

TEST REPORT

FCC ID: 2ADYY-T15RA-1

Product: Laptop Computer

W5C7

Model No.: T15RA

Trade Mark: TECNO

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

Issued Date: 12 October 2024

WSCI

Issued for:

WSET

TECNO MOBILE LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET **FOTAN NT HONGKONG**

WSET

Issued By:

W5 [] World Standardization Certification & Testing Group(Shenzhen) Co., Ltd.

Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

TEL: +86-755-26996192

FAX: +86-755-86376605

WSCT"

AWS CT

W5CT

WSET

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

深圳世标检测认证股份有限公司 World Standardization Certification& Testing Group (Shenzhen) Co.,Ltd

Page 1 of 262

W5C1

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

TABLE OF CONTENTS

W5CT

	W5 CT°	WSET	WSET	W5ET*	WSET
	1 TEST CERTIFIC				3
	2 EUT DESCRIPT	TON		X	4
	3 TEST DESCRIP	TION			5
W	3.1 MEASUR	REMENT UNCERTAINT	Y7° W	SCT I	V557°
		IVIRONMENT AND MO			6
		PTION OF SUPPORT U	NITS (CONDUCTED	MODE)	7 X
	4 SUMMARY OF				8
	4.1 CARRIE	R FREQUENCY AND C	HANNEL	W5CT°	9 W5 CT
	4.2 TEST MC				12
	5 MEASUREMEN	X		X	14
		D ACCREDITATIONS			15
W	6.1 FACILITI	ITATIONS W5	TT W	SET	15 V 15 7
	O.E AGGINED	AND MEASUREMEN			16
		CTED EMISSION MEAS		X	16
		ON FROM TEST STANI			17
		ED EMISSION MEASUR		W5CT°	20 W5.7
_		A REQUIREMENTS		1124	50
	7.5 26DB & 9	99% OCCUPIED BAND	WIDTH MEASUREMI	ENT	51
,	7.6 MAXIMU	M CONDUCTED OUT	TPUT POWER AND	FUNDAMENTAL	MAXIMUM EIRP
4	MEASUREMENT	The state of the s			74
		IENTAL POWER SPEC		SUREMENT	120
		ATICALLY DISCONTINU	JE TRANSMISSION		166
	7.9 DUTY CY	TION BASED PROTOC	·o.		167 188
		EMISSIONS (CHANNE			000
	8 TEST SETUP PI		-L WASK)	W5 CT	239 W5ET
	O TEOT GETOITT	IIO I OOKAI IIO			202
	\times			X	X

/	W5CT°	NS ET	W5	ET°	W5 L	7°	W5 CT

WSCT	W5ET"	WSCT	WSCT	W5CT*

WELL	WSCT	WELL	WELT	WELT

W5CT"	W5ET*	WS ET"	W5LT°	acation& Testin
	\setminus	\times		Solution (Sh

DD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

深圳世标检测认证股份有限公司
World Standard Latin Certification & Testing Group (Shenzhen) Co.,Ltr

WSC (Gloup (WSC (DA)

Page 2 of 262

WSCT

VSCT WSCT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

Test Certification

Product:

Laptop Computer

Model No.: T15RA

Additional Model:

TECNO

Applicant: TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI

STREET FOTAN NT HONGKONG

TECNO MOBILE LIMITED Manufacturer:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI

STREET FOTAN NT HONGKONG

Date of Test: 20 September 2024 to 12 October 2024

Applicable FCC CFR Title 47 FCC Part 15 Subpart E Standards:

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Checked By:

(Chen Xu)

(Wang Xiang)

Approved By:

(Li Huaibi)

WSCT

WSET

W5 C1

深圳世标检测认证股份有限公司 World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

WS CT

NS CI

NS ET

W5 CT

EUT Description

	WSIT	rr wsrr	WSIT	WSET
	Product:	Laptop Computer		
	Model No.:	T15RA		
6	Trade Mark:	TECNO ^{SET} WSET	WSET	
/	Operation Frequency:	U-NII-5: 5925-6425MHz U-NII-6: 6425-6525MHz U-NII-7: 6525-6875MHz U-NII-8: 6875-7125MHz	WSCT	W.CT
	Modulation type:	IEEE 802.11a/n/ac/ax: OFDM/OFI (BPSK/QPSK/16QAM/64QAM/250		
	Antenna Type:	FIPA Antenna	WSET	
	Antenna Gain	ANT1(MAIN):2.92dBi ANT2(AUX): 2.40dBi		X
<i>/</i>	Operating Voltage:	Adapter1: FC498U Input: 100-240V~50/60Hz 1.5A Max Output: PD:5.V==3A 15.0W 9V==3. 12 V==3A 15V= 20V==3.25A PPS: 3.3-11V==5A Max Rechargeable Li-ion Polymer Battery Rated Voltage: 11.55V Rated Capacity: 6060mAh/70Wh Typical Capacity: 6160mAh/71.14Wh	3A WS CT V: 156	W. CT
	Remark:	Limited Charge Voltage: 13.2V N/A. W 5 [7]	WSET	

Note: 1. N/A stands for no applicable.

2. Antenna gain provided by the customer.

Configuration differences

	Model	W5CT Processorw5CT
	T15RA	i5
1	T15RA	i7

Note: The prototypes of both configurations have been tested, and the T15RA (i7) has the worst test result, which is the main test model reported

W5 E1

Page 4 of 262

W5 C

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

WSE

W5 CT

TEST DESCRIPTION 3

3.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %。

				X
	No.	Item	Uncertainty	
W5	1	Conducted Emission Test	±3.2dB W5 [T]	W5 ET
	2	RF power, conducted	±0.16dB	
	3	Spurious emissions, conducted	±0.21dB	
WSET	4 W	All emissions, radiated(<1GHz)	±4.7dB'5 [7]	W5CT
	5	All emissions, radiated(>1GHz)	±4.7dB	
	6	Temperature	±0.5°C	
W5	7	Humidity 5 CT W5	±2% W577°	W5 CT
	8	Receiver Spurious Emissions	±2.5%	
X	9	Transmitter Unwanted Emissions in the Spurious Domain	±2.5%	X
WSET	10 W	Transmitter Unwanted Emission in the out-of Band	±1.3%/5 <i>[T</i>]	WSET
	11	Occupied Channel Bandwidth	±2.4%	

_	WIL		

W5CT°	W5 CT	WS CT"	W5 ET	WS CT

WSCT"	W5CT°	WSCT	WSCT	W5CT"

W5CT"	WSCT	WSIT	WSCT	WELT

W5CT"	W5CT°	WSCT	WS CT"

Page 5 of 262

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

3.2 TEST ENVIRONMENT AND MODE

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure: W5 C1	1010 mbar 15 ET W5 ET

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%)

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

	Test Mode	Description	
	Mode 1	802.11ax20	
_	Mode 2	802.11ax40	4
	Mode 3	802.11ax80	
	Mode 4	802.11ax160	

Note:

(1) The measurements are performed at the highest, lowest available channels.

(2) The EUT use new battery.

