

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

Test Lab

CELLTECH LABS INC.

Testing and Engineering Services 1955 Moss Court Kelowna, B.C. Canada V1Y 9L3

Phone: 250-448-7047
Fax: 250-448-7046
e-mail: info@celltechlabs.com
web site: www.celltechlabs.com

Applicant Information

ITRONIX CORPORATION

801 South Stevens Street Spokane, WA 99204 United States

FCC IDENTIFIER: KBCIX100XAC555
IC IDENTIFIER: 1943A-IX100Xb
Model(s): IX100XAC555

Rule Part(s): FCC 47 CFR §2.1093; IC RSS-102 Issue 1 (Provisional)

Test Procedure(s): FCC OET Bulletin 65, Supplement C (01-01)
FCC Device Classification: PCS Licensed Transmitter worn on body (PCT)

IC Device Classification: 2 GHz Personal Communication Services (RSS-133 Issue 2)

800MHz CDMA Cellular Transmitter (RSS-132 Issue 1)

Device Type: Rugged Handheld PC with internal Sierra Wireless AirCard 555/550

Dual-Band PCS/Cellular CDMA PCMCIA Modem & 1/4-Wave Antenna

Mode(s) of Operation: PCS CDMA / Cellular CDMA

Tx Frequency Range(s): 1851.25 - 1908.75 MHz (PCS CDMA) 824.70 - 848.31 MHz (Cellular CDMA)

Max. RF Output Power Tested: 23.0 dBm Conducted (PCS CDMA)

23.0 dBm Conducted (Cellular CDMA)
Battery Type(s) Tested: Lithium-ion 7.4 V, 3.0 Ah (P/N: 46-0136-001)

Antenna Type(s) Tested:

Body-Worn Accessories Tested:

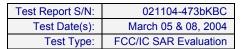
Nearson ¼-Wave Helix Antenna
Nylon Carry Case (P/N: 54-0644-001)
Ear-Microphone (Model: JABRA)

Max. SAR Level(s) Evaluated: PCS CDMA: 1.01 W/kg (1g average)
Cellular CDMA: 1.00 W/kg (1g average)

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device was compliant with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 1 (Provisional) for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and youch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.


Spencer Watson

Compliance Technologist Celltech Labs Inc.

pencer Watson

0

© 2004 Celltech Labs Inc. 1 of 25

	TABLE OF CONTENTS				
1.0	INTRODUCTION	3			
2.0	DESCRIPTION OF DUT.	3			
3.0	SAR MEASUREMENT SYSTEM	4			
4.0	MEACUPEMENT OUMANA DV	.			
4.0	MEASUREMENT SUMMARY	5-6			
5.0	DETAILS OF SAR EVALUATION	7-8			
3.0	DETAILS OF SAN EVALUATION	7-0			
6.0	EVALUATION PROCEDURES	9			
7.0	SYSTEM PERFORMANCE CHECK	10			
8.0	SIMULATED EQUIVALENT TISSUES	11			
9.0	SAR SAFETY LIMITS	11			
10.0	ROBOT SYSTEM SPECIFICATIONS	12			
44.0		- 10			
11.0	PROBE SPECIFICATION	13			
12.0	SAM PHANTOM V4.0C	13			
12.0	SAW PHANTOW V4.0C	13			
13.0	PLANAR PHANTOM	13			
10.0	T EARLY TIAL TO MANAGE TO THE TAIL TO THE				
14.0	DEVICE HOLDER	13			
15.0	TEST EQUIPMENT LIST	14			
16.0	MEASUREMENT UNCERTAINTIES	15-16			
17.0	REFERENCES	17			
	DIX A - SAR MEASUREMENT DATA	18 19			
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA					
	DIX C - SYSTEM VALIDATION	20 21			
APPENDIX D - PROBE CALIBRATION					
	DIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY	22			
	DIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY	24			
	DIX H - SAR TEST SETUP PHOTOGRAPHS	25			

© 2004 Celltech Labs Inc. 2 of 25

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

1.0 INTRODUCTION

This measurement report demonstrates that the ITRONIX CORPORATION Model: IX100XAC555 Rugged Handheld PC FCC ID: KBCIX100XAC555 with internal Sierra Wireless AirCard 555/550 Dual-Band PCS/Cellular CDMA PCMCIA Modem and Nearson ¼-Wave Helix Antenna complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]), and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]), and IC RSS-102 Issue 1 (Provisional) (see reference [4]), were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION of DEVICE UNDER TEST (DUT)

FCC Rule Part(s)		47 CFF	R §2.1093				
IC Rule Part(s)	R	RSS-102 Issue 1 (Provisional)					
Test Procedure(s)	FCC OE	T Bulletin 65	, Supplement	C (01-01)			
FCC Device Classification	PCS Lice	nsed Transm	itter worn on	body (PCT)			
IC Device Classification	2 GHz Personal	Communicat	ion Services ((RSS 133 Issue 2)			
TO Device Glassification	800MHz CDM	IA Cellular Tr	ansmitter (RS	SS-132 Issue 1)			
Device Type	Rugged Handheld PC with internal Sierra Wireless AirCard 555/55 Dual-Band CDMA PCMCIA Modem and Nearson 1/4-Wave Helix Ante						
FCC IDENTIFIER	KBCIX100XAC555						
IC IDENTIFIER	1943A-IX100Xb						
Model(s)	IX100XAC555						
Serial No.	510495001-U5103	3-0025	lde	entical Prototype			
Tx Frequency Range(s)	1851.25 - 1908.75	5 MHz	824	.70 - 848.31 MHz			
Mode(s) of Operation	PCS CDMA		C	Cellular CDMA			
Max. RF Output Power(s) Tested	23.0 dBm	Conducted		PCS CDMA			
max. At Output Fower(5) resteu	23.0 dBm	Conducted		Cellular CDMA			
Antenna Type(s) Tested	Nearson	Nearson 1/4-Wave		P/N: 47-0180-003			
Battery Type(s) Tested	Lithium-ion	7.4V,	3.0 Ah	P/N: 46-0136-001			
Body-worn Accessories Tested	Nylon Carry Case		P/N: 54-0644-001				
222, 11011171000001100 100100	Ear-Micropho	ne	N	Model: JABRA			

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System with planar phantom

DASY4 SAR Measurement System with SAM phantom

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

4.0 MEASUREMENT SUMMARY

	BODY SAR MEASUREMENT RESULTS - PCS CDMA														
Freq. (MHz	Chan.	Test Mode	Cond. Power Before Test (dBm)	Battery Type	Body-Worn Accessories	DUT Position Relative to Front of Carry Case	DUT Position Relative to Planar Phantom	Separ. Distance to Planar Phantom (cm)	Measured SAR 1g (W/kg)		SAR 1g		Power Drift During Test (dB)	S	Scaled SAR 1g W/kg)
1880.00	600	PCS CDMA	23.0	Li-ion			Back Side facing	0.0	Р	0.223	-0.126	Р	0.230		
							Phantom		S	0.223		S	0.230		
1800.00	600	PCS CDMA	23.0	Li-ion			Right Side facing Phantom	0.0	(0.904	-0.0100		0.906		
1851.25	25	PCS CDMA	23.0	Li-ion			Right Side facing Phantom	0.0	1.01		-0.0193		1.01		
1908.75	1175	PCS CDMA	23.0	Li-ion			Right Side facing Phantom	0.0	(0.767	-0.0113		0.769		
1880.00	600	PCS CDMA	23.0	Li-ion	Carry Case Ear-Mic	Front Side facing Front of Case	Right Side facing Phantom	0.0	(0.521	-0.207		0.546		
1880.00	600	PCS CDMA	23.0	Li-ion	Carry Case Ear-Mic	Back Side facing Front of Case	Right Side facing Phantom	0.0	0.451		-0.0780		0.459		
1880.00	600	PCS CDMA	23.0	Li-ion	Carry Case Ear-Mic	Front Side facing Front of Case	Front Side facing Phantom	0.0	0.109		-0.0384		0.110		
1880.00	600	PCS CDMA	23.0	Li-ion	Carry Case	Back Side	Back Side	0.0	Р	0.112	-0.149	Р	0.116		
1000.00	600	FC9 CDIVIA	23.0	LI-IOI I	Ear-Mic	facing Front of Case	facing Phantom	0.0	S	0.113	-0.149	S	0.117		

ANSI / IEEE C95.1 1999 - SAFETY LIMIT BODY: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population

Test Date(s)	March 5, 2004			Relative Humidity	30	%
Measured Fluid Type	1880 MHz Body			Atmospheric Pressure	101.5	kPa
Dielectric Constant	IEEE Target		Measured	Ambient Temperature	24.8	°C
ϵ_{r}	53.3 ±5% 52.2		52.2	Fluid Temperature	21.7	°C
Conductivity	IEEE Target N		Measured	Fluid Depth	≥ 15	cm
σ (mho/m)	1.52	±5%	1.59	ρ (Kg/m³)	1000	

Note(s):

- The measurement results were obtained with the DUT tested in the conditions described in this
 report. Detailed measurement data and plots showing the maximum SAR location of the DUT are
 reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. Secondary peak SAR levels were reported within 2 dB of the primary (P = Primary, S = Secondary).
- 4. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above test data table.
- 5. The SAR evaluations were performed within 24 hours of the system performance check.

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

MEASUREMENT SUMMARY (Cont.)

	BODY SAR MEASUREMENT RESULTS - CELLULAR CDMA										
Freq. (MHz	Chan.	Test Mode	Cond. Power Before Test (dBm)	Battery Type	Body-Worn Accessories		DUT Position Relative to Planar Phantom	Separ. Distance to Planar Phantom (cm)	Measured SAR 1g (W/kg)	SAR Drift During Test (dB)	Scaled SAR 1g (W/kg)
835.89	363	Cellular CDMA	23.0	Li-ion			Back Side facing Phantom	0.0	0.415	0.00	0.415
835.89	363	Cellular CDMA	23.0	Li-ion			Right Side facing Phantom	0.0	0.992	-0.0500	1.00
824.70	1013	Cellular CDMA	23.0	Li-ion			Right Side facing Phantom	0.0	0.788	-0.0100	0.790
848.31	777	Cellular CDMA	23.0	Li-ion			Right Side facing Phantom	0.0	0.913	-0.0300	0.919
835.89	363	Cellular CDMA	23.0	Li-ion	Carry Case Ear-Mic	Front Side facing Front of Case	Right Side facing Phantom	0.0	0.634	-0.100	0.649
835.89	363	Cellular CDMA	23.0	Li-ion	Carry Case Ear-Mic	Back Side facing Front of Case	Right Side facing Phantom	0.0	0.532	-0.0869	0.543
835.89	363	Cellular CDMA	23.0	Li-ion	Carry Case Ear-Mic	Front Side facing Front of Case	Front Side facing Phantom	0.0	0.265	-0.0300	0.267
835.89	363	Cellular CDMA	23.0	Li-ion	Carry Case Ear-Mic	Back Side facing Front of Case	Back Side facing Phantom	0.0	0.349	-0.0400	0.352
	ANSI / IEEE C95.1 1999 - SAFETY LIMIT BODY: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population										
Test Date(s) March 8, 2004				Relative	Humidity		39		%		
Measu	Measured Fluid Type 835 MHz Body		ody	Atmospher	ic Pressure		103.4		kPa		
Diele	Dielectric Constant IEEE Target Measured		Measured	Ambient Temperature			23.9				
	ε _r		55.2	±5%	53.7	Fluid Temperature			22.4		°C
	onductivit	•	IEEE 1	arget	Measured	Fluid Depth			≥ 15		cm
σ (mho/m) 0.97		0.97	±5%	0.98	ρ (Κ	g/m³)		10	00		

Note(s):

- The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 -
- Secondary peak SAR levels were reported within 2 dB of the primary (P = Primary, S = Secondary). The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above test data
- The SAR evaluations were performed within 24 hours of the system performance check.

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

5.0 DETAILS OF SAR EVALUATION

The ITRONIX CORPORATION Model: IX100XAC555 Rugged Handheld PC FCC ID: KBCIX100XAC555 with internal Sierra Wireless AirCard 555/550 Dual-Band PCS/Cellular CDMA PCMCIA Modem and Nearson 1/4-Wave Helix Antenna was compliant for localized Specific Absorption Rate (Uncontrolled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix H.

