

Report No.: STS2503075H02

Issued for

Acer India Pvt Ltd

Embassy Heights, 6th Floor, No, 13, Magrath Road, Next to HOSMAT Hospital, Bangalore 560025, India

Product Name: Travel Lite

Brand Name: acer

Model Name: TL44-53M

Series Model(s): TL44-52M,TL44-43M

FCC ID: 2AMY3-TL44-53M

ANSI/IEEE Std. C95.1

Test Standard: FCC 47 CFR Part 2 (2.1093)

IEEE Std. 1528-2013

Max. Report

Body: 1.417 W/kg

SAR (1g)

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Page 2 of 56 Report No.: STS2503075H02

TEST REPORT CERTIFICATION

Applicant's name Acer India Pvt Ltd

Embassy Heights, 6th Floor, No. 13, Magrath Road, Next to Address:

HOSMAT Hospital, Bangalore 560025, India

Manufacturer's Name: Acer India Pvt Ltd

Embassy Heights, 6th Floor, No. 13, Magrath Road, Next to Address:

HOSMAT Hospital, Bangalore 560025, India

Product description

Product name: Travel Lite

Brand name: acer

Model name: TL44-53M

Series Model(s): TL44-52M, TL44-43M

ANSI/IEEE Std. C95.1

Standards...... FCC 47 CFR Part 2 (2.1093)

IEEE Std. 1528-2013

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test:

Date of Issue....: 21 Mar. 2025

Test Result....: **Pass**

Testing Engineer

(Xin.Liu)

Technical Manager

(Shifan, Long)

Authorized Signatory:

(Bovey Yang)

TESTING APPROV

Page 3 of 56 Report No.: STS2503075H02

Table of Contents

1. General Information	5
1.1 EUT Description	5
1.2 Test Environment	7
1.3 Test Factory	7
2. Test Standards and Limits	8
3. SAR Measurement System	9
3.1 Definition of Specific Absorption Rate (SAR)	9
3.2 SAR System	9
4. Tissue Simulating Liquids	12
4.1 Simulating Liquids Parameter Check	12
5. SAR System Validation	15
5.1 Validation System	15
5.2 Validation Result	16
6. SAR Evaluation Procedures	17
7. EUT Antenna Location Sketch	18
7.1 SAR Test Exclusions Applied	19
8. EUT Test Position	20
8.1 Body-worn Position Conditions	20
9. Uncertainty	21
9.1 Measurement Uncertainty	21
10. Conducted Power Measurement	24
10.1 Test Result	24
11. EUT and Test Setup Photo	28
11.1 EUT Photo	28
11.2 Setup Photo	31
12. SAR Result Summary	33
12.1 Body-worn SAR	33
12.3 Repeated SAR	35
12.4 Repeated SAR measurement	35
12.5 Simultaneous Multi-band Transmission Evaluation	36
13. Equipment List	37
Appendix A. System Validation Plots	38
Appendix B. SAR Test Plots	44
Appendix C. Probe Calibration and Dipole Calibration Report	56

Page 4 of 56 Report No.: STS2503075H02

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents	
00	20 Mar. 2025	STS2503075H02	ALL	Initial Issue	

