

TEST REPORT

Applicant:	Quectel Wireless Solutions Co., Ltd.		
EUT Description:	LTE Module with Wi-Fi & Bluetooth		
Model:	SC200U-NA		
Brand:	QUECTEL		
FCC ID:	XMR2025SC200UNA		
Standards:	FCC 47 CFR Part 15 Subpart C		
Date of Receipt:	2025/01/13		
Date of Test:	2025/01/13 to 2025/02/26		
Date of Issue:	2025/02/27		

TOWE. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

the results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of the model are manufactured with identical electrical and mechanical components. All sample tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise. without written approval of TOWE, the test report shall not be reproduced except in full.

Huang Kun Approved By:

Chen Chengfu Reviewed By:

Revision History

Rev.	Issue Date	Description	Revised by
01	2025/02/27	Original	Chen Chengfu

Page 3 / 40

Summary of Test Results

Clause	FCC Part	Test Items	Result		
4.1	§15.203/15.247(b)	Antenna Requirement	PASS		
4.2	§15.207	AC Power Line Conducted Emission	N/A		
4.3	§15.247 (b)(3)	Output Power	PASS		
4.4	§15.247 (a)(2)	Occupied Bandwidth	Reporting purposes only		
4.5	§15.247 (e)	Power Spectral Density	PASS		
4.6	§15.247(d)	Band Edge for Conducted Emissions	PASS		
4.7	§15.247(d)	Spurious RF Conducted Emissions	PASS		
4.8	4.8§15.205 §15.209Radiated Spurious emissions and Band EdgePASS				
Remark:	: ANSI C63.10:2020, K	DB 558074 D01 15.247 Mesa Guidance v05r02.			

1. Pass is EUT meets standard requirements.

The EUT is DC power supply, "N/A" denotes "not applicable". 2.

Table of Contents

1	Gen	eral De	scription	5		
	1.1	La	b Information	5		
		1.1.1	Testing Location	5		
		1.1.2	Test Facility / Accreditations	5		
	1.2	Cli	ent Information	5		
		1.2.1	Applicant	5		
		1.2.2	Manufacturer	5		
	1.3	Pro	oduct Information	6		
2	Test	Config	juration	7		
	2.1	Те	st Channel	7		
	2.2	Wo	orst-case configuration and Mode	8		
	2.3	Su	pport Unit used in test	8		
	2.4	Те	st Environment	8		
	2.5	Те	st RF Cable	8		
	2.6	Мс	difications	8		
	2.7	Те	st Setup Diagram	9		
		2.7.1	Conducted Configuration	9		
		2.7.2	Radiated Configuration	10		
3	Equi	pment	and Measurement Uncertainty	11		
	3.1	Те	st Equipment List	11		
	3.2	Ме	asurement Uncertainty	12		
4	Test	Result	S	13		
	4.1	An	tenna Requirement	13		
	4.2	Ou	tput Power	14		
	4.3	Oc	cupied Bandwidth	15		
	4.4	Ро	wer Spectral Density	16		
	4.5	Ba	Band Edge for Conducted Emissions17			
	4.6	Spurious RF Conducted Emissions18				
	4.7	-	diated Spurious Emissions and Band Edge			
5	Test		Photos			
	Арр	endix.		22		

1 General Description

1.1 Lab Information

1.1.1 Testing Location

These measurements tests were conducted at the Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. facility located at F401 and F101, Building E, Hongwei Industrial Zone, Liuxian 3rd Road, Bao'an District, Shenzhen, China. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 Tel.: +86-755-27212361

Contact Email: info@towewireless.com

1.1.2 Test Facility / Accreditations

A2LA (Certificate Number: 7088.01)

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

FCC Designation No.: CN1353

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. has been recognized as an accredited testing laboratory. Designation Number: CN1353.

ISED CAB identifier: CN0152

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. has been recognized by ISED as an accredited testing laboratory. CAB identifier: CN0152 Company Number: 31000

1.2 Client Information

1.2.1 Applicant

Applicant:	Quectel Wireless Solutions Co., Ltd.
Address:	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, 200233, China.

1.2.2 Manufacturer

Manufacturer:	Quectel Wireless Solutions Co., Ltd.
Address:	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, 200233, China.

1.3 Product Information

EUT Description:	LTE Module with Wi-Fi & Bluetooth			
Model No.:	SC200U-NA			
Brand:	QUECTEL			
Hardware Version:	R1.0			
Software Version:	SC200UNANAR01A01			
IMEI:	RF Conducted	866034070337	7823	
	RSE	866034070236	643	
Bluetooth version:	Bluetooth V5.0			
Support Mode:	LE 1M PHY:1Mbps	LE 1M PHY:1Mbps		
Modulation Type:	GFSK			
Frequency Range:	2400 ~ 2483.5MHz			
Channel Frequency:	2402 ~ 2480MHz			
Channel Number:	40			
Antenna Type:	🖾 External, 🗌 Integrated			
Antenna Gain:	Ant0 (dBi)			
Antenna Gain.	0.47			
Remark: The above EUT's information was declared by applicant, please refer to the specifications or user's manual for more detailed description.				

2 Test Configuration

2.1 Test Channel

Operation Frequency of each channel for GFSK, π /4DQPSK, 8DPSK						
Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
	Frequency 2402MHz 2404MHz 2406MHz 2406MHz 24010MHz 2410MHz 2412MHz 2414MHz 2416MHz 2418MHz 2410MHz	FrequencyChannel2402MHz102404MHz112406MHz122406MHz122408MHz132410MHz142412MHz152414MHz162416MHz172418MHz182420MHz19	FrequencyChannelFrequency2402MHz102422MHz2404MHz112424MHz2406MHz122426MHz2406MHz132428MHz2408MHz132428MHz2410MHz142430MHz2412MHz152432MHz2414MHz162434MHz2416MHz172436MHz2418MHz182438MHz2420MHz192440MHz	FrequencyChannelFrequencyChannel2402MHz102422MHz202404MHz112424MHz212406MHz122426MHz222408MHz132428MHz232410MHz142430MHz242412MHz152432MHz252414MHz162434MHz262416MHz172436MHz272418MHz182438MHz282420MHz192440MHz29	FrequencyChannelFrequencyChannelFrequency2402MHz102422MHz202442MHz2404MHz112424MHz212444MHz2406MHz122426MHz222446MHz2408MHz132428MHz232448MHz2400MHz142430MHz242450MHz2412MHz152432MHz252452MHz2414MHz162434MHz262454MHz2416MHz172436MHz272456MHz2418MHz182438MHz282458MHz2420MHz192440MHz292460MHz	FrequencyChannelFrequencyChannelFrequencyChannel2402MHz102422MHz202442MHz302404MHz112424MHz212444MHz312406MHz122426MHz222446MHz322408MHz132428MHz232448MHz332410MHz142430MHz242450MHz342412MHz152432MHz252452MHz352414MHz162434MHz262454MHz362416MHz172436MHz272456MHz372418MHz182438MHz282458MHz38