Body SAR Configuration

- 1. The DUT was tested for body SAR (lap-held) with the back side (battery side) facing parallel to, and touching, the outer surface of the planar phantom.
- 2. The DUT was tested for body SAR (lap-held) with the right side (antenna side) facing parallel to, and touching, the outer surface of the planar phantom.
- 3. The DUT was tested for body-worn SAR with the shoulder-worn nylon carry case and ear-microphone accessories. The front side of the DUT (keypad/LCD side) was placed parallel to the outer surface of the planar phantom with the front side of the DUT facing the front of the carry case. The front of the carry case was touching the outer surface of the planar phantom.
- 4. The DUT was tested for body-worn SAR with the shoulder-worn nylon carry case and ear-microphone accessories. The back side of the DUT (battery side) was placed parallel to the outer surface of the planar phantom with the back side of the DUT facing the front of the carry case. The front of the carry case was touching the outer surface of the planar phantom.
- 5. The DUT was tested for body-worn SAR with the shoulder-worn nylon carry case and ear-microphone accessories. The right side of the DUT (antenna side) was placed parallel to the outer surface of the planar phantom with the front side of the DUT facing the front of the carry case. The right side of the carry case was touching the outer surface of the planar phantom.
- 6. The DUT was tested for body-worn SAR with the shoulder-worn nylon carry case and ear-microphone accessories. The right side of the DUT (antenna side) was placed parallel to the outer surface of the planar phantom with the back side of the DUT facing the front of the carry case. The left side of the carry case was touching the outer surface of the planar phantom.
- 7. Due to the dimensions of the DUT, a stack of low-density, low-loss dielectric foamed polystyrene was used in place of the device holder.
- 8. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures listed were consistent for all measurement periods.
- 9. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).

DUT Test Modes & Power Settings

- The conducted power levels of the DUT were measured prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046.
- 11. The power drifts measured by the DASY4 system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the test data tables (page 5-6).
- 12. The DUT was controlled in test mode via internal software with the DUT transmitting continuously in the "always up" CDMA power control mode with a modulated signal.
- 13. The DUT was tested with a fully charged battery for each test.

 Test Report S/N:
 021104-473bKBC

 Test Date(s):
 March 05 & 08, 2004

 Test Type:
 FCC/IC SAR Evaluation

DETAILS OF SAR EVALUATION (Cont.)

Back Side of DUT facing body - worst-case antenna configuration relative to left arm

Front Side of DUT facing body - worst-case antenna configuration relative to right arm

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away form the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix D). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5x5x7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7x7x7) to ensure complete capture of the peak spatial-average SAR.

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed at the planar section of the SAM phantom with an 1800MHz dipole and a 900MHz dipole (see Appendix C for system validation procedures). The fluid dielectric parameters were measured prior to the system performance check using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters). A forward power of 250mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ (see Appendix B for system performance check test plots).

	SYSTEM PERFORMANCE CHECK												
Test	Equiv. Tissue	SAR (W/	•	Dielectric Constant ε _r		Conductivity σ (mho/m)		ρ	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date		IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
03/05/04	1800MHz Brain	9.53 (±10%)	9.40 (-1.4%)	40.0 ±5%	40.0	1.40±5%	1.38	1000	23.2	21.6	≥ 15	35	101.9
03/08/04	900MHz Brain	2.70 (±10%)	2.64 (-2.2%)	41.5 ±5%	41.2	0.97±5%	0.99	1000	23.9	20.7	≥ 15	39	103.4

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

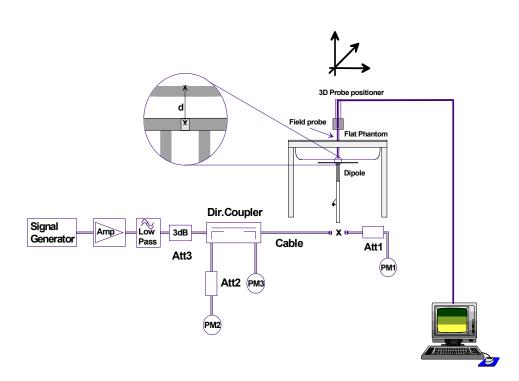


Figure 1. System Performance Check Setup Diagram

1800MHz Dipole Setup

900MHz Dipole Setup

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

8.0 SIMULATED EQUIVALENT TISSUES

The 1800MHz and 1880MHz simulated equivalent tissue mixtures consist of Glycol-monobutyl, water, and salt. The 835MHz and 900MHz simulated equivalent tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide was added and visual inspection was made to ensure air bubbles were not trapped during the mixing process. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

1800MHz & 1880MHz TISSUE MIXTURES						
INGREDIENT	1800 MHz Brain	1880 MHz Body				
INGREDIENT	System Performance Check	DUT Evaluation				
Water	54.83 %	69.85 %				
Glycol Monobutyl	44.86 %	29.89 %				
Salt	0.31 %	0.26 %				

835MHz & 900MHz TISSUE MIXTURES						
INGREDIENT	900 MHz Brain System Performance Check	835 MHz Body DUT Evaluation				
Water	40.71 %	53.79 %				
Sugar	56.63 %	45.13 %				
Salt	1.48 %	0.98 %				
HEC	0.99 %					
Bactericide	0.19 %	0.10 %				

9.0 SAR SAFETY LIMITS

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER: Stäubli Unimation Corp. Robot Model: RX60L

Repeatability: 0.02 mm

No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: AMD Athlon XP 2400+

Clock Speed: 2.0 GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

opassa apama so sommanas ama

DASY4 Measurement Server

Function: Real-time data evaluation for field measurements and surface detection

Hardware: PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections: COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model: ET3DV6 Serial No.: 1590

Construction: Triangular core fiber optic detection system

Frequency: 10 MHz to 6 GHz

Linearity: $\pm 0.2 \text{ dB } (30 \text{ MHz to } 3 \text{ GHz})$

Phantom(s)

Evaluation Phantom

Type: Planar Phantom
Shell Material: Fiberglass
Thickness: 2.0 ±0.1 mm
Volume: Approx. 72 liters

Validation Phantom

Type:SAM V4.0CShell Material:FiberglassThickness: $2.0 \pm 0.1 \text{ mm}$ Volume:Approx. 20 liters

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

11.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g. glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to >6 GHz; Linearity: ±0.2 dB

(30 MHz to 3 GHz)

Directivity: ± 0.2 dB in brain tissue (rotation around probe axis)

 ± 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: 5 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB

Surface Detection: ± 0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of portable devices

ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix F for specifications of the SAM phantom V4.0C).

SAM Phantom

13.0 PLANAR PHANTOM

The planar phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table (see Appendix G for dimensions and specifications of the planar phantom).

Planar Phantom

14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Test Report S/N: 021104-473bKBC
Test Date(s): March 05 & 08, 2004
Test Type: FCC/IC SAR Evaluation

15.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	CALIBRATION DATE
Schmid & Partner DASY4 System	-	-
DASY4 Measurement Server	1078	N/A
-Robot	599396-01	N/A
DAE3	353	Dec 2003
DAE3	370	May 2003
-ET3DV6 E-Field Probe	1387	Mar 2004
-ET3DV6 E-Field Probe	1590	May 2003
-300MHz Validation Dipole	135	Oct 2003
-450MHz Validation Dipole	136	Nov 2003
-900MHz Validation Dipole	054	June 2003
-1800MHz Validation Dipole	247	June 2003
-2450MHz Validation Dipole	150	Sept 2003
-SAM Phantom V4.0C	1033	N/A
-Barski Planar Phantom	03-01	N/A
-Plexiglas Planar Phantom	161	N/A
-Validation Planar Phantom	137	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2003
Gigatronics 8652A Power Meter	1835267	April 2003
Gigatronics 80701A Power Sensor	1833535	April 2003
Gigatronics 80701A Power Sensor	1833542	April 2003
Gigatronics 80701A Power Sensor	1834350	April 2003
HP E4408B Spectrum Analyzer	US39240170	Dec 2003
HP 8594E Spectrum Analyzer	3543A02721	April 2003
HP 8753E Network Analyzer	US38433013	April 2003
HP 8648D Signal Generator	3847A00611	April 2003
Amplifier Research 5S1G4 Power Amplifier	26235	N/A

Test Report S/N: 021104-473bKBC
Test Date(s): March 05 & 08, 2004
Test Type: FCC/IC SAR Evaluation

16.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	V _i Or V _{eff}
Measurement System						
Probe calibration	± 4.8	Normal	1	1	± 4.8	∞
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	√3	1	± 0.5	∞
Integration time	± 1.4	Rectangular	√3	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	∞
Test Sample Related						
Device positioning	± 6.0	Normal	√3	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	√3	1	± 5.9	8
Power drift	± 5.0	Rectangular	√3		± 2.9	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Combined Standard Uncertainty					± 13.3	
Expanded Uncertainty (k=2)					± 26.6	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

MEASUREMENT UNCERTAINTIES (Cont.)

Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	v _i or v _{eff}
Measurement System						
Probe calibration	± 4.8	Normal	1	1	± 4.8	∞
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	8
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	8
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	8
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	8
Readout electronics	± 1.0	Normal	1	1	± 1.0	8
Response time	± 0.8	Rectangular	√3	1	± 0.5	8
Integration time	± 1.4	Rectangular	√3	1	± 0.8	8
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	8
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	∞
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	√3	1	± 1.2	8
Input Power	± 4.7	Rectangular	√3	1	± 2.7	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Combined Standard Uncertainty					100	
Expanded Uncertainty (k=2)					± 9.9 ± 19.8	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

17.0 REFERENCES

- [1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.
- [3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.
- [5] IEEE Standard 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX A - SAR MEASUREMENT DATA

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body SAR (Lap-held) - PCS Band - CDMA Mode - Back Side of DUT

Date Tested: 03/05/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

Ambient Temp: 24.8 °C; Fluid Temp: 21.7 °C; Barometric Pressure: 101.5 kPa; Humidity: 30%

7.4V, 3.0Ah Li-ion Battery Pack Communication System: PCS CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 1880.00 MHz; Channel 600; Duty Cycle: 1:1 Medium: M1880 (σ = 1.59 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(5, 5, 5); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

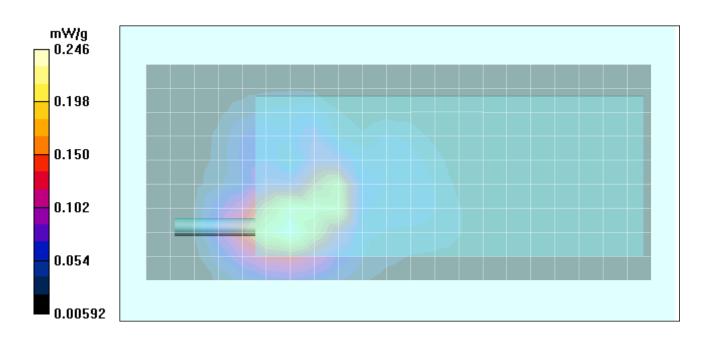
Body SAR - PCS CDMA - Back Side of DUT (Battery Side) - 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz Area Scan (10x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - PCS CDMA - Back Side of DUT (Battery Side) - 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.335 W/kg

SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.137 mW/g

Reference Value = 11.9 V/m Power Drift = -0.126 dB


Body SAR - PCS CDMA - Back Side of DUT (Battery Side) - 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz

Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.331 W/kg

SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.132 mW/g

Reference Value = 11.9 V/m Power Drift = -0.126 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body SAR (Lap-held) - PCS Band - CDMA Mode - Right Side of DUT (Antenna Side)

Date Tested: 03/05/04

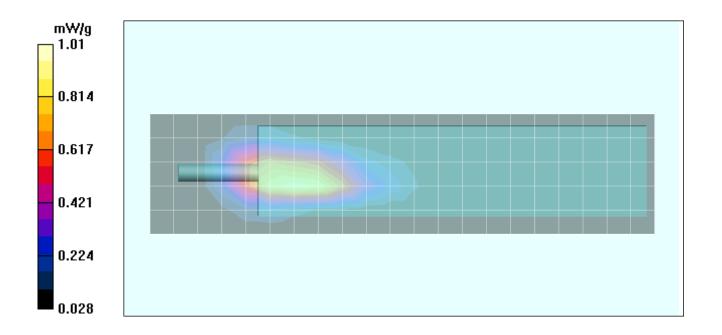
DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