Page 5 of 56 Report No.: STS2503075H02

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

1.1 EUT Descri	ption								
Product Name	Travel Lite								
Brand Name	acer	cer							
Model Name	TL44-53M	_44-53M							
Series Model	TL44-52M	,TL44-43M							
Model Difference	The only d	lifference is model name							
Battery	Charge Lir	Rated Voltage:11.55V Charge Limit Voltage:13.2V Capacity: 5200mAh							
Device Category	Portable								
Product stage	Production	n unit							
RF Exposure Environment	General Po	General Population / Uncontrolled							
Hardware Version	V30	V30							
Software Version	V102	V102							
Frequency Range	WLAN802 WLAN 80 WLAN 80	WLAN802.11b/g/n20/ac20/ax20: 2412 MHz ~ 2462 MHz WLAN802.11n40/ac40/ax40: 2422 MHz ~ 2452 MHz WLAN 802.11a/n20/n40/ac20/ac40/ac80/ax20/ax40/ax80: 5150 ~ 5250 MHz WLAN 802.11a/n20/n40/ac20/ac40/ac80/ax20/ax40/ax80: 5725 ~ 5850 MHz Bluetooth: 2402 MHz to 2480 MHz							
	Band	Mode	Body Worn (W/kg)						
	DTS	2.4G WLAN_ANT_1	0.305						
	DTS	2.4G WLAN_ANT_2	0.239						
	DTS	2.4G WLAN_ANT MIMO	0.451						
Max. Reported SAR(1g):	NII	5.2G WLAN_ANT_1	0.696						
(Limit:1.6W/kg) Test distance:	NII	5.2G WLAN_ANT_2	0.531						
Body:0mm	NII	5.2G WLAN_ANT MIMO	1.402						
	NII	5.8G WLAN_ANT_1	0.614						
	NII	5.8G WLAN_ANT_2	0.491						
	NII	5.8G WLAN_ANT MIMO	1.417						
	1-g S	um SAR	0.606						

Page 6 of 56 Report No.: STS2503075H02

FCC Equipment Class	Digital Transmission System (DTS) Unlicensed National Information Infrastructure TX(NII) Part 15 Spread Spectrum Transmitter (DSS)
Operating Mode:	WLAN: 802.11 a/b/g/n20/n40/ac20/ac40/ac80/ax20/ax40/ax80 Bluetooth: GFSK +π/4DQPSK+8DPSK BLE: GFSK
Antenna Specification:	Bluetooth: FPC antenna WLAN: FPC antenna
Hotspot Mode	Not Support
DTM Mode	Not Support

Note:

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

Page 7 of 56 Report No.: STS2503075H02

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

ShenZhen STS Test Services Co.,Ltd.

101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration No.: 625569

IC Registration No.: 12108A A2LA Certificate No.: 4338.01

Page 8 of 56 Report No.: STS2503075H02

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	IEEE Std C95.1, 2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 616217 D04 v01r02	SAR for laptop and tablets
8	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.4 8.0 20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

Page 9 of 56 Report No.: STS2503075H02

3. SAR Measurement System

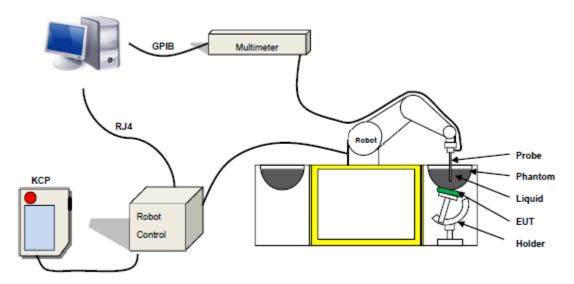
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

 ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Page 10 of 56 Report No.: STS2503075H02

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The Open SAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 08/21 EPGO352 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2 mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 150 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Dipole

Page 11 of 56 Report No.: STS2503075H02

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.4. Tissue Simulating Liquids

Page 12 of 56 Report No.: STS2503075H02

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max _ 5 %) and the second source of error arises from the measurement procedures used to assess conductivity. The uncertainty shall be assessed using a rectangular probability For 1 g averaging, the maximum weighting coefficient for SAR is 0,5.

IEEE SCC-34/SC-2 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head and body tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

Frequency	εr	σ 10g S/m
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 to 2000	40.0	1.40
2100	39.8	1.49
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27

