-5825 MHz (802.11a/n ht20/ac vht20) 5755-5795 MHz(802.11n ht40/ac vht40) 5775 MHz(802.11ac vht80)
Maximum Average Conducted Output Power:	6.82dBm(5150-5250MHz) 6.79dBm(5250-5350MHz) 7.93dBm(5470-5725MHz) 7.22dBm(5725-5850MHz)
Modulation Type:	802.11a/n/ac: OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM
Rated Input Voltage:	DC 3.87V from battery or DC 5.0/7.5V from adapter
Serial Number:	AC Line Conducted Emissions and Radiated Spurious Emission: 2OCI-1 RF Conducted: 2OCI-2
EUT Received Date:	2024/7/12
EUT Received Status:	Good

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
Adapter	TECNO MOBILE LIMITED	U180TSA	Input: 100-240Vac 50/60Hz 0.6A Output: 5.0Vdc 2.4A or 7.5Vdc 2.4A 18W MAX
Earphone	TECNO MOBILE LIMITED	Unknown	Unknown

1.3 Antenna Information Detail

Antenna	Antenna Manufacturer	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain			
				5.15~5.25GHz	1.1dBi			
ANT 14	TECNO MOBILE	FPC	FPC 50	5.25~5.35 GHz	1.1dBi			
ANI 14	LIMITED		FFC	ГГС	FPC	FPC	30	5.47~5.725 GHz
			5.725~5.85 GHz	1.1dBi				
The design	of compliance with §1	5.203:						
\boxtimes	Unit uses a per	manently attached an	ntenna.					
Unit uses a unique coupling to the intentional radiator.								
Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.								

1.4 Equipment Modifications

No modifications are made to the EUT during all test items.

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.203	Antenna Requirement	Compliant
FCC §15.207(a)	AC Line Conducted Emissions	Compliant
FCC §15.207(a)	Undesirable Emission& Restricted Bands	Compliant
FCC§15.407(a) (e)	Emission Bandwidth	Compliant
FCC§15.407 (a)	Maximum Conducted Output Power	Compliant
FCC§15.407 (a)	Power Spectral Density	Compliant
	d emissions, the maximum output power mode and channel was s Emissions 9kHz~ 1GHz, the maximum output power mode an	

3. DESCRIPTION OF TEST CONFIGURATION

3.1 Operation Frequency Detail

For 802.11a/n ht20/ac vht20:

5150-5250	MHz Band	5250-5350	MHz Band	5470-5725 MHz Band		5725-5850	MHz Band
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	52	5260	100	5500	149	5745
40	5200	56	5280	104	5520	153	5765
44	5220	60	5300	108	5540	157	5785
48	5240	64	5320	112	5560	161	5805
/	/	/	/	116	5580	165	5825
/	/	/	/	120	5600	/	/
/	/	/	/	124	5620	/	/
/	/	/	/	128	5640	/	/
/	/	/	/	132	5660	/	/
/	/	/	/	136	5680	/	/
/	/	/	/	140	5700	/	/
/	/	/	/	144**	5720	/	/

For 802.11n ht40/ac vht40:

5150-52	250MHz	5250-53	50 MHz	1Hz 5470-5725 MHz		70-5725 MHz 5725-5850MHz	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	54	5270	102	5510	151	5755
46	5230	62	5310	110	5550	159	5795
/	/	/	/	118	5590	/	/
/	/	/	/	126	5630	/	/
/	/	/	/	134	5670	/	/
/	/	/	/	142**	5710	/	/

For 802.11ac vht80:

5150-52	250MHz	5250-53	50 MHz	5470-57	25 MHz	5725-58	850MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
42	5210	58	5290	106	5530	155	5775
/	/	/	/	122	5610	/	/
/	/	/	/	138**	5690	/	/

Note: Additional channels cross the band 5470-5725MHz and 5725-5850 MHz, Conducted output power/ Power Spectral Density/bandwidth test with the additional channel to compliance with stricter limit of the two bands(5470-5725MHz more stricter).

3.2 EUT Operation Condition

The system was configured for testing in Engineering Mode, which was provided by the manufacturer.

The EUT configuration is below:

EUT Exer	cise Software:	node		
The software was provide provided by the manufac		arer. The maxir	num power was configured	as below, that was
5150-5250 MHz Band:				
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
	Lowest	5180	6Mbps	17
802.11a	Middle	5200	6Mbps	17
	Highest	5240	6Mbps	17
	Lowest	5180	MCS0	17
802.11n ht20	Middle	5200	MCS0	17
	Highest	5240	MCS0	17
002 11 1/40	Lowest	5190	MCS0	17
802.11n ht40	Highest	5230	MCS0	17
802.11ac vht80	Middle	5210	MCS0	17
5250-5350 MHz Band:				
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
	Lowest	5260	6Mbps	17
802.11a	Middle	5280	6Mbps	17
	Highest	5320	6Mbps	17
802.11n ht20	Lowest	5260	MCS0	17
	Middle	5280	MCS0	17
	Highest	5320	MCS0	17
802.11n ht40	Lowest	5270	MCS0	17
002.111111140	Highest	5310	MCS0	17
	1	1		1

802.11ac vht80

Middle

5290

MCS0

16

5470-5725 MHz Band:				
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
	Lowest	5500	6Mbps	17
802.11a	Middle	5580	6Mbps	17
802.11a	Highest	5700	6Mbps	17
	Cross	5720	6Mbps	17
	Lowest	5500	MCS0	17
802.11n ht20	Middle	5580	MCS0	17
802.11II III20	Highest	5700	MCS0	17
	Cross	5720	MCS0	17
	Lowest	5510	MCS0	17
902 11- 1440	Middle	5550	MCS0	17
802.11n ht40	Highest	5670	MCS0	17
	Cross	5710	MCS0	17
	Lowest	5530	MCS0	17
802.11ac vht80	Highest	5610	MCS0	17
	Cross	5690	MCS0	17
5725-5850 MHz Band:	i			
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
802.11a	Lowest	5745	6Mbps	17
	Middle	5785	6Mbps	17
	Highest	5825	6Mbps	17
	Lowest	5745	MCS0	17

802.11ac vht80

802.11n ht20

802.11n ht40

Note:

1. The system support 802.11a/n ht20/n ht40/ac vht20/vht40/vht80, the vht20/vht40 were reduced since the identical parameters with 802.11n ht20 and ht40.

MCS0

MCS0

MCS0

MCS0

MCS0

5785

5825

5755

5795

5775

2. The above are the worst-case data rates, which are determined for each mode based upon investigations by measuring the average power and PSD across all data rates, bandwidths, and modulations.

3.3 Support Equipment List and Details

Middle

Highest

Lowest

Highest

Middle

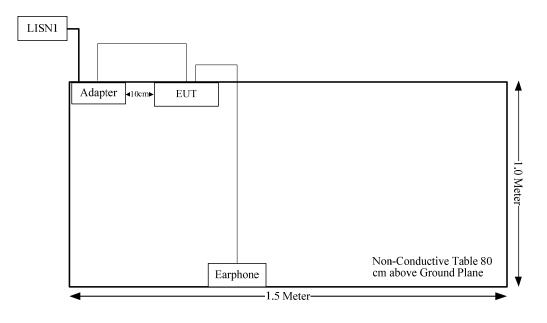
Manufacturer	Description	Model	Serial Number
/	/	/	/

3.4 Support Cable List and Details

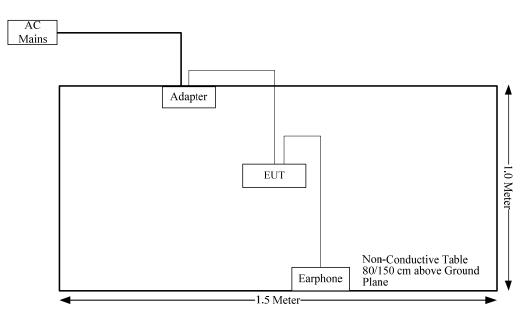
Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
USB Cable	no	no	0.8	Adapter	EUT
earphone Cable	no	no	1.2	earphone	EUT

17

17


17

17


17

3.5 Block Diagram of Test Setup

AC line conducted emissions:

Spurious Emissions:

3.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 829273, the FCC Designation No. : CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.7 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz:
Unwanted Emissions, radiated	5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB,
	18GHz~26.5GHz:5.47 dB, 26.5GHz~40GHz:5.63 dB
Unwanted Emissions, conducted	±2.47 dB
Temperature	±1℃
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)

4. REQUIREMENTS AND TEST PROCEDURES

4.1 AC Line Conducted Emissions

4.1.1 Applicable Standard

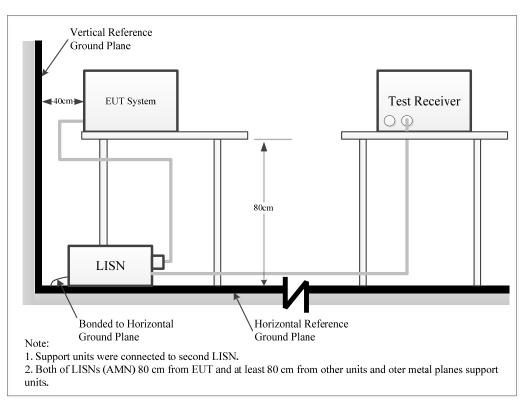
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)	
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μ V within the frequency band 535-1705 kHz, as measured using a 50 μ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

4.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor Factor = attenuation caused by cable loss + voltage division factor of AMN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit – Result

4.1.6 Test Result

Please refer to section 5.1.

4.2 Radiation Spurious Emissions

4.2.1 Applicable Standard

FCC §15.407 (b);

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of _27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

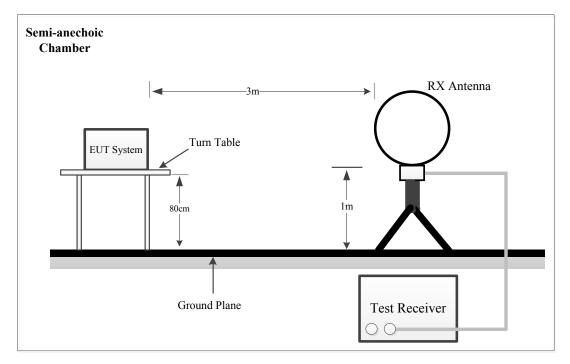
(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating solely in the 5.725-5.850 GHz band:

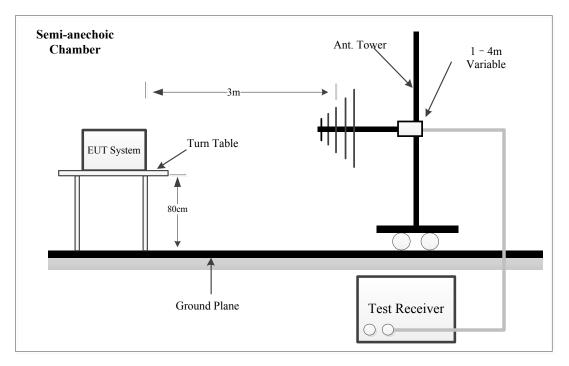
(i) All emissions shall be limited to a level of $_{-27}$ dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in \S 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.

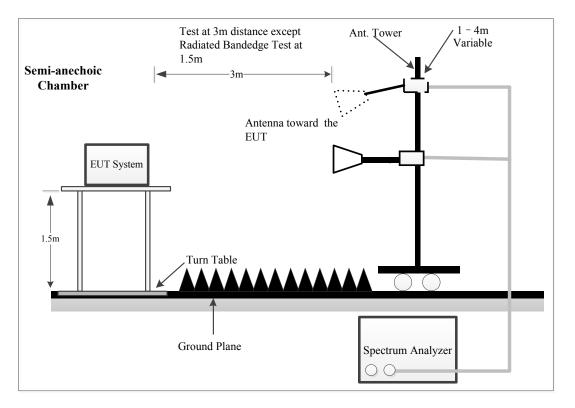
(8) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.


(9) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.
(10) The provisions of § 15.205 apply to intentional radiators operating under this section.

(11) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.


(c) The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

4.2.2 EUT Setup


9kHz~30MHz:

30MHz~1GHz:

Above 1GHz:

The radiated emission tests were performed in the semi-anechoic chamber, using the setup accordance with the ANSI C63.10-2013. The specification used was FCC 15.209, FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

For 9kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

4.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9kHz-	1000MHz:

Frequency Range	Measurement	RBW	Video B/W	IF B/W
9 kHz – 150 kHz	QP/AV	200 Hz	1 kHz	200 Hz
150 kHz – 30 MHz	QP/AV	9 kHz	30 kHz	9 kHz
30 MHz – 1000 MHz	PK	100 kHz	300 kHz	/
	QP	/	/	120 kHz

1GHz-40GHz:

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
A	>98%	1MHz	10 Hz
Ave.	<98%	1MHz	≥1/T

Note: T is minimum transmission duration

If the maximized peak measured value is under the QP limit by more than 6dB, then it is unnecessary to perform an QP measurement.

If the maximized peak measured value is under the average limit, then it is unnecessary to perform an QP measurement.

4.2.4 Test Procedure

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz -1 GHz, except 9-90 kHz, 110-490 kHz, employing an average detector, peak and Average detection modes for frequencies above 1 GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

For Radiated Bandedge test, which was performed at 1.5 m distance, according to C63.10, the test result shall be extrapolated to the specified distance using an extrapolation Factor of 20dB/decade from 3m to 1.5m

Distance extrapolation Factor =20 log (specific distance [3m]/test distance [1.5m]) dB= 6.0 dB

4.2.5 Corrected Result & Margin Calculation

The basic equation except radiated bandedge test is as follows:

Factor = Antenna Factor + Cable Loss- Amplifier Gain

Result = Reading + Factor

For Radiated Bandedge test:

Factor = Antenna Factor + Cable Loss-Distance extrapolation Factor

Result = Reading + Factor

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

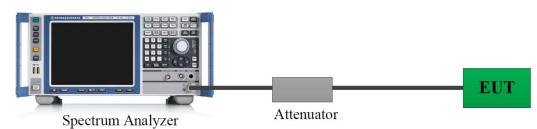
Margin = Limit – Result

4.2.6 Test Result

Please refer to section 5.2.

4.3 Emission Bandwidth

4.3.1 Applicable Standard


FCC §15.407 (a),(h)

(h)(2) Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

FCC §15.407 (e)

Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

4.3.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer.

4.3.3 Test Procedure

26dB Emission Bandwidth:

According to ANSI C63.10-2013 Section 12.4.1

a) Set RBW = approximately 1% of the emission bandwidth.

- b) Set the VBW > RBW.
- c) Detector = peak.

d) Trace mode = max hold

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

6 dB emission bandwidth:

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \geq 3 RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described in this section. For devices that use channel aggregation refer to III.A and III.C for determining emission bandwidth.

99% Occupied Bandwidth:

According to ANSI C63.10-2013 Section 12.4.2&6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.3.4 Test Result

Please refer to section 5.3 and section 5.4.

4.4 Maximum Conducted Output Power

4.4.1 Applicable Standard

FCC §15.407(a) (1)(iv)

For client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.4.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer \blacktriangle .

4.4.3 Test Procedure

According to ANSI C63.10-2013 Section 12.3.3.1

Method PM-G is measurement using a gated RF average power meter.

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

4.4.4 Test Result

Please refer to section 5.5.

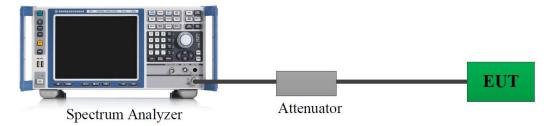
Report Template Version: FCC-WiFi5-Client-V1.2

4.5 Maximum Power Spectral Density

4.5.1 Applicable Standard

FCC §15.407(a) (1)(iv)

For client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


FCC §15.407(a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.5.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer \blacktriangle .