(3) Record the worst case of each test item in this report.

ding A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue

Page 6 of 262

WS CI

WSC

W5 C7

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

CONFIGURATION OF SYSTEM UNDER TEST

W5 C **USB** Cable **AC Mains** EUT Adapter WSET W5 C7

W5 C7

(EUT: Laptop Computer)

3.3 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1 Adapter		WSET"	FC498U	WSCT	1
2	Router	ASUS	GT-AXE11000	M6LAJF201230	

Note:

15 CT

- The support equipment was authorized by Declaration of Confirmation. (1)
- (2)For detachable type I/O cable should be specified the length in cm in Length column.
- "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core". (3)
- The adapter supply by the applicant. (4)

WSCT	WSET	WSET	WSCT	WS	ET.
		WSCT	WSET	WSCT	WSCT
WSET	WSCT	WSET	X		CT .
WZ	SET	WSET	WSET	WSLT	cations tests

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue FAX: 0086-755-86376605 TEL: 0086-755-26996192 26996053 26996144

深圳世标检测认证股份有限公司

Page 7 of 262

W5 CI

W5 C

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

SUMMARY OF TEST RESULTS 4

Test procedures according to the technical standards:

|--|

		FCC Part15 Subpart C&E			0
L	Standard Section	Test Item	Judgment	Remark	
	15.403(i) 15.407(a)(10)	26dB Emission Bandwidth	PASS	Complies	
	2.1049	99% Occupied Bandwidth	PASS	Complies	4
/	15.407(a)(8)	Maximum Conducted Output Power	PASS	Complies	7
Ż	15.407(a)(8)	Fundamental Maximum EIRP	PASS	Complies	9
	15.407(a)(8)	Power Spectral Density	PASS	Complies	
	15.407(b)	Fundamental Power Spectral Density	PASS//5	Complies Complies	7
	15.407(d)(6)	Contention Based Protocol	PASS	Complies	
. 7	15.407(b)	Unwanted Emissions	PASS	Complies	0
	15.207	AC Conducted Emission	PASS	Complies	
	15.407(c)	Automatically Discontinue Transmission	PASS	Complies	
	15.407(b)(6)	In-Band Emissions (Channel Mask)	PASS	Complies	7

NOTE:

(1)" N/A" denotes test is not applicable in this test report. W5 [7]

(2) EUT has been tested in unfolded states, and the report only reflects data in the unfolded state (worst-case scenario)

(3) All test items in this report, except for power and PSD, are tested based on the minimum antenna gain

W5C1 WS CT W5 CT W5 E1

Page 8 of 262

W5CT

W5 CT

W5CT

W5 CT

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

4.1 CARRIER FREQUENCY AND CHANNEL

4	Test p	orogram	ΓΤ W5 *#*#3646633#*#* W5 ΓΤ W5									
		Channel	1	5	9	13	17	21	25	29		
	BW 20M	Freq. (MHz)	5955	5975	5995	6015	6035	6055	6075	6095		
		Channel		3/5 ET°		11 W		<i>5 [T</i> 19		W-27		
	BW 40M	Freq. (MHz)	5985		6005		6045		6085			
		Channel		7			23				\wedge	
1	BW 80M	Freq. (MHz)	ET	598	35 W 5	7	/	W 5 60	65	M	'5 C	
		Channel					15					
	BW 160M	Freq. (MHz)				6025						

			//							(P)	
			20	V J L I			JL/				
	D14/ 001/	Channel	33	37	41	45	49	53	57	61	
	BW 20M	Freq. (MHz)	6115	6135	6155	6175	6195	6215	6235	6255	
_		Channel	35			43		51		59	
	BW 40M	Freq. (MHz)	61	25	6165		6205		6245		
		Channel		39)		X	5	5		
	BW 80M	Freq. (MHz)		614	15 6				225		
1		Channel		WSET WSET					WSET		
	BW 160M	Freg. (MHz)				6	185				

1		Channel	65	69	735	77	81	W 85 / 7	89	93 🔽	4
	BW 20M	Freq. (MHz)	6275	6295	6315	6335	6355	6375	6395	6415	
		Channel	67		75		83		91		
BW 40M		Freq. (MHz)	6285		6325		6365		6405		
		Channel		71		/		8	7		
	BW 80M	Freq. (MHz)		630)5		6385				
1		Channel	°		W.C.		79	WELT		4	7
	BW 160M	Freq. (MHz)	6345								

W5 CT W5 CT WSET W5 CT

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

深圳世标检测认证股份有限公司

Page 9 of 262

W5 CT

WS CT

NS ET

WS CT

World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

W5 CT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5 ET

_											
A		Channel	97	101	105	109	113	117	121	125	
4	BW 20M	Freq. (MHz)	6435	6455	6475	6495	6515	6535	6555	6575	
		Channel	99		107		115		123		
	BW 40M	Freq. (MHz)	6445		6485		6525		6565		
		<i>V5 L 1</i>	3	- 11	119 WSL/						
	BW 80M	Freq. (MHz)	6545								
		Channel				1	111				
1	BW 160M	Freq. (MHz)			W5.	65	505	W5 CT			

129 133 137 145 149 153 157 Channel 141 **BW 20M** 6715 6595 6635 6655 6735 Freq. (MHz) 6615 6675 6695 139 147 Channel 131 155 **BW 40M** Freq. (MHz) 6605 6645 6685 6725 MC -151 135 Channel **BW 80M** Freq. (MHz) 6625 6705 143 Channel **BW 160M** Freq. (MHz) 6665

		Channel	161	165	169	173	177	181	185	189	
	BW 20M	Freq. (MHz)	6755	6775	6795	6815	6835	6855	6875	6895	
		Channel	<i>LT</i> 16	163		W5 ₁₇₁		179W5 ET		187	
	BW 40M	Freq. (MHz)	6765		6805		6845		6885		
		Channel		16	7			18	83		
	BW 80M	Freq. (MHz)		V5	35	5 W 5 C T 68			365 W5 CT		
		Channel		175							
	BW 160M	Frog (MHz)				69	225				

W5 CT

W5 CT WS ET WS CT W5 E1

W5CT"

W5 CT

Page 10 of 262

W5 CT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT"

	X		X		\sim			X			X
	BW 20M	Channel	193	197	201	205	209	213	217	221	75 C T
	DVV ZUIVI	Freq. (MHz)	6915	6935	6955	6975	6995	7015	7035	7055	
X	BW 40M	Channel	1:	95	20	03	2	11	21	9	
Westers.	DVV 40IVI	Freq. (MHz)	69	25	69	65		005	704	45	
WSET	BW 80M	Channel		19	9	/ 1	SET 1	21	5		
	DAA OOIAI	Freq. (MHz)	X	694	ŀ5			702	25		X
	BW 160M	Channel			/		07			/	
	DAA LOOM	Freq. (MHz)			W5 L	69	985	WS CT	_		'S ET"
X	_			\times	005		\times	000	\rightarrow		
			nnel		225			229	/		
W5 CT"			(MHz)	W5 CT	7075		5 <i>[7</i>]	7095	W5		-/
	Y		nnel		\rightarrow		27	\times			\times
			(MHz))85				
	NS CT	W	S C T		_W5 L		-/	W5CT			V5 CT L
\times		\times		\times			X				
										7	
WSET		WSET		WS ET®	$\overline{}$	_/W	SET		W5		
	\times		×		\times			\sim			\times
	W5 CT	/W	5ET°		W5 L	7	/	W5 CT		<u> </u>	V5 CT°
\sim		\times		\times			\times				
	_		_				\triangle			7	
W5 CT		WSET		W5 ET	\	W	SET		W5		
	\times		\times		\times			\times			\vee
	W5 CT	W	5 ET		W5 E	7		W5 CT			V5 CT°
							/				