Page 13 of 56

The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

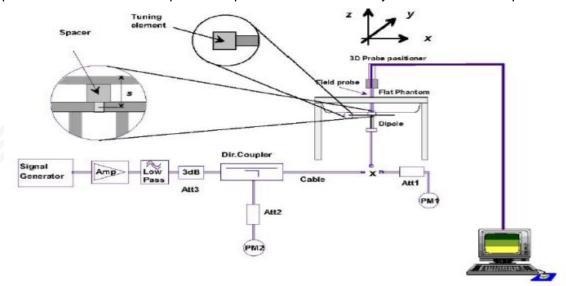
Report No.: STS2503075H02

		Не	ead (Referer	ce IEEE15	28)			
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	٤
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0
2450	55.0	0	0	0.1	0	44.9	1.80	39.2
2600	54.9	0	0	0.1	0	45.0	1.96	39.0
Frequency	Water	H	Hexyl Carbitol Triton X-100				Conductivity	Permittivity
(MHz)	(%)		(%)			6)	σ (S/m)	ε
5200	62.52		17.24			24	4.66	36.0
5800	62.52		17.24		17.24		5.27	35.3
		Body (F	rom instrun	nent manu	facturer)			
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	ε
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0.1	0	31.3	1.95	52.7
2600	68.2	0	0	0.1	0	31.7	2.16	52.5
			DGBE		Salt		Conductivity	Permittivity
Frequency(MHz)	Water	(%)		(%)		σ (S/m)	ε	
5200	78.60		21.40		/		5.30	49.00
5800	78.50		21.40		0.	1	6.00	48.20

Page 14 of 56

Report No.: STS2503075H02

LIQUID MEASUREMENT RESULTS


Date	Ambient		Simulating Liquid		- Parameters	T	Management	Deviation	Limited				
Date	Temp.	Humidity	Frequency	Temp.	Parameters	Target	Measured	%	%				
	[°C]	%	(MHz)	[°C]									
2025-03-19	21.2	42	2450	20.9	Permittivity	39.20	39.77	1.45	±5				
2025-03-19	21.2	42	2700	20.9	Conductivity	1.80	1.79	-0.56	±5				
2025-03-19	21.2	42	2452	2452 20.9	Permittivity	39.20	39.96	1.95	±5				
2025-03-19	21.2	42	2432	20.9	Conductivity	1.80	1.78	-1.21	±5				
2025 02 40	04.0	43	2462 20.8	0.400	20.8	Permittivity	39.18	40.06	2.25	±5			
2025-03-19	21.2	43	2402	∠∪.0	Conductivity	1.81	1.87	3.28	±5				
2025-03-20	20.9	52	5000	5000	5200	5 200	5200	20.6	Permittivity	36.00	36.40	1.11	±5
2025-03-20	20.9	52	5200	20.6	Conductivity	4.66	4.65	-0.21	±5				
2025 02 20	20.0	F0	5240	20 F	Permittivity	35.96	36.15	0.53	±5				
2025-03-20	20.9	52		20.5	Conductivity	4.70	4.73	0.60	±5				
2025 02 20	20.0	50	F77F	20.5	Permittivity	35.33	35.92	1.68	±5				
2025-03-20	20.9	52	5775	20.5	Conductivity	5.24	5.15	-1.79	±5				
2025 02 22	20.0	50	F000	20.5	Permittivity	35.30	35.52	0.62	±5				
2025-03-20	20.9	52	5800	20.5	Conductivity	5.27	5.25	-0.38	±5				
0005 00 00	20.0	50	E00E	20.5	Permittivity	35.28	36.58	3.70	±5				
2025-03-20	20.9	52	5825	20.5	Conductivity	5.30	5.33	0.64	±5				

Page 15 of 56 Report No.: STS2503075H02

5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder. The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

Page 16 of 56 Report No.: STS2503075H02

5.2 Validation Result

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (>20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
SN 30/14 DIP2G450-335	Head	2023-07-04	-26.03	/	46.3	/
3N 30/14 DIP2G450-335	Liquid	2024-07-01	-26.91	3.38	47.4	1.1
CN 42/44 W.C A22	Head	2023-07-04	< -8.23	/	/	/
SN 13/14 WGA32	Liquid	2024-07-01	-12.07	1	/	1

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Date	Freq.	Power	wer Value SAR		Target SAR	Tolerance	Limit
	(MHz)	(mW)	(W/Kg)	(W/kg)	1g(W/kg)	(%)	(%)
2025-03-19	2450	100	5.492	54.92	54.70	0.40	10
2025-03-20	5200	100	16.646	166.46	163.88	1.57	10
2025-03-20	5800	100	19.025	190.25	188.95	0.69	10

Note:

- 1. The tolerance limit of System validation ±10%.
- 2. The dipole input power (forward power) was 100 mW.
- 3. The results are normalized to 1 W input power.