4.5.3 Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

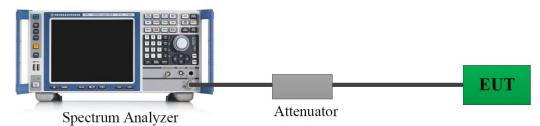
Duty cycle ≥98%

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-1 should be applied.

Duty cycle <98%, duty cycle variations are less than $\pm 2\%$

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-2 should be applied.

Duty cycle <98%, duty cycle variations exceed $\pm 2\%$


KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-3 should be applied.

4.5.4 Test Result

Please refer to section 5.6.

4.6 Duty Cycle

4.6.1 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer.

4.6.2 Test Procedure

According to ANSI C63.10-2013 Section 12.2

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. 3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7$ μs.)

4.6.3 Judgment

Report Only. Please refer to section 5.7.

4.7 Antenna Requirement

4.7.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

4.7.2 Judgment

Compliant. Please refer to the Antenna Information detail in Section 1.3.

5. Test DATA AND RESULTS

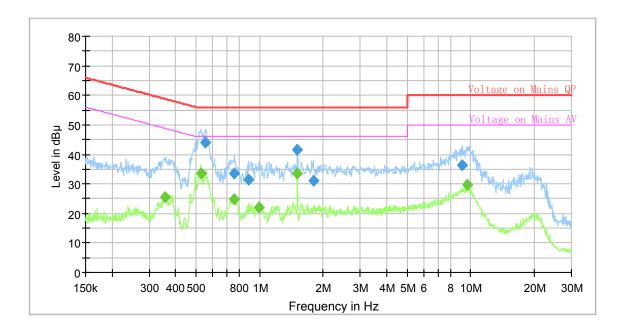
5.1 AC Line Conducted Emissions

Serial Number:	20CI-1	Test Date:	2024/7/23
Test Site:	CE	Test Mode:	Transmitting
Tester:	Lane Sun	Test Result:	Pass

Environmental Conditions:

Temperature: (°C) 27.1	Relative Humidity: 63 (%)	53 ATM Pressure: (kPa)	100.4
---------------------------	---------------------------------	---------------------------	-------

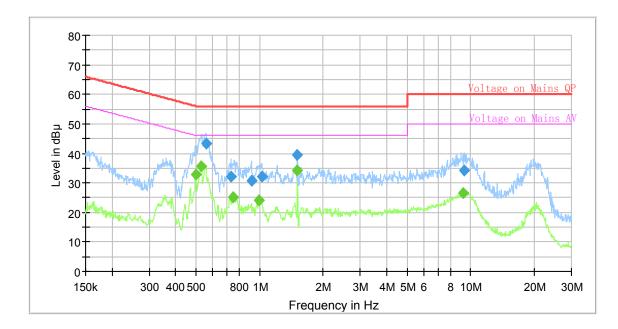
Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101614	2023/10/18	2024/10/17
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2023/9/7	2024/9/6
R&S	EMI Test Receiver	ESCI	100035	2023/8/18	2024/8/17
R&S	Test Software	EMC32	V9.10.00	N/A	N/A

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: 2402V85515E-RF-00D

2402V85515E-RF Lane Sun 2024-7-23 L Transmitting AC 120V/60Hz 802.11n ht20 5580MHz



Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB µ V)	(dB µ V)	(dB µ V)	(dB)	(kHz)		(dB)
0.357261		25.60	48.79	23.19	9.000	L1	10.8
0.527156		33.71	46.00	11.29	9.000	L1	10.8
0.554114	43.95		56.00	12.05	9.000	L1	10.8
0.758685	33.51		56.00	22.49	9.000	L1	10.9
0.758685		24.93	46.00	21.07	9.000	L1	10.9
0.885542	31.50		56.00	24.50	9.000	L1	10.9
0.998148		21.95	46.00	24.05	9.000	L1	10.9
1.510003	41.64		56.00	14.36	9.000	L1	10.8
1.510003		33.39	46.00	12.61	9.000	L1	10.8
1.798001	31.24		56.00	24.76	9.000	L1	10.8
9.139578	36.44		60.00	23.56	9.000	L1	10.8
9.655012		29.68	50.00	20.32	9.000	L1	10.8

Report No.: 2402V85515E-RF-00D

2402V85515E-RF Lane Sun 2024-7-23 N Transmitting AC 120V/60Hz 802.11n ht20 5580MHz

Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB µ V)	(dB µ V)	(dB	(dB)	(kHz)		(dB)
0.499013		32.96	46.02	13.06	9.000	N	10.7
0.527156		35.80	46.00	10.20	9.000	Ν	10.7
0.556885	43.18		56.00	12.82	9.000	Ν	10.7
0.732654	32.07		56.00	23.93	9.000	Ν	10.8
0.751154		25.06	46.00	20.94	9.000	Ν	10.8
0.912443	30.69		56.00	25.31	9.000	Ν	10.8
0.993182		24.01	46.00	21.99	9.000	Ν	10.8
1.023352	32.03		56.00	23.97	9.000	Ν	10.9
1.510003	39.41		56.00	16.59	9.000	Ν	10.9
1.510003		34.32	46.00	11.68	9.000	Ν	10.9
9.185276		26.44	50.00	23.56	9.000	N	10.8
9.323745	34.08		60.00	25.92	9.000	N	10.8

5.2 Radiation Spurious Emissions

1) 9kHz - 1GHz

Serial Number:	20CI-1	Test Date:	2024/7/24
Test Site:	Chamber 10m	Test Mode:	Transmitting
Tester:	Leesin Xiang	Test Result:	Pass

Environmental Conditions:								
Temperature:		Relative	20	ATM				
(°C)	29.3	Humidity:	38	Pressure:	e: 99.9			
(0)		(%)		(kPa)				

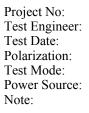
Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
EMCO	Passive Loop Antenna	6512	9706-1206	2023/10/21	2026/10/20
Sunol Sciences	Hybrid Antenna	JB3	A060611-1	2023/9/6	2026/9/5
Narda	Coaxial Attenuator	779-6dB	04269	2023/9/6	2026/9/5
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2023/8/1	2024/7/31
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-04	2023/8/1	2024/7/31
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2023/8/1	2024/7/31
Sonoma	Amplifier	310N	185914	2023/8/1	2024/7/31
R&S	EMI Test Receiver	ESCI	100224	2023/8/18	2024/8/17
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A

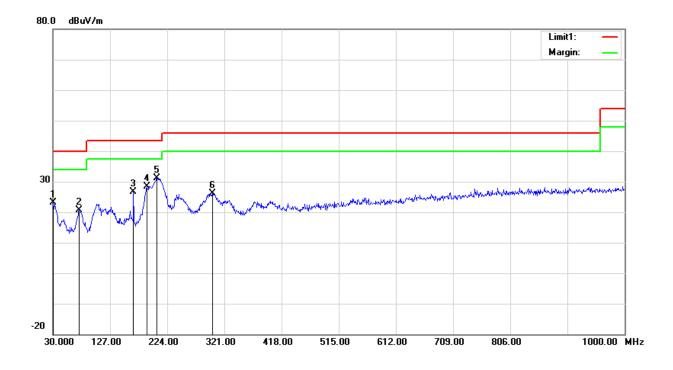
* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Please refer to the below table and plots.


After pre-scan in the X, Y and Z axes of orientation, the worst case is refer to table and plots.

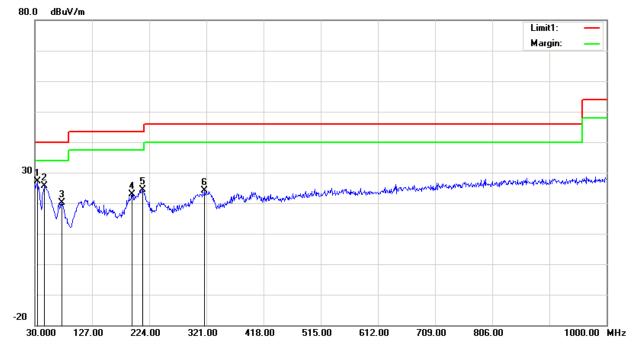
9kHz~30MHz


The 802.11n ht20 5580MHz was tested. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

Report No.: 2402V85515E-RF-00D

30MHz-1GHz

2402V85515E-RF Leesin Xiang 2024-7-24 Horizontal Transmitting AC 120V/60Hz 802.11n ht20 5580MHz



No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
1	30.0000	27.05	peak	-3.80	23.25	40.00	16.75
2	74.6200	36.88	peak	-16.14	20.74	40.00	19.26
3	166.7700	38.32	peak	-11.58	26.74	43.50	16.76
4	189.0800	40.46	peak	-12.15	28.31	43.50	15.19
5	206.5400	43.31	peak	-12.21	31.10	43.50	12.40
6	300.6300	35.53	peak	-9.51	26.02	46.00	19.98

Report No.: 2402V85515E-RF-00D

2402V85515E-RF Leesin Xiang 2024-7-24 Vertical Transmitting AC 120V/60Hz 802.11n ht20 5580MHz

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
1	34.8500	34.51	peak	-7.33	27.18	40.00	12.82
2	46.4900	40.12	peak	-14.49	25.63	40.00	14.37
3	75.5900	36.38	peak	-16.17	20.21	40.00	19.79
4	194.9000	34.59	peak	-11.82	22.77	43.50	20.73
5	212.3600	36.98	peak	-12.55	24.43	43.50	19.07
6	318.0900	33.20	peak	-9.11	24.09	46.00	21.91

2) 1-40GHz:

Serial Number:	20CI-1	Test Date:	2024/7/26~2024/7/27
Test Site:	Chamber B	Test Mode:	Transmitting
Tester:	Nat Zhou	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	26.2~27.4	Relative Humidity: %	39	ATM Pressure: (kPa)	98.6~100
-------------------	-----------	-------------------------	----	------------------------	----------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
ETS-Lindgren	Horn Antenna	3115	000 527 35	2023/9/7	2026/9/6
Ducommun Technologies	Horn Antenna	ARH-4223- 02	1007726-02 1304	2023/2/22	2026/2/21
Ducommun Technologies	Horn Antenna	ARH-2823- 02	1007726-01 1302	2023/2/22	2026/2/21
Xinhang Macrowave	Coaxial Cable	XH750A- N/J-SMA/J- 10M	20231117004 #0001	2023/11/17	2024/11/16
Xinhang Macrowave	Coaxial Cable	XH360A- 2.92/J-2.92/J- 6M-A	20231208001 #0001	2023/12/11	2024/12/10
AH	Preamplifier	PAM-0118P	469	2023/8/19	2024/8/18
АН	Preamplifier	PAM- 1840VH	191	2023/9/7	2024/9/6
R&S	FSV40	FSV40	101944	2023/10/18	2024/10/17
Audix	Test Software	E3	191218 (V9)	N/A	N/A
Sinoscite	Band Rejection Filter	BSF5150- 5850MN	0899003	2024/2/21	2025/2/20
Mini-Circuits	High Pass Filter	VHF-6010+	31118	2023/12/1	2024/11/30

* Statement of Traceability: Bay Area Compliance Laboratories Corp.(Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Please refer to the below table and plots. After pre-scan in the X, Y and Z axes of orientation, the worst case is below:

802.11a_U-								
Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Extrapolation result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Low c	hannel	5180	MHz			
5150.00	36.83	РК	Н	34.76	71.59	65.59	74.00	8.41
5150.00	21.68	AV	Н	34.76	56.44	50.44	54.00	3.56
5150.00	36.45	РК	V	34.76	71.21	65.21	74.00	8.79
5150.00	22.85	AV	V	34.76	57.61	51.61	54.00	2.39
10360.00	50.11	РК	Н	0.33	50.44	50.44	68.20	17.76
10360.00	49.65	РК	V	0.33	49.98	49.98	68.20	18.22
15540.00	47.79	РК	Н	0.6	48.39	48.39	74.00	25.61
15540.00	37.12	AV	Н	0.6	37.72	37.72	54.00	16.28
15540.00	48.38	РК	V	0.6	48.98	48.98	74.00	25.02
15540.00	37.61	AV	V	0.6	38.21	38.21	54.00	15.79
8288.00	57.51	РК	Н	-3.3	54.21	54.21	74.00	19.79
8288.00	54.24	AV	Н	-3.3	50.94	50.94	54.00	3.06
8288.00	56.63	РК	V	-3.3	53.33	53.33	74.00	20.67
8288.00	53.02	AV	V	-3.3	49.72	49.72	54.00	4.28
		Middle c	hannel	5200	MHz		l	
10400.00	48.42	РК	Н	0.4	48.82	48.82	68.20	19.38
10400.00	48.79	PK	V	0.4	49.19	49.19	68.20	19.01
15600.00	49.28	PK	Н	0.58	49.86	49.86	74.00	24.14
15600.00	37.66	AV	Н	0.58	38.24	38.24	54.00	15.76
15600.00	48.64	РК	V	0.58	49.22	49.22	74.00	24.78
15600.00	37.28	AV	V	0.58	37.86	37.86	54.00	16.14
8320.00	57.29	РК	Н	-3.22	54.07	54.07	74.00	19.93
8320.00	55.33	AV	Н	-3.22	52.11	52.11	54.00	1.89
8320.00	55.69	РК	V	-3.22	52.47	52.47	74.00	21.53
8320.00	51.77	AV	V	-3.22	48.55	48.55	54.00	5.45
		High c	hannel	5240	MHz		l	
5350.00	30.32	PK	Н	35.15	65.47	59.47	74.00	14.53
5350.00	18.41	AV	Н	35.15	53.56	47.56	54.00	6.44
5350.00	29.87	PK	V	35.15	65.02	59.02	74.00	14.98
5350.00	18.38	AV	V	35.15	53.53	47.53	54.00	6.47
10480.00	48.76	РК	Н	0.56	49.32	49.32	68.20	18.88
10480.00	48.54	РК	V	0.56	49.10	49.10	68.20	19.10
15720.00	48.26	РК	Н	0.55	48.81	48.81	74.00	25.19
15720.00	37.64	AV	Н	0.55	38.19	38.19	54.00	15.81
15720.00	48.45	РК	V	0.55	49.00	49.00	74.00	25.00
15720.00	37.95	AV	V	0.55	38.50	38.50	54.00	15.50
8383.20	58.37	РК	Н	-3.05	55.32	55.32	74.00	18.68
8383.20	56.19	AV	Н	-3.05	53.14	53.14	54.00	0.86
8383.20	55.06	РК	V	-3.05	52.01	52.01	74.00	21.99
8383.20	50.79	AV	V	-3.05	47.74	47.74	54.00	6.26