WSGT WSGT WSGT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. Chini EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

@wsct-cert.com Http://www.wsct-cert.com World Standard zation Certification& To

lember of the WSCT Group (WSCT SA)

Page 11 of 262

WS ET WS

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5 CT

4.2 TEST MODE

Final test modes are considering the modulation and worse data rates as below table

	I mai test modes are considering the modality	ation and worse data rates as below table.	
W	Modulation	Data Rate	W5CT
	802.11ax HE20	MCS0	
	802.11ax HE40	MCS0	
WSET	W5 [802.11ax HE80] W5 [7]	W5 ET MCSO W5 ET	
	802.11ax HE160	MCS0	
	^		

WSCT	802.11ax HE80	W5L/ MCS0	WSCT
	802.11ax HE160	MCS0	
		\wedge	
W	SET WSET	VS CT WS C	WSET
WSLT	WSET WSET	W5 CT	WSET
		\wedge	X
W	SET WSET	VSCT WSC	WSET
X	X	X	X
WSET	WSET WSET	WSET	WSET
	X X	X	X
W	SET WSET	WS ET	WSCT
X	X	X	X
WSET	WSET WSET	WSET	WSET
	X	X	X
W	SET WSET V	VS CT WS C	WSCT
X	X	X	X
WE CT.	NICET NICET	WELT	WEET

W5CT	WSET	W5	CT ·	W5 ET	W5ET

Page 12 of 262

WSET

WSIT

lac-MR

WS CI

World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT"

			5925-7125 MHz	5925-7125 MHz	5925-7125 MHz	5925-7125 MHz
L	(CH.#	U-NII-5	U-NII-6	U-NII-7	U-NII-8
			802.11ax HE20	802.11ax HE20	802.11ax HE20	802.11ax HE20
	لــ	Low	001	097	117	189
	М	Middle	045	105	149	209
	I	High	093	113	-	229
/	St	raddle	/-	-/	185	
		0	WELT	WEET		

WSET WSET WSET WSET WSE

			5925-7125 MHz	5925-7125 MHz	5925-7125 MHz	5925-7125 MHz
CH.#		CH.#	U-NII-5	U-NII-6	U-NII-7	U-NII-8
			802.11ax HE40	802.11ax HE40	802.11ax HE40	802.11ax HE40
	L	Low	003	099	123	203
	М	Middle	043	- X	147	<u> </u>
7	Н	High	091	107	179	227
	St	raddle	/	115	-/	187

5925-7125 MHz 5925-7125 MHz 5925-7125 MHz 5925-7125 MHz CH.# U-NII-5 U-NII-6 U-NII-7 U-NII-8 802.11ax HE80 802.11ax HE80 802.11ax HE80 802.11ax HE80 Low 007 135 199 103 V 5 L Μ Middle 039 Н High 087 151 215 Straddle 183 119

		- 14/5				
_			5925-7125 MHz	5925-7125 MHz	5925-7125 MHz	5925-7125 MHz
	(CH.#	U-NII-5	U-NII-6	U-NII-7	U-NII-8
7	27.117		802.11ax HE160	802.11ax HE160	802.11ax HE160	802.11ax HE160
	L	Low	015			
	М	Middle	047	X -	143	207
	Η	High	079			
	St	raddle		111	175	WSLI

Note: 1. For radiation spurious emission, the final modulation and the worst data rate was reference the max RF conducted power.

2. The RF test items make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

WSCT WS

IWS CT

WSCT

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司

W5CT

Page 13 of 262

WSEI

VSCT N

W5 C1

W5 CT

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5CT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

5 MEASUREMENT INSTRUMENTS

J	WELT	WSCT	WSCT		V5 CT	WS	7
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	
	Test software	WS	EZ-EMC	CON-03A	-W-	CT°-	
	Test software	\ <u>-</u> /	MTS8310	-	\	- \	/
	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
_	W5 LLISN	AFJ AFJ	LS165 C 7	16010222119	11/05/2023	11/04/2024	Ľ
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	
	Universal Radio Communication Tester	R&S WS	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
/	Spectrum Analyzer	R&S	FSU ⁵	100114	11/05/2023	11/04/2024	L
	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	
	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	
	Bi-log Antenna	SUNOL Sciences	JB3	A021907	11/05/2023	11/04/2024	
	9*6*6 Anechoic	X	X		11/05/2023	11/04/2024	<
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	- /-	11/05/2023	11/04/2024	L
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	
	System-Controller	ccs ws	C7 N/A	W N/A	N.C.R	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	1
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
7	RF cable	Murata	MXHQ87WA300 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11/05/2023	11/04/2024	Ľ
	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	
	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
	Power sensor	Anritsu	MX248XD		11/05/2023	11/04/2024	<
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	C.

WSCT

W5 CT

WSET.

WSCT

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.co 深圳世标检测认证股份有限公司
World Standard zation Certification& Testing Group(Shenzhen)Co.,Ltr

Anna

Page 14 of 262

WSET

WELL

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

6 Facilities and Accreditations

6.1 FACILITIES

All measurement facilities used to collect the measurement data are located at World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.
Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2 ACCREDITATIONS

ANAB - Certificate Number: AT-3951

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (ANAB). Certification Number: AT-3951

(ANAB).Certification Number. A1-3951	X	X	X
WSET WSET	WS CT	WSCT	WSET
WSET WSET	\times	\times	SET
WSET WSET	WSCT	WSET	WSET
WSET WSET	X	\times	SET
WSET WSET	WSCT	WSCT	WSET
WSCT WSCT		\times	SET
WSET WSET	WSET	\times	acation& Testin
WSCT WSCT	\times	WSCT W	WSCT Shenzing Group Shenzing

VS CT WS L

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Ave

Page 15 of 262

WS CT WS CT

WSC

W5 C1

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5 CT

Test Results and Measurement Data 7

7.1 CONDUCTED EMISSION MEASUREMENT

POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

		_				
Ž	FREQUENCY (MHz)	Class A	(dBuV)	Class B	(dBuV)	Standard
	FREQUENCT (WITZ)	Quasi-peak	Average	Quasi-peak	Average	Stariuaru
	0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
	0.50 -5.0	73.00	60.00	56.00	46.00	FCC
	5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

W5 CT

(1) The tighter limit applies at the band edges.