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test Channel	Test Frequency
The Lowest channel(CH0)	2402MHz
The Middle channel(CH19)	2440MHz
The Highest channel(CH39)	2480MHz

2.2 Worst-case configuration and Mode

Modulation Type	LE 1M PHY
Transmitting mode	Keep the EUT was programmed to be in continuously transmitting mode
Normal Link	Keep the EUT operation to normal function.

2.3 Support Unit used in test

Description	Manufacturer	Model	Serial Number	
Adapter	JingSai	CLS-050200	3749567924	
Development Board	Quectel	SMART-EVB-G5	P1Q22EL10000299	
Development Board	Quectel	SC200U-NA-TE-A	E1C24LS22000007	
Remark: all above the information of table are provided by client.				

2.4 Test Environment

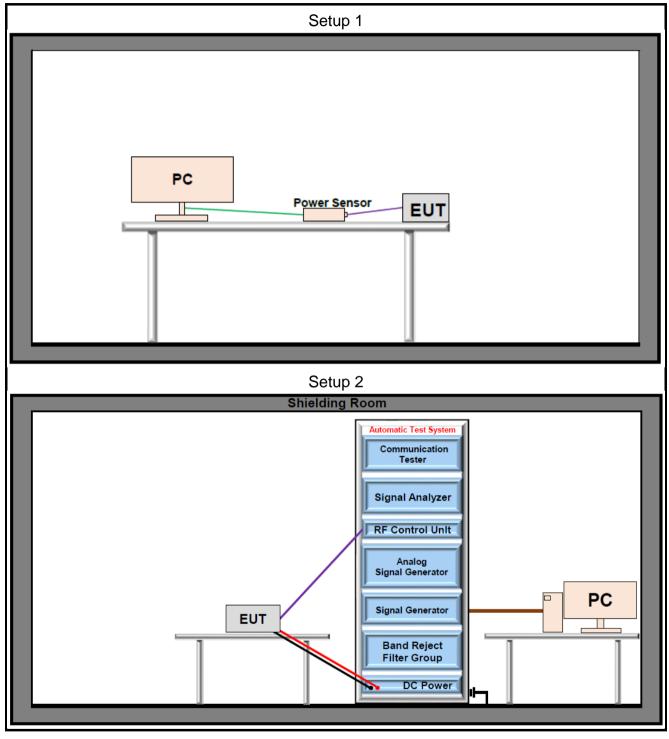
Temperature:	Normal: 15°C ~ 35°C	
Humidity:	45-56 % RH Ambient	
Voltage:	DC 3.8V (Module Input)	
Remark: The testing environment is within the scope of the EUT user manual and meets the requirements of		
the standard testing environment.		

2.5 Test RF Cable

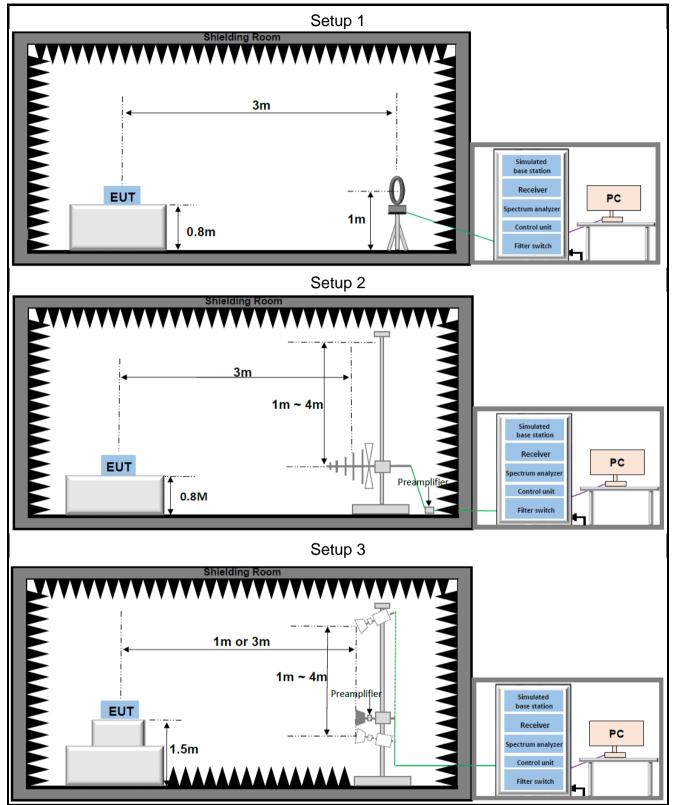
For all conducted test items: The offset level is set spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.


2.6 Modifications

No modifications were made during testing.


2.7 Test Setup Diagram

2.7.1 Conducted Configuration

2.7.2 Radiated Configuration

3 Equipment and Measurement Uncertainty

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, whichever is less, and where applicable is traceable to recognized national standards.