802.11a_U-NII-1

Frequency	C-NII-1 Reading	Detector	Polar	Factor	Corrected	Extrapolation	Limit	Margin		
					Amplitude	result				
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB		
		Low c	hannel	5180	MHz					
5150.00	35.52	РК	Н	34.76	70.28	64.28	74.00	9.72		
5150.00	21.21	AV	Н	34.76	55.97	49.97	54.00	4.03		
5150.00	35.79	РК	V	34.76	70.55	64.55	74.00	9.45		
5150.00	21.62	AV	V	34.76	56.38	50.38	54.00	3.62		
10360.00	47.79	РК	Н	0.33	48.12	48.12	68.20	20.08		
10360.00	48.32	РК	V	0.33	48.65	48.65	68.20	19.55		
15540.00	48.07	РК	Н	0.6	48.67	48.67	74.00	25.33		
15540.00	37.42	AV	Н	0.6	38.02	38.02	54.00	15.98		
15540.00	48.13	РК	V	0.6	48.73	48.73	74.00	25.27		
15540.00	37.56	AV	V	0.6	38.16	38.16	54.00	15.84		
8287.00	56.73	РК	Н	-3.3	53.43	53.43	74.00	20.57		
8287.00	53.88	AV	Н	-3.3	50.58	50.58	54.00	3.42		
8287.00	56.89	РК	V	-3.3	53.59	53.59	74.00	20.41		
8287.00	53.08	AV	V	-3.3	49.78	49.78	54.00	4.22		
Middle channel 5200 MHz										
10400.00	47.54	РК	Н	0.4	47.94	47.94	68.20	20.26		
10400.00	47.63	РК	V	0.4	48.03	48.03	68.20	20.17		
15600.00	47.73	РК	Н	0.58	48.31	48.31	74.00	25.69		
15600.00	37.42	AV	Н	0.58	38.00	38.00	54.00	16.00		
15600.00	48.10	PK	V	0.58	48.68	48.68	74.00	25.32		
15600.00	37.68	AV	V	0.58	38.26	38.26	54.00	15.74		
8320.00	56.89	РК	Н	-3.22	53.67	53.67	74.00	20.33		
8320.00	53.42	AV	Н	-3.22	50.20	50.20	54.00	3.80		
8320.00	55.28	PK	V	-3.22	52.06	52.06	74.00	21.94		
8320.00	51.37	AV	V	-3.22	48.15	48.15	54.00	5.85		
		High c	hannel	5240	MHz	I				
5350.00	29.97	PK	Н	35.15	65.12	59.12	74.00	14.88		
5350.00	18.23	AV	Н	35.15	53.38	47.38	54.00	6.62		
5350.00	29.71	PK	V	35.15	64.86	58.86	74.00	15.14		
5350.00	18.17	AV	· V	35.15	53.32	47.32	54.00	6.68		
10480.00	47.21	PK	H	0.56	47.77	47.77	68.20	20.43		
10480.00	47.32	PK	V	0.56	47.88	47.88	68.20	20.32		
15720.00	48.07	PK	H	0.55	48.62	48.62	74.00	25.38		
15720.00	37.58	AV	Н	0.55	38.13	38.13	54.00	15.87		
15720.00	47.85	PK	V	0.55	48.40	48.40	74.00	25.60		
15720.00	37.34	AV	· V	0.55	37.89	37.89	54.00	16.11		
8383.00	56.57	PK	H	-3.05	53.52	53.52	74.00	20.48		
8383.00	53.49	AV	Н	-3.05	50.44	50.44	54.00	3.56		
8383.00	55.26	PK	V	-3.05	52.21	52.21	74.00	21.79		
8383.00	51.38	AV	V	-3.05	48.33	48.33	54.00	5.67		

802.11n20_U-NII-1

802.11n40	0-111-1							
Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Extrapolation result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Low c	hannel	5190	MHz			
5150.00	38.12	РК	Н	34.76	72.88	66.88	74.00	7.12
5150.00	24.21	AV	Н	34.76	58.97	52.97	54.00	1.03
5150.00	37.82	РК	V	34.76	72.58	66.58	74.00	7.42
5150.00	24.17	AV	V	34.76	58.93	52.93	54.00	1.07
10380.00	48.57	РК	Н	0.37	48.94	48.94	68.20	19.26
10380.00	48.28	РК	V	0.37	48.65	48.65	68.20	19.55
15570.00	48.21	РК	Н	0.59	48.80	48.80	74.00	25.20
15570.00	37.77	AV	Н	0.59	38.36	38.36	54.00	15.64
15570.00	47.74	РК	V	0.59	48.33	48.33	74.00	25.67
15570.00	36.83	AV	V	0.59	37.42	37.42	54.00	16.58
8305.20	55.79	РК	Н	-3.25	52.54	52.54	74.00	21.46
8305.20	53.68	AV	Н	-3.25	50.43	50.43	54.00	3.57
8305.20	55.57	РК	V	-3.25	52.32	52.32	74.00	21.68
8305.20	52.69	AV	V	-3.25	49.44	49.44	54.00	4.56
		High c	hannel	5230	MHz			
5350.00	30.41	РК	Н	35.15	65.56	59.56	74.00	14.44
5350.00	18.34	AV	Н	35.15	53.49	47.49	54.00	6.51
5350.00	29.38	РК	V	35.15	64.53	58.53	74.00	15.47
5350.00	18.29	AV	V	35.15	53.44	47.44	54.00	6.56
10460.00	47.66	РК	Н	0.51	48.17	48.17	68.20	20.03
10460.00	47.55	РК	V	0.51	48.06	48.06	68.20	20.14
15690.00	48.97	РК	Н	0.56	49.53	49.53	74.00	24.47
15690.00	37.88	AV	Н	0.56	38.44	38.44	54.00	15.56
15690.00	49.14	РК	V	0.56	49.70	49.70	74.00	24.30
15690.00	38.49	AV	V	0.56	39.05	39.05	54.00	14.95
8335.90	54.94	PK	Н	-3.17	51.77	51.77	74.00	22.23
8335.90	51.68	AV	Н	-3.17	48.51	48.51	54.00	5.49
8335.90	55.12	PK	V	-3.17	51.95	51.95	74.00	22.05
8335.90	51.47	AV	V	-3.17	48.30	48.30	54.00	5.70

802.11n40_U-NII-1

Frequency	Reading	Detector	Polar	Factor	Corrected	Extrapolation	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	Amplitude dBµV/m	result dBµV/m	dBµV/m	dB
IVIIIZ	uDμv	Middle c		5210	MHz	uDµ v/m	ubμv/m	uD
5150.00	39.67	РК	Н	34.76	74.43	68.43	74.00	5.57
5150.00	24.12	AV	Н	34.76	58.88	52.88	54.00	1.12
5150.00	39.72	РК	V	34.76	74.48	68.48	74.00	5.52
5150.00	23.98	AV	V	34.76	58.74	52.74	54.00	1.26
5350.00	30.26	РК	Н	35.15	65.41	59.41	74.00	14.59
5350.00	18.58	AV	Н	35.15	53.73	47.73	54.00	6.27
5350.00	30.13	РК	V	35.15	65.28	59.28	74.00	14.72
5350.00	18.41	AV	V	35.15	53.56	47.56	54.00	6.44
10420.00	47.83	РК	Н	0.43	48.26	48.26	68.20	19.94
10420.00	49.98	РК	V	0.43	50.41	50.41	68.20	17.79
15630.00	48.26	РК	Н	0.57	48.83	48.83	74.00	25.17
15630.00	37.68	AV	Н	0.57	38.25	38.25	54.00	15.75
15630.00	49.75	РК	V	0.57	50.32	50.32	74.00	23.68
15630.00	38.52	AV	V	0.57	39.09	39.09	54.00	14.91
8335.90	56.66	РК	Н	-3.17	53.49	53.49	74.00	20.51
8335.90	54.49	AV	Н	-3.17	51.32	51.32	54.00	2.68
8335.90	54.95	РК	V	-3.17	51.78	51.78	74.00	22.22
8335.90	50.47	AV	V	-3.17	47.30	47.30	54.00	6.70

802.11ac80 U-NII-1

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Extrapolation result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
	•	Low c	hannel	5260	MHz	•	•	I
5150.00	30.66	РК	Н	34.76	65.42	59.42	74.00	14.58
5150.00	20.38	AV	Н	34.76	55.14	49.14	54.00	4.86
5150.00	30.10	РК	V	34.76	64.86	58.86	74.00	15.14
5150.00	20.02	AV	V	34.76	54.78	48.78	54.00	5.22
10520.00	47.92	РК	Н	0.6	48.52	48.52	68.20	19.68
10520.00	49.09	РК	V	0.6	49.69	49.69	68.20	18.51
15780.00	47.65	РК	Н	0.55	48.20	48.20	74.00	25.80
15780.00	37.41	AV	Н	0.55	37.96	37.96	54.00	16.04
15780.00	48.12	РК	V	0.55	48.67	48.67	74.00	25.33
15780.00	38.07	AV	V	0.55	38.62	38.62	54.00	15.38
8414.40	58.15	РК	Н	-2.98	55.17	55.17	74.00	18.83
8414.40	55.61	AV	Н	-2.98	52.63	52.63	54.00	1.37
8414.40	55.52	РК	V	-2.98	52.54	52.54	74.00	21.46
8414.40	51.73	AV	V	-2.98	48.75	48.75	54.00	5.25
	I	Middle c	hannel	5280	MHz		I	I
10560.00	48.20	РК	Н	0.61	48.81	48.81	68.20	19.39
10560.00	48.98	РК	V	0.61	49.59	49.59	68.20	18.61
15840.00	48.54	PK	Н	0.54	49.08	49.08	74.00	24.92
15840.00	37.68	AV	Н	0.54	38.22	38.22	54.00	15.78
15840.00	47.80	РК	V	0.54	48.34	48.34	74.00	25.66
15840.00	36.85	AV	V	0.54	37.39	37.39	54.00	16.61
8448.00	58.24	РК	Н	-2.9	55.34	55.34	74.00	18.66
8448.00	55.12	AV	Н	-2.9	52.22	52.22	54.00	1.78
8448.00	55.93	РК	V	-2.9	53.03	53.03	74.00	20.97
8448.00	50.88	AV	V	-2.9	47.98	47.98	54.00	6.02
	I	High c	hannel	5320	MHz		I	
5350.00	34.81	PK	Н	35.15	69.96	63.96	74.00	10.04
5350.00	21.16	AV	Н	35.15	56.31	50.31	54.00	3.69
5350.00	34.15	PK	V	35.15	69.30	63.30	74.00	10.70
5350.00	21.04	AV	V	35.15	56.19	50.19	54.00	3.81
10640.00	48.16	PK	Н	0.62	48.78	48.78	74.00	25.22
10640.00	36.59	AV	Н	0.62	37.21	37.21	54.00	16.79
10640.00	49.04	PK	V	0.62	49.66	49.66	74.00	24.34
10640.00	37.57	AV	V	0.62	38.19	38.19	54.00	15.81
15960.00	47.32	PK	Н	0.5	47.82	47.82	74.00	26.18
15960.00	36.94	AV	Н	0.5	37.44	37.44	54.00	16.56
15960.00	47.16	PK	V	0.5	47.66	47.66	74.00	26.34
15960.00	36.82	AV	V	0.5	37.32	37.32	54.00	16.68
8511.00	55.35	PK	Н	-2.76	52.59	52.59	68.20	15.61
8511.00	52.98	PK	V	-2.76	50.22	50.22	68.20	17.98

802.11a_U-NII-2A

Frequency	U-NII-2A Reading	Detector	Polar	Factor	Corrected	Extrapolation	Limit	Margin
Frequency	Reauting	Detector	1 0141	Factor	Amplitude	result		wiaigin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Low c	hannel	5260	MHz			
5150.00	29.75	РК	Н	34.76	64.51	58.51	74.00	15.49
5150.00	20.50	AV	Н	34.76	55.26	49.26	54.00	4.74
5150.00	29.35	РК	V	34.76	64.11	58.11	74.00	15.89
5150.00	20.12	AV	V	34.76	54.88	48.88	54.00	5.12
10520.00	47.58	РК	Н	0.6	48.18	48.18	68.20	20.02
10520.00	48.07	РК	V	0.6	48.67	48.67	68.20	19.53
15780.00	48.19	РК	Н	0.55	48.74	48.74	74.00	25.26
15780.00	37.07	AV	Н	0.55	37.62	37.62	54.00	16.38
15780.00	48.63	РК	V	0.55	49.18	49.18	74.00	24.82
15780.00	37.71	AV	V	0.55	38.26	38.26	54.00	15.74
8415.00	58.25	РК	Н	-2.98	55.27	55.27	74.00	18.73
8415.00	55.29	AV	Н	-2.98	52.31	52.31	54.00	1.69
8415.00	54.74	PK	V	-2.98	51.76	51.76	74.00	22.24
8415.00	50.84	AV	V	-2.98	47.86	47.86	54.00	6.14
		Middle c	hannel	5280	MHz	I		
10560.00	48.15	РК	Н	0.61	48.76	48.76	68.20	19.44
10560.00	48.32	РК	V	0.61	48.93	48.93	68.20	19.27
15840.00	48.02	РК	Н	0.54	48.56	48.56	74.00	25.44
15840.00	37.63	AV	Н	0.54	38.17	38.17	54.00	15.83
15840.00	48.21	PK	V	0.54	48.75	48.75	74.00	25.25
15840.00	37.54	AV	V	0.54	38.08	38.08	54.00	15.92
8448.00	57.24	PK	Н	-2.9	54.34	54.34	74.00	19.66
8448.00	54.22	AV	Н	-2.9	51.32	51.32	54.00	2.68
8448.00	54.53	PK	V	-2.9	51.63	51.63	74.00	22.37
8448.00	49.48	AV	V	-2.9	46.58	46.58	54.00	7.42
		High c	hannel	5320	MHz	I	I	I
5350.00	35.76	PK	Н	35.15	70.91	64.91	74.00	9.09
5350.00	21.19	AV	Н	35.15	56.34	50.34	54.00	3.66
5350.00	36.01	PK	V	35.15	71.16	65.16	74.00	8.84
5350.00	21.52	AV	V	35.15	56.67	50.67	54.00	3.33
10640.00	48.07	РК	Н	0.62	48.69	48.69	74.00	25.31
10640.00	37.00	AV	Н	0.62	37.62	37.62	54.00	16.38
10640.00	48.48	PK	V	0.62	49.10	49.10	74.00	24.90
10640.00	37.29	AV	V	0.62	37.91	37.91	54.00	16.09
15960.00	47.14	PK	Н	0.5	47.64	47.64	74.00	26.36
15960.00	36.66	AV	Н	0.5	37.16	37.16	54.00	16.84
15960.00	47.11	PK	V	0.5	47.61	47.61	74.00	26.39
15960.00	36.48	AV	V	0.5	36.98	36.98	54.00	17.02
8511.00	56.18	PK	Н	-2.76	53.42	53.42	68.20	14.78
8511.00	53.27	PK	V	-2.76	50.51	50.51	68.20	17.69

802.11n20_U-NII-2A

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Extrapolation result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Low c	hannel	5270	MHz			
5150.00	29.79	РК	Н	34.76	64.55	58.55	74.00	15.45
5150.00	19.82	AV	Н	34.76	54.58	48.58	54.00	5.42
5150.00	30.02	РК	V	34.76	64.78	58.78	74.00	15.22
5150.00	20.04	AV	V	34.76	54.80	48.80	54.00	5.20
10540.00	47.81	РК	Н	0.59	48.40	48.40	68.20	19.80
10540.00	48.24	РК	V	0.59	48.83	48.83	68.20	19.37
15810.00	47.89	РК	Н	0.54	48.43	48.43	74.00	25.57
15810.00	36.97	AV	Н	0.54	37.51	37.51	54.00	16.49
15810.00	47.98	РК	V	0.54	48.52	48.52	74.00	25.48
15810.00	37.36	AV	V	0.54	37.90	37.90	54.00	16.10
8431.00	57.83	РК	Н	-2.94	54.89	54.89	74.00	19.11
8431.00	54.91	AV	Н	-2.94	51.97	51.97	54.00	2.03
8431.00	55.10	РК	V	-2.94	52.16	52.16	74.00	21.84
8431.00	50.88	AV	V	-2.94	47.94	47.94	54.00	6.06
		High c	hannel	5310	MHz			
5350.00	38.07	РК	Н	35.15	73.22	67.22	74.00	6.78
5350.00	24.00	AV	Н	35.15	59.15	53.15	54.00	0.85
5350.00	38.52	РК	V	35.15	73.67	67.67	74.00	6.33
5350.00	23.83	AV	V	35.15	58.98	52.98	54.00	1.02
10620.00	49.58	РК	Н	0.62	50.20	50.20	74.00	23.80
10620.00	38.59	AV	Н	0.62	39.21	39.21	54.00	14.79
10620.00	47.76	РК	V	0.62	48.38	48.38	74.00	25.62
10620.00	36.79	AV	V	0.62	37.41	37.41	54.00	16.59
15930.00	47.64	РК	Н	0.51	48.15	48.15	74.00	25.85
15930.00	37.28	AV	Н	0.51	37.79	37.79	54.00	16.21
15930.00	47.21	РК	V	0.51	47.72	47.72	74.00	26.28
15930.00	36.59	AV	V	0.51	37.10	37.10	54.00	16.90
8496.00	56.66	РК	Н	-2.78	53.88	53.88	74.00	20.12
8496.00	53.51	AV	Н	-2.78	50.73	50.73	54.00	3.27
8496.00	53.47	РК	V	-2.78	50.69	50.69	74.00	23.31
8496.00	48.88	AV	V	-2.78	46.10	46.10	54.00	7.90