W5 CT

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

WS ET

The following table is the setting of the receiver

	Receiver Parameters	Setting
	Attenuation	10 dB
1	Start Frequency	0.15 MHz
Ż	Stop Frequency W5 [7]	<i>W5 [</i> 30 MHz <i>W5 [T</i> °
	IF Bandwidth	9 kHz

WSET	WSET	WSET	WSET	WSET	
	\times	\times	X	X	X
W	SCT° W	VSCT* V	WSET	WSET	W5CT°

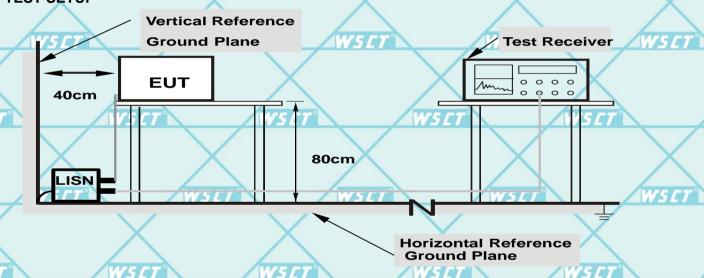
WSET WSET WSET WSET WS

Page 16 of 262

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

7.1.1 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


W5CT

7.2 DEVIATION FROM TEST STANDARD

No deviation

WSET WSET WSET WSET

TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

7.2.1 EUT OPERATING CONDITIONS

The EUT is working in the Normal link mode. All modes have been tested and normal link mode is worst.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.

W5CT

WELT

W5CT

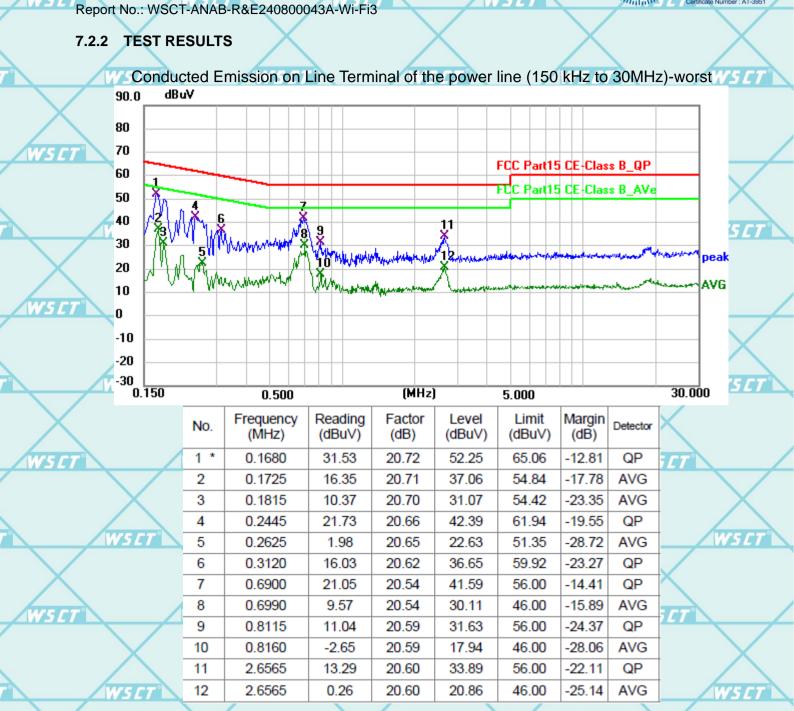
WS CT

ND: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司

stoup (WSCT BA)


WSET

Page 17 of 262

ET WSE

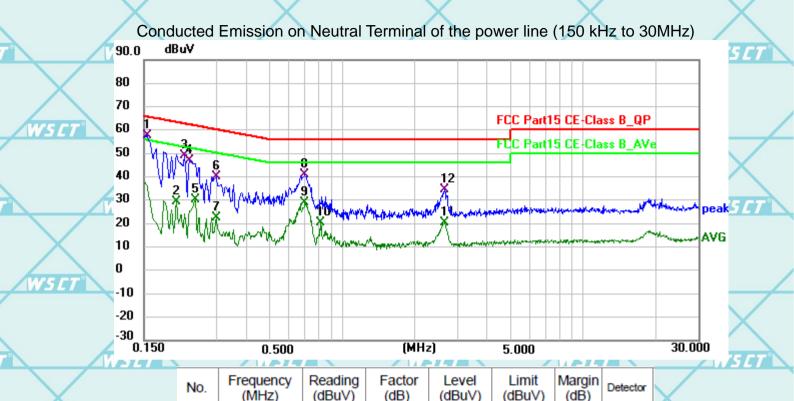
Remark: All the modes have been investigated, and only worst mode is presented in this report.

lding A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Aver

Page 18 of 262

QP AVG

QΡ


QP

AVG

QP

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

1 * 0.1545 36.80 20.73 57.53 65.75 -8.22 2 0.2040 8.59 20.69 29.28 53.45 -24.170.2220 62.74 -13.68 3 28.38 20.68 49.06 0.2310 26.06 46.73 62.41 -15.68 4 20.67 5 0.2445 9.45 20.66 30.11 51.94 -21.83 6 0.2985 19.27 20.63 39.90 60.28 -20.38

> 7 0.2985 2.00 20.63 22.63 50.28 -27.65 AVG -15.26 QP 8 0.6990 20.20 20.54 40.74 56.00 9 0.6990 8.32 20.54 28.86 46.00 -17.14AVG 10 0.8160 -0.1320.59 20.46 46.00 -25.54 AVG

2.6520 -0.1120.60 20.49 46.00 -25.51 11 AVG 12 2.6700 13.82 -21.58 QP 20.60 34.42 56.00

Note1:

Freg. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG = average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

ding A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue FAX: 0086-755-86376605

Page 19 of 262

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

7.3 RADIATED EMISSION MEASUREMENT

Radiated Emission Limits (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

W5C7

W5 CT

	Frequencies	Field Strength	Measurement Distance	
1	(MHz)	(micorvolts/meter)	(meters)	
	0.009~0.490	2400/F(KHz)	300	
	0.490~1.705	24000/F(KHz)	30	
T	/5 CT 1.705~30.0 W5 C	30 W5 ET	30 - 7	
	30~88	100	3	1
	88~216	150	3	
_	216~960	W5 E T200	<i>W5LT</i> 3 <i>W5L</i>	Ž
	Above 960	500	3	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

WSCT

	Spectrum Parameter	Setting	
1	Attenuation	5.CT W5.C Auto W5.CT	
	Start Frequency	1000 MHz	
	Stop Frequency	10th carrier harmonic	X
_	RB / VB (emission in restricted	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average	5 C
	band)		

W5CT

	Receiver Parameter	Setting
1	Attenuation	S Auto WS L1
	Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
	Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
4	W5 / Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

VSET WS

IWS CT

W5CT

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. 深圳世标检测认证股份

Page 20 of 262

深圳世标检测认证股份有限公司
World Standardization Certification& Testing Group(Shenzhen) Co.