Ambient Temp: 24.8 °C; Fluid Temp: 21.7 °C; Barometric Pressure: 101.5 kPa; Humidity: 30%

7.4V, 3.0Ah Li-ion Battery Pack Communication System: PCS CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 1880.00 MHz; Channel 600; Duty Cycle: 1:1 Medium: M1880 (σ = 1.59 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(5, 5, 5); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94


Body SAR - PCS CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz Area Scan (6x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - PCS CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.904 mW/g; SAR(10 g) = 0.521 mW/g

Reference Value = 26.1 V/m Power Drift = -0.0100 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body SAR (Lap-held) - PCS Band - CDMA Mode - Right Side of DUT (Antenna Side)

Date Tested: 03/05/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

Ambient Temp: 24.8 °C; Fluid Temp: 21.7 °C; Barometric Pressure: 101.5 kPa; Humidity: 30%

7.4V, 3.0Ah Li-ion Battery Pack Communication System: PCS CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 1851.25 MHz; Channel 25; Duty Cycle: 1:1 Medium: M1880 (σ = 1.59 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³)

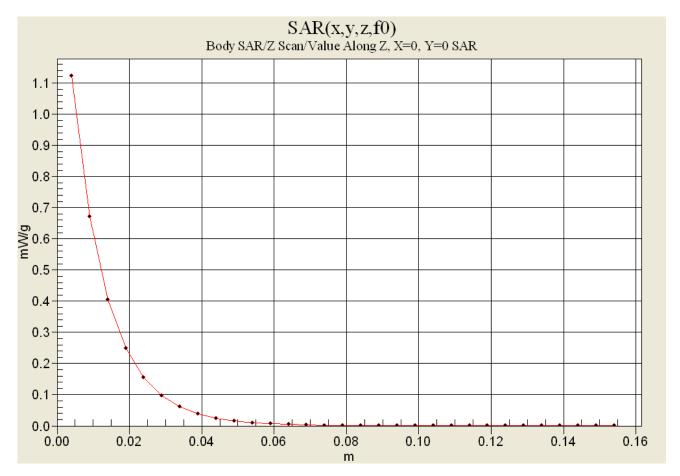
- Probe: ET3DV6 SN1590; ConvF(5, 5, 5); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Body SAR - PCS CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - Low Channel - 1851.25 MHz Area Scan (6x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - PCS CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - Low Channel - 1851.25 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.584 mW/g


Reference Value = 27.5 V/m Power Drift = -0.0193 dB

Test Report S/N: 021104-473bKBC
Test Date(s): March 05 & 08, 2004
Test Type: FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body SAR (Lap-held) - PCS Band - CDMA Mode - Right Side of DUT (Antenna Side)

Date Tested: 03/05/04

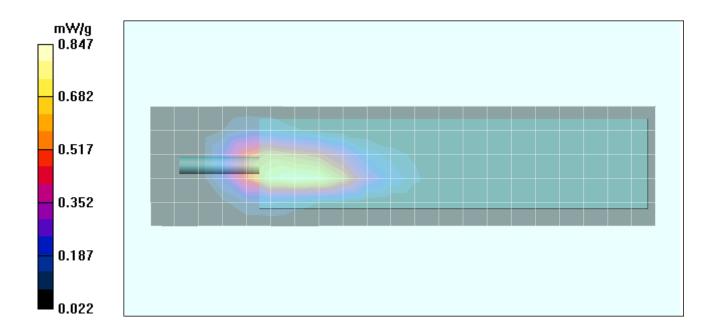
DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

Ambient Temp: 24.8 °C; Fluid Temp: 21.7 °C; Barometric Pressure: 101.5 kPa; Humidity: 30%

7.4V, 3.0Ah Li-ion Battery Pack Communication System: PCS CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 1908.75 MHz; Channel 1175; Duty Cycle: 1:1 Medium: M1880 (σ = 1.59 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(5, 5, 5); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94


Body SAR - PCS CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - High Channel - 1908.75 MHz Area Scan (6x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - PCS CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - High Channel - 1908.75 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.767 mW/g; SAR(10 g) = 0.436 mW/g

Reference Value = 24.4 V/m Power Drift = -0.0113 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - PCS Band - CDMA Mode - Right Side of DUT (Antenna Side) - with Carry Case

Date Tested: 03/05/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

Body-Worn Accessories: Nylon Carry-Case (P/N: 54-0644-001), Ear-Microphone (Model: JABRA)

Ambient Temp: 24.8 °C; Fluid Temp: 21.7 °C; Barometric Pressure: 101.5 kPa; Humidity: 30%

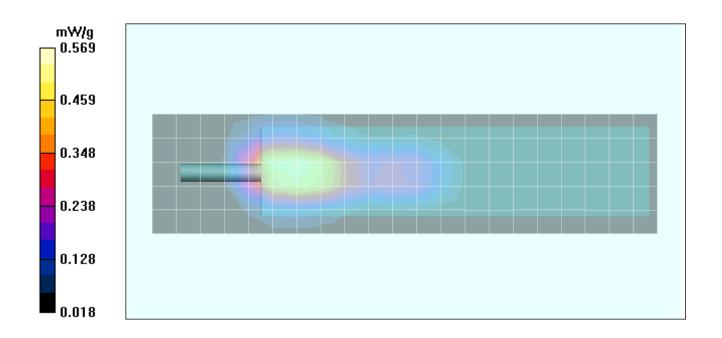
7.4V, 3.0Ah Li-ion Battery Pack Communication System: PCS CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 1880.00 MHz; Channel 600; Duty Cycle: 1:1 Medium: M1880 (σ = 1.59 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(5, 5, 5); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Body-Worn - PCS CDMA - Right Side of DUT (Antenna Side) - front side of DUT facing front of Carry Case 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz

Area Scan (6x22x1): Measurement grid: dx=15mm, dy=15mm


Body-Worn - PCS CDMA - Right Side of DUT (Antenna Side) - front side of DUT facing front of Carry Case 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.845 W/kg

SAR(1 g) = 0.521 mW/g; SAR(10 g) = 0.315 mW/g

Reference Value = 19.8 V/m Power Drift = -0.207 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - PCS Band - CDMA Mode - Right Side of DUT (Antenna Side) - with Carry Case

Date Tested: 03/05/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

Body-Worn Accessories: Nylon Carry-Case (P/N: 54-0644-001), Ear-Microphone (Model: JABRA)

Ambient Temp: 24.8 °C; Fluid Temp: 21.7 °C; Barometric Pressure: 101.5 kPa; Humidity: 30%

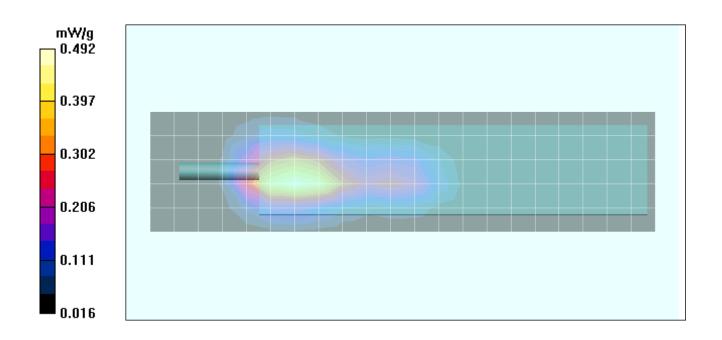
7.4V, 3.0Ah Li-ion Battery Pack Communication System: PCS CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 1880.00 MHz; Channel 600; Duty Cycle: 1:1 Medium: M1880 (σ = 1.59 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(5, 5, 5); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Body-Worn - PCS CDMA - Right Side of DUT (Antenna Side) - back side of DUT facing front of Carry Case 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz

Area Scan (6x22x1): Measurement grid: dx=15mm, dy=15mm


Body-Worn - PCS CDMA - Right Side of DUT (Antenna Side) - back side of DUT facing front of Carry Case 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.726 W/kg

SAR(1 g) = 0.451 mW/g; SAR(10 g) = 0.271 mW/g

Reference Value = 17.1 V/m Power Drift = -0.0780 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - PCS Band - CDMA Mode - Front Side of DUT - with Carry Case

Date Tested: 03/05/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

Body-Worn Accessories: Nylon Carry-Case (P/N: 54-0644-001), Ear-Microphone (Model: JABRA)

Ambient Temp: 24.8 °C; Fluid Temp: 21.7 °C; Barometric Pressure: 101.5 kPa; Humidity: 30%

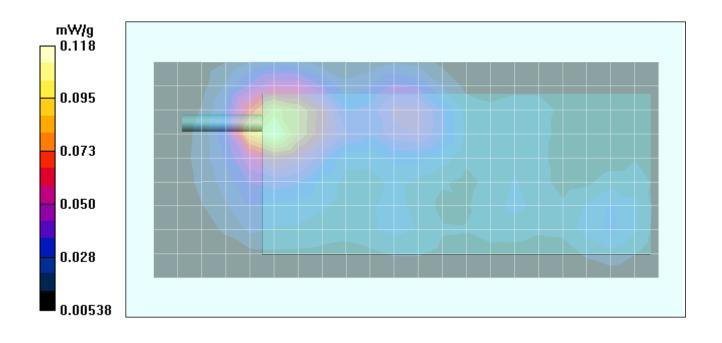
7.4V, 3.0Ah Li-ion Battery Pack Communication System: PCS CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 1880.00 MHz; Channel 600; Duty Cycle: 1:1 Medium: M1880 (σ = 1.59 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(5, 5, 5); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Body-Worn - PCS CDMA - Front Side of DUT (LCD/Keypad Side) facing front of Carry Case & Planar Phantom 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz

Area Scan (10x22x1): Measurement grid: dx=15mm, dy=15mm


Body-Worn - PCS CDMA - Front Side of DUT (LCD/Keypad Side) facing front of Carry Case & Planar Phantom 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.183 W/kg

SAR(1 g) = 0.109 mW/g; SAR(10 g) = 0.066 mW/g

Reference Value = 9.38 V/m Power Drift = -0.0384 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - PCS Band - CDMA Mode - Back Side of DUT - with Carry Case

Date Tested: 03/05/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025 Body-Worn Accessories: Nylon Carry-Case (P/N: 54-0644-001), Ear-Microphone (Model: JABRA)

Ambient Temp: 24.8 °C; Fluid Temp: 21.7 °C; Barometric Pressure: 101.5 kPa; Humidity: 30%

7.4V, 3.0Ah Li-ion Battery Pack Communication System: PCS CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 1880.00 MHz; Channel 600; Duty Cycle: 1:1 Medium: M1880 (σ = 1.59 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(5, 5, 5); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Body-Worn - PCS CDMA - Back Side of DUT (Battery Side) facing front of Carry Case & Planar Phantom 0.0 cm Separation Distance - Mid Channel - 1880.00 MHz

Area Scan (10x22x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - PCS CDMA - Back Side of DUT (Battery Side) facing front of Carry Case & Planar Phantom

0.0 cm Separation Distance - Mid Channel - 1880.00 MHz

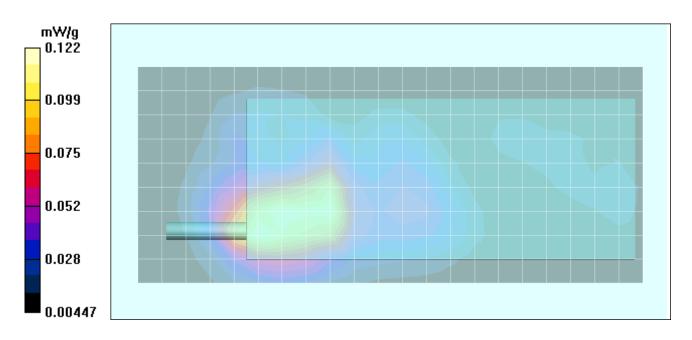
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.170 W/kg

SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.073 mW/g

Reference Value = 9.49 V/m Power Drift = -0.149 dB

Body-Worn - PCS CDMA - Back Side of DUT (Battery Side) facing front of Carry Case & Planar Phantom


0.0 cm Separation Distance - Mid Channel - 1880.00 MHz

Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.167 W/kg

SAR(1 g) = 0.113 mW/g; SAR(10 g) = 0.073 mW/g

Reference Value = 9.49 V/m Power Drift = -0.149 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body SAR (Lap-held) - Cellular Band - CDMA Mode - Back Side of DUT

Date Tested: 03/08/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

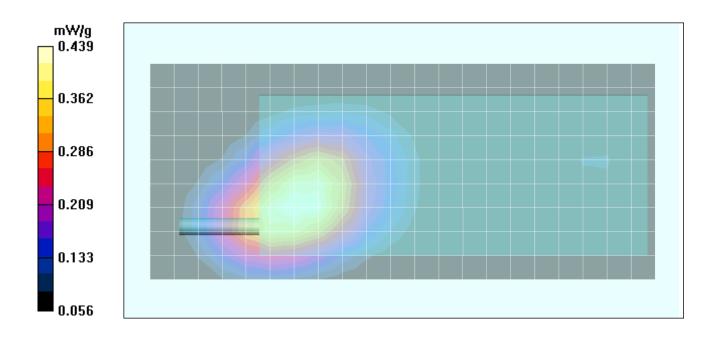
Ambient Temp: 23.9 °C; Fluid Temp: 22.4 °C; Barometric Pressure: 103.4 kPa; Humidity: 39%

7.4V, 3.0Ah Li-ion Battery Pack

Communication System: Cellular CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 835.89 MHz; Channel 363; Duty Cycle: 1:1 Medium: M835 (σ = 0.98 mho/m; ϵ_r = 53.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.8, 6.8, 6.8); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94


Body SAR - Cellular CDMA - Back Side of DUT (Battery Side) - 0.0 cm Separation Distance - Mid Channel - 835.89 MHz Area Scan (10x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Cellular CDMA - Back Side of DUT (Battery Side) - 0.0 cm Separation Distance - Mid Channel - 835.89 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.549 W/kg

SAR(1 g) = 0.415 mW/g; SAR(10 g) = 0.304 mW/g

Reference Value = 20.5 V/m Power Drift = 0.00 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body SAR (Lap-held) - Cellular Band - CDMA Mode - Right Side of DUT (Antenna Side)

Date Tested: 03/08/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

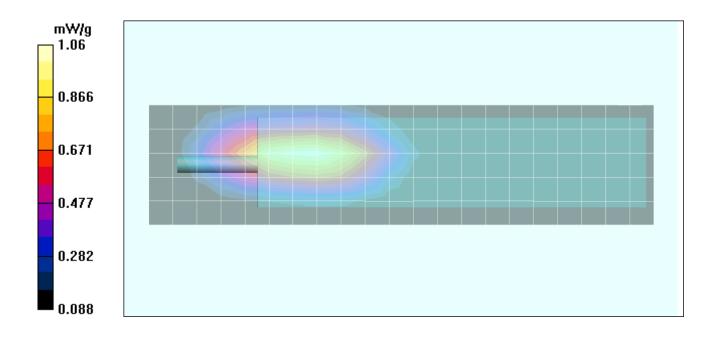
Ambient Temp: 23.9 °C; Fluid Temp: 22.4 °C; Barometric Pressure: 103.4 kPa; Humidity: 39%

7.4V, 3.0Ah Li-ion Battery Pack

Communication System: Cellular CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 835.89 MHz; Channel 363; Duty Cycle: 1:1 Medium: M835 (σ = 0.98 mho/m; ϵ_r = 53.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.8, 6.8, 6.8); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

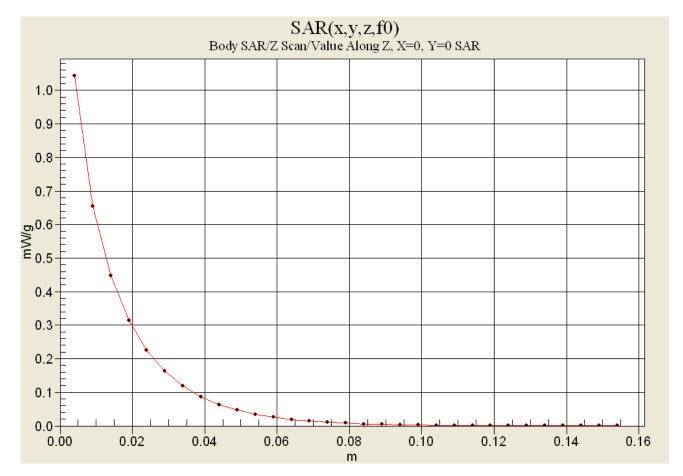

Body SAR - Cellular CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - Mid Channel - 835.89 MHz Area Scan (6x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Cellular CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - Mid Channel - 835.89 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 0.992 mW/g; SAR(10 g) = 0.636 mW/g

Reference Value = 30.9 V/m Power Drift = -0.0500 dB



 Test Report S/N:
 021104-473bKBC

 Test Date(s):
 March 05 & 08, 2004

 Test Type:
 FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body SAR (Lap-held) - Cellular Band - CDMA Mode - Right Side of DUT (Antenna Side)

Date Tested: 03/08/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

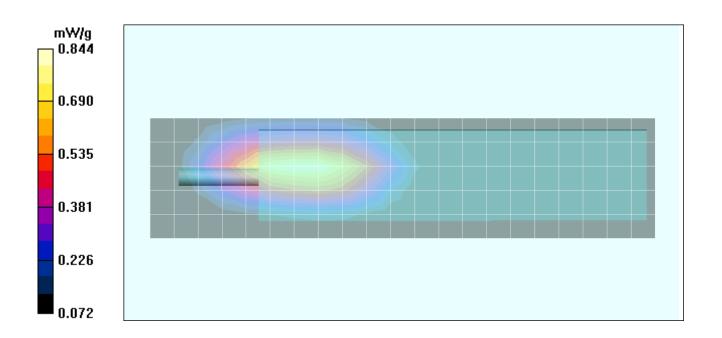
Ambient Temp: 23.9 °C; Fluid Temp: 22.4 °C; Barometric Pressure: 103.4 kPa; Humidity: 39%

7.4V, 3.0Ah Li-ion Battery Pack

Communication System: Cellular CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 824.70 MHz; Channel 1013; Duty Cycle: 1:1 Medium: M835 (σ = 0.98 mho/m; ε_r = 53.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.8, 6.8, 6.8); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94


Body SAR - Cellular CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - Low Channel - 824.70 MHz Area Scan (6x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Cellular CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - Low Channel - 824.70 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.788 mW/g; SAR(10 g) = 0.506 mW/g

Reference Value = 28 V/m Power Drift = -0.0100 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body SAR (Lap-held) - Cellular Band - CDMA Mode - Right Side of DUT (Antenna Side)

Date Tested: 03/08/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

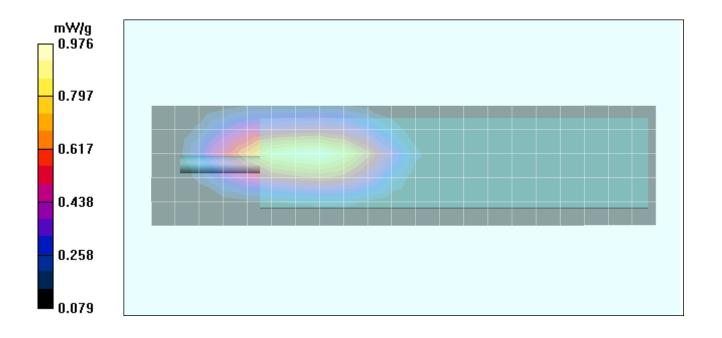
Ambient Temp: 23.9 °C; Fluid Temp: 22.4 °C; Barometric Pressure: 103.4 kPa; Humidity: 39%

7.4V, 3.0Ah Li-ion Battery Pack

Communication System: Cellular CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 848.31 MHz; Channel 777; Duty Cycle: 1:1 Medium: M835 (σ = 0.98 mho/m; ε_r = 53.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.8, 6.8, 6.8); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94


Body SAR - Cellular CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - High Channel - 848.31 MHz Area Scan (6x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Cellular CDMA - Right Side of DUT (Antenna Side) - 0.0 cm Separation Distance - High Channel - 848.31 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 0.913 mW/g; SAR(10 g) = 0.584 mW/g

Reference Value = 29.7 V/m Power Drift = -0.0300 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - Cellular Band - CDMA Mode - Right Side of DUT (Antenna Side) - with Carry Case

Date Tested: 03/08/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

Body-Worn Accessories: Nylon Carry-Case (P/N: 54-0644-001), Ear-Microphone (Model: JABRA)

Ambient Temp: 23.9 °C; Fluid Temp: 22.4 °C; Barometric Pressure: 103.4 kPa; Humidity: 39%

7.4V, 3.0Ah Li-ion Battery Pack

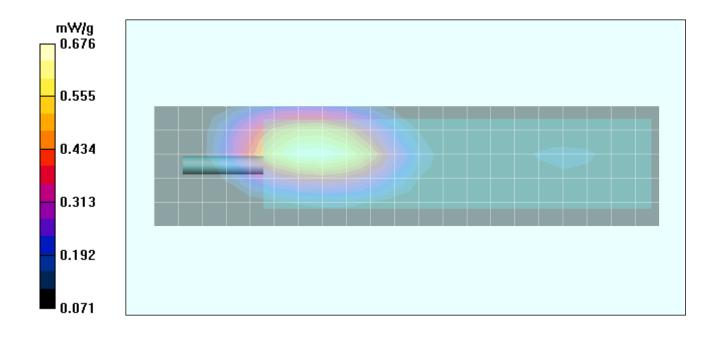
Communication System: Cellular CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 835.89 MHz; Channel 363; Duty Cycle: 1:1 Medium: M835 (σ = 0.98 mho/m; ε_r = 53.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.8, 6.8, 6.8); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Body-Worn - Cellular CDMA - Right Side of DUT (Antenna Side) - front side of DUT facing front of Carry Case 0.0 cm Separation Distance - Mid Channel - 835.89 MHz

Area Scan (6x22x1): Measurement grid: dx=15mm, dy=15mm


Body-Worn - Cellular CDMA - Right Side of DUT (Antenna Side) - front side of DUT facing front of Carry Case 0.0 cm Separation Distance - Mid Channel - 835.89 MHz

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.875 W/kg

SAR(1 g) = 0.634 mW/g; SAR(10 g) = 0.435 mW/g

Reference Value = 22.7 V/m Power Drift = -0.100 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - Cellular Band - CDMA Mode - Right Side of DUT (Antenna Side) - with Carry Case

Date Tested: 03/08/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

Body-Worn Accessories: Nylon Carry-Case (P/N: 54-0644-001), Ear-Microphone (Model: JABRA)

Ambient Temp: 23.9 °C; Fluid Temp: 22.4 °C; Barometric Pressure: 103.4 kPa; Humidity: 39%

7.4V, 3.0Ah Li-ion Battery Pack

Communication System: Cellular CDMA RF Output Power: 23.0 dBm (Conducted)

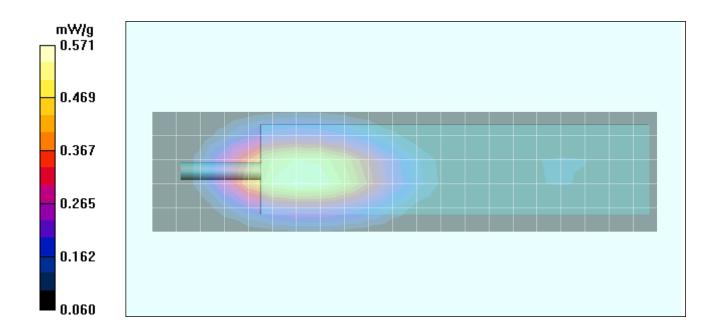
Frequency: 835.89 MHz; Channel 363; Duty Cycle: 1:1 Medium: M835 (σ = 0.98 mho/m; ϵ_r = 53.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.8, 6.8, 6.8); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Body-Worn - Cellular CDMA - Right Side of DUT (Antenna Side) - back side of DUT facing front of Carry Case 0.0 cm Separation Distance - Mid Channel - 835.89 MHz