802.11n40_U-NII-2A

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Extrapolation result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Middle c	hannel	5290	MHz			
5150.00	30.44	РК	Н	34.76	65.20	59.20	74.00	14.80
5150.00	19.99	AV	Н	34.76	54.75	48.75	54.00	5.25
5150.00	30.71	РК	V	34.76	65.47	59.47	74.00	14.53
5150.00	19.94	AV	V	34.76	54.70	48.70	54.00	5.30
5350.00	35.05	PK	Н	35.15	70.20	64.20	74.00	9.80
5350.00	23.54	AV	Н	35.15	58.69	52.69	54.00	1.31
5350.00	36.23	PK	V	35.15	71.38	65.38	74.00	8.62
5350.00	24.05	AV	V	35.15	59.20	53.20	54.00	0.80
10580.00	47.95	PK	Н	0.61	48.56	48.56	68.20	19.64
10580.00	47.74	PK	V	0.61	48.35	48.35	68.20	19.85
15870.00	47.11	PK	Н	0.53	47.64	47.64	74.00	26.36
15870.00	36.74	AV	Н	0.53	37.27	37.27	54.00	16.73
15870.00	46.72	РК	V	0.53	47.25	47.25	74.00	26.75
15870.00	36.52	AV	V	0.53	37.05	37.05	54.00	16.95
8463.00	58.26	РК	Н	-2.87	55.39	55.39	74.00	18.61
8463.00	54.93	AV	Н	-2.87	52.06	52.06	54.00	1.94
8463.00	54.36	РК	V	-2.87	51.49	51.49	74.00	22.51
8463.00	49.68	AV	V	-2.87	46.81	46.81	54.00	7.19

802.11ac80_U-NII-2A

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Extrapolation result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Low c	hannel	5500	MHz			
5460.00	32.22	РК	Н	35.34	67.56	61.56	74.00	12.44
5460.00	21.13	AV	Н	35.34	56.47	50.47	54.00	3.53
5460.00	31.83	PK	V	35.34	67.17	61.17	74.00	12.83
5460.00	20.69	AV	V	35.34	56.03	50.03	54.00	3.97
5470.00	32.31	РК	Н	35.36	67.67	61.67	68.20	6.53
5470.00	32.59	РК	V	35.36	67.95	61.95	68.20	6.25
11000.00	48.92	РК	Н	0.72	49.64	49.64	74.00	24.36
11000.00	37.79	AV	Н	0.72	38.51	38.51	54.00	15.49
11000.00	48.71	РК	V	0.72	49.43	49.43	74.00	24.57
11000.00	37.55	AV	V	0.72	38.27	38.27	54.00	15.73
16500.00	48.69	РК	Н	1.1	49.79	49.79	68.20	18.41
16500.00	48.32	РК	V	1.1	49.42	49.42	68.20	18.78
8799.10	54.51	РК	Н	-2.56	51.95	51.95	68.20	16.25
8799.10	53.40	РК	V	-2.56	50.84	50.84	68.20	17.36
		Middle c	hannel	5580	MHz			
11160.00	48.37	РК	Н	1	49.37	49.37	74.00	24.63
11160.00	37.42	AV	Н	1	38.42	38.42	54.00	15.58
11160.00	48.68	РК	V	1	49.68	49.68	74.00	24.32
11160.00	37.61	AV	V	1	38.61	38.61	54.00	15.39
16740.00	47.36	РК	Н	2.42	49.78	49.78	68.20	18.42
16740.00	48.25	РК	V	2.42	50.67	50.67	68.20	17.53
		High c	hannel	5700	MHz			
5725.00	35.96	РК	Н	35.81	71.77	65.77	68.20	2.43
5725.00	35.26	РК	V	35.81	71.07	65.07	68.20	3.13
11400.00	48.48	РК	Н	1.4	49.88	49.88	74.00	24.12
11400.00	37.47	AV	Н	1.4	38.87	38.87	54.00	15.13
11400.00	49.52	РК	V	1.4	50.92	50.92	74.00	23.08
11400.00	38.69	AV	V	1.4	40.09	40.09	54.00	13.91
17100.00	47.35	РК	Н	4	51.35	51.35	68.20	16.85
17100.00	47.24	РК	V	4	51.24	51.24	68.20	16.96

802.11a_U-NII-2C

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Extrapolation result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Low c	hannel	5500	MHz			
5460.00	32.05	РК	Н	35.34	67.39	61.39	74.00	12.61
5460.00	21.12	AV	Н	35.34	56.46	50.46	54.00	3.54
5460.00	30.93	РК	V	35.34	66.27	60.27	74.00	13.73
5460.00	21.28	AV	V	35.34	56.62	50.62	54.00	3.38
5470.00	35.03	РК	Н	35.36	70.39	64.39	68.20	3.81
5470.00	32.11	РК	V	35.36	67.47	61.47	68.20	6.73
11000.00	48.37	РК	Н	0.72	49.09	49.09	74.00	24.91
11000.00	37.46	AV	Н	0.72	38.18	38.18	54.00	15.82
11000.00	48.78	РК	V	0.72	49.50	49.50	74.00	24.50
11000.00	37.51	AV	V	0.72	38.23	38.23	54.00	15.77
16500.00	48.41	РК	Н	1.1	49.51	49.51	68.20	18.69
16500.00	48.75	РК	V	1.1	49.85	49.85	68.20	18.35
		Middle c	hannel	5580	MHz			
11160.00	48.36	РК	Н	1	49.36	49.36	74.00	24.64
11160.00	37.65	AV	Н	1	38.65	38.65	54.00	15.35
11160.00	48.59	РК	V	1	49.59	49.59	74.00	24.41
11160.00	37.44	AV	V	1	38.44	38.44	54.00	15.56
16740.00	48.52	РК	Н	2.42	50.94	50.94	68.20	17.26
16740.00	49.37	РК	V	2.42	51.79	51.79	68.20	16.41
		High c	hannel	5700	MHz			
5725.00	34.88	РК	Н	35.81	70.69	64.69	68.20	3.51
5725.00	34.67	РК	V	35.81	70.48	64.48	68.20	3.72
11400.00	48.53	РК	Н	1.4	49.93	49.93	74.00	24.07
11400.00	37.59	AV	Н	1.4	38.99	38.99	54.00	15.01
11400.00	49.28	РК	V	1.4	50.68	50.68	74.00	23.32
11400.00	38.66	AV	V	1.4	40.06	40.06	54.00	13.94
17100.00	48.66	РК	Н	4	52.66	52.66	68.20	15.54
17100.00	48.72	РК	V	4	52.72	52.72	68.20	15.48

802.11n20_U-NII-2C

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Extrapolation result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Low c	hannel	5510	MHz			
5460.00	33.73	PK	Н	35.34	69.07	63.07	74.00	10.93
5460.00	22.12	AV	Н	35.34	57.46	51.46	54.00	2.54
5460.00	32.35	РК	V	35.34	67.69	61.69	74.00	12.31
5460.00	21.32	AV	V	35.34	56.66	50.66	54.00	3.34
5470.00	37.34	РК	Н	35.36	72.70	66.70	68.20	1.50
5470.00	36.13	РК	V	35.36	71.49	65.49	68.20	2.71
11020.00	49.54	РК	Н	0.75	50.29	50.29	74.00	23.71
11020.00	38.88	AV	Н	0.75	39.63	39.63	54.00	14.37
11020.00	48.83	РК	V	0.75	49.58	49.58	74.00	24.42
11020.00	37.52	AV	V	0.75	38.27	38.27	54.00	15.73
16530.00	48.70	РК	Н	1.27	49.97	49.97	68.20	18.23
16530.00	48.12	РК	V	1.27	49.39	49.39	68.20	18.81
8814.80	53.38	РК	Н	-2.54	50.84	50.84	68.20	17.36
8814.80	52.13	РК	V	-2.54	49.59	49.59	68.20	18.61
		Middle c	hannel	5550	MHz			
11100.00	48.76	РК	Н	0.89	49.65	49.65	74.00	24.35
11100.00	37.72	AV	Н	0.89	38.61	38.61	54.00	15.39
11100.00	48.69	РК	V	0.89	49.58	49.58	74.00	24.42
11100.00	37.68	AV	V	0.89	38.57	38.57	54.00	15.43
16650.00	48.78	РК	Н	1.93	50.71	50.71	68.20	17.49
16650.00	49.47	РК	V	1.93	51.40	51.40	68.20	16.80
8879.70	53.14	РК	Н	-2.5	50.64	50.64	68.20	17.56
8879.70	52.73	РК	V	-2.5	50.23	50.23	68.20	17.97
		High c	hannel	5670	MHz			
5725.00	34.48	РК	Н	35.81	70.29	64.29	68.20	3.91
5725.00	32.07	РК	V	35.81	67.88	61.88	68.20	6.32
11340.00	48.10	РК	Н	1.29	49.39	49.39	74.00	24.61
11340.00	37.46	AV	Н	1.29	38.75	38.75	54.00	15.25
11340.00	48.25	РК	V	1.29	49.54	49.54	74.00	24.46
11340.00	37.65	AV	V	1.29	38.94	38.94	54.00	15.06
17010.00	47.14	РК	Н	3.87	51.01	51.01	68.20	17.19
17010.00	37.59	РК	V	3.87	41.46	41.46	68.20	26.74
8944.70	53.44	РК	Н	-2.44	51.00	51.00	68.20	17.20
8944.70	52.80	РК	V	-2.44	50.36	50.36	68.20	17.84

802.11n40_U-NII-2C

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Extrapolation result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Low c	hannel	5530	MHz			
5470.00	37.60	РК	Н	35.36	72.96	66.96	68.20	1.24
5470.00	35.51	РК	V	35.36	70.87	64.87	68.20	3.33
11060.00	47.72	РК	Н	0.82	48.54	48.54	74.00	25.46
11060.00	36.94	AV	Н	0.82	37.76	37.76	54.00	16.24
11060.00	47.53	РК	V	0.82	48.35	48.35	74.00	25.65
11060.00	36.79	AV	V	0.82	37.61	37.61	54.00	16.39
16590.00	47.21	РК	Н	1.6	48.81	48.81	68.20	19.39
16590.00	47.44	РК	V	1.6	49.04	49.04	68.20	19.16
8848.50	55.21	РК	Н	-2.52	52.69	52.69	68.20	15.51
8848.50	54.94	РК	V	-2.52	52.42	52.42	68.20	15.78
		High c	hannel	5610	MHz			
5725.00	31.61	РК	Н	35.81	67.42	61.42	68.20	6.78
5725.00	32.88	РК	V	35.81	68.69	62.69	68.20	5.51
11220.00	47.22	РК	Н	1.1	48.32	48.32	74.00	25.68
11220.00	36.71	AV	Н	1.1	37.81	37.81	54.00	16.19
11220.00	49.56	РК	V	1.1	50.66	50.66	74.00	23.34
11220.00	38.76	AV	V	1.1	39.86	39.86	54.00	14.14
16830.00	47.63	РК	Н	2.91	50.54	50.54	68.20	17.66
16830.00	46.40	РК	V	2.91	49.31	49.31	68.20	18.89