VC CT

age 20 of 262

VSCT WSCT

lac-mrA

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

UIT NO.. WOCT-ANAD-RAEZ40000045A-WI-FIS

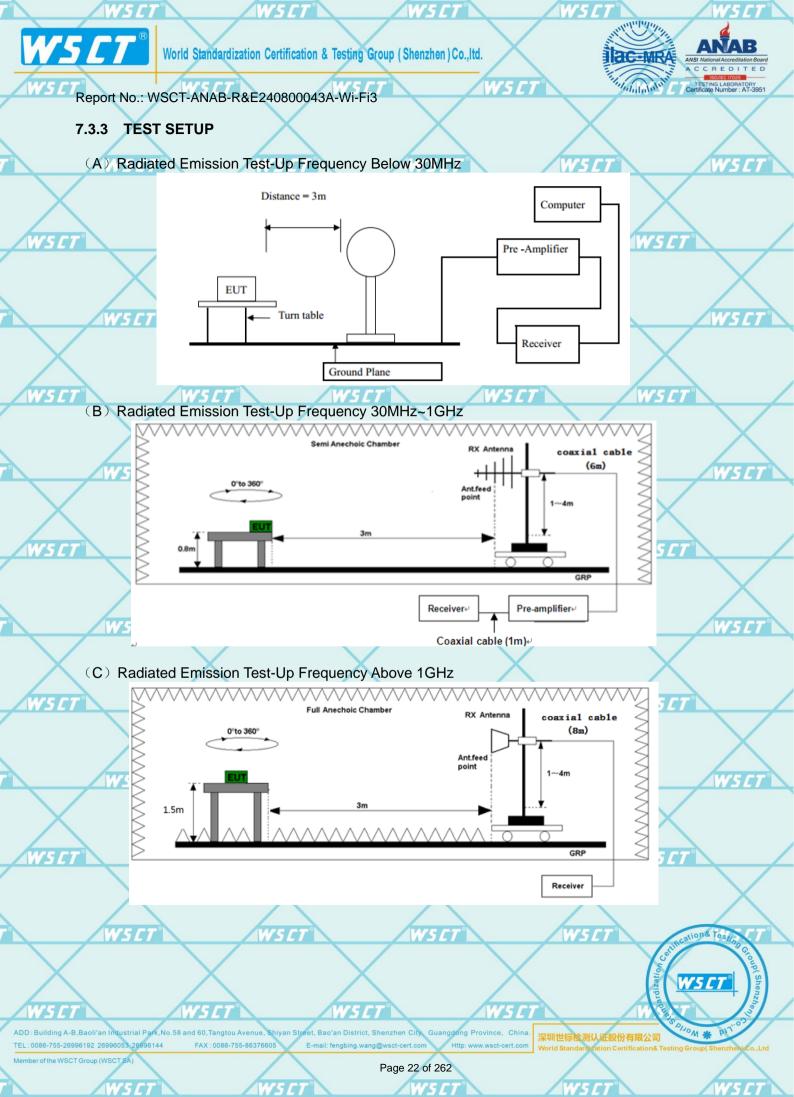
7.3.1 TEST PROCEDURE

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.

- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

 Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

	orthogonal axis. The wor	rst case emissions were	reported		
7.3.		EST STANDARD	W5 CT	WSET	W5 CT
WSCT	No deviation	WSET	WSCT	WSI	7
	WSET	WSET	WSET	WSET	WSET
WSET	WSET	WSET	WSCT	WSI	
	X	WSCT	WSLT	WSET	WSET
WSCT	WSET	WSET	WSCT	WSI	
	X	\times	WSET	\times	neations Testing Co
X	X	X	X	ardization con	WSCT Shenz,

VS CT WS

WSCI

WSCT WS

WS CI

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

7.3.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

W5C7

7.3.5 RESULTS (BELOW 30 MHZ)

-0	O KEGGETO DELOT	7 00 WH IE)			
	Freq.	Reading	Limit	Margin	State
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
	TIPE I				
			\ <u>-</u>		P
	X	X		X	Р

Note 1: The symbol of "--" in the table which means not application. For the test data above 1 GHz, According the ANSI C63.10-2013, where limits are specified for both average and Note 2:

peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower Note 3: than the limit line per 15.31(o) was not reported.

The EUT is working in the Normal link mode below 1 GHz. All modes have been tested and normal link mode is Note 4: worst.

W5	W.	SET W	5 <i>CT</i>	SET	WSET
WSCT	WSET	WSET	WSET	WSCT	
WS	W.	SET W	SET W	SET	W5CT°
WSCT	WSET	WSCT	WSET	WSCT	

Page 23 of 262

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

7.3.6 TEST RESULTS (BETWEEN 30M - 1000 MHZ)

Please refer to following diagram for individual **Below 1GHz** Horizontal: dBuV/m 87.0 77 67 FCC Part15 RE-Class B_30-1000MHz 57 Margin -6 dB 47 37 27 17 7 -3 -13 -23 -33 1000.000 30.000 (MHz) 60.00 300.00 Reading Factor Level Limit Margin Frequency No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 70.9869 44.83 -22.36 22.47 40.00 -17.53 QP 1 2 QP 81.3542 49.44 -24.0825.36 40.00 -14.64

3 108.9331 49.21 -22.7126.50 43.50 -17.00 QP 167.6772 50.49 -20.3430.15 43.50 -13.35QP 5 * 61.54 -22.59 38.95 -7.05 QP 239.9873 46.00 300.8943 48.74 -20.15 28.59 QP 6 46.00 -17.41

Remark: All the modes have been investigated, and only worst mode is presented in this report.

WSET WSET WSET WSET WSET

WSET WSET WSET

VSCT WSCT WSCT

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin.
TEL: 0086-755-26996192 26996053, 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard zation Certification & Testing Group(Shenzhen) Co.,Ltd

August 1

Page 24 of 262

WSCT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

Vertical: dBuV/m 87.0 77 67 FCC Part15 RE-Class B_30-1000MHz 57 Margin -6 dB 47 37 27 17 7 -3 -13 -23

(MHz)

300.00

60.00 Frequency Reading Factor Limit Margin Level No. Detector (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 35.9534 54.71 -19.44 35.27 40.00 -4.73QΡ 2 70.8005 52.84 -22.3630.48 40.00 -9.52QΡ QΡ 3 81.2473 56.59 -24.0732.52 40.00 -7.48-16.66 4 106.7119 49.76 -22.92 26.84 43.50 QP 5 167.6772 51.22 -20.34 30.88 43.50 -12.62 QP 6 239.9873 51.22 -22.59 28.63 46.00 -17.37QP

W5 CT

Note1:

-33

30.000

Freq. = Emission frequency in MHz

Reading level (dBµV) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) - Limits (dB μ V)

1000.000

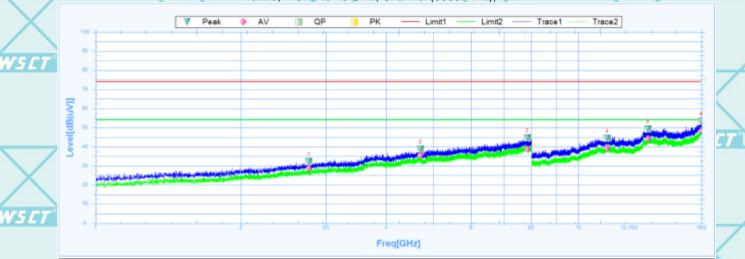
ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

Page 25 of 262

W5 ET

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3


7.3.7 TEST RESULTS (ABOVE 1GHZ)

Note: 1. The spurious above 18G is noise only, do not show on the report.