3.1 Test Equipment List

Description	Manufacturer	Model	SN	Last Due	Cal Due
Signal Analyzer	Keysight	N9020A	US46470429	2024/03/25	2025/03/24
Power Sensor	Anritsu	MA24408A	12520	2024/05/30	2025/05/29
Measurement Software	Tonscend	TS1120-3	10659	N/A	N/A

Radiated Emission									
Description	Manufacturer	Model	SN	Last Due	Cal Due				
Biconic Logarithmic Periodic Antennas	Schwarzbeck	VULB9163	1643	2023/06/25	2025/06/24				
Double-Ridged Horn Antennas	Schwarzbeck	BBHA 9120D	2809	2023/06/25	2025/06/24				
Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	1290	2023/06/25	2025/06/24				
Loop Antenna	Schwarzbeck	FMZB 1519C	1519C-028	2023/06/29	2025/06/28				
Signal Analyzer	Keysight	N9020A	MY49100252	2024/03/25	2025/03/24				
EXA Signal Analyzer, Multi- touch	Keysight	N9010B	MY63440541	2024/05/30	2025/05/29				
Wideband Radio Communication Tester	R&S	CMW500	150645	2024/03/25	2025/03/24				
Low Noise Amplifier	Tonscend	TAP9K3G40	AP23A8060273	2023/04/08	2025/04/07				
Low Noise Amplifier	Tonscend	TAP01018050	AP22G806258	2023/04/08	2025/04/07				
Low Noise Amplifier	Tonscend	TAP18040048	AP22G806247	2023/04/08	2025/04/07				
Hygrometer	BINGYU	HTC-1	N/A	2023/06/01	2025/05/31				
Test Software	Tonscend	TS+	Version: 5.0.0	N/A	N/A				

3.2 Measurement Uncertainty

Parameter	U _{lab}
Frequency Error	679.98Hz
Output Power	0.76dB
Conducted Spurious Emissions	2.22dB
Radiated Emissions(9kHz~30MHz)	2.40dB
Radiated Emissions(30MHz~1000MHz)	4.66dB
Radiated Emissions(1GHz~18GHz)	5.42dB
Radiated Emissions(18GHz~40GHz)	5.46dB

Uncertainty figures are valid to a confidence level of 95%

4 Test Results

4.1 Antenna Requirement

Standard Applicable:	47 CFR Part 15C Section 15.203 /247(b)
furnished by the responsible party shall be us or of an antenna that uses a unique coupling	hall be designed to ensure that no antenna other than that sed with the device. The use of a permanently attached antenna to the intentional radiator, the manufacturer may design the unit the user, but the use of a standard antenna jack or electrical

15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna gain and type as provided by the manufacturer are as follows: The antenna Type is Dipole. With maximum gain is 0.47dBi.

Antenna Anti-Replacement Construction: An embedded-in antenna design is used.

4.2 Output Power

Limits

If With directional antenna gains less than 6 dBi, the limit is 30dBm.

Test Procedure

ANSI C63.10:2020 Section 11.9.1.2(PKPM1) or 11.9.2.3.2(AVGPM-G)

Test Settings

- 1. Set to the maximum power setting and enable the EUT transmit continuously.
- 2. The power output was measured on the EUT antenna port using RF Cable with attenuator connected to a power meter via wideband power sensor. Peak output power was read directly from power meter.
- 3. Measure and record the results in the test report.

Test Setup

Refer to section 2.7.1- Setup 1 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

4.3 Occupied Bandwidth

<u>Limits</u>

DTSBW: The minimum 6 dB bandwidth shall be at least 500 kHz. 99%BW: None, for reporting purposes only.

Test Procedure

ANSI C63.10:2020 Section 11.8.2 and 6.9.3

Test Settings

- 1. Set to the maximum power setting and enable the EUT transmit continuously.
- 2. The transmitter output is connected to a spectrum analyzer:
- 3. RBW = 100kHz(DTS)
- 4. RBW = 1% 5%(99%BW)
- 5. VBW = 3 times the RBW
- 6. Sweep = Auto
- 7. Detector = Peak
- 8. Trace = Max hold
- 9. The trace was allowed to stabilize
- 10. Measure and record the results in the test report.

Test Notes

DTS: The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X= 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.

Test Setup

Refer to section 2.7.1- Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

4.4 Power Spectral Density

<u>Limits</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

ANSI C63.10:2020 Section 11.10.2(PKPSD)

Test Settings

- 1. Set to the maximum power setting and enable the EUT transmit continuously
- 2. The transmitter output is connected to a spectrum analyzer
- 3kHz ≤ RBW ≤ 100 kHz (If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.)
- 4. VBW \geq 3 times RBW
- 5. Span = 1.5 times the DTS bandwidth
- 6. Sweep = Auto
- 7. Detector = Peak
- 8. Trace = Max hold
- 9. The trace was allowed to stabilize
- 10. Measure and record the results in the test report.

Test Setup

Refer to section 2.7.1- Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

4.5 Band Edge for Conducted Emissions

<u>Limits</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated. intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph 15.247(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure

ANSI C63.10:2020 Section 11.11.3

Test Settings

- 1. Set to the maximum power setting and enable the EUT transmit continuously
- 2. The transmitter output is connected to a spectrum analyzer
- 3. RBW = 100kHz
- 4. VBW = 300kHz
- 5. Point \geq 2 x span/RBW
- 6. Sweep = Auto
- 7. Detector = Peak
- 8. Trace = Max hold
- 9. The trace was allowed to stabilize
- 10. Measure and record the results in the test report

Test Setup

Refer to section 2.7.1- Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

4.6 Spurious RF Conducted Emissions

<u>Limits</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated. intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph 15.247(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure

ANSI C63.10:2020 Section 11.11.3

Test Settings

- 1. Set to the maximum power setting and enable the EUT transmit continuously.
- 2. Activate frequency hopping function if necessary.
- 3. The transmitter output is connected to a spectrum analyzer
- 4. The spectrum from 30MHz 26.5GHz
- 5. RBW = 100kHz
- 6. VBW = 300kHz
- 7. Sweep = Auto
- 8. Detector = Peak
- 9. Trace = Max hold
- 10. The trace was allowed to stabilize
- 11. Measure and record the results in the test report

Test Setup

Refer to section 2.7.1- Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

4.7 Radiated Spurious Emissions and Band Edge

<u>Limits</u>

Spurious emissions are permitted in an of the frequency bands:

MHz	MHz	MHz	MHz	GHz	GHz
0.090 - 0.110	12.29 - 12.293	149.9 - 150.05	1660 - 1710	4.5 - 5.15	14.47 - 14.5
0.495 - 0.505	12.51975 - 1252025	156.52475 - 156.52525	1718.8 - 1722.2	5.35 - 5.46	15.35 - 16.2
2.1735 - 2.1905	12.5767 - 12.57725	156.7 - 156.9	2200 - 2300	7.25 - 7.75	17.7 - 21.4
4.125 - 128	13.36 - 13.41	162.0125 - 167.17	2310 - 2390	8.025 - 8.5	22.01 - 23.12
4.17725 - 4.17775	16.42 - 16.423	167.72 - 173.2	2483.5 - 2500	9.0 - 9.2	23.6 - 24.0
4.20725 - 4.20775	16.69475 - 16.69525	240 - 285	2655 - 2900	9.3 - 9.5	31.2 - 31.8
6.215 - 6.218	1680425 - 1680475	322 - 335.4	3260 - 3267	10.6 - 12.7	36.43 - 36.5
6.26775 - 6.26825	25.5 - 25.67	399.9 - 410	3332 - 3339	13.25 - 13.4	
6.31175 - 6.31225	37.5 - 38.25	608 - 614	3345.8 - 3358		
8.291 - 8.294	73 - 74.6	960 - 1240	3600 - 4400		
8.362 - 8.366	74.8 - 75.2	1300 - 1427			
8.37625 - 8.38675	108 - 121.94	1435 - 1626.5			
8.41425 - 8.41475	123 - 138	1645.5 - 1646.5			
Radiated disturbar	nce of an intentional	radiator:			

Frequency	Field strength (µV/m)	Limit (dBµV/m	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	74.0	Peak	3
Above IGHz	500	54.0	Average	3

Test Procedure

ANSI C63.10:2020 Section 6.4 & 6.5 & 6.6

Test Settings

- 1. For radiated emissions measurements performed at frequencies less than or equal to 1GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 80cm above the reference ground plane.
- 2. For radiated emissions measurements performed at frequencies above 1GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 80cm above the ground plane.
- 3. Radiated measurements shall be made with the measurement antenna positioned in both horizontal and vertical polarization. The measurement antenna shall be varied from 1m to 4m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level (i.e, field strength or received power), when orienting the measurement antenna in vertical polarization, the minimum height of the lowest element of the antenna shall clear the site reference ground plane by at least 25cm.
- 4. For each suspected emission, the EUT was ranged its worst case and then tune the antenna tower(from 1~4m) and turntable(from 0~360°) find the maximum reading. Preamplifier and a high pass filter are used for the test in order get better signal level comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. The emission limits shown in the above table are based on measurements employing a CISPR quasipeak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- spectrum analyzer setting: Measurements Below 1000MHz: RBW = 120 kHz; VBW ≥ 300 kHz; Detector = Peak Measurements Above 1000MHz: RBW = 1 MHz; VBW ≥ 3 MHz; Detector = Peak

Average Measurements Above 1000MHz:

RBW = 1 MHz, VBW \geq 1/T, with peak detector for average measurements.

8. The field strength is calculated by adding the Antenna Factor, Cable Factor. The basic equation with a sample calculation is as follows:

Level = Reading($dB\mu V$) + AF(dB/m) + Factor(dB):

AF = Antenna Factor(dB/m)

Factor = Cable Factor(dB) - Preamplifier gain(dB)

Margin = Limit(dBµV/m) – Level(dBµV/m)

- 9. Repeat above procedures until all frequencies measured was complete.
- 10. Measure and record the results in the test report.

Test Notes

- 1. Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1-meter test distance with the application of a distance correction factor.
- Radiated spurious emissions were investigated from 9kHz to 30MHz, 30MHz-1GHz and above 1GHz. the disturbance between 9kHz to 30MHz, 30MHz-1GHz and 18GHz to 40GHz was very low. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be recorded, so only the harmonics had been displayed.
- 3. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Test Setup

Refer to section 2.7.2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

5 Test Setup Photos

The detailed test data see: Appendix-C BTWIFI Setup Photos

Appendix

DTS Bandwidth

Test Result


TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M	Ant0	2402	0.676	2401.656	2402.332	0.5	PASS
BLE_1M	Ant0	2440	0.668	2439.664	2440.332	0.5	PASS
BLE_1M	Ant0	2480	0.656	2479.672	2480.328	0.5	PASS

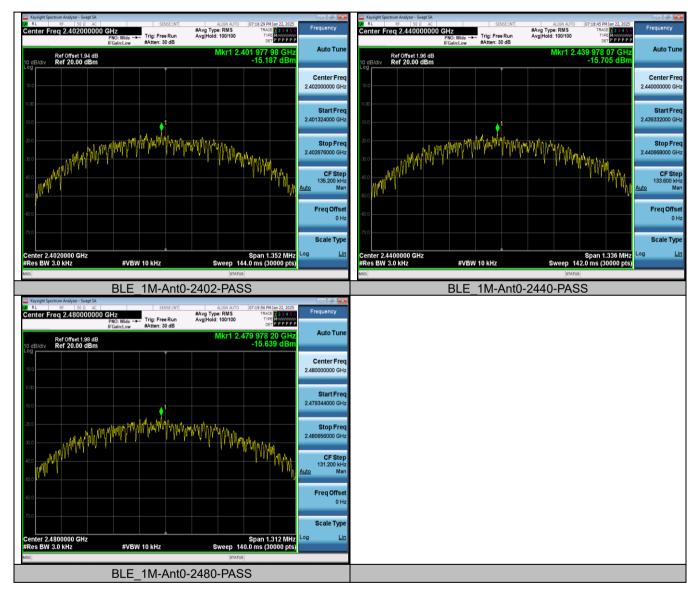
20 BL RE 50.0 AC SENSE INT ALIGN AUTO 07:15:51 PM Jan 22, 2025	Control State State State Figure - Swept SA Incv If State
PNO: Wide →→ Trig: Free Run Avg Hold: 100/100 DET PPPPPP IFGsin:Low #Atten: 40 dB DET PPPPPP	ncy Center Freq 2.440000000 GHz (Fount.ow) #Avg Type: RMS Avg/Hold: 100100 Intermeting Transformeting Frequency Frequency o Tune Ref Orset 1.96 dB AMM/s7 669 KHz Auto Tune 10 dB/div Ref Orset 1.96 dB 0.157 dB Auto Tune
100 200 300 300 300 300 300 300 3	rt Freq 300 300 300 300 300 300 300 30
10 10 10 10 10 10 10 10 10 10	Stop Freq Stop Freq 2.4200000 GHz
#Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts)	F Step 000 kHz Span 4.000 MHz CF Step 400.000 kHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) 4uto Auto
1 N 1 f 2401656 GHz -6.756 dBm	IMPR MODETRIC ScI. X Y F PUNCTION
Scal	Lin Contraction of the second se
BLE 1M-Ant0-2402-PASS	BLE 1M-Ant0-2440-PASS
Keysigkt Spectrum Analyser - Swegt SA SENCE: INT ALIGN AUTO (07:19:25 PH Jan 22, 2025 R L RF S0 Q AC Freque Center Freq 2.43800000000 GHz Freque #AvgType: RMS Trace 123 435 PRO: Wide →=- Trig: Free Run AvgIHoid: 100/100 Trie: PPPPPp	ncy
Ref Offset 1.98 dB ZiMKr3 656 KH2 10 dB/div Ref 30.00 dBm 0.251 dB Log	er Freq
100 000 000 241 000 000 000 000 000 000 000 000 000 0	
300 300 400	300 GHz
	DP Freq 300 GHz
	F Step 000 472 Man
1 N 1 f 2.479 672 GHz -7.058 dBm	Offset 0 Hz
7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	le Type Lin
BLE 1M-Ant0-2480-PASS	
DLE_IIVI-AIILU-2400-PA33	