Page 17 of 56 Report No.: STS2503075H02

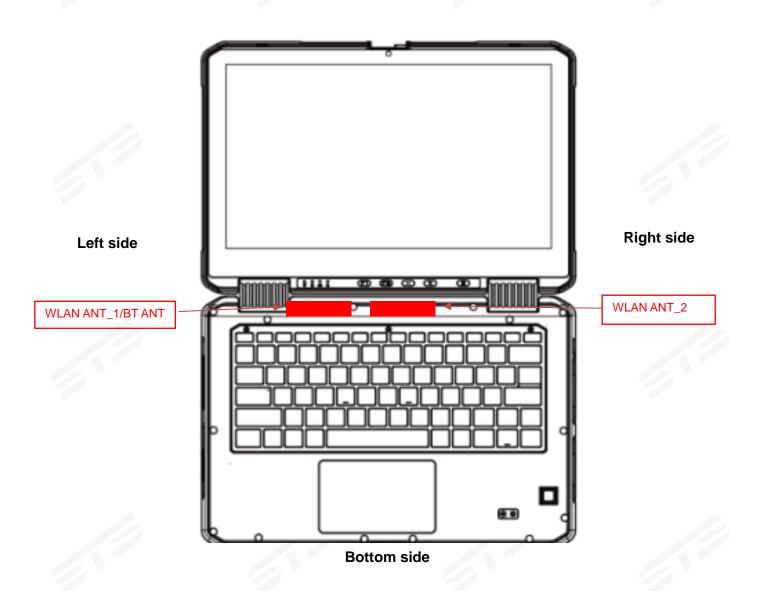
6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps: The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.



Page 18 of 56 Report No.: STS2503075H02

7. EUT Antenna Location Sketch

It is a Travel Lite, support WLAN/BT mode.

Top side

Page 19 of 56 Report No.: STS2503075H02

7.1 SAR Test Exclusions Applied

Standalone SAR test exclusion applies 447498 D04 Interim General Radio Frequency Exposure Guidelines v01. The available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by:

$$P_{th} \text{ (mW)} = \begin{cases} ERP_{20 \ cm} (d/20 \ \text{cm})^x & d \le 20 \ \text{cm} \\ ERP_{20 \ cm} & 20 \ \text{cm} < d \le 40 \ \text{cm} \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{ERP_{20\ cm}\sqrt{f}}\right)$$
 and f is in GHz

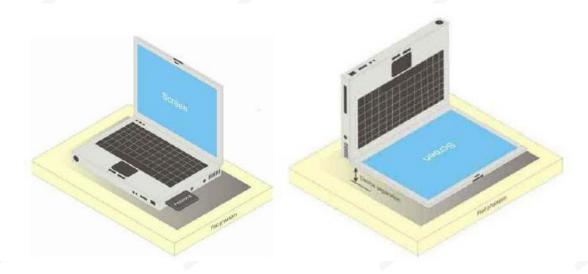
and

$$ERP_{20\ cm}\ (\text{mW}) = \begin{cases} 2040f & 0.3\ \text{GHz} \le f < 1.5\ \text{GHz} \\ \\ 3060 & 1.5\ \text{GHz} \le f \le 6\ \text{GHz} \end{cases}$$

d = the separation distance (cm);

Function	Fre. (GHz)	Separation distance (cm)	Max Turn up power (dBm)	Max Turn up power (mW)	Pth (mW)
ВТ	2.480	0.5	2.50	1.78	2.97

Note: The Maximum power is less than the Pth, complies with the exemption requirements.


Page 20 of 56 Report No.: STS2503075H02

8. EUT Test Position

This EUT was tested in Back Side. Front Side.

8.1 Body-worn Position Conditions

The required minimum test separation distance for incorporating transmitters and antennas into laptop , notebook and netbook computer displays is determined with the display screen opened at an angle of 90° to the keyboard compartment. If a computer has other operating configurations that require a di fferent or more conservative display to keyboard angle for normal use, a KDB inquiry should be submi tted to determine the test requirements. When antennas are incorporated in the keyboard section of a laptop computer, SAR is required for the bottom surface of the keyboard. Provided tablet use conditions are not supported by the laptop computer, SAR tests for bystander exposure from the edges of the Keyboard and display screen of laptop computers are generally not required.