2. Please ignore the main frequency signal

11ax20, 1 GHz to 18 GHz, Channel (5955 MHz), ANT H

W5 CT

	Suspu	ited Data Lis	st									1
7	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	C 7
	1	2766.6250	32.18	-7.58	39.74	74	-41.82	359.5	Horizontal	PK	Pass	
/	1	2766.6250	28.7	-7.56	36.26	54	-25.3	359.5	Horizontal	AV	Pass	
7	2	4710.8750	38.62	-0.77	39.39	74	-35.38	187.4	Horizontal	PK	Pass	
	2	4710.8750	35.62	-0.77	36.39	54	-18.38	187.4	Horizontal	AV	Pass	
	3	7842.5000	44.56	7.92	36.64	74	-29.44	354.6	Horizontal	PK	Pass	/
	3	7842.5000	38.83	7.92	30.91	54	-15.17	354.6	Horizontal	AV	Pass	
	4	11476.2500	44.5	15.77	28.73	74	-29.5	183.4	Horizontal	PK	Pass	
	4	11476.2500	39.2	15.77	23.43	54	-14.8	183.4	Horizontal	AV	Pass	<i>C1</i>
/	5	13926.2500	49.18	18.91	30.27	74	-24.82	111.7	Horizontal	PK	Pass	
	5	13926.2500	44.35	18.91	25.44	54	-9.65	111.7	Horizontal	AV	Pass	
/	6	17985.0000	53.25	23.82	29.43	74	-20.75	0.5	Horizontal	PK	Pass	
7°	6	17985.0000	48.29	23.82	24.47	54	-5.71	0.5	Horizontal	AV	Pass	

	W5CT°	W5ET*	WSET	WSCT	WSET
X	\rightarrow			\times	\times
WSCT	WS	WS	ET W	SET W	SET

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

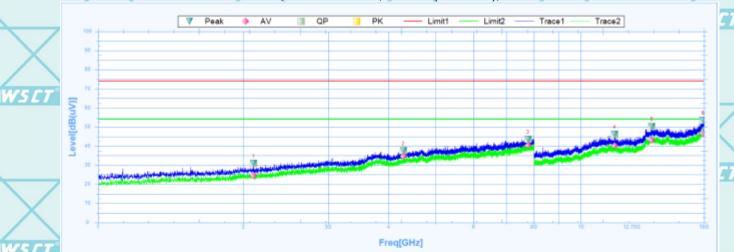
深圳世标检测认证股份有限公司

TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

W5 E

Page 26 of 262

W5CT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT

11ax20, 1 GHz to 18 GHz, Channel (5955 MHz), ANT V

W5 C1

W5 C1

	Susputed Data List											
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2099.0000	30.84	-10.74	41.58	74	-43.16	358.9	Horizontal	PK	Pass	5
/	1	2099.0000	24.64	-10.74	35.38	54	-29.36	358.9	Horizontal	AV	Pass	
	2	4289.1250	37.57	-2.14	39.71	74	-36.43	350.6	Horizontal	PK	Pass	
	2	4289.1250	34.67	-2.14	36.81	54	-19.33	350.6	Horizontal	AV	Pass	
7 8	3	7775.1250	43.61	7.79	35.82	74	-30.39	128.8	Horizontal	PK	Pass	
	3	7775.1250	40.5	7.79	32.71	54	-13.5	128.8	Horizontal	AV	Pass	
	4	11745.0000	46.18	15.54	30.64	74	-27.82	328.4	Horizontal	PK	Pass	/
	4	11745.0000	40.25	15.54	24.71	54	-13.75	328.4	Horizontal	AV	Pass	\
	5	14033.7500	50.05	19.09	30.96	74	-23.95	359.4	Horizontal	PK	Pass	
	5	14033.7500	43.02	19.09	23.93	54	-10.98	359.4	Horizontal	AV	Pass	4
/	6	17916.2500	53.39	23.36	30.03	74	-20.61	341.8	Horizontal	PK	Pass	
	6	17916.2500	46.59	23.36	23.23	54	-7.41	341.8	Horizontal	AV	Pass	

WSCT WSET

> W5 E7 W5 C1 W5 CI W5 C1

W5 CT

W5 CT W5 CT W5 CT W5E7

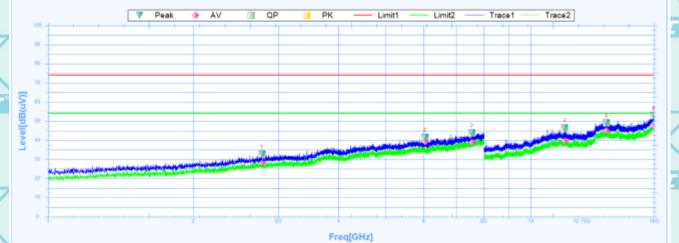
ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

深圳世标检测认证股份有限公司

W5CT

Page 27 of 262

W5 CT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5 CT

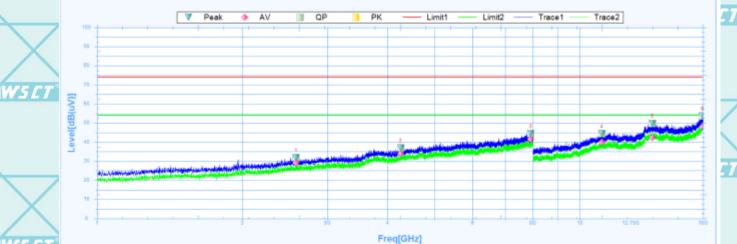
WS ET

	Susputed Data List											
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2772.7500	32.71	-7.53	40.24	74	-41.29	267	Horizontal	PK	Pass	
_	1	2772.7500	28.05	-7.53	35.58	54	-25.95	267	Horizontal	AV	Pass	4
	2	6037.3750	41.6	2.28	39.32	74	-32.4	243.1	Horizontal	PK	Pass	
	2	6037.3750	39.14	2.28	36.86	54	-14.86	243.1	Horizontal	AV	Pass]
	3	7551.1250	43.86	7.01	36.85	74	-30.14	112.8	Horizontal	PK	Pass	1
•	3	7551.1250	38.81	7.01	31.8	54	-15.19	112.8	Horizontal	AV	Pass	
	4	11745.0000	46.42	15.54	30.88	74	-27.58	228.1	Horizontal	PK	Pass	
	4	11745.0000	39.66	15.54	24.12	54	-14.34	228.1	Horizontal	AV	Pass	
	5	14348.7500	49	18.77	30.23	74	-25	59.5	Horizontal	PK	Pass	
	5	14348.7500	44.97	18.77	26.2	54	-9.03	59.5	Horizontal	AV	Pass	_
,	6	17980.0000	52.7	23.79	28.91	74	-21.3	225.7	Horizontal	PK	Pass	4
	R	17090 0000	47.15	22.70	22.28	54	8.95	225.7	Horizontal	Δ\/	Pass	1

WSET	WSET	WSET	WSCT	WSET
			SET WS	
WSET	WSET	WSET	WSET	WSET
		$\langle \hspace{0.1cm} \rangle$	SET WS	
				Satil See

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

Page 28 of 262



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT"