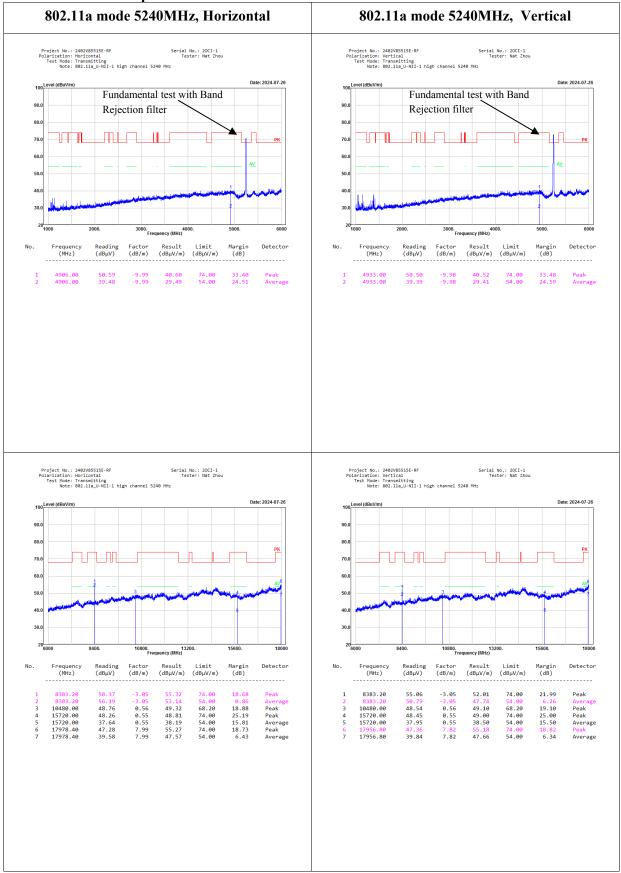
802.11ac80_U-NII-2C

802.11a	U-NII-3

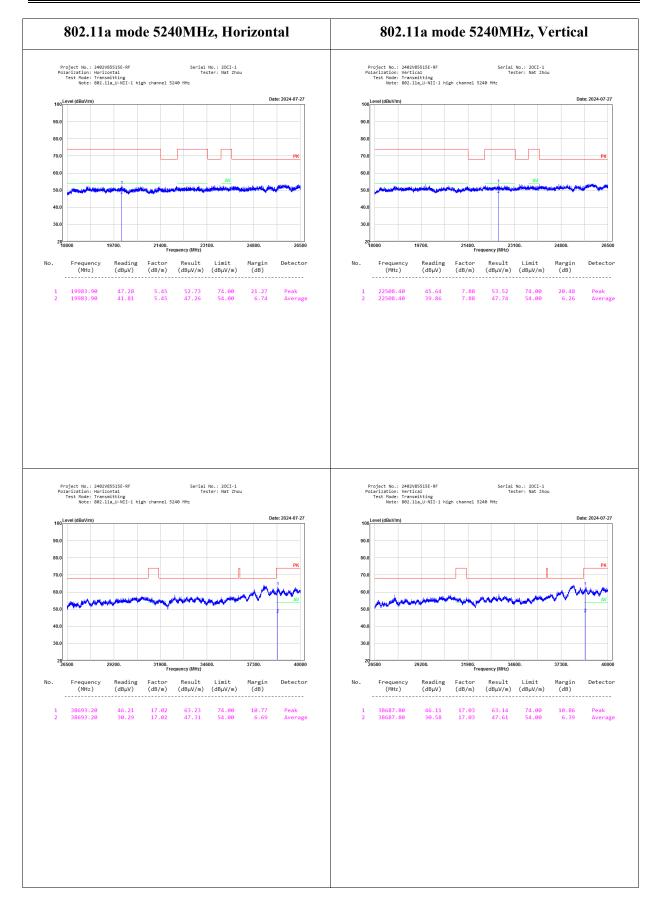
		_		_	Corrected	Extrapolation		
Frequency	Reading	Detector	Polar	Factor	Amplitude	result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Low c	hannel	5745	MHz			
5725.00	42.70	PK	Н	35.81	78.51	72.51	122.20	49.69
5720.00	37.73	PK	Н	35.8	73.53	67.53	110.80	43.27
5700.00	32.04	PK	Н	35.77	67.81	61.81	105.20	43.39
5650.00	31.17	PK	Н	35.69	66.86	60.86	68.20	7.34
5725.00	37.48	РК	V	35.81	73.29	67.29	122.20	54.91
5720.00	35.27	РК	V	35.8	71.07	65.07	110.80	45.73
5700.00	32.02	РК	V	35.77	67.79	61.79	105.20	43.41
5650.00	31.15	РК	V	35.69	66.84	60.84	68.20	7.36
11490.00	48.93	РК	Н	1.55	50.48	50.48	74.00	23.52
11490.00	38.76	AV	Н	1.55	40.31	40.31	54.00	13.69
11490.00	51.22	РК	V	1.55	52.77	52.77	74.00	21.23
11490.00	41.18	AV	V	1.55	42.73	42.73	54.00	11.27
17235.00	47.31	РК	Н	4.2	51.51	51.51	68.20	16.69
17235.00	47.28	РК	V	4.2	51.48	51.48	68.20	16.72
		Middle c	hannel	5785	MHz		1	
11570.00	49.58	PK	Н	1.59	51.17	51.17	74.00	22.83
11570.00	39.49	AV	Н	1.59	41.08	41.08	54.00	12.92
11570.00	52.12	РК	V	1.59	53.71	53.71	74.00	20.29
11570.00	41.89	AV	V	1.59	43.48	43.48	54.00	10.52
17355.00	47.76	РК	Н	4.37	52.13	52.13	68.20	16.07
17355.00	47.83	РК	V	4.37	52.20	52.20	68.20	16.00
		High c	hannel	5825	MHz		1	
5850.00	34.49	PK	Н	36	70.49	64.49	122.20	57.71
5855.00	33.02	РК	Н	36.01	69.03	63.03	110.80	47.77
5875.00	32.35	РК	Н	36.04	68.39	62.39	105.20	42.81
5925.00	32.23	РК	Н	36.12	68.35	62.35	68.20	5.85
5850.00	33.85	РК	V	36	69.85	63.85	122.20	58.35
5855.00	32.79	РК	V	36.01	68.80	62.80	110.80	48.00
5875.00	32.33	РК	V	36.04	68.37	62.37	105.20	42.83
5925.00	32.17	РК	V	36.12	68.29	62.29	68.20	5.91
11650.00	50.20	РК	Н	1.59	51.79	51.79	74.00	22.21
11650.00	39.13	AV	Н	1.59	40.72	40.72	54.00	13.28
11650.00	52.43	РК	V	1.59	54.02	54.02	74.00	19.98
11650.00	42.51	AV	V	1.59	44.10	44.10	54.00	9.90
17475.00	48.58	РК	Н	4.56	53.14	53.14	68.20	15.06
17475.00	48.01	РК	V	4.56	52.57	52.57	68.20	15.63

802.11n20	U-NII-3

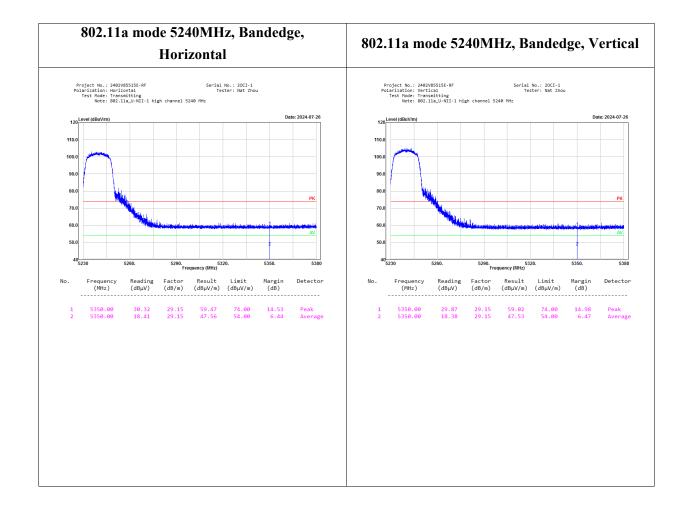
Reading		Polar	Factor	Corrected	Extrapolation	Limit	Margin
	DILIODUNI			Amplitude	result		
dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
Low channel 5725.00 44.24 PK H			5745	MHz			
							48.15
							43.44
							42.79
			35.69				6.92
			35.81				54.20
34.12	РК		35.8	69.92	63.92	110.80	46.88
32.79	РК		35.77	68.56	62.56	105.20	42.64
31.18	РК	V	35.69	66.87	60.87	68.20	7.33
51.27	РК	Н	1.55	52.82	52.82	74.00	21.18
40.28	AV	Н	1.55	41.83	41.83	54.00	12.17
51.22	PK	V	1.55	52.77	52.77	74.00	21.23
40.90	AV	V	1.55	42.45	42.45	54.00	11.55
46.98	РК	Н	4.2	51.18	51.18	68.20	17.02
47.34	РК	V	4.2	51.54	51.54	68.20	16.66
	Middle c	hannel	5785	MHz	L		
51.23	PK	Н	1.59	52.82	52.82	74.00	21.18
40.14	AV	Н	1.59	41.73	41.73	54.00	12.27
51.46	РК	V	1.59	53.05	53.05	74.00	20.95
40.27	AV	V	1.59	41.86	41.86	54.00	12.14
	РК	Н	4.37				16.40
47.52	РК	V	4.37	51.89	51.89	68.20	16.31
	High c	hannel	5825	MHz			
36.27	8			1	66.27	122.20	55.93
							47.04
							42.37
							6.83
							58.86
							48.40
		V					42.46
							6.33
							22.10
	AV		1.59	41.05	41.05		12.95
			1.59				19.04
							9.97
							16.10
							15.99
	32.79 31.18 51.27 40.28 51.22 40.90 46.98 47.34 51.23 40.14 51.46 40.27 47.43	44.24 PK 37.56 PK 32.64 PK 31.59 PK 38.19 PK 34.12 PK 32.79 PK 31.18 PK 51.27 PK 40.28 AV 51.27 PK 40.28 AV 51.22 PK 40.90 AV 46.98 PK 47.34 PK 51.23 PK 40.14 AV 51.46 PK 40.27 AV 47.43 PK 47.52 PK 33.75 PK 32.79 PK 31.25 PK 32.79 PK 31.25 PK 32.34 PK 32.70 PK 31.75 PK 32.70 PK 31.75 PK 32.37 PK 32.70 PK 32.70 PK	44.24PKH 37.56 PKH 32.64 PKH 31.59 PKH 38.19 PKV 34.12 PKV 34.12 PKV 31.18 PKV 51.27 PKH 40.28 AVH 51.22 PKV 40.90 AVV 46.98 PKH 47.34 PKV 51.23 PKH 40.14 AVH 51.46 PKV 40.27 AVV 47.43 PKH 47.52 PKH 33.75 PKH 32.79 PKH 31.25 PKH 31.25 PKH 31.25 PKH 31.25 PKH 31.34 PKV 32.70 PKV 31.75 PKH 33.34 PKV 32.70 PKV 31.75 PKH 39.46 AVH 53.37 PKH 39.46 AVH 53.37 PKH 47.54 PKH	44.24PKH 35.81 37.56 PKH 35.8 32.64 PKH 35.77 31.59 PKH 35.69 38.19 PKV 35.81 34.12 PKV 35.81 34.12 PKV 35.77 31.18 PKV 35.77 31.18 PKV 35.77 31.18 PKV 35.69 51.27 PKH 1.55 40.28 AVH 1.55 40.28 AVH 1.55 40.90 AVV 1.55 40.90 AVV 1.55 46.98 PKH 4.2 47.34 PKV 4.2 Middle channel 5785 51.23 PKH 1.59 40.14 AVH 1.59 40.27 AVV 1.59 40.27 AVV 1.59 47.43 PKH 36.01 32.79 PKH 36.04 31.25 PKH 36.04 31.25 PKH 36.04 31.25 PKH 36.04 31.75 PKV 36.04 32.70 PKV 1.59 33.71 <	44.24PKH 35.81 80.05 37.56 PKH 35.8 73.36 32.64 PKH 35.77 68.41 31.59 PKH 35.69 67.28 38.19 PKV 35.81 74.00 34.12 PKV 35.81 74.00 34.12 PKV 35.81 69.92 32.79 PKV 35.77 68.56 31.18 PKV 35.69 66.87 51.27 PKH 1.55 52.82 40.28 AVH 1.55 52.77 40.90 AVV 1.55 52.77 40.90 AVV 1.55 42.45 46.98 PKH 4.2 51.18 47.34 PKV 4.2 51.54 Middle channel 5785 MHz 51.23 PKH 1.59 53.05 40.14 AVH 1.59 53.05 40.27 AVV 1.59 41.86 47.43 PKH 4.37 51.80 47.52 PKV 4.37 51.89 47.43 PKH 36.01 69.76 32.79 PKH 36.12 67.37 33.34 PKV 36.04 68.83 31.25 PKH 36.12 67.87 50.31 PKH 1.59 51.90 32.70 PK	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Extrapolation result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Low c	hannel	5755	MHz			
5725.00	44.39	РК	Н	35.81	80.20	74.20	122.20	48.00
5720.00	43.59	РК	Н	35.8	79.39	73.39	110.80	37.41
5700.00	34.67	РК	Н	35.77	70.44	64.44	105.20	40.76
5650.00	30.55	РК	Н	35.69	66.24	60.24	68.20	7.96
5725.00	41.16	РК	V	35.81	76.97	70.97	122.20	51.23
5720.00	38.77	РК	V	35.8	74.57	68.57	110.80	42.23
5700.00	32.58	РК	V	35.77	68.35	62.35	105.20	42.85
5650.00	31.26	РК	V	35.69	66.95	60.95	68.20	7.25
11510.00	48.95	РК	Н	1.57	50.52	50.52	74.00	23.48
11510.00	37.78	AV	Н	1.57	39.35	39.35	54.00	14.65
11510.00	49.15	РК	V	1.57	50.72	50.72	74.00	23.28
11510.00	38.24	AV	V	1.57	39.81	39.81	54.00	14.19
17265.00	48.05	РК	Н	4.24	52.29	52.29	68.20	15.91
17265.00	47.34	РК	V	4.24	51.58	51.58	68.20	16.62
		High c	hannel	5795	MHz			
5850.00	34.29	PK	Н	36	70.29	64.29	122.20	57.91
5855.00	33.55	PK	Н	36.01	69.56	63.56	110.80	47.24
5875.00	32.39	PK	Н	36.04	68.43	62.43	105.20	42.77
5925.00	32.51	PK	Н	36.12	68.63	62.63	68.20	5.57
5850.00	32.62	PK	V	36	68.62	62.62	122.20	59.58
5855.00	33.35	PK	V	36.01	69.36	63.36	110.80	47.44
5875.00	32.52	PK	V	36.04	68.56	62.56	105.20	42.64
5925.00	32.23	PK	V	36.12	68.35	62.35	68.20	5.85
11590.00	49.58	PK	Н	1.58	51.16	51.16	74.00	22.84
11590.00	38.27	AV	Н	1.58	39.85	39.85	54.00	14.15
11590.00	48.61	РК	V	1.58	50.19	50.19	74.00	23.81
11590.00	37.52	AV	V	1.58	39.10	39.10	54.00	14.90
17385.00	48.88	РК	Н	4.42	53.30	53.30	68.20	14.90
17385.00	48.54	РК	V	4.42	52.96	52.96	68.20	15.24

802.11n40_U-NII-3


802.11ac80_U-N11-5								
Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Extrapolation result	Limit	Margin
MHz	dBµV	PK/QP/AV	H/V	dB/m	dBµV/m	dBµV/m	dBµV/m	dB
		Middle c	hannel	5775	MHz			
5725.00	45.67	РК	Н	35.81	81.48	75.48	122.20	46.72
5720.00	43.76	РК	Н	35.8	79.56	73.56	110.80	37.24
5700.00	40.81	РК	Н	35.77	76.58	70.58	105.20	34.62
5650.00	31.51	РК	Н	35.69	67.20	61.20	68.20	7.00
5850.00	37.04	РК	Н	36	73.04	67.04	122.20	55.16
5855.00	34.81	РК	Н	36.01	70.82	64.82	110.80	45.98
5875.00	32.69	РК	Н	36.04	68.73	62.73	105.20	42.47
5925.00	31.98	РК	Н	36.12	68.10	62.10	68.20	6.10
5725.00	39.83	РК	V	35.81	75.64	69.64	122.20	52.56
5720.00	40.13	РК	V	35.8	75.93	69.93	110.80	40.87
5700.00	37.35	РК	V	35.77	73.12	67.12	105.20	38.08
5650.00	31.97	РК	V	35.69	67.66	61.66	68.20	6.54
5850.00	34.44	РК	V	36	70.44	64.44	122.20	57.76
5855.00	32.68	РК	V	36.01	68.69	62.69	110.80	48.11
5875.00	32.60	РК	V	36.04	68.64	62.64	105.20	42.56
5925.00	31.67	РК	V	36.12	67.79	61.79	68.20	6.41
11550.00	47.76	РК	Н	1.57	49.33	49.33	74.00	24.67
11550.00	36.74	AV	Н	1.57	38.31	38.31	54.00	15.69
11550.00	49.99	РК	V	1.57	51.56	51.56	74.00	22.44
11550.00	38.46	AV	V	1.57	40.03	40.03	54.00	13.97
17325.00	48.06	РК	Н	4.33	52.39	52.39	68.20	15.81
17325.00	48.54	РК	V	4.33	52.87	52.87	68.20	15.33

802.11ac80_U-NII-3



Bay Area Compliance Laboratories Corp. (Dongguan)

Report Template Version: FCC-WiFi5-Client-V1.2

Page 52 of 90

5.3 Emission Bandwidth

Serial No.:	20CI-2	Test Date:	2024/08/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	Pass

Environmental Conditions:

Temperature: (°C):	26.1	Relative Humidity: (%)	54	ATM Pressure: (kPa)	100
-----------------------	------	------------------------------	----	------------------------	-----

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM503	2024/06/07	2025/06/07
R&S	Spectrum Analyzer	FSV40	101589	2023/10/18	2024/10/17

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

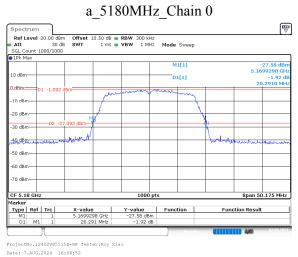
Test data:

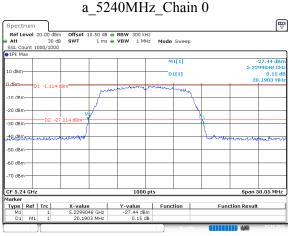
26dB Emission Bandwidth: 5.2G

5.20	
Mode	Value (MHz)
a_5180MHz_Chain 0	20.291
a_5200MHz_Chain 0	20.140
a_5240MHz_Chain 0	20.190
n20_5180MHz_Chain 0	20.442
n20_5200MHz_Chain 0	20.645
n20_5240MHz_Chain 0	20.492
n40_5190MHz_Chain 0	40.941
n40_5230MHz_Chain 0	40.941
ac80_5210MHz_Chain 0	81.682

5.3G

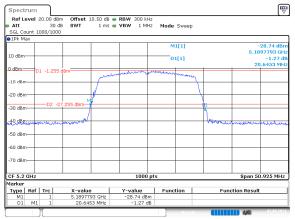
Mode	Value (MHz)
a_5260MHz_Chain 0	20.241
a_5280MHz_Chain 0	20.140
a_5320MHz_Chain 0	20.291
n20_5260MHz_Chain 0	20.645
n20_5280MHz_Chain 0	20.542
n20_5320MHz_Chain 0	19.832
n40_5270MHz_Chain 0	41.141
n40_5310MHz_Chain 0	40.941
ac80_5290MHz_Chain 0	81.281


Mode	Value (MHz)
a_5500MHz_Chain 0	20.392
a_5580MHz_Chain 0	20.191
a_5700MHz_Chain 0	20.240
a_5720MHz_Chain 0	20.291
n20_5500MHz_Chain 0	20.594
n20_5580MHz_Chain 0	20.594
n20_5700MHz_Chain 0	20.439
n20_5720MHz_Chain 0	20.442
n40_5510MHz_Chain 0	40.941
n40_5550MHz_Chain 0	40.741
n40_5670MHz_Chain 0	40.741
n40_5710MHz_Chain 0	41.241
ac80_5530MHz_Chain 0	81.481
ac80_5610MHz_Chain 0	81.281
ac80_5690MHz_Chain 0	81.481


5.6G

6dB Emission Bandwidth: 5.8G

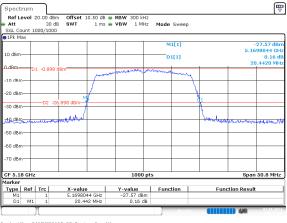
Mode	Value (MHz)	Limit (MHz)	Result
a_5745MHz_Chain 0	16.467	0.5	Pass
a_5785MHz_Chain 0	16.467	0.5	Pass
a_5825MHz_Chain 0	16.467	0.5	Pass
n20_5745MHz_Chain 0	17.668	0.5	Pass
n20_5785MHz_Chain 0	17.668	0.5	Pass
n20_5825MHz_Chain 0	17.668	0.5	Pass
n40_5755MHz_Chain 0	36.336	0.5	Pass
n40_5795MHz_Chain 0	36.336	0.5	Pass
ac80_5775MHz_Chain 0	76.476	0.5	Pass


5.2G

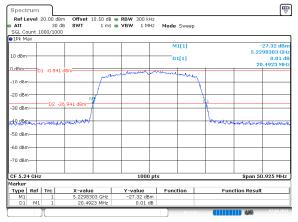


ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 16:09:28

n20 5200MHz Chain 0



ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:12:24

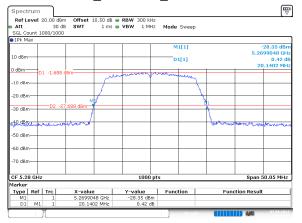

ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 16:08:17

n20_5180MHz_Chain 0

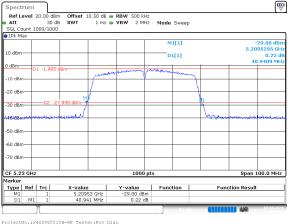
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:11:08

n20 5240MHz Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:13:57

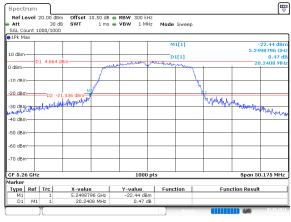


Date: 7.AUG.2024 16:15:13

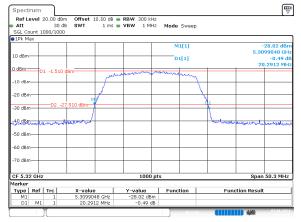

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:17:08

a_5280MHz_Chain 0

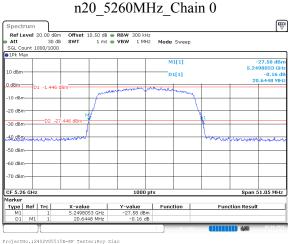
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:20:26

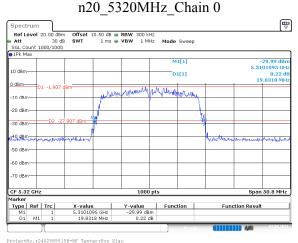



Date: 7.AUG.2024 16:16:04

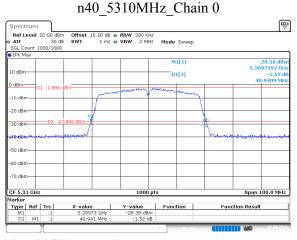

5.3G

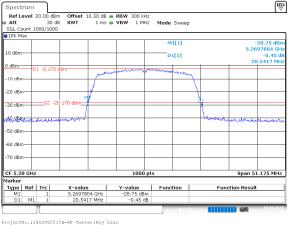
a_5260MHz_Chain 0


ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:19:05

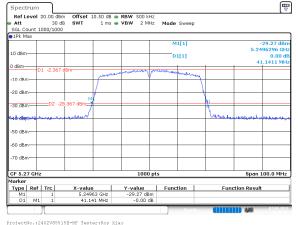


ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:21:38

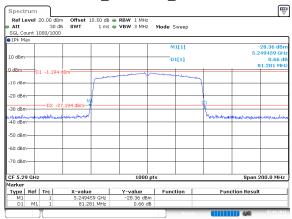

Report No.: 2402V85515E-RF-00D


Projectno.:2402085515E-RF Tester:R0 Date: 7.AUG.2024 16:23:23

ProjectNo.:2402V85515E-RF Tester:Roy X1 Date: 7.AUG.2024 16:25:37

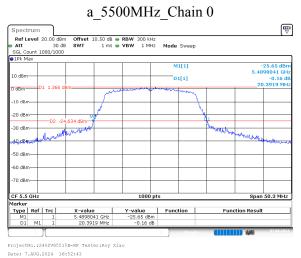


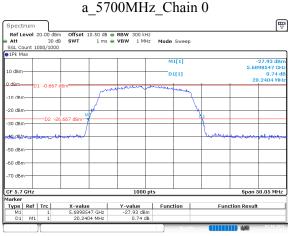
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:28:57 n20_5280MHz_Chain 0


Projectno.:24020855156-RF Tester:Roy Date: 7.AUG.2024 16:24:33

ProjectNo.:2402V85515E-RF Tester:Roy Date: 7.AUG.2024 16:28:09

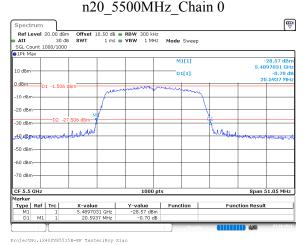
ac80 5290MHz Chain 0

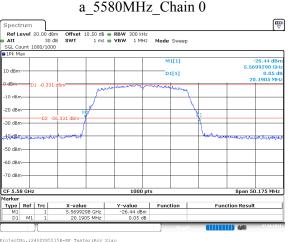



ProjectNo.:2402V85515E-RF Tester:Roy Xiac

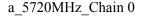
Date: 7.AUG.2024 16:29:50

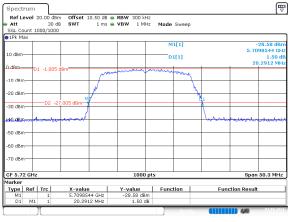
Report No.: 2402V85515E-RF-00D


5.6G

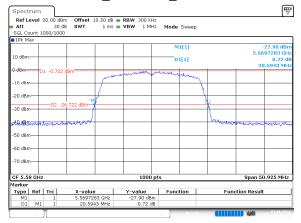


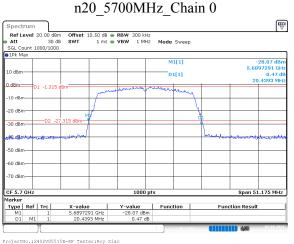
ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 16:55:02

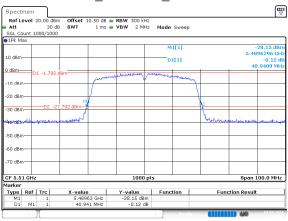

20 5500 (II Cl ·



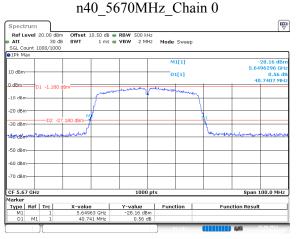
ProjectNo.:2402V85515E-RF Tester:Roy X1ac Date: 7.AUG.2024 16:58:43


ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 16:53:48

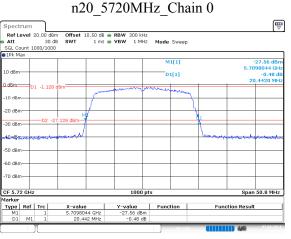



ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:56:27

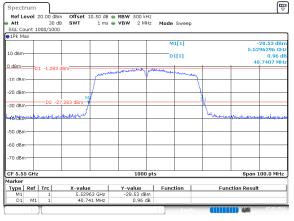
n20 5580MHz Chain 0



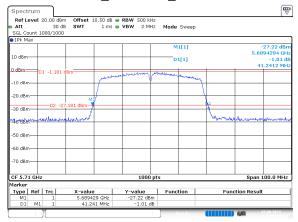
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:59:59



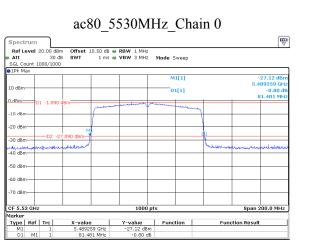
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:04:07


ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 17:05:56

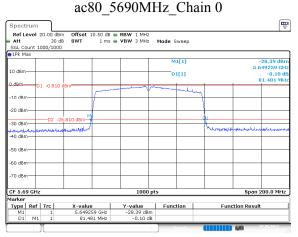
Report No.: 2402V85515E-RF-00D


ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:02:57

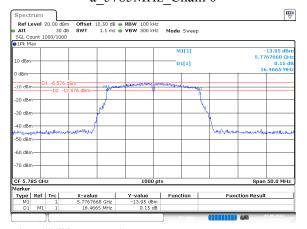
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:05:00


n40 5710MHz Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac

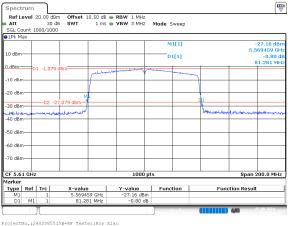

Date: 7.AUG.2024 17:06:54

Date: 7.AUG.2024 17:01:13 n40_5510MHz_Chain 0


ProjectNo.:2402V85515E-RF Tester:Roy Xiac

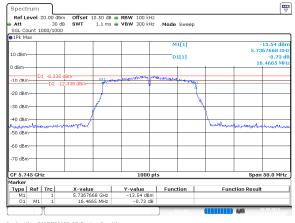
Date: 7.AUG.2024 17:08:44

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:12:38

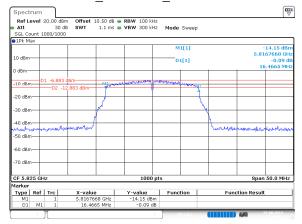

a_5785MHz_Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:19:47

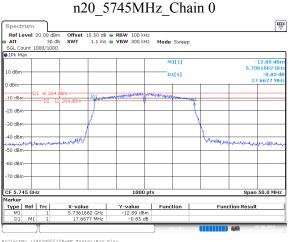
ac80_5610MHz_Chain 0

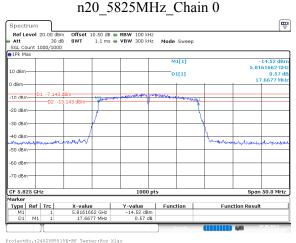

Report No.: 2402V85515E-RF-00D

Date: 7.AUG.2024 17:09:52

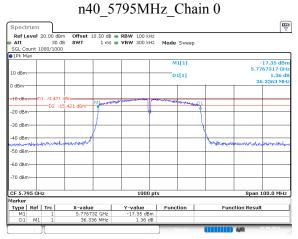

5.8G

a_5745MHz_Chain 0



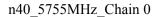

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:18:35

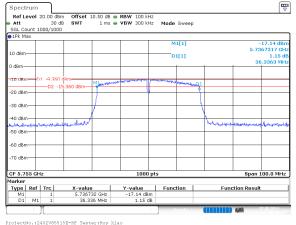
a_5825MHz_Chain 0



ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:20:51

Date: 7.AUG.2024 17:29:20




ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:31:29

Report No.: 2402V85515E-RF-00D

Date: 7.AUG.2024 17:27:41

Date: 7.AUG.2024 17:30:37

ac80_5775MHz_Chain 0

Spect Ref L		20.00 di	Bm Offset 10.50 dB	RBW 100 kHz			T I
Att		30		VBW 300 kHz	Mode Sweep		
SGL Co	ount 1	000/100	10				
∋1Pk M	ах						
					M1[1]		-21.12 dB
10 dBm						5.	736662 GF
TO UBIII					D1[1]		2.38 0
0 dBm-							76.476 MI
o abiii							
-10 dBn							
	D	1 -12.5	1	and and a stand of the stand of the stand	alymour many		
-20 dBn	1	D2 -	18.530 dBm		Contraction of the local of the		-
				i i			
-30 dBn							
-40 dBn						101	
		analdana	her and Himseland			Mohamphetramathian	water while the second
-50 dBn	1-						
-60 dBn	ъ <u> </u>						
-70 dBn	л . 						
CF 5.7	75 GH	z		1000 pt	s	Span	200.0 MH
Marker							
Type M1	Ref	Trc 1	X-value 5.736662 GHz	-21.12 dBm	Function	Function Resu	IT.
D1	M1	1	76.476 MHz	-21.12 dBm 2.38 dB			

ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 17:32:25

ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 17:26:09

5.4 99% Occupied Bandwidth

Serial No.:	20CI-2	Test Date:	2024/08/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	/

Environmental Conditions:

Temperature: (°C):26.1Relative Humidity:54ATM Pressure: (kPa)10	00
--	----

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM503	2024/06/07	2025/06/07
R&S	Spectrum Analyzer	FSV40	101589	2023/10/18	2024/10/17

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Mode	99% OBW (MHz)
a_5180MHz_Chain 0	16.500
a_5200MHz_Chain 0	16.500
a_5240MHz_Chain 0	16.500
n20_5180MHz_Chain 0	17.600
n20_5200MHz_Chain 0	17.600
n20_5240MHz_Chain 0	17.600
n40_5190MHz_Chain 0	36.200
n40_5230MHz_Chain 0	36.200
ac80_5210MHz_Chain 0	75.200

5.2G

Note:

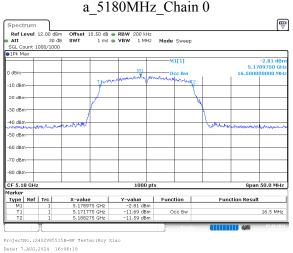
The 99% Occupied Bandwidth have not fall into the band 5250-5350MHz, please refer to the test plots of 99% Occupied Bandwidth.