Page 21 of 56 Report No.: STS2503075H02

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

approximately the 95	% confide								
				y- SN 08/21					
Measurement uncertainty for DUT averaged over 1 gram / 10 gram.									
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+- %)	10g Ui (+- %)	vi
			Measurer	nent Systen	1				
Probe calibration	E.2.1	5.72	N	1.00	1.00	1.00	5.72	5.72	8
Axial Isotropy	E.2.2	0.18	R	1.73	0.71	0.71	0.07	0.07	8
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.71	0.71	0.42	0.42	œ
Boundary effect	E.2.3	0.80	R	1.73	1.00	1.00	0.46	0.46	00
Linearity	E.2.4	1.25	R	1.73	1.00	1.00	0.72	0.72	00
System detection limits	E.2.4	1.20	R	1.73	1.00	1.00	0.69	0.69	00
Modulation response	E2.5	3.42	R	1.73	1.00	1.00	1.97	1.97	8
Readout Electronics	E.2.6	0.26	N	1.00	1.00	1.00	0.26	0.26	00
Response Time	E.2.7	0.17	R	1.73	1.00	1.00	0.10	0.10	00
Integration Time	E.2.8	1.43	R	1.73	1.00	1.00	0.83	0.83	00
RF ambient conditions-Noise	E.6.1	3.51	R	1.73	1.00	1.00	2.03	2.03	00
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	1.00	1.00	1.82	1.82	œ
Probe positioner mechanical tolerance	E.6.2	1.20	R	1.73	1.00	1.00	0.69	0.69	8
Probe positioning with respect to phantom shell	E.6.3	1.40	R	1.73	1.00	1.00	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.10	R	1.73	1.00	1.00	1.21	1.21	8
Tot max. Stat evaluation			Test sam	ple Related					I.
Test sample positioning	E.4.2	3.10	N	1.00	1.00	1.00	3.10	3.10	00
Device holder uncertainty	E.4.1	3.80	N	1.00	1.00	1.00	3.80	3.80	00
Output power variation— SAR drift measurement	E.2.9	4.50	R	1.73	1.00	1.00	2.60	2.60	8
SAR scaling	E.6.5	1.80	R	1.73	1.00	1.00	1.04	1.04	8
		Pha	ntom and t	issue paran	neters				
Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.70	R	1.73	1.00	1.00	2.14	2.14	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.90	N	1.00	1.00	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	2.40	R	1.73	0.78	0.71	1.08	0.98	М
Liquid permittivity measurement	E.3.3	4.10	N	1.00	0.78	0.71	3.20	2.91	М
Liquid conductivity— temperature uncertainty	E.3.4	2.70	R	1.73	0.23	0.26	0.36	0.41	8
Liquid permittivity— temperature uncertainty	E.3.4	4.80	N	1.00	0.23	0.26	1.10	1.25	8
Combined Standard Uncertainty			RSS				10.08	9.59	
Expanded Uncertainty (95% Confidence interval)			K=2				19.58	19.18	