Area Scan (6x22x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - Cellular CDMA - Right Side of DUT (Antenna Side) - back side of DUT facing front of Carry Case


0.0 cm Separation Distance - Mid Channel - 835.89 MHz

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.734 W/kg

SAR(1 g) = 0.532 mW/g; SAR(10 g) = 0.368 mW/g

Reference Value = 23.7 V/m Power Drift = -0.0869 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - Cellular Band - CDMA Mode - Front Side of DUT - with Carry Case

Date Tested: 03/08/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

Body-Worn Accessories: Nylon Carry-Case (P/N: 54-0644-001), Ear-Microphone (Model: JABRA)

Ambient Temp: 23.9 °C; Fluid Temp: 22.4 °C; Barometric Pressure: 103.4 kPa; Humidity: 39%

7.4V, 3.0Ah Li-ion Battery Pack

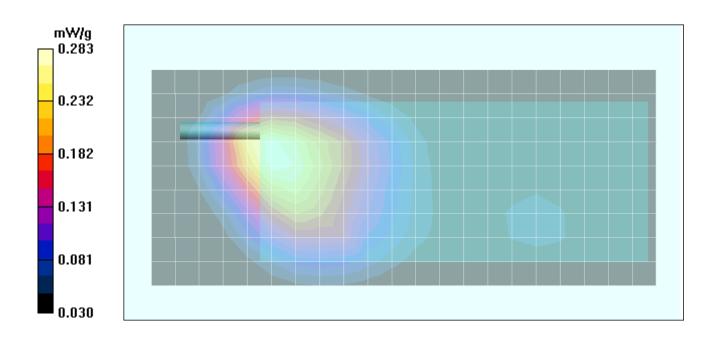
Communication System: Cellular CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 835.89 MHz; Channel 363; Duty Cycle: 1:1 Medium: M835 (σ = 0.98 mho/m; ε_r = 53.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.8, 6.8, 6.8); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Body-Worn - Cellular CDMA - Front Side of DUT (LCD/Keypad Side) facing front of Carry Case & Planar Phantom 0.0 cm Separation Distance - Mid Channel - 835.89 MHz

Area Scan (10x22x1): Measurement grid: dx=15mm, dy=15mm


Body-Worn - Cellular CDMA - Front Side of DUT (LCD/Keypad Side) facing front of Carry Case & Planar Phantom

0.0 cm Separation Distance - Mid Channel - 835.89 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.353 W/kg

SAR(1 g) = 0.265 mW/g; SAR(10 g) = 0.190 mW/g

Reference Value = 16.5 V/m Power Drift = -0.0300 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - Cellular Band - CDMA Mode - Back Side of DUT - with Carry Case

Date Tested: 03/08/04

DUT: Itronix Model: IX100X; Type: Handheld PC with AirCard 555/550 Dual-Band CDMA Modem; Serial: 510495001-U5103-0025

Body-Worn Accessories: Nylon Carry-Case (P/N: 54-0644-001), Ear-Microphone (Model: JABRA)

Ambient Temp: 23.9 °C; Fluid Temp: 22.4 °C; Barometric Pressure: 103.4 kPa; Humidity: 39%

7.4V, 3.0Ah Li-ion Battery Pack

Communication System: Cellular CDMA RF Output Power: 23.0 dBm (Conducted)

Frequency: 835.89 MHz; Channel 363; Duty Cycle: 1:1 Medium: M835 (σ = 0.98 mho/m; ϵ_r = 53.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.8, 6.8, 6.8); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))

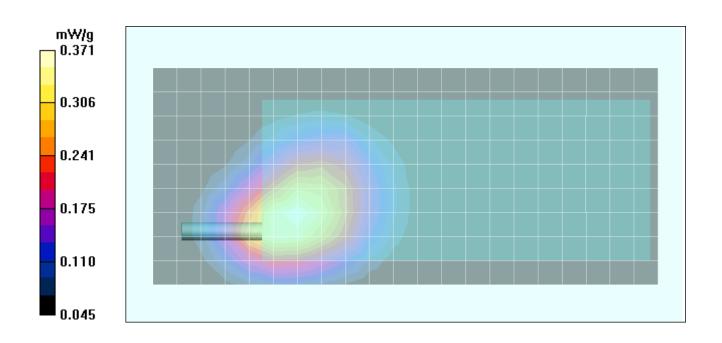
Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Body-Worn - Cellular CDMA - Back Side of DUT (Battery Side) facing front of Carry Case & Planar Phantom 0.0 cm Separation Distance - Mid Channel - 835.89 MHz

Area Scan (10x22x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - Cellular CDMA - Back Side of DUT (Battery Side) facing front of Carry Case & Planar Phantom


0.0 cm Separation Distance - Mid Channel - 835.89 MHz

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.462 W/kg

SAR(1 g) = 0.349 mW/g; SAR(10 g) = 0.251 mW/g

Reference Value = 19.5 V/m Power Drift = -0.0400 dB

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

System Performance Check - 1800 MHz Dipole

Date Tested: 03/05/04

DUT: Dipole 1800 MHz; Model: D1800V2; Type: System Performance Check; Serial: 247

Ambient Temp: 23.2 °C; Fluid Temp: 21.6 °C; Barometric Pressure: 101.9 kPa; Humidity: 35%

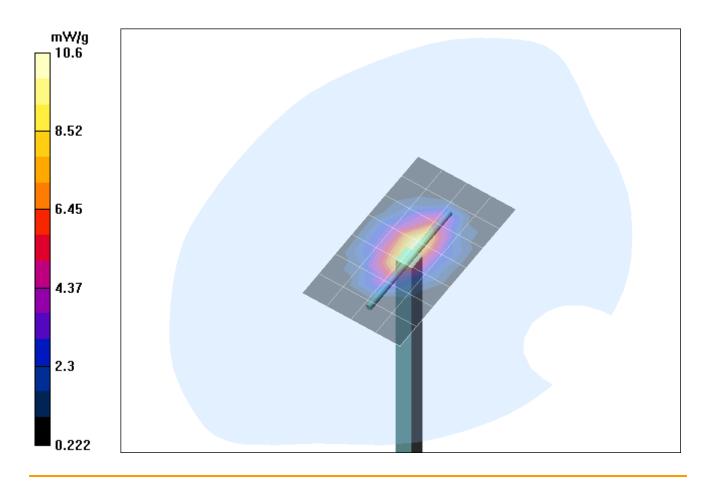
Communication System: CW Forward Conducted Power: 250mW Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL1800 (σ = 1.38 mho/m; ε_r = 40.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(5.5, 5.5, 5.5); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

1800 MHz System Performance Check/Area Scan (5x8x1):

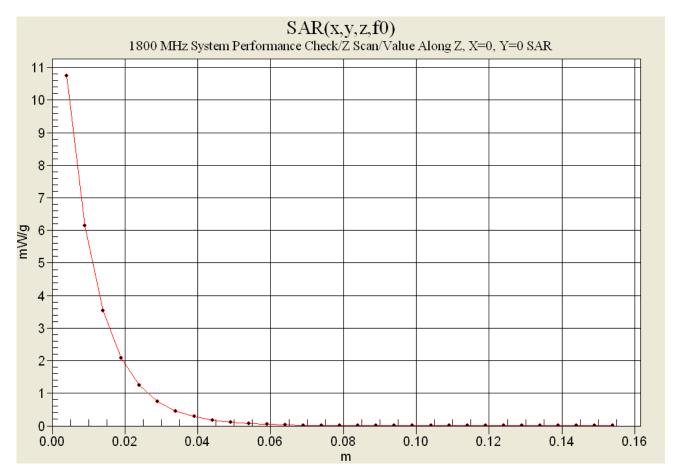
Measurement grid: dx=15mm, dy=15mm


1800 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 9.40 mW/g; SAR(10 g) = 5.03 mW/g


Reference Value = 92 V/m Power Drift = -0.0 dB

Test Report S/N: 021104-473bKBC
Test Date(s): March 05 & 08, 2004
Test Type: FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

System Performance Check - 900 MHz Dipole

Date Tested: 03/08/04

DUT: Dipole 900 MHz; Model: D900V2; Type: System Performance Check; Serial: 054

Ambient Temp: 23.9 °C; Fluid Temp: 20.7 °C; Barometric Pressure: 103.4 kPa; Humidity: 39%

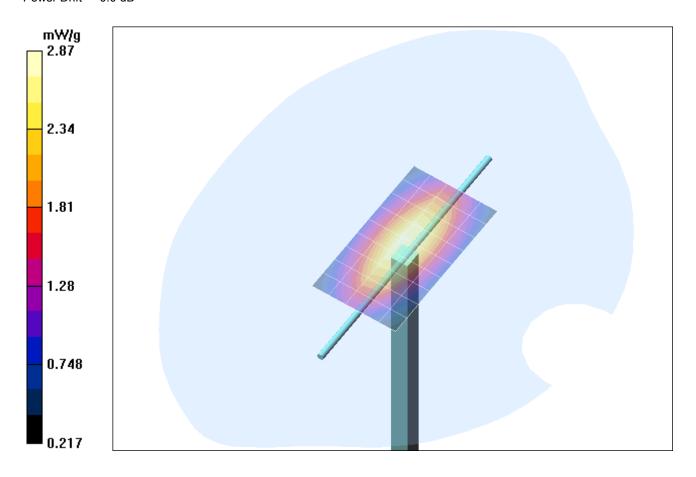
Communication System: CW Forward Conducted Power: 250mW Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL900 (σ = 0.99 mho/m; $ε_r$ = 41.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(7, 7, 7); Calibrated: 15/05/2003
 Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

900 MHz System Performance Check/Area Scan (6x10x1):

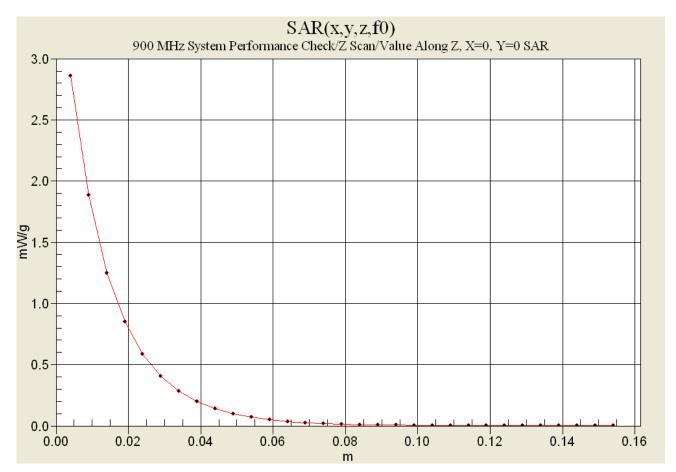
Measurement grid: dx=10mm, dy=10mm


900 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 3.96 W/kg

SAR(1 g) = 2.64 mW/g; SAR(10 g) = 1.69 mW/g


Reference Value = 55.8 V/m Power Drift = -0.0 dB

Test Report S/N: 021104-473bKBC
Test Date(s): March 05 & 08, 2004
Test Type: FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX C - SYSTEM VALIDATION