5.3G

Mode	99% OBW (MHz)		
a_5260MHz_Chain 0	16.550		
a_5280MHz_Chain 0	16.500		
a_5320MHz_Chain 0	16.550		
n20_5260MHz_Chain 0	17.600		
n20_5280MHz_Chain 0	17.600		
n20_5320MHz_Chain 0	17.600		
n40_5270MHz_Chain 0	36.200		
n40_5310MHz_Chain 0	36		
ac80_5290MHz_Chain 0	75.400		

Mode	99% OBW (MHz)
a_5500MHz_Chain 0	16.500
a_5580MHz_Chain 0	16.500
a_5700MHz_Chain 0	16.500
a_5720MHz_Chain 0	16.550
n20_5500MHz_Chain 0	17.550
n20_5580MHz_Chain 0	17.600
n20_5700MHz_Chain 0	17.650
n20_5720MHz_Chain 0	17.600
n40_5510MHz_Chain 0	36.100
n40_5550MHz_Chain 0	36.200
n40_5670MHz_Chain 0	36.500
n40_5710MHz_Chain 0	36.200
ac80_5530MHz_Chain 0	75.400
ac80_5610MHz_Chain 0	75.400
ac80_5690MHz_Chain 0	75.400

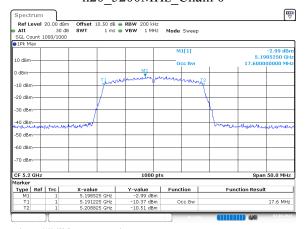
5.6G

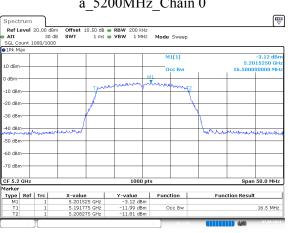

5.8G


Mode	99% OBW (MHz)
a_5745MHz_Chain 0	16.550
a_5785MHz_Chain 0	16.500
a_5825MHz_Chain 0	16.550
n20_5745MHz_Chain 0	17.600
n20_5785MHz_Chain 0	17.600
n20_5825MHz_Chain 0	17.650
n40_5755MHz_Chain 0	36.200
n40_5795MHz_Chain 0	36.100
ac80_5775MHz_Chain 0	75.400

Note:

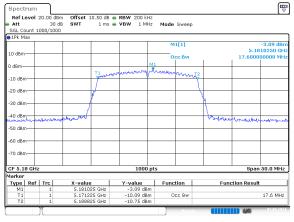
The 99% Occupied Bandwidth have not fall into the band 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth.


5.2G

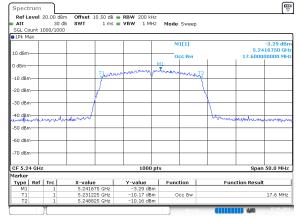


ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:08:59

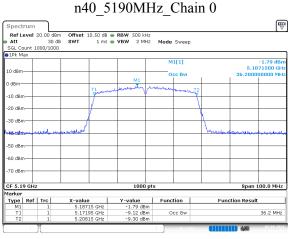
n20 5200MHz Chain 0



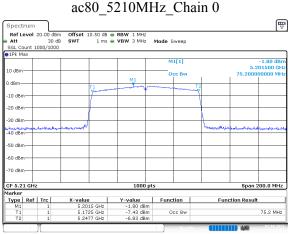
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:11:51


ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 16:07:46

n20_5180MHz_Chain 0

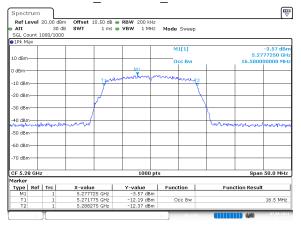

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:10:32

n20 5240MHz Chain 0



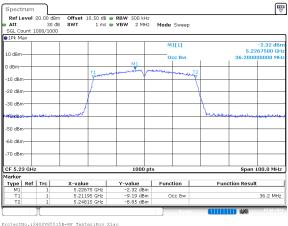
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:13:26

a_5200MHz_Chain 0



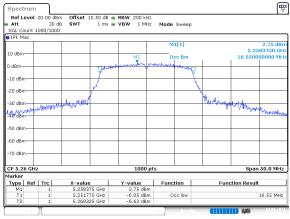
ProjectNo.:2402V85515E-RF Tester:Rov Xiao Date: 7.AUG.2024 16:15:0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:16:52

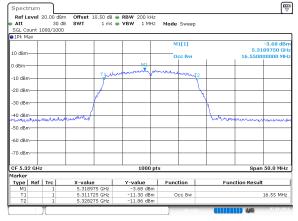

a_5280MHz_Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:19:53

n40_5230MHz_Chain 0


Report No.: 2402V85515E-RF-00D

Date: 7.AUG.2024 16:15:51


5.3G

a_5260MHz_Chain 0

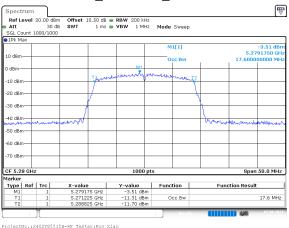
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:18:34

a 5320MHz Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:21:06

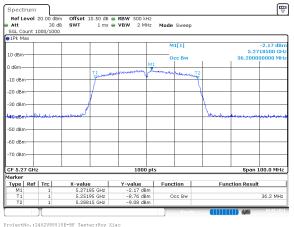
ProjectNo.:2402V85515E-RF Tester:Roy Date: 7.AUG.2024 16:22:53

ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 16:25:06

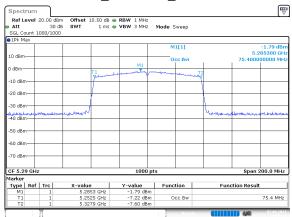

n40_5310MHz_Chain 0

Ref Level			😑 RBW 500 kHz			(·
Att	30		S 👄 VBW 2 MHz	Mode Sweep		
SGL Count	1000/10	30				
1Pk Max						
				M1[1]		-2.09 dBr
10 dBm				Occ Bw		5.3088500 GH 36.000000000 MH
			MI	OCC BW	1	36.00000000 MH
0 dBm		-				
		T1 Varm	un manuel for	un and and a second second	T2	
-10 dBm					1	
-20 dBm						
-20 dBm-		1			N N	
-30 dBm					N	
So upin					1	
40 48m		M Lougen Land			magain	مهير المرابطة ومعادية والمعادية
-50 dBm						
-60 dBm						
-70 dBm						
CF 5.31 GH	z		1000 pt	5		Span 100.0 MHz
1arker						
Type Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1	1	5.30885 GHz	-2.09 dBm			
T1	1	5.29205 GHz	-8.35 dBm	Occ Bw		36.0 MHz
T2	1	5.32805 GHz	-8.66 dBm			

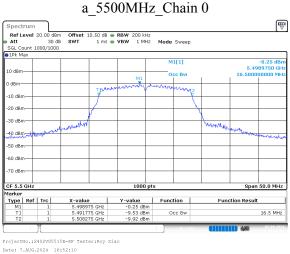
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:28:43

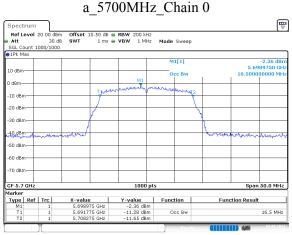

n20_5280MHz_Chain 0

Report No.: 2402V85515E-RF-00D


ProjectNo.:2402V85515E-RF Tester:Roy Date: 7.AUG.2024 16:24:00

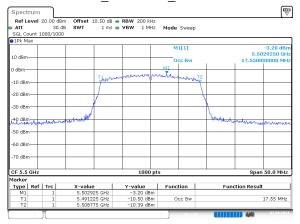
ProjectNo.:2402V85515E-RF Tester:Roy Date: 7.AUG.2024 16:27:55


ac80 5290MHz Chain 0

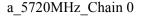


ProjectNo.:2402V85515E-RF Tester:Roy Xiac

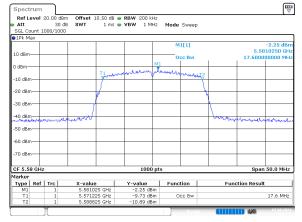
Date: 7.AUG.2024 16:29:33


5.6G

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:54:26


n20_5500MHz_Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:58:0

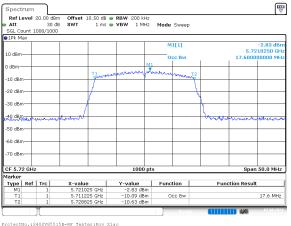

ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 16:53:16

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:55:53

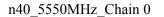
n20 5580MHz Chain 0

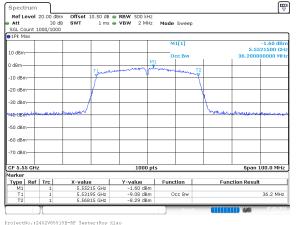
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 16:59:26

ProjectNo.:2402V85515E-RF Tester:Roy Date: 7.AUG.2024 17:00:37

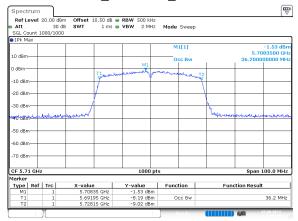


ProjectNo.:2402V85515E-RF Tester:Roy Xi Date: 7.AUG.2024 17:03:50


n40_5670MHz_Chain 0

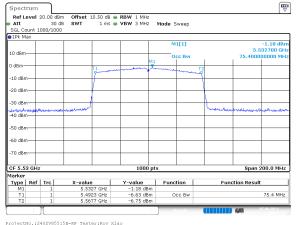

Ref Level			B 👄 RBW 1 MHz				
Att SGL Count :	30 d		s 👄 VBW 3 MHz	Mode Sweep			
SGL Count : 1Pk Max	1000/1000						
JTER MOA				M1[1]			1.93 dBr
						5.6	5667500 GH
10 dBm			M1	Occ Bw		36.500	000000 мн
0 dBm			- Internet		T2		
o abiii		1			Ý		
-10 dBm			_		X	_	
		V 1					
-20 dBm		1			1		
-30 dBm							
متلده الارابيان		almontal			buchers	month and the second	maganet
-40 dBm						_	
-50 dBm							
-60 dBm							
oo abiii							
-70 dBm						_	_
CF 5.67 GH	z		1000	pts		Spar	100.0 MHz
1arker							
Type Ref		X-value	Y-value	Function	F	unction Resu	ılt
M1	1	5.66675 GHz	1.93 dBn				
T1 T2	1	5.65175 GHz 5.68825 GHz	-6.57 dBn -5.02 dBn				36.5 MHz
14	1	3.00025 GHZ	-5.02 UBN				

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:05:41 n20_5720MHz_Chain 0


Projectno.:24020855156-RF Tester:Roy Date: 7.AUG.2024 17:02:25

ProjectNo.:2402V85515E-RF Tester:Roy Date: 7.AUG.2024 17:04:43

n40 5710MHz Chain 0



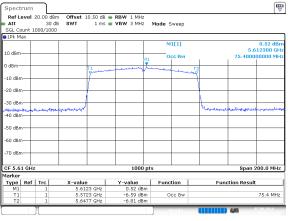
ProjectNo.:2402V85515E-RF Tester:Roy Xiac


Date: 7.AUG.2024 17:06:40

Report No.: 2402V85515E-RF-00D

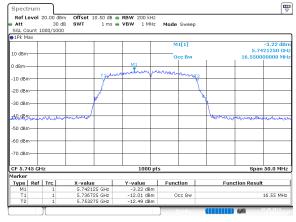
ac80_5530MHz_Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xi Date: 7.AUG.2024 17:08:25

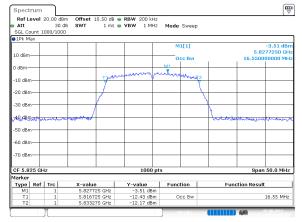

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:12:19

a_5785MHz_Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:19:20


ac80_5610MHz_Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:09:32


5.8G

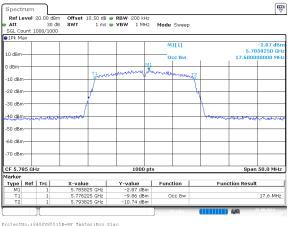
a_5745MHz_Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:18:10

a_5825MHz_Chain 0

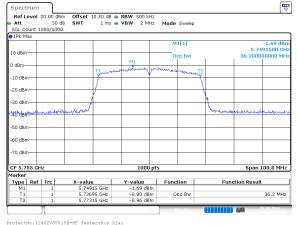
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:20:29

ProjectNo.:2402V85515E-RF Tester:Roy Date: 7.AUG.2024 17:25:44

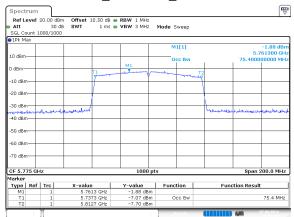


ProjectNo.:2402V85515E-RF Tester:Roy X Date: 7.AUG.2024 17:29:00

n40_5795MHz_Chain 0


Ref Leve			B 👄 RBW 500 kH:				('
Att SGL Count	30		is 🖷 VBW 2 MH;	Mode Sweep			
1Pk Max	1000/100	0					
				M1[1]			-1.82 dBr
10 dBm							934500 GH
10 0011				Occ Bw		36.100	00000 MH
0 dBm			M1				
		T1	menning	man marken barbar stranger	12		
-10 dBm		1	ľ		۱.		
-20 dBm					1		
-20 0011		1 1			A A		
-30 dBm					- 1	-	
40 dBm		mound			Ludidum	arthornas	
-40 dBm							
-50 dBm							
-56 0511							
-60 dBm							
-70 dBm						-	
CF 5.795 C	Hz		1000 p	its		Span	100.0 MHz
larker							
Type Re		X-value	Y-value	Function	Fu	nction Resu	t
M1 T1	1	5.79345 GHz 5.77695 GHz					36.1 MHz
T2	1	5.81305 GHz					30.1 MH2
	-						

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:31:17 n20_5785MHz_Chain 0


ProjectNo.:2402V85515E-RF Tester:Roy) Date: 7.AUG.2024 17:27:13

Projectno.:2402085515E-RF Tester:Roy Date: 7.AUG.2024 17:30:25

ac80_5775MHz_Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac

Date: 7.AUG.2024 17:32:10

Report No.: 2402V85515E-RF-00D

5.5 Maximum Conducted Output Power

Serial No.:	20CI-2	Test Date:	2024/08/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	Pass

Environmental Conditions:

Temperature: (°C):26.1Relative Humidity:ATM Pressure: (kPa)1	100
---	-----

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Anritsu	Microwave Peak Power Sensor	MA24418A	12618	2023/09/04	2024/09/03
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM503	2024/06/07	2025/06/07

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Mode	Average Output Power (dBm)	Limit (dBm)	Result
a_5180MHz_Chain 0	6.56	24	Pass
a_5200MHz_Chain 0	6.51	24	Pass
a_5240MHz_Chain 0	6.58	24	Pass
n20_5180MHz_Chain 0	6.38	24	Pass
n20_5200MHz_Chain 0	6.3	24	Pass
n20_5240MHz_Chain 0	6.82	24	Pass
n40_5190MHz_Chain 0	6.52	24	Pass
n40_5230MHz_Chain 0	6.61	24	Pass
ac80_5210MHz_Chain 0	6.57	24	Pass
Note: The device is a Client device.	I		1

5 C	
3.2 (T	

5.3G			
Mode	Average Output Power (dBm)	Limit (dBm)	Result
a_5260MHz_Chain 0	6.53	24	Pass
a_5280MHz_Chain 0	6.51	24	Pass
a_5320MHz_Chain 0	6.33	24	Pass
n20_5260MHz_Chain 0	6.79	24	Pass
n20_5280MHz_Chain 0	6.36	24	Pass
n20_5320MHz_Chain 0	6.48	24	Pass
n40_5270MHz_Chain 0	6.49	24	Pass
n40_5310MHz_Chain 0	6.35	24	Pass
ac80_5290MHz_Chain 0	6.49	24	Pass