Page 22 of 56 Report No.: STS2503075H02

		SATIMO	Uncertaint	y- SN 08/21	EPGO352				
	System Val	lidation unce	ertainty for I	DUT averag	ed over 1 gra	am / 10 gram			
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+- %)	10g Ui (+-%)	vi
Measurement System			•			•			
Probe calibration	E.2.1	5.72	N	1.00	1.00	1.00	5.72	5.72	8
Axial Isotropy	E.2.2	0.18	R	1.73	1.00	1.00	0.10	0.10	00
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.00	0.00	0.00	0.00	00
Boundary effect	E.2.3	0.80	R	1.73	1.00	1.00	0.46	0.46	00
Linearity	E.2.4	1.25	R	1.73	1.00	1.00	0.72	0.72	00
System detection limits	E.2.4	1.20	R	1.73	1.00	1.00	0.69	0.69	00
Modulation response	E2.5	3.42	R	1.73	0.00	0.00	0.00	0.00	00
Readout Electronics	E.2.6	0.26	N	1.00	1.00	1.00	0.26	0.26	00
Response Time	E.2.7	0.17	R	1.73	0.00	0.00	0.00	0.00	00
Integration Time	E.2.8	1.43	R	1.73	0.00	0.00	0.00	0.00	00
RF ambient conditions- Noise	E.6.1	3.51	R	1.73	1.00	1.00	2.03	2.03	00
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	1.00	1.00	1.82	1.82	00
Probe positioner mechanical tolerance	E.6.2	1.20	R	1.73	1.00	1.00	0.69	0.69	00
Probe positioning with respect to phantom shell	E.6.3	1.40	R	1.73	1.00	1.00	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.10	R	1.73	1.00	1.00	1.21	1.21	8
System validation source									
Deviation of experimental dipole from numerical dipole	E.6.4	4.80	N	1.00	1.00	1.00	4.80	4.80	00
Input power and SAR drift measurement	8,6.6.4	5.10	R	1.73	1.00	1.00	2.94	2.94	00
Dipole axis to liquid distance	8,E.6.6	2.40	R	1.73	1.00	1.00	1.39	1.39	00
Phantom and set-up									
Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.70	R	1.73	1.00	1.00	2.14	2.14	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.90	N	1.00	1.00	0.84	1.90	1.60	00
Liquid conductivity (temperature uncertainty)	E.3.3	2.40	R	1.73	0.78	0.71	1.08	0.98	00
Liquid conductivity (measured)	E.3.3	4.10	N	1.00	0.78	0.71	3.20	2.91	М
Liquid permittivity (temperature uncertainty)	E.3.4	2.70	R	1.73	0.23	0.26	0.36	0.41	8
Liquid permittivity (measured)	E.3.4	4.80	N	1.00	0.23	0.26	1.10	1.25	М
Combined Standard Uncertainty			RSS				9.72	9.52	
Expanded Uncertainty (95% Confidence interval)			K=2				19.44	19.03	

Page 23 of 56 Report No.: STS2503075H02

		SATIMO	Uncertain	ty- SN 08/21	EPGO352				
	System				ed over 1 gra	am / 10 gram	 າ.		
Uncertainty Component	Sec.	Tol	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+- %)	10g Ui (+-%)	vi
		(+- %)							
Measurement System		8 V							
Probe calibration drift	E.2.1.3	5.72	N	1.00	1.00	1.00	5.72	5.72	00
Axial Isotropy	E.2.2	0.18	R	1.73	0.00	0.00	0.00	0.00	00
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.00	0.00	0.00	0.00	00
					+			+	00
Boundary effect	E.2.3	0.8	R	1.73	0.00	0.00	0.00	0.00	
Linearity	E.2.4	1.25	R	1.73	0.00	0.00	0.00	0.00	00
System detection limits	E.2.4	1.20	R	1.73	0.00	0.00	0.00	0.00	8
Modulation response	E2.5	3.42	R	1.73	0.00	0.00	0.00	0.00	8
Readout Electronics	E.2.6	0.26	N	1.00	0.00	0.00	0.00	0.00	00
Response Time	E.2.7	0.17	R	1.73	0.00	0.00	0.00	0.00	8
Integration Time	E.2.8	1.43	R	1.73	0.00	0.00	0.00	0.00	00
RF ambient conditions- Noise	E.6.1	3.51	R	1.73	0.00	0.00	0.00	0.00	00
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	0.00	0.00	0.00	0.00	00
Probe positioner mechanical tolerance	E.6.2	1.2	R	1.73	1.00	1.00	0.69	0.69	80
Probe positioning with respect to phantom shell	E.6.3	1.4	R	1.73	1.00	1.00	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	3.9	R	1.73	0.00	0.00	0.00	0.00	00
System check source (dipole)			/						
Deviation of experimental dipoles	E.6.4	4.8	N	1.00	1.00	1.00	4.80	4.80	00
Input power and SAR drift measurement	8,6.6.4	5.1	R	1.73	1.00	1.00	2.94	2.94	00
Dipole axis to liquid distance	8,E.6.6	2.4	R	1.73	1.00	1.00	1.39	1.39	8
Phantom and tissue parameters									
Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.7	R	1.73	1.00	1.00	2.14	2.14	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1.00	1.00	0.84	1.90	1.60	00
Liquid conductivity measurement	E.3.3	2.4	R	1.73	0.78	0.71	1.08	0.98	8
Liquid permittivity measurement	E.3.3	4.1	N	1.00	0.78	0.71	3.20	2.91	М
Liquid conductivity— temperature uncertainty	E.3.4	2.7	R	1.73	0.23	0.26	0.36	0.41	8
Liquid permittivity— temperature uncertainty	E.3.4	4.8	N	1.00	0.23	0.26	1.10	1.25	М
Combined Standard Uncertainty			RSS				5.56	5.20	
Expanded Uncertainty (95% Confidence interval)			K=2				11.12	10.41	j.