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celitech Labs

Object(s)	D900V2 - SN	:054	
Calibration procedure(s)	QA CAL-05 w Calibration pr	2 ocedure for dipole validation kits	
Calibration date:	June 3, 2003		
Condition of the calibrated item	In Tolerance	according to the specific calibration	on document)
This calibration statement docum 17025 international standard. All calibrations have been condu Calibration Equipment used (M&	cted in the closed laborat	ory facility: environment temperature 22 +/- 2 degre	
17025 international standard. All calibrations have been condu Calibration Equipment used (M&	cted in the closed laborat	ory facility: environment temperature 22 +/- 2 degre	es Celsius and humidity < 75%.
I 7025 international standard. All calibrations have been condu Calibration Equipment used (M&	cted in the closed laborat	ory facility: environment temperature 22 +/- 2 degre Cal Date (Calibrated by, Certificate No.)	es Celsius and humidity < 75%. Scheduled Calibration
17025 international standard. All calibrations have been condu Calibration Equipment used (M& Model Type RF generator R&S SML-03	cted in the closed laborat TE critical for calibration) ID#	ory facility: environment temperature 22 +/- 2 degre	es Celsius and humidity < 75%.
17025 international standard. All calibrations have been condu Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A	cted in the closed laborat TE critical for calibration) ID # 100698	ory facility: environment temperature 22 +/- 2 degre Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389)	es Celsius and humidity < 75%. Scheduled Calibration In house check: Mar-05
17025 international standard. All calibrations have been condu Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A	cted in the closed laborat TE critical for calibration) ID # 100698 MY41092317	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018)	es Celsius and humidity < 75%. Scheduled Calibration In house check: Mar-05 Oct-04
17025 international standard. All calibrations have been condu Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A Power meter EPM E442	TE critical for calibration) ID # 100698 MY41092317 US37292783	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236)	Scheduled Calibration In house check: Mar-05 Oct-04 Oct-03
17025 international standard. All calibrations have been condu Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A Power meter EPM E442	ID # 100698 MY41092317 US37292783 GB37480704	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236)	Scheduled Calibration In house check: Mar-05 Oct-04 Oct-03 Oct-03
17025 international standard. All calibrations have been condu	TE critical for calibration) ID # 100698 MY41092317 US37292783 GB37480704 US37390585	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101)	Scheduled Calibration In house check: Mar-05 Oct-04 Oct-03 Oct-03 In house check: Oct 03

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Date issued: June 3, 2003

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D900V2

Serial: 054

Manufactured: August 25, 1999 Calibrated: June 3, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 900 MHz:

Relative Dielectricity 42.1 $\pm 5\%$ Conductivity 0.95 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.6 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250 mW \pm 3 %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 10.6 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue: **6.84 mW/g** ± 16.2 % (k=2)¹

1

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.397 ns (one direction)

Transmission factor: 0.991 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 900 MHz: $Re\{Z\} = 49.9 \Omega$

Im $\{Z\} = -2.0 \Omega$

Return Loss at 900 MHz -33.9 dB

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

5. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

6. Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Date/Time: 06/03/03 12:00:32

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN054 SN1507 HSL900 030603.da4

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN054

Program: Dipole Calibration

Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: HSL 900 MHz ($\sigma = 0.95 \text{ mho/m}$, $\epsilon_r = 42.07$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.6, 6.6, 6.6); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

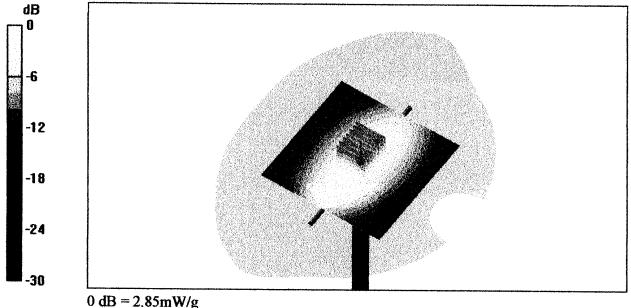
Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 56.9 V/m

Power Drift = 0.0004 dB

Maximum value of SAR = 2.84 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 3.92 W/kg

SAR(1 g) = 2.66 mW/g; SAR(10 g) = 1.71 mW/g

Reference Value = 56.9 V/m

Power Drift = 0.0004 dB

Maximum value of SAR = 2.85 mW/g

3 Jun 2003 09:29:44

[CHI S11 1 U FS 1:49.906 \(\times \) -2.0137 \(\times \) 87.819 pF 900.000 000 MHz

PRm

Cor
Ary
16

T

CH2 S11 L06 5 dB/REF -20 dB 1:-33,939 dB 900.000 000 MHz

PRm
Cor

SPAN 400.000 000 MHz

Τ

CENTER 900.000 000 MHz

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celitech Labs

Object(s)	D1800V2 - S	N:247	55.75 specials
calibration procedure(s)	QA CAL-05.v Calibration pr	2 ocedure for dipole validation kits	
Calibration date:	June 4, 2003		
Condition of the calibrated item	In Tolerance	(according to the specific calibration	on document)
	ients traceability of M& I I		of the procedures with the ISO/IEC
17025 international standard. All calibrations have been condu	cted in the closed laborat	E used in the calibration procedures and conformity cory facility: environment temperature 22 +/- 2 degre	
17025 international standard. All calibrations have been conductable. Calibration Equipment used (M&	cted in the closed laborat	ory facility: environment temperature 22 +/- 2 degre	es Celsius and humidity < 75%.
7025 international standard. All calibrations have been conduct Calibration Equipment used (M&	cted in the closed laborat TE critical for calibration) ID#	ory facility: environment temperature 22 +/- 2 degre Cal Date (Calibrated by, Certificate No.)	es Celsius and humidity < 75%. Scheduled Calibration
7025 international standard. All calibrations have been conductable. Calibration Equipment used (M& Model Type RF generator R&S SML-03	cted in the closed laborat TE critical for calibration) ID # 100698	cory facility: environment temperature 22 +/- 2 degre Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389)	es Celsius and humidity < 75%. Scheduled Calibration In house check: Mar-05
7025 international standard. All calibrations have been conductable. Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A	cted in the closed laborat TE critical for calibration) ID # 100698 MY41092317	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018)	es Celsius and humidity < 75%. Scheduled Calibration In house check: Mar-05 Oct-04
7025 international standard. All calibrations have been conductable. Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A	cted in the closed laborat TE critical for calibration) ID # 100698 MY41092317 US37292783	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236)	es Celsius and humidity < 75%. Scheduled Calibration In house check: Mar-05 Oct-04 Oct-03
All calibrations have been conductable. Calibration Equipment used (M&Model Type RF generator R&S SML-03 Power sensor HP 8481A Power meter EPM E442	cted in the closed laborat TE critical for calibration) ID # 100698 MY41092317	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018)	es Celsius and humidity < 75%. Scheduled Calibration In house check: Mar-05 Oct-04
17025 international standard. All calibrations have been conductable. Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442 Network Analyzer HP 8753E	cted in the closed laboral TE critical for calibration) ID # 100698 MY41092317 US37292783 GB37480704 US37390585	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101)	Scheduled Calibration In house check: Mar-05 Oct-04 Oct-03 Oct-03
7025 international standard. All calibrations have been conductable. Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442 Network Analyzer HP 8753E	ID # 100698 MY41092317 US37292783 GB37480704 US37390585	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101)	Scheduled Calibration In house check: Mar-05 Oct-04 Oct-03 Oct-03 In house check: Oct 03
7025 international standard.	cted in the closed laboral TE critical for calibration) ID # 100698 MY41092317 US37292783 GB37480704 US37390585	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101) Function Technician	Scheduled Calibration In house check: Mar-05 Oct-04 Oct-03 Oct-03 In house check: Oct 03

Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D1800V2

Serial: 247

Manufactured: August 25, 1999

Calibrated: June 4, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 1800 MHz:

Relative Dielectricity 39.2 $\pm 5\%$ Conductivity 1.36 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.3 at 1800 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 39.6 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue: **20.9 mW/g** \pm 16.2 % (k=2)¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.190 ns (one direction)

Transmission factor: 0.998 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1800 MHz: $Re\{Z\} = 48.5 \Omega$

 $Im \{Z\} = -6.5 \Omega$

Return Loss at 1800 MHz -23.3 dB

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

5. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

6. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Date/Time: 06/04/03 14:55:26

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN247 SN1507 HSL1800 040603.da4

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN247

Program: Dipole Calibration

Communication System: CW-1800; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: HSL 1800 MHz ($\sigma = 1.36 \text{ mho/m}$, $\varepsilon_r = 39.22$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(5.3, 5.3, 5.3); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

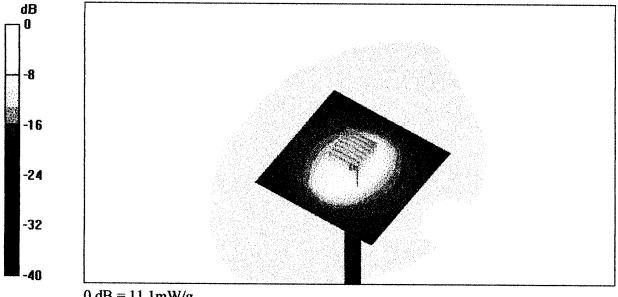
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 96 V/m

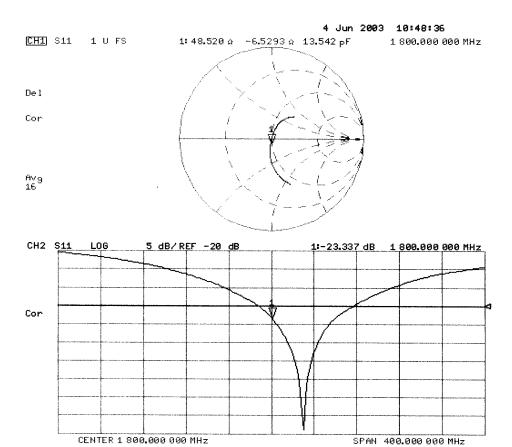
Power Drift = -0.004 dB

Maximum value of SAR = 11 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5 mm, dy=5 mm, dz=5mm


Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 9.9 mW/g; SAR(10 g) = 5.22 mW/g


Reference Value = 96 V/m

Power Drift = -0.004 dB

Maximum value of SAR = 11.1 mW/g

0 dB = 11.1 mW/g

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX D - PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celltech Labs

CALIBRATION C	ERTIFICAT	E	the survival of
Object(s)	ET3DV6 - SN 1	590	
Calibration procedure(s)	QA CAL-01 v2 Calibration prod	redure for dosimetric E-field probe	as .
Calibration date:	May 15, 2003		
Condition of the calibrated item	In Tolerance (a	coording to the specific calibration	r document)
This calibration statement documen 17025 international standard.	ts traceability of M&TE u	sed in the calibration procedures and conformity of	the procedures with the ISO/IEC
All calibrations have been conducte	d in the closed laboratory	facility: environment temperature 22 +/- 2 degrees	Celsius and humidity < 75%.
Calibration Equipment used (M&TE	critical for calibration)		
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (Agilent, No. 20020918)	Sep-03
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Network Analyzer HP 8753E	US38432426	3-May-00 (Aglient, No. 8702K084602)	In house check: May 03
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01 (ELCAL, No.2360)	Sep-03
	Name	Function	Signature
Celibrated by:	Nou Vetteri	Tochracian	N. TOURS
Approved by:	Kalje Pokovic	Laboratory Osechor	Alexa Vefe

Date issued: May 15, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1590

Manufactured:

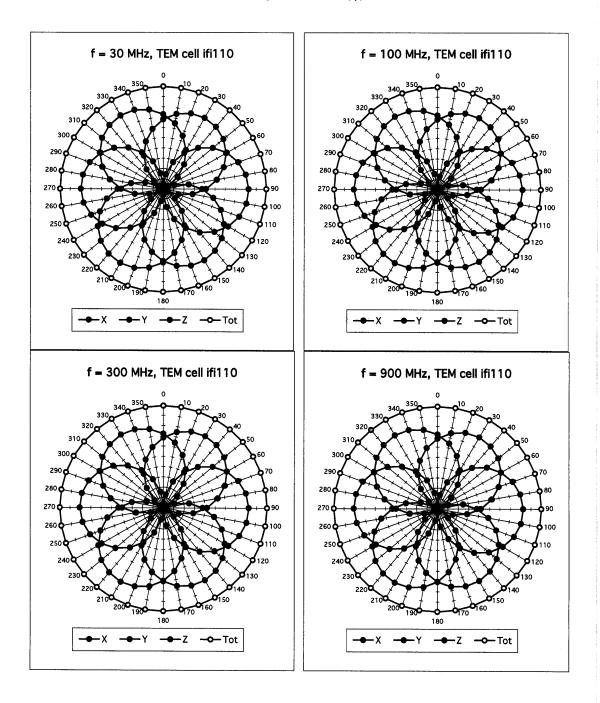
March 19, 2001

Last calibration:

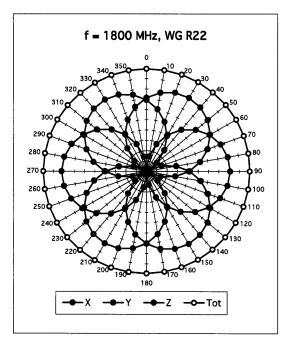
April 26, 2002

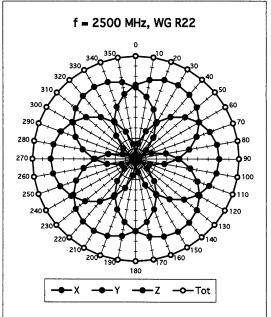
Recalibrated:

May 15, 2003

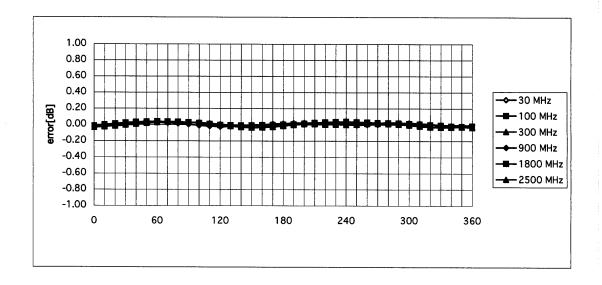

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

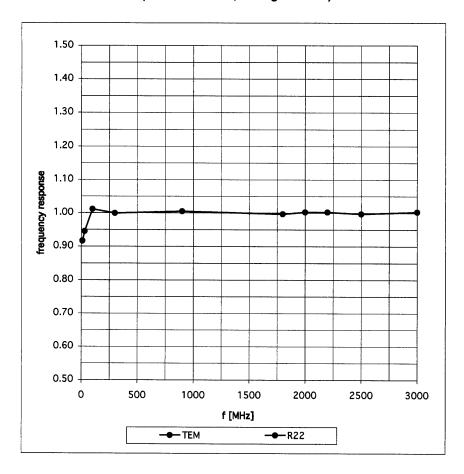

DASY - Parameters of Probe: ET3DV6 SN:1590


Sensitivi	ty in Free	Space		Diode Co	mpression		
	NormX	1.76	μ V/(V/m) ²		DCP X	92	mV
	NormY	1.91	μ V/(V/m) ²		DCP Y	92	mV
	NormZ	1.66	μV/(V/m) ²		DCP Z	92	mV
Sensitivit	y in Tissue	Simulating	g Liquid				
Head	900	MHz	ε _τ = 41.5 ± 5%	σ=	0.97 ± 5% mh	no/m	
Valid for f=80	00-1000 MHz wi	th Head Tissue	Simulating Liquid according	g to EN 50361	, P1 528-200X		
	ConvF X	7.0	± 9.5% (k=2)		Boundary effect	t :	
	ConvF Y	7.0	± 9.5% (k=2)		Alpha	0.33	
	ConvF Z	7.0	± 9.5% (k=2)		Depth	2.56	
Head	1800	MHz	ε_r = 40.0 ± 5%	σ=	1.40 ± 5% mh	no/m	
Valid for f=17	710-1910 MHz v	vith Head Tissu	e Simulating Liquid accord	ing to EN 5036	1, P1 528-200X		
	ConvF X	5.5	± 9.5% (k=2)		Boundary effect	::	
	ConvF Y	5.5	± 9.5% (k=2)		Alpha	0.44	
	ConvF Z	5.5	± 9.5% (k=2)		Depth	2.69	
Boundar	y Effect						
Head	900	MHz	Typical SAR gradient: 5	5 % per mm ~			
	Probe Tip to B	oundary			1 mm	2 mm	
	SAR _{be} [%]	Without Corre	ection Algorithm		8.7	5.0	
	SAR _{be} [%]	With Correcti	on Algorithm		0.3	0.5	
Head	1800	MHz	Typical SAR gradient: 1	0 % per mm			
	Probe Tip to B	oundary			1 mm	2 mm	
	SAR _{be} [%]		ection Algorithm		12.3	8.5	
	SAR _{be} [%]	With Correcti	on Algorithm		0.2	0.1	
Sensor C)ffset						
30001	Probe Tip to S	ensor Center		2.7	me	•	
	Optical Surface				mr		
	Optical Surface	e Derection		1.4 ± 0.2	mr	n	

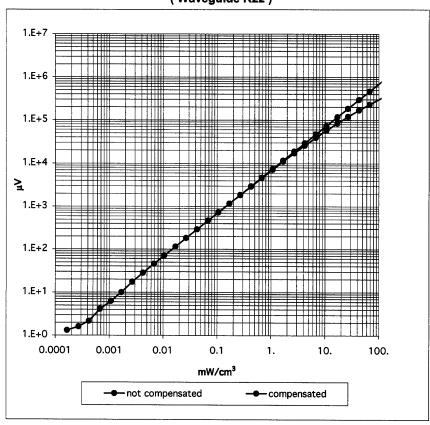
Receiving Pattern (ϕ), θ = 0°

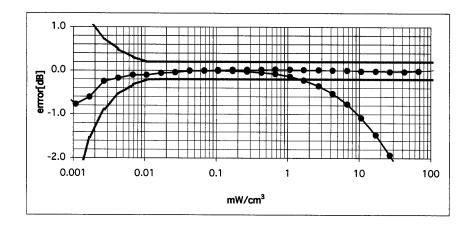


Page 3 of 10

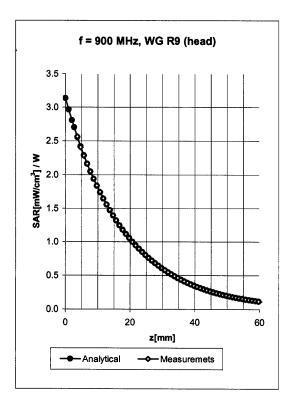

Isotropy Error (ϕ), $\theta = 0^{\circ}$

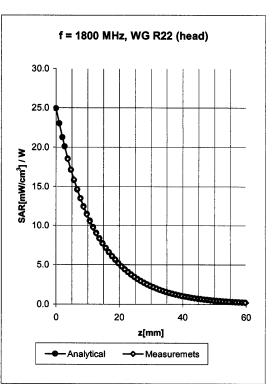
Page 4 of 10


Frequency Response of E-Field

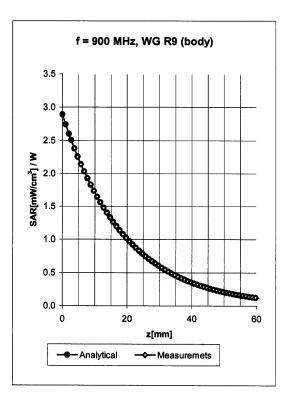

(TEM-Cell:ifi110, Waveguide R22)

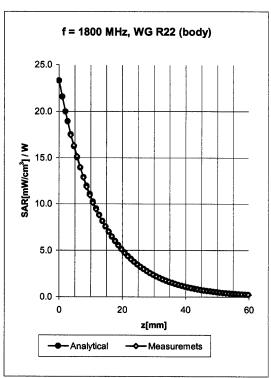
Dynamic Range f(SAR_{brain})


(Waveguide R22)

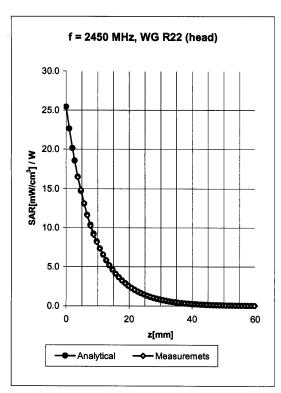


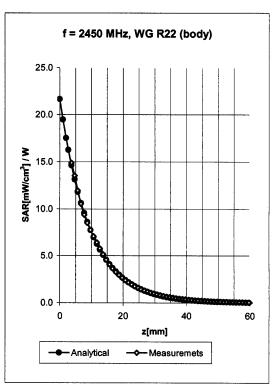
Page 6 of 10


Conversion Factor Assessment



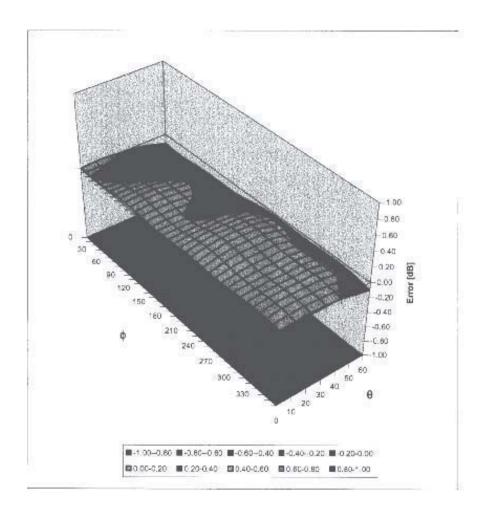
Head 900 MHz ε_r = 41.5 ± 5% σ = 0.97 ± 5% mho/m Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X $7.0 \pm 9.5\% (k=2)$ Boundary effect: ConvF Y $7.0 \pm 9.5\% (k=2)$ Alpha 0.33 ConvF Z $7.0 \pm 9.5\% (k=2)$ Depth 2.56 Head 1800 MHz ε_r = 40.0 ± 5% σ = 1.40 ± 5% mho/m Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X $5.5 \pm 9.5\% (k=2)$ Boundary effect: ConvF Y $5.5 \pm 9.5\% (k=2)$ Alpha 0.44 ConvF Z $5.5 \pm 9.5\% (k=2)$ 2.69 Depth


Conversion Factor Assessment



Body	900 MHz		ε_r = 55.0 ± 5%	σ=	1.05 ± 5% mho/n	n
Valid for f=80	00-1000 MHz with Body	Tissue	Simulating Liquid according to OET	65 5	Suppl. C	
	ConvF X	6.8	± 9.5% (k=2)		Boundary effect:	
	ConvF Y	6.8	± 9.5% (k=2)		Alpha	0.34
	ConvF Z	6.8	± 9.5% (k=2)		Depth	2.61
Body	1800 MHz		ε _r = 53.3 ± 5%	σ=	1.52 ± 5% mho/n	n
Valid for f=17	710-1910 MHz with Bod	y Tissu	e Simulating Liquid according to OE	Г 65	Suppl. C	
	ConvF X	5.0	± 9.5% (k=2)		Boundary effect:	
	ConvF Y	5.0	± 9.5% (k=2)		Alpha	0.52
	ConvF Z	5.0	± 9.5% (k=2)		Depth	2.69

Conversion Factor Assessment



Head	2450	MHz	ε_r = 39.2 ± 5%	σ= 1	.80 ± 5% mho/m	า
Valid for f=2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X						
	ConvF X	5.0	± 8.9% (k=2)	В	oundary effect:	
	ConvF Y	5.0	± 8.9% (k=2)	Α	lpha	0.88
	ConvF Z	5.0	± 8.9% (k=2)	D	epth	1.92
Body	2450	MHz	ε _τ = 52.7 ± 5%	σ= 1	.95 ± 5% mho/m	1
Valid for f=24	100-2500 MHz v	with Body Tissu	e Simulating Liquid according to OE	T 65 S	uppi. C	
	ConvF X	4.4	± 8.9% (k=2)	В	oundary effect:	
	ConvF Y	4.4	± 8.9% (k=2)	Α	lpha	0.90
	ConvF Z	4.4	± 8.9% (k=2)	D	epth	1.87

Deviation from Isotropy in HSL

Error (θ,φ), f = 900 MHz

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1590
Place of Assessment:	Zurich
Date of Assessment:	May 19, 2003
Probe Calibration Date:	May 15, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Then: Kt.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (± standard deviation)

150 MHz	ConvF	$9.6\pm8\%$	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\%$ mho/m (head tissue)
300 MHz	ConvF	$8.3 \pm 8\%$	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\% \text{ mho/m}$ (head tissue)
450 MHz	ConvF	$7.9 \pm 8\%$	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\% \text{ mho/m}$ (head tissue)
150 MHz	ConvF	9.2 ± 8%	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\% \text{ mho/m}$ (body tissue)
450 MHz	ConvF	$8.1 \pm 8\%$	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\% \text{ mho/m}$ (body tissue)