Occupied Channel Bandwidth Test Result

TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M	Ant0	2402	1.0382	2401.4921	2402.5303		
BLE_1M	Ant0	2440	1.0375	2439.4919	2440.5294		
BLE_1M	Ant0	2480	1.0249	2479.4914	2480.5163		

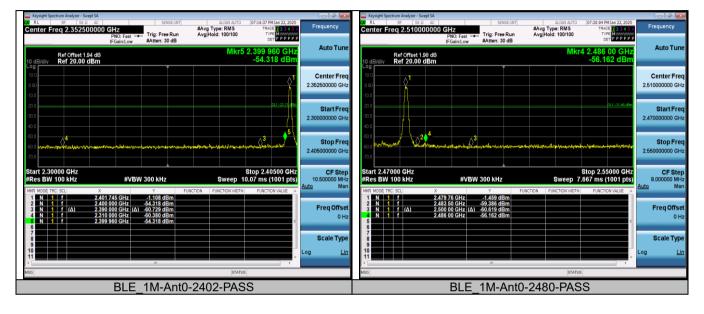
Maximum conducted output power Test Result Peak

TestMode	Antenna	Frequency[MHz]	Conducted Peak Power[dBm]	Conducted Limit[dBm]	Verdict
BLE_1M	Ant0	2402	0.421	≤30	PASS
BLE_1M	Ant0	2440	-0.261	≤30	PASS
BLE_1M	Ant0	2480	-0.118	≤30	PASS


Test Result Average

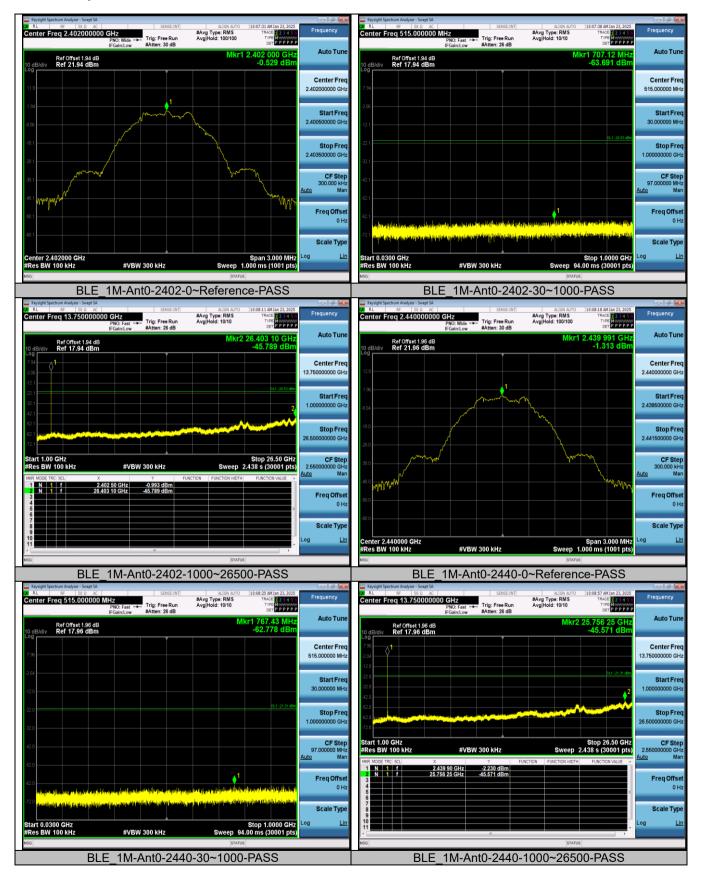
TestMode	Antenna	Frequency[MHz]	Conducted Average Power[dBm]	Conducted Limit[dBm]	Verdict
BLE_1M	Ant0	2402	-0.225	≤30	PASS
BLE_1M	Ant0	2440	-0.884	≤30	PASS
BLE_1M	Ant0	2480	-0.827	≤30	PASS

Maximum power spectral density Test Result


TestMode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M	Ant0	2402	-15.19	≤8.00	PASS
BLE_1M	Ant0	2440	-15.71	≤8.00	PASS
BLE_1M	Ant0	2480	-15.64	≤8.00	PASS

Band edge measurements Test Result

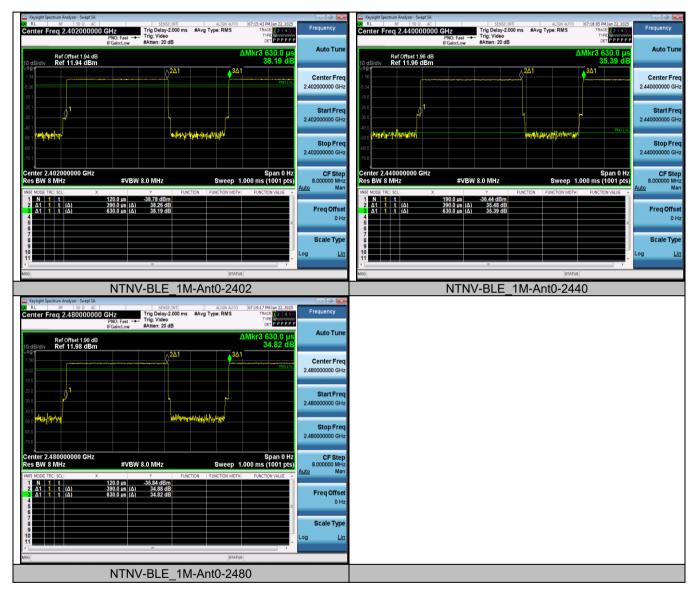
TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE_1M	Ant0	Low	2402	-1.11	-54.32	≤-21.11	PASS
BLE_1M	Ant0	High	2480	-1.46	-56.16	≤-21.46	PASS