Page 24 of 56 Report No.: STS2503075H02

10. Conducted Power Measurement

10.1 Test Result

2.4G WLAN

		2.4GWIF	1		
Mode	Channel Number	Frequency (MHz)	ANT_1 Average Power (dBm)	ANT_2 Average Power (dBm)	ANT_1+2 Average Power (dBm)
	1	2412	8.99	8.48	N/A
802.11b	7	2437	9.40	8.67	N/A
	11	2462	9.64	8.79	N/A
802.11g 1 11	1	2412	8.66	8.00	N/A
	7	2437	8.97	8.20	N/A
	11	2462	9.31	8.35	N/A
802.11 n- HT20	1	2412	8.36	7.65	11.03
	7	2437	8.90	8.14	11.55
11120	11	2462	9.13	8.24	11.72
802.11 n-	3	2422	8.97	8.43	11.72
HT40	6	2437	9.22	8.55	11.91
11140	9	2452	9.33	8.67	12.02
802.11ax-	1	2412	8.51	7.88	11.22
HE20	7	2437	8.93	8.21	11.60
TILZU	11	2462	9.21	8.34	11.81
802.11ax-	3	2422	8.76	8.08	11.44
HE40	6	2437	8.98	8.15	11.60
11240	9	2452	9.24	8.24	11.78

Page 25 of 56

Report No.: STS2503075H02

BT

	BT								
Mode	Channel Number	Fraguency (MHz)	Conducted	Output Power					
Wiode	Channel Number	Frequency (MHz)	Power (dBm)	(mW)					
	0	2402	1.62	1.45					
GFSK(1Mbps)	39	2441	1.54	1.43					
	78	2480	2.03	1.60					
	0	2402	1.72	1.49					
π/4-QPSK(2Mbps)	39	2441	1.56	1.43					
	78	2480	2.09	1.62					
	0	2402	1.93	1.56					
8DPSK(3Mbps)	39	2441	1.81	1.52					
	78	2480	2.30	1.70					

BLE

	BLE								
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)					
	0	2402	0.05	1.01					
GFSK(1Mbps)	19	2440	0.08	1.02					
	39	2480	0.49	1.12					
	0	2402	0.24	1.06					
GFSK(2Mbps)	19	2440	0.22	1.05					
	39	2480	0.50	1.12					