Test Report S/N:	021104-473bKBC	
Test Date(s):	March 05 & 08, 2004	
Test Type:	FCC/IC SAR Evaluation	

APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS

1800 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain)

Frequency	e'	e"
1.700000000 GHz	40.5168	13.5794
1.710000000 GHz	40.4880	13.6050
1.720000000 GHz	40.4225	13.6300
1.730000000 GHz	40.3724	13.6681
1.740000000 GHz	40.3039	13.6830
1.750000000 GHz	40.2425	13.7126
1.760000000 GHz	40.2051	13.7280
1.770000000 GHz	40.1596	13.7485
1.780000000 GHz	40.1142	13.7567
1.790000000 GHz	40.0752	13.7735
1.800000000 GHz	40.0238	13.7981
1.810000000 GHz	39.9838	13.8342
1.820000000 GHz	39.9251	13.8575
1.830000000 GHz	39.8839	13.8823
1.840000000 GHz	39.8542	13.8941
1.850000000 GHz	39.8046	13.9063
1.860000000 GHz	39.7820	13.9260
1.870000000 GHz	39.7369	13.9177
1.880000000 GHz	39.7039	13.9411
1.890000000 GHz	39.6830	13.9629
1.900000000 GHz	39.6735	13.9774

1880 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle)

March 05, 2004

Frequency	e'	e"
1.850000000 GHz	52.2555	15.1175
1.855000000 GHz	52.2565	15.1278
1.860000000 GHz	52.2418	15.1445
1.865000000 GHz	52.2371	15.1597
1.870000000 GHz	52.2061	15.1691
1.875000000 GHz	52.1946	15.1795
1.880000000 GHz	52.1773	15.1951
1.885000000 GHz	52.1628	15.2011
1.890000000 GHz	52.1405	15.2142
1.895000000 GHz	52.1279	15.2295
1.900000000 GHz	52.1026	15.2381
1.905000000 GHz	52.0728	15.2654
1.910000000 GHz	52.0328	15.2767
1.915000000 GHz	51.9985	15.2938
1.920000000 GHz	51.9674	15.3299
1.925000000 GHz	51.9382	15.3356
1.930000000 GHz	51.9237	15.3570
1.935000000 GHz	51.8872	15.3696
1.940000000 GHz	51.8826	15.3929
1.945000000 GHz	51.8596	15.4152
1.950000000 GHz	51.8483	15.4341

900 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain)

Frequency	e'	e"
850.000000 MHz	41.8313	19.9596
855.000000 MHz	41.7561	19.9283
860.000000 MHz	41.6751	19.9095
865.000000 MHz	41.5981	19.9003
870.000000 MHz	41.5532	19.8924
875.000000 MHz	41.4622	19.8980
880.000000 MHz	41.4016	19.8647
885.000000 MHz	41.3594	19.8566
890.000000 MHz	41.2875	19.8475
895.000000 MHz	41.2884	19.7771
900.000000 MHz	41.2273	19.7655
905.000000 MHz	41.1926	19.7561
910.000000 MHz	41.1200	19.7337
915.000000 MHz	41.0741	19.6987
920.000000 MHz	41.0223	19.6904
925.000000 MHz	40.9805	19.6646
930.000000 MHz	40.9040	19.6498
935.000000 MHz	40.8373	19.6323
940.000000 MHz	40.8153	19.6014
945.000000 MHz	40.7584	19.6104
950.000000 MHz	40.7169	19.6050

835 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) March 108, 2004

11		al.	nn.	M٩	۸
M	ar	CN.	Uŏ.		

Frequency	e'	e"
785.000000 MHz	54.0280	21.4235
790.000000 MHz	54.0158	21.3798
795.000000 MHz	53.9736	21.3467
800.000000 MHz	53.9359	21.3237
805.000000 MHz	53.8820	21.2839
810.000000 MHz	53.8580	21.2622
815.000000 MHz	53.8248	21.2438
820.000000 MHz	53.7953	21.2019
825.000000 MHz	53.7409	21.1970
830.000000 MHz	53.6601	21.2074
835.000000 MHz	53.6617	<mark>21.1824</mark>
840.000000 MHz	53.5660	21.1601
845.000000 MHz	53.4753	21.1474
850.000000 MHz	53.4505	21.1326
855.000000 MHz	53.3909	21.1091
860.000000 MHz	53.3228	21.0891
865.000000 MHz	53.2595	21.0785
870.000000 MHz	53.2195	21.0701
875.000000 MHz	53.1676	21.0556
880.000000 MHz	53.1109	21.0537
885.000000 MHz	53.0957	21.0468

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

18.11.2001

Signature / Stamp

Schmid & Partner Fin Boulott

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334

E-mail: <u>barskiind@shaw.ca</u>
Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item: Flat Planar Phantom Unit # 03-01

Date: June 16, 2003

Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

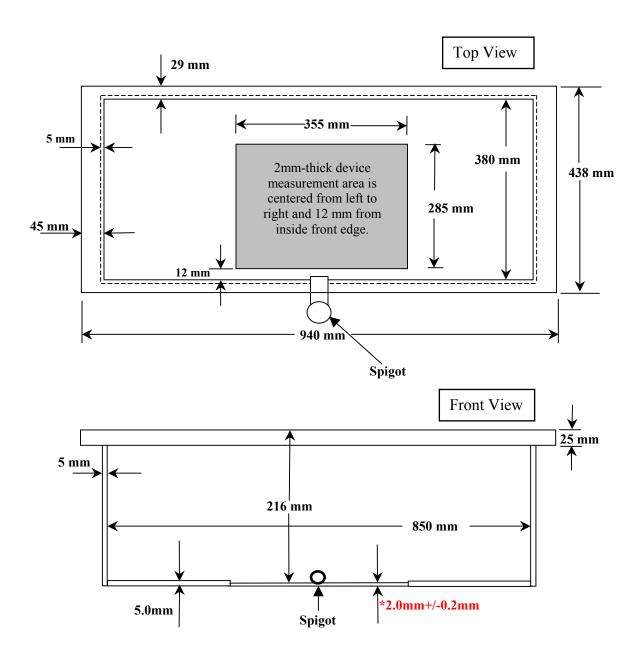
Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View



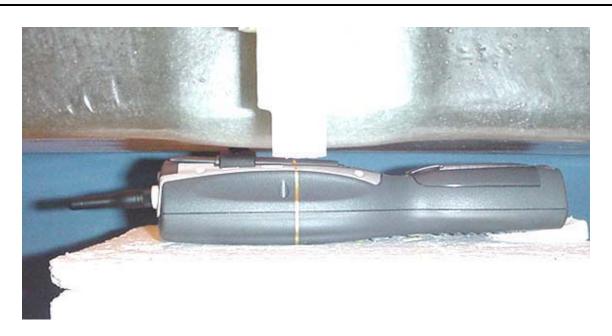
Fiberglass Planar Phantom - Bottom View

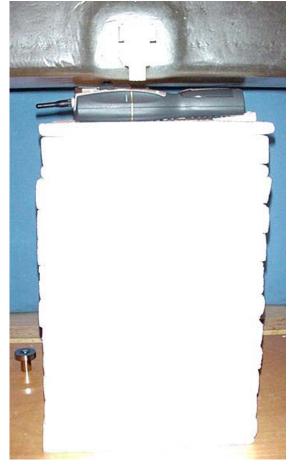
Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

Note: Measurements that aren't repeated for the opposite sides are the same as the side measured.

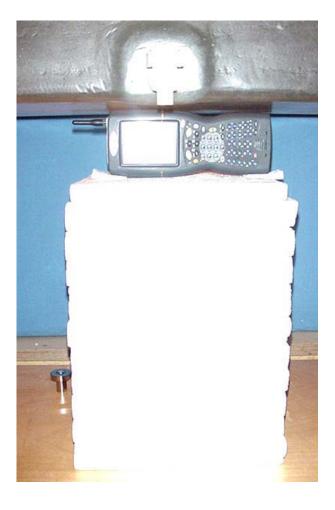
This drawing is not to scale.


Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation


APPENDIX H - SAR TEST SETUP PHOTOGRAPHS

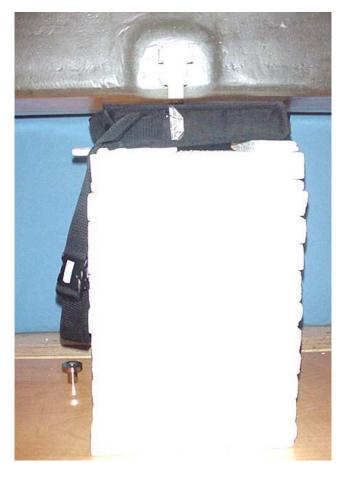
Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

BODY (LAP-HELD) SAR TEST SETUP PHOTOGRAPHS 0.0 cm Separation Distance from Back of DUT to Planar Phantom



Test Report S/N: 021104-473bKBC March 05 & 08, 2004 Test Date(s): Test Type: FCC/IC SAR Evaluation

BODY (LAP-HELD) SAR TEST SETUP PHOTOGRAPHS 0.0 cm Separation Distance from Right Side (Antenna Side) of DUT to Planar Phantom

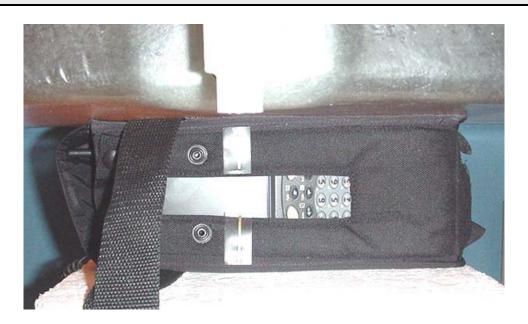


Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

0.0 cm Separation Distance from Front of Carry Case to Planar Phantom (Front Side of DUT facing Front of Carry Case & Planar Phantom)
With Nylon Carry Case (P/N: 54-0644-001) & Ear-Microphone (Model: JABRA)

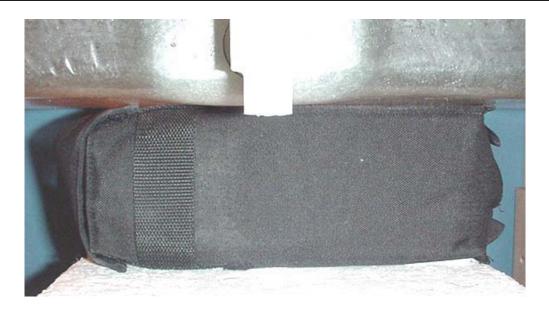
Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

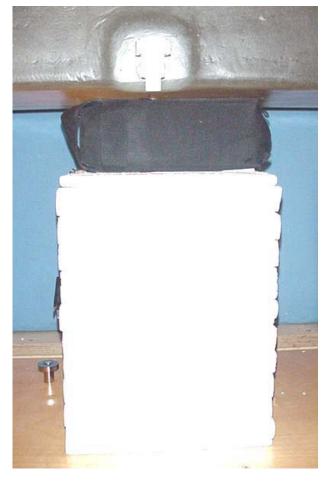
0.0 cm Separation Distance from Front of Carry Case to Planar Phantom (Back Side of DUT facing Front of Carry Case & Planar Phantom)
With Nylon Carry Case (P/N: 54-0644-001) & Ear-Microphone (Model: JABRA)



Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

0.0 cm Separation Distance from Right Side of Carry Case to Planar Phantom
Right Side (Antenna Side) of DUT facing Planar Phantom - Front Side of DUT facing Front of Carry Case
With Nylon Carry Case (P/N: 54-0644-001) & Ear-Microphone (Model: JABRA)





Test Report S/N:	021104-473bKBC
Test Date(s):	March 05 & 08, 2004
Test Type:	FCC/IC SAR Evaluation

0.0 cm Separation Distance from Left Side of Carry Case to Planar Phantom
Right Side (Antenna Side) of DUT facing Planar Phantom - Back Side of DUT facing Front of Carry Case
With Nylon Carry Case (P/N: 54-0644-001) & Ear-Microphone (Model: JABRA)