Mode	Average Output Power (dBm)	Limit (dBm)	Result
a_5500MHz_Chain 0	6.8	24	Pass
a_5580MHz_Chain 0	7.44	24	Pass
a_5700MHz_Chain 0	6.98	24	Pass
a_5720MHz_Chain 0	7.05	24	Pass
n20_5500MHz_Chain 0	7.45	24	Pass
n20_5580MHz_Chain 0	7.93	24	Pass
n20_5700MHz_Chain 0	7.04	24	Pass
n20_5720MHz_Chain 0	7.22	24	Pass
n40_5510MHz_Chain 0	7.01	24	Pass
n40_5550MHz_Chain 0	7.39	24	Pass
n40_5670MHz_Chain 0	7.18	24	Pass
n40_5710MHz_Chain 0	7.32	24	Pass
ac80_5530MHz_Chain 0	7.04	24	Pass
ac80_5610MHz_Chain 0	7.46	24	Pass
ac80_5690MHz_Chain 0	7.19	24	Pass

5.6G

5.8G

Mode	Average Output Power (dBm)	Limit (dBm)	Result
a_5745MHz_Chain 0	7.06	30	Pass
a_5785MHz_Chain 0	6.76	30	Pass
a_5825MHz_Chain 0	6.5	30	Pass
n20_5745MHz_Chain 0	6.79	30	Pass
n20_5785MHz_Chain 0	7.22	30	Pass
n20_5825MHz_Chain 0	6.13	30	Pass
n40_5755MHz_Chain 0	6.98	30	Pass
n40_5795MHz_Chain 0	6.84	30	Pass
ac80_5775MHz_Chain 0	5.83	30	Pass

5.6 Power Spectral Density

Serial No.:	20CI-2	Test Date:	2024/08/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	Pass

Environmental Conditions:

Temperature: (°C):	26.1	Relative Humidity: (%)	54	ATM Pressure: (kPa)	100
-----------------------	------	------------------------------	----	------------------------	-----

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM503	2024/06/07	2025/06/07
R&S	Spectrum Analyzer	FSV40	101589	2023/10/18	2024/10/17

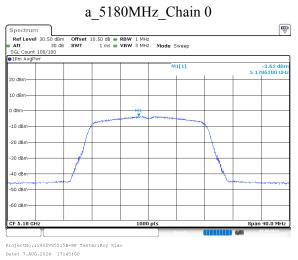
* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

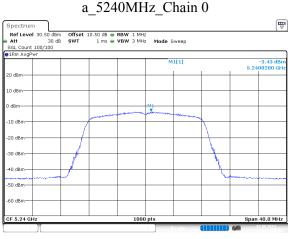
Mode	Value (dBm/MHz)	Duty Cycle Factor (dB)	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
a_5180MHz_Chain 0	-3.62	0	-3.62	11	Pass
a_5200MHz_Chain 0	-3.70	0	-3.70	11	Pass
a_5240MHz_Chain 0	-3.43	0	-3.43	11	Pass
n20_5180MHz_Chain 0	-3.81	0	-3.81	11	Pass
n20_5200MHz_Chain 0	-4.01	0	-4.01	11	Pass
n20_5240MHz_Chain 0	-3.38	0	-3.38	11	Pass
n40_5190MHz_Chain 0	-6.66	0	-6.66	11	Pass
n40_5230MHz_Chain 0	-6.61	0	-6.61	11	Pass
ac80_5210MHz_Chain 0	-9.71	0	-9.71	11	Pass
Note: The device is a Client	device.		<u>.</u>		

5	20	٦
э.	20	J

5.3G

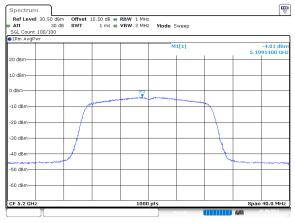
Mode	Value (dBm/MHz)	Duty Cycle Factor (dB)	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
a_5260MHz_Chain 0	-3.61	0	-3.61	11	Pass
a_5280MHz_Chain 0	-3.72	0	-3.72	11	Pass
a_5320MHz_Chain 0	-3.86	0	-3.86	11	Pass
n20_5260MHz_Chain 0	-3.46	0	-3.46	11	Pass
n20_5280MHz_Chain 0	-3.94	0	-3.94	11	Pass
n20_5320MHz_Chain 0	-4.03	0	-4.03	11	Pass
n40_5270MHz_Chain 0	-6.64	0	-6.64	11	Pass
n40_5310MHz_Chain 0	-6.59	0	-6.59	11	Pass
ac80_5290MHz_Chain 0	-9.85	0	-9.85	11	Pass


Mode	Value (dBm/MHz)	Duty Cycle Factor (dB)	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
a_5500MHz_Chain 0	-3.31	0	-3.31	11	Pass
a_5580MHz_Chain 0	-2.90	0	-2.90	11	Pass
a_5700MHz_Chain 0	-2.95	0	-2.95	11	Pass
a_5720MHz_Chain 0	-2.93	0	-2.93	11	Pass
n20_5500MHz_Chain 0	-3.03	0	-3.03	11	Pass
n20_5580MHz_Chain 0	-2.50	0	-2.50	11	Pass
n20_5700MHz_Chain 0	-3.32	0	-3.32	11	Pass
n20_5720MHz_Chain 0	-3.00	0	-3.00	11	Pass
n40_5510MHz_Chain 0	-6.24	0	-6.24	11	Pass
n40_5550MHz_Chain 0	-5.59	0	-5.59	11	Pass
n40_5670MHz_Chain 0	-5.98	0	-5.98	11	Pass
n40_5710MHz_Chain 0	-5.89	0	-5.89	11	Pass
ac80_5530MHz_Chain 0	-9.25	0	-9.25	11	Pass
ac80_5610MHz_Chain 0	-9.07	0	-9.07	11	Pass
ac80_5690MHz_Chain 0	-9.24	0	-9.24	11	Pass


5.6G

5.8G

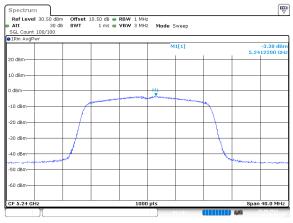
Mode	Value (dBm/500kHz)	Duty Cycle Factor (dB)	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Result
a_5745MHz_Chain 0	-5.78	0	-5.78	30	Pass
a_5785MHz_Chain 0	-6.27	0	-6.27	30	Pass
a_5825MHz_Chain 0	-6.43	0	-6.43	30	Pass
n20_5745MHz_Chain 0	-6.29	0	-6.29	30	Pass
n20_5785MHz_Chain 0	-5.77	0	-5.77	30	Pass
n20_5825MHz_Chain 0	-6.82	0	-6.82	30	Pass
n40_5755MHz_Chain 0	-8.88	0	-8.88	30	Pass
n40_5795MHz_Chain 0	-9.04	0	-9.04	30	Pass
ac80_5775MHz_Chain 0	-13.42	0	-13.42	30	Pass

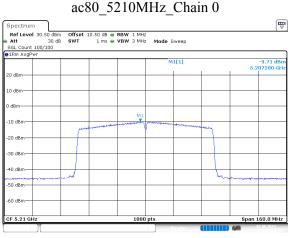

5.2G



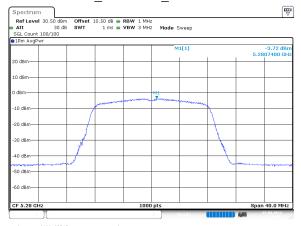
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:47:00


n20_5200MHz_Chain 0


ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 18:03:39



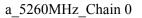
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 19:46:20



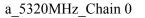
Date: 7.AUG.2024 20:47:33

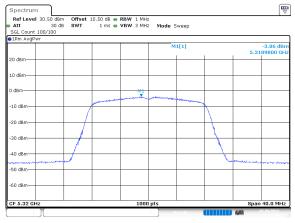

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 20:58:16

a_5280MHz_Chain 0



ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:54:28


Report No.: 2402V85515E-RF-00D



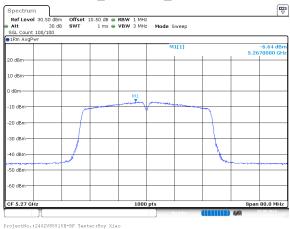


ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:55:05

n40_5230MHz_Chain 0

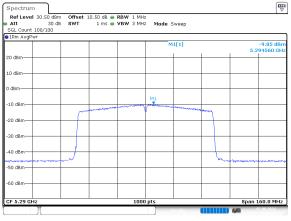
Projectno.:2402v85515E-Mr Tester: Date: 7.AUG.2024 19:46:52

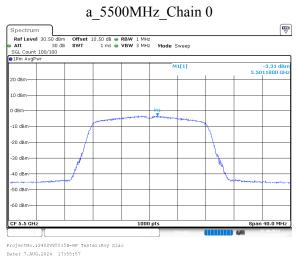
ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 19:48:57

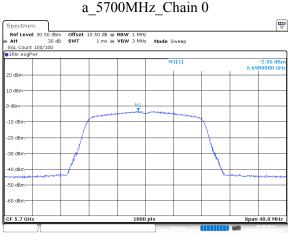


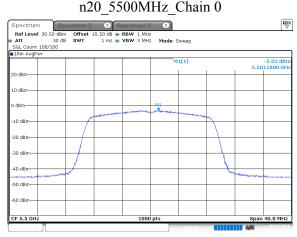
Date: 7.AUG.2024 20:51:02

Report No.: 2402V85515E-RF-00D

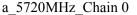




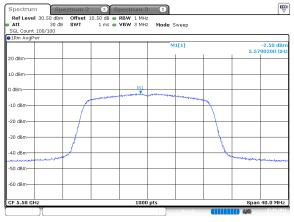

Date: 7.AUG.2024 20:49:42



ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 21:01:11 5.6G

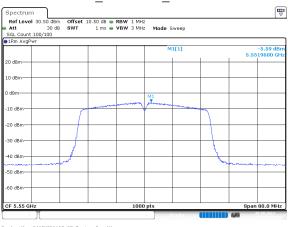



ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 17:57:28

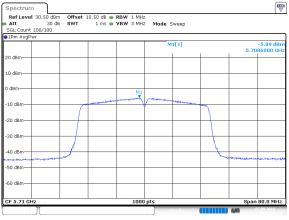

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 20:08:13

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 20:08:48

ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 20:52:38



ProjectNo.:2402V85515E-RF Tester:Ro Date: 7.AUG.2024 20:54:11



ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 20:53:14

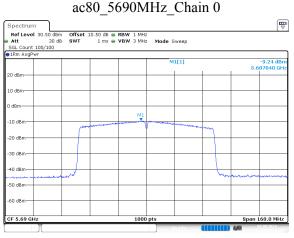
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 20:54:55

ProjectNo.:2402V85515E-RF Tester:Rov Xiao

Date: 7.AUG.2024 21:01:53

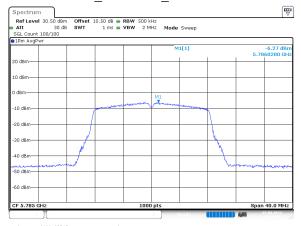
10 dBn

-10 dBm


20 dBr

30 dBn 40 dBm

-50 dBm


60 dBr

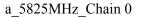
CF 5.53

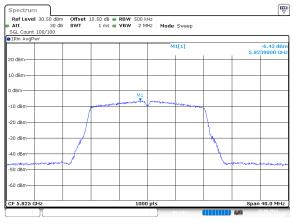
ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 21:03:42

a_5785MHz_Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 18:00:13

ac80_5610MHz_Chain 0


Report No.: 2402V85515E-RF-00D



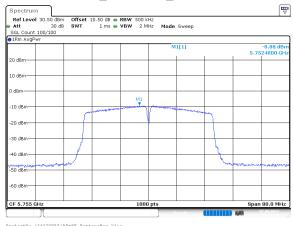
5.8G

a_5745MHz_Chain 0


ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 18:01:25

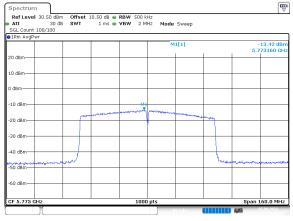
ProjectNo.:2402V85515E-RF Tester: Date: 7.AUG.2024 20:38:45


Date: 7.AUG.2024 20:46:13



ProjectNo.:2402V85515E-RF Tester:Ro Date: 7.AUG.2024 20:56:43 Report No.: 2402V85515E-RF-00D

Spectrum Spectrum
Ref Level 30.50 dBm Offset 10.50 dB
RBW 500 kHz
Att 30 dB SWT 1 ms VBW 2 MHz Mode Sweep
SGL Count 100/100 SGL 1D -5.77 dB 5.7844600 GF 10 dBm M: -10 dBn 20 dBr 30 dBm 40 dBm -50 dBm -60 dBm CF 5.785 1000 pt ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 20:45:36


n20_5785MHz_Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 20:55:57

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 21:04:30

5.7 Duty Cycle

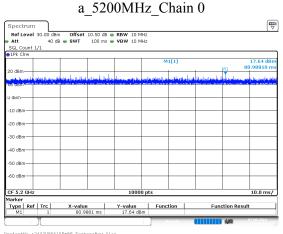
Serial No.:	20CI-2	Test Date:	2024/08/07
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	/

Environmental Conditions:

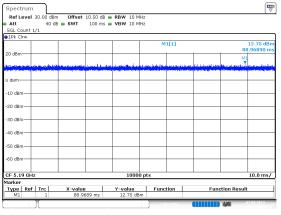
Temperature: (°C):26.1Relative Humidity:ATM Pressure: (kPa)10	00
--	----

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM503	2024/06/07	2025/06/07
R&S	Spectrum Analyzer	FSV40	101589	2023/10/18	2024/10/17

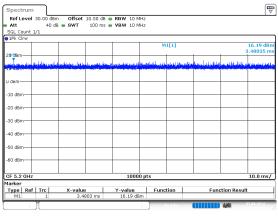

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

5.2G


Mode	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/Ton (Hz)	VBW Setting (kHz)
a_5200MHz_Chain 0	100	100	100	0	NA	0.010
n20_5200MHz_Chain 0	100	100	100	0	NA	0.010
n40_5190MHz_Chain 0	100	100	100	0	NA	0.010
ac80_5210MHz_Chain 0	100	100	100	0	NA	0.010

Duty Cycle = Ton/(Ton+Toff)*100%

5.2G


ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 17:40:58

n40 5190MHz Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:42:07

n20_5200MHz_Chain 0

ProjectNo.:2402V85515E-RF Tester:Roy Xiac Date: 7.AUG.2024 17:41:29

ac80_5210MHz_Chain 0

1Pk Clrw			M1[1]	13.64 dB 34.97350 m
0 dBm	M1			
0 dBm				
dem				
10 dBm				_
20 dBm				
30 dBm				
40 dBm				_
50 dBm				_
60 dBm				
F 5.21 GHz		10000 p	ots	10.0 ms,

ProjectNo.:2402V85515E-RF Tester:Roy Xiao Date: 7.AUG.2024 17:42:36

Report No.: 2402V85515E-RF-00D

EXHIBIT A - EUT PHOTOGRAPHS

Please refer to the attachment 2402V85515E-RF-EXP EUT EXTERNAL PHOTOGRAPHS and 2402V85515E-RF-INP EUT INTERNAL PHOTOGRAPHS.

EXHIBIT B - TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2402V85515E-RF-00D-TSP TEST SETUP PHOTOGRAPHS.

***** END OF REPORT *****