Page 26 of 56 Report No.: STS2503075H02

5 00 M/I ANI							
		5.2G WLA	T				
			ANT_1	ANT_2	ANT_1+2		
Mode	Channel	Frequency	Average	Average	Average		
Wode	Number	(MHz)	Power	Power	Power		
			(dBm)	(dBm)	(dBm)		
	36	5180	10.36	9.20	N/A		
802.11a	40	5200	10.40	9.34	N/A		
	48	5240	10.81	9.50	N/A		
	36	5180	10.32	9.08	12.75		
802.11 n-HT20	40	5200	10.26	9.27	12.80		
	48	5240	10.78	9.44	13.17		
802.11 n-HT40	38	5190	8.70	7.50	11.15		
802.1111-11140	46	5230	9.11	7.72	11.48		
	36	5180	8.20	7.08	10.69		
802.11ac-VHT20	40	5200	8.12	7.31	10.74		
	48	5240	8.69	7.28	11.05		
802.11ac-VHT40	38	5190	8.63	7.43	11.08		
002.11ac-V11140	46	5230	9.06	7.67	11.43		
802.11ac-VHT80	42	5210	8.90	7.61	11.31		
	36	5180	8.26	7.15	10.75		
802.11ax-VHT20	40	5200	8.37	7.27	10.87		
	48	5240	8.61	7.38	11.05		
802.11ax-VHT40	38	5190	8.77	7.68	11.27		
002.11ax-V11140	46	5230	8.97	7.65	11.37		

5210

8.60

7.57

11.13

802.11ax-VHT80

42

Page 27 of 56 Report No.: STS2503075H02

5.8G WLAN								
			ANT_1	ANT_2	ANT_1+2			
Mada	Channel	Frequency	Average	Average	Average			
Mode	Number	(MHz)	Power	Power	Power			
			(dBm)	(dBm)	(dBm)			
	149	5745	10.65	9.66	N/A			
802.11a	157	5785	10.94	9.84	N/A			
	165	5825	11.03	9.87	N/A			
	149	5745	7.49	6.39	9.99			
802.11 n-HT20	157	5785	7.75	6.61	10.23			
	165	5825	7.87	6.66	10.32			
	151	5755	8.20	7.09	10.69			
802.11 n-HT40	159	5795	8.21	7.10	10.70			
	149	5745	7.54	6.30	9.97			
802.11ac-VHT20	157	5785	7.67	6.69	10.22			
	165	5825	7.96	6.73	10.40			
000 44 \// IT40	151	5755	8.10	7.07	10.63			
802.11ac-VHT40	159	5795	8.48	6.99	10.81			
802.11ac-VHT80	155	5775	8.33	7.32	10.86			
	149	5745	7.78	6.36	10.14			
802.11ax-VHT20	157	5785	8.13	6.17	10.27			
	165	5825	8.15	5.92	10.19			
000 44 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	151	5755	7.96	6.29	10.22			
802.11ax-VHT40	159	5795	8.33	6.61	10.56			
202 44 34 1722			2.10	0.00	10.00			

5775

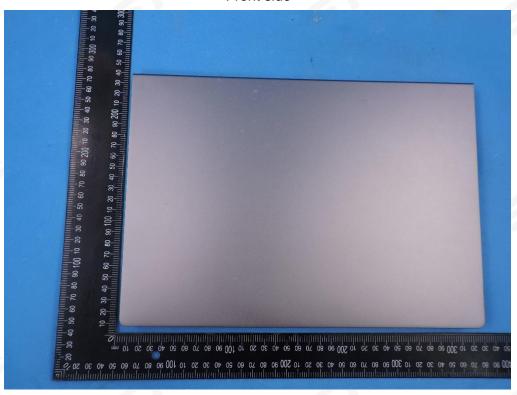
8.19

6.90

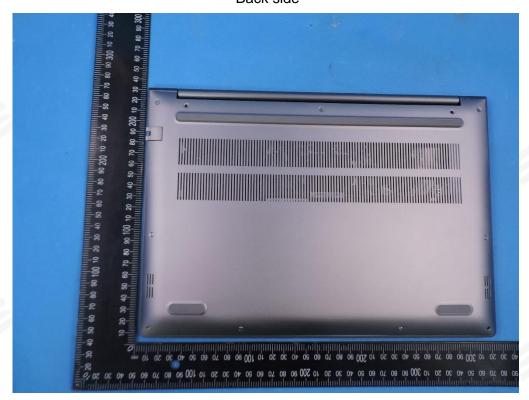
10.60

802.11ax-VHT80

155



Page 28 of 56 Report No.: STS2503075H02


11. EUT and Test Setup Photo

11.1 EUT Photo

Back side

Page 29 of 56 Report No.: STS2503075H02

Top side

Bottom side

Page 30 of 56 Report No.: STS2503075H02

Left side

Right side