Conducted Spurious Emission Test Result

TestMode	Antenna	Frequency[MHz]	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE_1M	Ant0	2402	0~Reference	-0.53	-0.53		PASS
BLE_1M	Ant0	2402	30~1000	-0.53	-63.69	≤-20.53	PASS
BLE_1M	Ant0	2402	1000~26500	-0.53	-45.79	≤-20.53	PASS
BLE_1M	Ant0	2440	0~Reference	-1.31	-1.31		PASS
BLE_1M	Ant0	2440	30~1000	-1.31	-62.78	≤-21.31	PASS
BLE_1M	Ant0	2440	1000~26500	-1.31	-45.57	≤-21.31	PASS
BLE_1M	Ant0	2480	0~Reference	-0.95	-0.95		PASS
BLE_1M	Ant0	2480	30~1000	-0.95	-63.04	≤-20.95	PASS
BLE_1M	Ant0	2480	1000~26500	-0.95	-45.8	≤-20.95	PASS

ωe


Page 29 / 40 Report No.: TCWA24120042201

Keysight Spectrum Analyzer - Swept SA RL 8F 50 0 AC SENSE:INT ALTON 10:09:31 AM Jan 23, 2025	- 0 -	Keysight Spectrum Analyzer - Swept SA	aruse ugl			- 4 💌
0 R. № [59.0 AC SERVELINT] ALTO AUTO 1809-31 444a-23, 2025 Center Freq 2.4800000000 CHz Pilor With → Trig: Free Run Avg Hold: 100100 Trig IFGaint.com & Atten: 30 dB	Frequency	Center Freq 515.000000 MHz	O: Fast Trig: Free Run Sain:Low #Atten: 26 dB	#Avg Type: RMS Avg Hold: 10/10	0:09:38 AM Jan 23, 2025 TRACE 1 2 3 4 5 6 TYPE MUMUUUU DET P P P P P P	Frequency
Ref Offset 198 dB Mkr1 2.480 006 GHz	Auto Tune	Ref Offset 1.98 dB 10 dB/div Ref 17.98 dBm		Mkr1	870.44 MHz -63.035 dBm	Auto Tune
	Center Freq 480000000 GHz	7.98				Center Freq 515.000000 MHz
1 199 1 1 24 8 02	Start Freq 478500000 GHz	-2.02				Start Freq 30.000000 MHz
18.0	Stop Freq 481500000 GHz	-22.0			DL1 -20.95 dBm	Stop Freq 1.00000000 GHz
	CF Step 300.000 kHz o Man	42.0				CF Step 97.000000 MHz <u>Auto</u> Man
(50)	Freq Offset 0 Hz	-62.0 -62.0 Ustifictures and a task line in a task city of the	un galanda da kifata da kifata ana ka	en an an air aite an	1 Jula Marcaterianijati	Freq Offset 0 Hz
Center 2.480000 GHz Span 3.000 MHz	Scale Type	^{-72.0} (the of the product of the second	Riva Relativ Projusta (di Proji Rikayana	n fransk skolater († 1997) S	top 1.0000 GHz	Scale Type Log <u>Lin</u>
Center 2.480000 GHz Span 3.000 MHz Sweep 1.000 ms (1001 pts)		#Res BW 100 kHz	#VBW 300 kHz	Sweep 94.00	ms (30001 pts)	
BLE 1M-Ant0-2480-0~Reference-PASS		BLE	1M-Ant0-2480		2210	
Register Server Sweet SA Server Singlet Spectrum Analyzer - Sweet SA R.k. per Sign as C Server Singlet Spectrum Analyzer - Sweet SA Center Freq 13.750000000 GHz Trig: Free Run PROI: Faut → Trig: Free Run Atten: 28 dB Savg Type: RMS Avgit/did: 10/10 Trig: Server Sub Trig: Server Savgit/did: 10/10	Frequency Auto Tune					
	Center Freq					
120	Start Freq					
	000000000 GHz Stop Freq					
7220 Start 1.00 GHz Stop 26.50 GHz	500000000 GHz CF Step					
#Res BW 100 kHz #VBW 300 kHz Sweep 2.438 s (30001 pts) 2.5 IMMR MODE TRC SCL X Y FUNCTION WIDTH FUNCTION WID	550000000 GHz					
1 N 1 f 2479 85 GHz -1.863 dBm 3 N 1 f 25.723 90 GHz 45.795 dBm 4 5 5 723 90 GHz 45.795 dBm	Freq Offset 0 Hz					
	Scale Type					
BLE 1M-Ant0-2480-1000~26500-PASS						
_						

Duty Cycle Test Result

TestMode	Antenna	Frequency[MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	Duty Cycle Factor[dB]
BLE_1M	Ant0	2402	0.39	0.63	61.90	2.08
BLE_1M	Ant0	2440	0.39	0.63	61.90	2.08
BLE_1M	Ant0	2480	0.39	0.63	61.90	2.08

Radiated Spurious Emissions

Test Result

2

3

4

5

6

14336.00

17348.00

9852.50

14331.00

17351.50

34.86

33.43

43.76

42.29

40.03

9.00

12.77

3.31

8.88

12.80

					Project	Informa	tion				
	Мо	de:		BLE			Band:			-	
В	and	width		-			Chann	el		39	
	IM	EI:	866034	07023664	13		Engine	er:		Shen Zhuan	g
I	Rem	nark:									
Test G	Test Graph										
	10	10									
	9	0									
	8	10									
	7	.0									
[m]/V	E 6	i0								5	6
l evelfdRu///ml	aples 5	i0									N.
_			interf and a second address of the second	A line of the second	-	u de la contraction d		and the second second	NAME AND ADDRESS OF ADDRESS		
		⁶⁰	Server (and an a stand of an and	- IVI	and the second sec						
		0									
		0									
		1G — PK Limit	2G	- Horizontal PK	3G — Horizontal	4G Frequency[Hz]	6G		8G		18G
		 PK Limit PK Detection 			nonzohlar	CIVID					
Data L	.ist										
NO.		Freq. [MHz]	Reading [dBuV]	Factor [dB]	Le [.] [dBµ		Lin [dBµ`		Margin [dB]	Polarity	Verdict
1	10	127.00	37.45	3.21	40.	66	54.	00	13.34	Horizontal	PASS