11ax20, 1 GHz to 18 GHz, Channel (6175 MHz), ANT V

W5 CT

W5 C

	Suspu	ited Data Lis	st									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2582.8750	31.82	-8.24	40.06	74	-42.18	360	Horizontal	PK	Pass	4
/	1	2582.8750	29.26	-8.24	37.5	54	-24.74	360	Horizontal	AV	Pass	
	2	4254.1250	36.93	-2.3	39.23	74	-37.07	190.5	Horizontal	PK	Pass	
	2	4254.1250	34.01	-2.3	36.31	54	-19.99	190.5	Horizontal	AV	Pass	
7	3	7914.2500	44.42	8.06	36.36	74	-29.58	239.5	Horizontal	PK	Pass	
	3	7914.2500	41.63	8.06	33.57	54	-12.37	239.5	Horizontal	AV	Pass	
	4	11105.0000	44.43	15.27	29.16	74	-29.57	0.1	Horizontal	PK	Pass	1
	4	11105.0000	39.92	15.27	24.65	54	-14.08	0.1	Horizontal	AV	Pass	
	5	14131.2500	49.61	19	30.61	74	-24.39	4.3	Horizontal	PK	Pass	
	5	14131.2500	42.41	19	23.41	54	-11.59	4.3	Horizontal	AV	Pass	4
/	6	17955.0000	53.59	23.61	29.98	74	-20.41	209	Horizontal	PK	Pass	
	В	17055 0000	49.28	23.61	24.85	54	-5.74	200	Horizontal	Δ\/	Pacc	

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT

WSCT ON SINGLE STREET

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

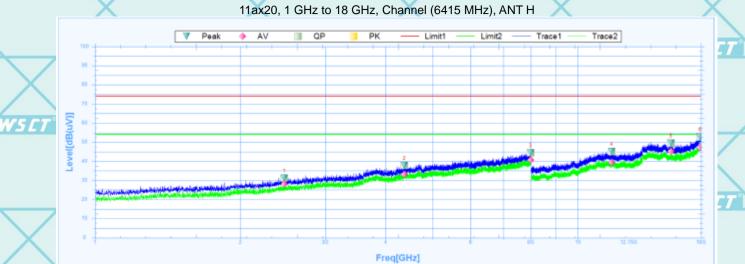
TEL: 0886-755-26996192 26996053 26996144 FAX: 0886-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard action Certification Testing Group (Shenzhen) Co...Ltd

VSCT WSCI

Page 29 of 262

WS CT WS



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT"

WSET[®]

W5 C7

	Susputed Data List											
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2466.5000	31.08	-8.7	39.78	74	-42.92	259.9	Horizontal	PK	Pass	
_	1	2466.5000	28	-8.7	36.7	54	-26	259.9	Horizontal	AV	Pass	4
	2	4373.1250	37.85	-1.92	39.77	74	-36.15	80.6	Horizontal	PK	Pass	
	2	4373.1250	33.15	-1.92	35.07	54	-20.85	80.6	Horizontal	AV	Pass]
	3	7983.3750	44.5	8.2	36.3	74	-29.5	0.4	Horizontal	PK	Pass	1
	3	7983.3750	40.71	8.2	32.51	54	-13.29	0.4	Horizontal	AV	Pass	
	4	11745.0000	45.14	15.54	29.6	74	-28.86	118.1	Horizontal	PK	Pass	
	4	11745.0000	39.36	15.54	23.82	54	-14.64	118.1	Horizontal	AV	Pass	
	5	15586.2500	49.57	18.47	31.1	74	-24.43	77.4	Horizontal	PK	Pass	
	5	15586.2500	45.19	18.47	26.72	54	-8.81	77.4	Horizontal	AV	Pass]_
,	6	17915.0000	52.68	23.35	29.33	74	-21.32	213.7	Horizontal	PK	Pass	4
	6	17915.0000	47.06	23.35	23.71	54	-6.94	213.7	Horizontal	AV	Pass	

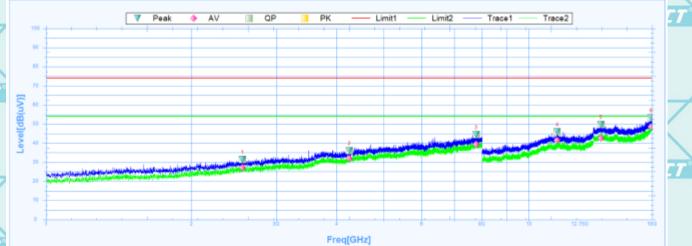
	6	17915.0000	47.06	23.35	23.71	54	-6.94	213.7	Horizontal	AV	Pass	
WSET		M	75ET		WSET		WSL	7		WSET		
	Jun 1	SET	/-	VSCT		WSET		/	VS CT		WS	C7°
WSET			SET		WSLT		WSI			WSET		
	W	SET		WS ET		WSET			V5 C T			CT
X			X		X		\rightarrow			difference of the state of the	SET°	Group(Shen

mber of the WSCT Group (WSCT SA)

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue,

Page 30 of 262

WS CT WS CT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT"

11ax20, 1 GHz to 18 GHz, Channel (6415 MHz), ANT V

W5 CT

15 C

15 C

Susputed Data List Reading Factor Level Limit Margin Deg Freq. **Polarity** NO. Verdict Trace [MHz] [dB(uV)] [dB] [dB(uV)] [dB] [dB] [°] 2551.3750 31.36 -8.32 39.68 74 -42.64 137.8 Horizontal PK Pass 2551.3750 35.53 -26.79 137.8 27.21 -8.32 54 Horizontal ΑV Pass 4249.7500 36.07 -2.33 74 -37.93 359.9 Pass Horizontal PΚ 4249.7500 32.1 -2.33 54 -21.9 359.9 Pass 34.43 Horizontal ΑV 3 7780.3750 44.45 7.8 36.65 74 -29.55 PK Pass 227 4 Horizontal 3 7780.3750 39.34 7.8 31.54 54 -14.66 227.4 Horizontal ΑV Pass 4 11456.2500 45.93 15.76 30.17 74 -28.07 305.7 Horizontal PK Pass 11456.2500 41.62 15.76 25.86 54 -12.38 305.7 Horizontal ΑV Pass 5 14100.0000 49.62 19.03 30.59 74 -24.38 158.6 Horizontal PΚ Pass 5 14100.0000 42.58 19.03 23.55 54 -11.42 158.6 Horizontal ΑV Pass 6 17912.5000 53.22 29.88 74 -20.78 PK 23.34 -0.1 Horizontal Pass 6 17912.5000 48.7 23.34 25.36 54 -5.3-0.1Horizontal ΔV Pass

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0866-755-26996192 26996053 26996144 FAX: 0866-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard attion Certification & Testing Group (Shenzhen) Co., Ltd

WELT

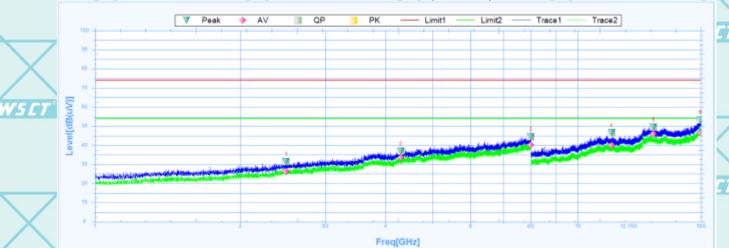
Member of the WSCT Group (WSCT SA)