43.86

46.20

47.07

51.17

52.83

54.00

54.00

74.00

74.00

74.00

10.14

7.80

26.93

22.83

21.17

Horizontal

Horizontal

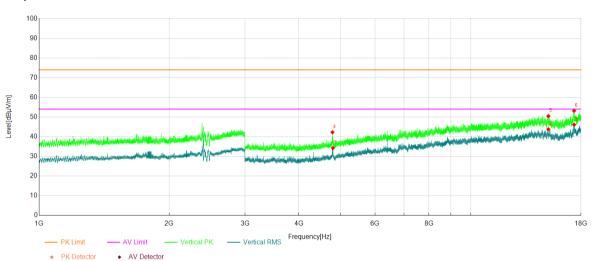
Horizontal

Horizontal

Horizontal

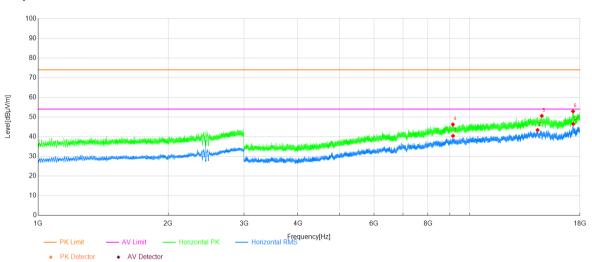
PASS

PASS

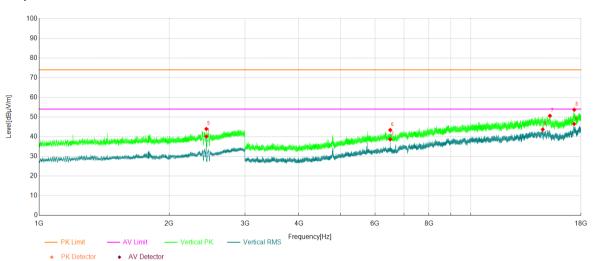

PASS

PASS

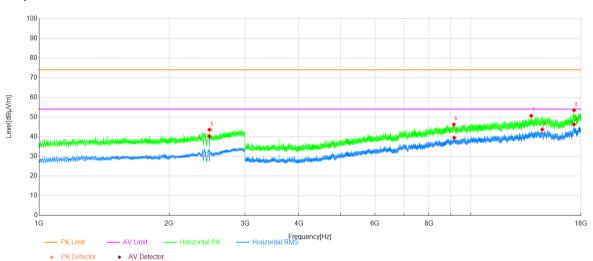
PASS


Project Information								
Mode:	BLE	Band:	-					
Bandwidth	-	Channel	39					
IMEI:	866034070236643	Engineer:	Shen Zhuang					
Remark:								

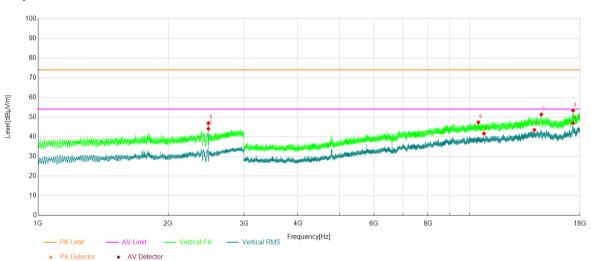
Data List								
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	4793.00	41.81	-7.59	34.22	54.00	19.78	Vertical	PASS
2	15124.50	35.04	8.72	43.76	54.00	10.24	Vertical	PASS
3	17353.50	33.37	12.72	46.09	54.00	7.91	Vertical	PASS
4	4781.00	49.97	-7.70	42.27	74.00	31.73	Vertical	PASS
5	15124.00	41.73	8.73	50.46	74.00	23.54	Vertical	PASS
6	17349.50	40.34	12.84	53.18	74.00	20.82	Vertical	PASS


Project Information								
Mode:	BLE	Band:	-					
Bandwidth	-	Channel	19					
IMEI:	866034070236643	Engineer:	Shen Zhuang					
Remark:		·						

Data L	Data List								
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict	
1	9142.50	37.38	3.05	40.43	54.00	13.57	Horizontal	PASS	
2	14353.50	34.11	9.28	43.39	54.00	10.61	Horizontal	PASS	
3	17361.50	34.05	12.41	46.46	54.00	7.54	Horizontal	PASS	
4	9137.50	43.33	2.91	46.24	74.00	27.76	Horizontal	PASS	
5	14681.00	41.53	9.06	50.59	74.00	23.41	Horizontal	PASS	
6	17342.50	40.37	12.51	52.88	74.00	21.12	Horizontal	PASS	


Project Information								
Mode:	BLE	Band:	-					
Bandwidth	-	Channel	19					
IMEI:	866034070236643	Engineer:	Shen Zhuang					
Remark:		·						

Data List								
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	2440.00	37.81	2.29	40.10	-	-	Vertical	NA
2	6507.00	41.87	-3.23	38.64	54.00	15.36	Vertical	PASS
3	14677.50	34.53	9.16	43.69	54.00	10.31	Vertical	PASS
4	17347.50	33.73	12.75	46.48	54.00	7.52	Vertical	PASS
5	2440.20	41.66	2.29	43.95	-	-	Vertical	NA
6	6506.50	46.62	-3.22	43.40	74.00	30.60	Vertical	PASS
7	15251.00	41.30	9.33	50.63	74.00	23.37	Vertical	PASS
8	17364.50	41.42	12.29	53.71	74.00	20.29	Vertical	PASS

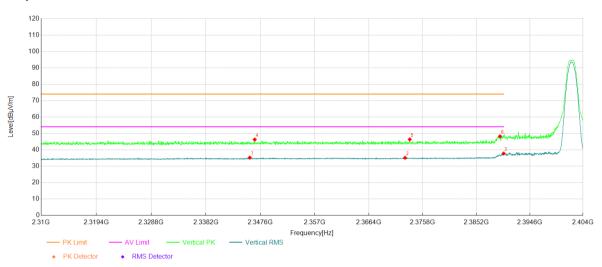

Project Information								
Mode:	BLE	Band:	-					
Bandwidth	-	Channel	39					
IMEI:	866034070236643	Engineer:	Shen Zhuang					
Remark:		·						

Data L	Data List								
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict	
1	2480.20	37.80	2.37	40.17	-	-	Horizontal	NA	
2	9153.00	36.30	3.23	39.53	54.00	14.47	Horizontal	PASS	
3	14636.50	34.05	9.60	43.65	54.00	10.35	Horizontal	PASS	
4	17341.00	33.81	12.45	46.26	54.00	7.74	Horizontal	PASS	
5	2479.80	41.19	2.37	43.56	-	-	Horizontal	NA	
6	9137.50	43.32	2.91	46.23	74.00	27.77	Horizontal	PASS	
7	13797.50	42.77	7.88	50.65	74.00	23.35	Horizontal	PASS	
8	17343.50	40.85	12.56	53.41	74.00	20.59	Horizontal	PASS	

	Project Information								
Mode:	BLE	Band:	-						
Bandwidth	-	Channel	39						
IMEI:	866034070236643	Engineer:	Shen Zhuang						
Remark:		·							

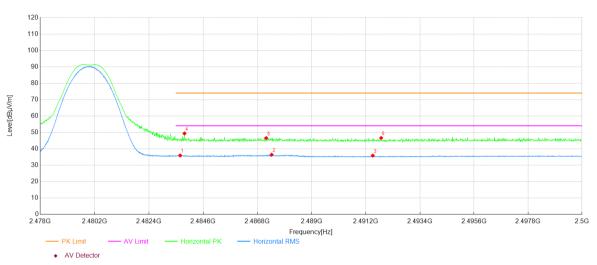
Data L	Data List								
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict	
1	2480.20	41.69	2.37	44.06	-	-	Vertical	NA	
2	10782.00	37.28	4.32	41.60	54.00	12.40	Vertical	PASS	
3	14110.50	35.27	8.15	43.42	54.00	10.58	Vertical	PASS	
4	17346.00	34.20	12.68	46.88	54.00	7.12	Vertical	PASS	
5	2480.20	44.48	2.37	46.85	-	-	Vertical	NA	
6	10470.00	43.14	4.15	47.29	74.00	26.71	Vertical	PASS	
7	14640.50	41.58	9.70	51.28	74.00	22.72	Vertical	PASS	
8	17348.00	40.53	12.77	53.30	74.00	20.70	Vertical	PASS	

Radiated Band Edge

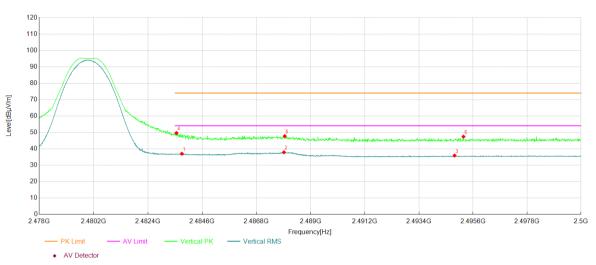

Test Result

	Project	Information			
Mode:	BLE(1MHz)	Band:	-		
Bandwidth	-	Channel	0		
IMEI:	866034070236643	Shen zhuang			
Remark:					
Test Graph	·				
120 110 100 90 80 70 60 50 40 20 20 10 0 231G 231G 231G 231G	3194G 2.3288G 2.3382G 2.3476G	2.357G 2.364G 2.3758G Frequency[Hz]	238526 23946 24046		

Data L	ist							
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	2366.51	33.72	1.44	35.16	54.00	18.84	Horizontal	PASS
2	2378.55	33.72	1.44	35.16	54.00	18.84	Horizontal	PASS
3	2389.90	34.45	1.43	35.88	54.00	18.12	Horizontal	PASS
4	2365.79	44.63	1.44	46.07	74.00	27.93	Horizontal	PASS
5	2378.36	44.52	1.44	45.96	74.00	28.04	Horizontal	PASS
6	2389.68	44.58	1.43	46.01	74.00	27.99	Horizontal	PASS


	Project Information								
Mode:	BLE	Band:	-						
Bandwidth	-	Channel	0						
IMEI:	866034070236643	Engineer:	Shen zhuang						
Remark:		·							

Data L	Data List									
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict		
1	2345.76	33.82	1.41	35.23	54.00	18.77	Vertical	PASS		
2	2372.72	33.68	1.44	35.12	54.00	18.88	Vertical	PASS		
3	2389.99	36.31	1.43	37.74	54.00	16.26	Vertical	PASS		
4	2346.61	44.84	1.42	46.26	74.00	27.74	Vertical	PASS		
5	2373.53	44.92	1.44	46.36	74.00	27.64	Vertical	PASS		
6	2389.36	46.82	1.43	48.25	74.00	25.75	Vertical	PASS		


	Project	Information	
Mode:	BLE	Band:	-
Bandwidth	-	Channel	39
IMEI:	866034070236643	Engineer:	Shen zhuang
Remark:			

Data L	Data List									
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict		
1	2483.67	34.09	1.86	35.95	54.00	18.05	Horizontal	PASS		
2	2487.38	34.51	1.90	36.41	54.00	17.59	Horizontal	PASS		
3	2491.48	33.93	1.95	35.88	54.00	18.12	Horizontal	PASS		
4	2483.84	47.51	1.87	49.38	74.00	24.62	Horizontal	PASS		
5	2487.16	44.66	1.90	46.56	74.00	27.44	Horizontal	PASS		
6	2491.82	44.68	1.95	46.63	74.00	27.37	Horizontal	PASS		

	Project Information							
Mode:	BLE	Band:	-					
Bandwidth	-	Channel	39					
IMEI:	866034070236643	Engineer:	Shen zhuang					
Remark:								

Data L	Data List										
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict			
1	2483.78	35.14	1.87	37.01	54.00	16.99	Vertical	PASS			
2	2487.92	35.99	1.90	37.89	54.00	16.11	Vertical	PASS			
3	2494.85	33.92	1.98	35.90	54.00	18.10	Vertical	PASS			
4	2483.56	47.79	1.85	49.64	74.00	24.36	Vertical	PASS			
5	2487.95	45.84	1.90	47.74	74.00	26.26	Vertical	PASS			
6	2495.21	45.45	1.98	47.43	74.00	26.57	Vertical	PASS			

~The End~