Page 31 of 262

WS

WSCT

7



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT

11ax20, 1 GHz to 18 GHz, Channel (6435 MHz), ANT H

W5 CT

W5 CT

	Susputed Data List											
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	<
	1	2487.5000	31.49	-8.57	40.06	74	-42.51	4.2	Horizontal	PK	Pass	
_	1	2487.5000	26.37	-8.57	34.94	54	-27.63	4.2	Horizontal	AV	Pass	4
	2	4300.5000	36.87	-2.08	38.95	74	-37.13	351.1	Horizontal	PK	Pass	
	2	4300.5000	33.65	-2.08	35.73	54	-20.35	351.1	Horizontal	AV	Pass	
	3	7987.7500	44.32	8.2	36.12	74	-29.68	198.9	Horizontal	PK	Pass	
7	3	7987.7500	40.24	8.2	32.04	54	-13.76	198.9	Horizontal	AV	Pass	
	4	11745.0000	46.54	15.54	31	74	-27.46	67.8	Horizontal	PK	Pass	
	4	11745.0000	40.09	15.54	24.55	54	-13.91	67.8	Horizontal	AV	Pass	
	5	14350.0000	49.43	18.76	30.67	74	-24.57	2.4	Horizontal	PK	Pass	
	5	14350.0000	46.02	18.76	27.26	54	-7.98	2.4	Horizontal	AV	Pass	
,	6	17941.2500	53.36	23.53	29.83	74	-20.64	202.9	Horizontal	PK	Pass	4
												1

	6	17941.2500	46.47	23.53	22.94	54	-7.53	202.9	Horizontal	AV	Pass	
WSET		M	SET .		WSET		WSL			WSET		
		X		X		X			X			\langle
	W	SCT°	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	VS CT®		WS ET*		- M	YS CT		W5	ET°\
WSET		M	SET		WSET		WSL			WSCT		
	W	SCT°		NS ET		WSCT		/W	VS ET	atl	on& tes	CT°
X			X		X		$\overline{}$			Codiffication of the control of the	SET°	Group(Shen

er of the WSCT Group (WSCT SA)

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

Page 32 of 262

SET WSET

W5CT"

W5 CT

W5 C1

W5 C1

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5 CT

11ax20, 1 GHz to 18 GHz, Channel (6435 MHz), ANT V

Peak AV QP PK Limit1 Limit2 Trace1 Trace2

Freq[GHz]

Susputed Data List												
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	7
7	1	3057.1250	34.04	-6.3	40.34	74	-39.96	204.9	Horizontal	PK	Pass	
	1	3057.1250	30.68	-6.3	36.98	54	-23.32	204.9	Horizontal	AV	Pass	
	2	5746.8750	51.53	1.97	49.56	74	-22.47	316.2	Horizontal	PK	Pass	
	2	5746.8750	47.78	1.97	45.81	54	-6.22	316.2	Horizontal	AV	Pass	
	3	7981.6250	44.12	8.19	35.93	74	-29.88	329.3	Horizontal	PK	Pass	
	3	7981.6250	40.58	8.19	32.39	54	-13.42	329.3	Horizontal	AV	Pass	1
	4	11745.0000	46.39	15.54	30.85	74	-27.61	176.6	Horizontal	PK	Pass	
	4	11745.0000	39.67	15.54	24.13	54	-14.33	176.6	Horizontal	AV	Pass	
	5	13961.2500	48.89	19.01	29.88	74	-25.11	359.5	Horizontal	PK	Pass	3
7	5	13961.2500	44.82	19.01	25.81	54	-9.18	359.5	Horizontal	AV	Pass	
	6	17992.5000	53.04	23.88	29.16	74	-20.96	203	Horizontal	PK	Pass	
	6	17992.5000	47.47	23.88	23.59	54	-6.53	203	Horizontal	AV	Pass	

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

深圳世标检测认证股份有限公司
World Standard action Certification Testing Group (Shenzhen) Co...Ltd

ember of the WSCT Group (WSCT SA)

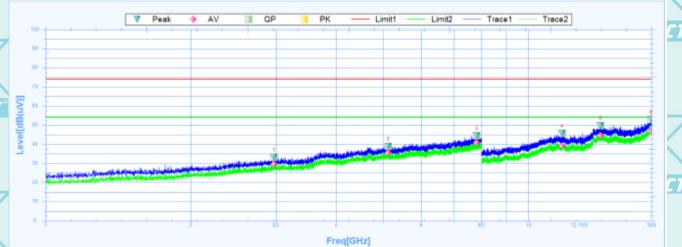
W5 CT

Page 33 of 262

W5 CT

WSCT

W5CT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT°

Susputed	Data	List

	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2970.5000	33.13	-6.7	39.83	74	-40.87	1.6	Horizontal	PK	Pass	
_	1	2970.5000	29.65	-6.7	36.35	54	-24.35	1.6	Horizontal	AV	Pass	49
	2	5128.2500	38.91	0.24	38.67	74	-35.09	359.9	Horizontal	PK	Pass	
	2	5128.2500	35.51	0.24	35.27	54	-18.49	359.9	Horizontal	AV	Pass	
/	3	7817.1250	44.37	7.88	36.49	74	-29.63	93.6	Horizontal	PK	Pass	
7	3	7817.1250	40.97	7.88	33.09	54	-13.03	93.6	Horizontal	AV	Pass	
	4	11745.0000	45.67	15.54	30.13	74	-28.33	142	Horizontal	PK	Pass	
	4	11745.0000	39.13	15.54	23.59	54	-14.87	142	Horizontal	AV	Pass	/
	5	14118.7500	49.62	19.01	30.61	74	-24.38	359	Horizontal	PK	Pass	1
	5	14118.7500	44.67	19.01	25.66	54	-9.33	359	Horizontal	AV	Pass	
,	6	17970.0000	52.86	23.72	29.14	74	-21.14	163.5	Horizontal	PK	Pass	4
	6	17970.0000	46.8	23.72	23.08	54	-7.2	163.5	Horizontal	AV	Pass	

METT	METT	W5 CT	WELT	MEET

W5 CT	W5 CT	W5 ET	W5 CT	W5 CT

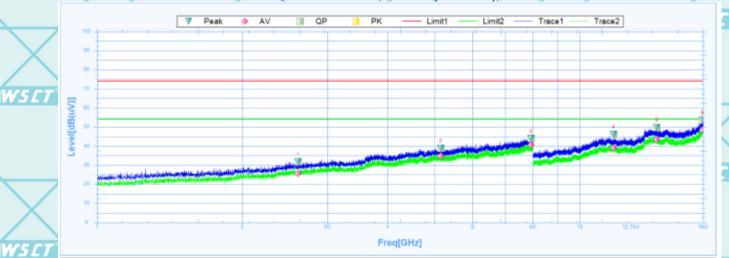
- 4					
	W5CT°	WSCT	WSCT	WSCT	W5CT

WELL	WELT	WELL	WSCT

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

Page 34 of 262

W5ET



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT"

11ax20, 1 GHz to 18 GHz, Channel (6475 MHz), ANT V

W5 ET

Suspu	Susputed Data List										
NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
1	2608.2500	31.8	-8.18	39.98	74	-42.2	142.6	Horizontal	PK	Pass	
1	2608.2500	25.71	-8.18	33.89	54	-28.29	142.6	Horizontal	AV	Pass	
2	5150.1250	38.94	0.25	38.69	74	-35.06	360	Horizontal	PK	Pass	
2	5150.1250	35.02	0.25	34.77	54	-18.98	360	Horizontal	AV	Pass	
3	7924.7500	43.88	8.09	35.79	74	-30.12	360	Horizontal	PK	Pass	
3	7924.7500	40.69	8.09	32.6	54	-13.31	360	Horizontal	AV	Pass	
4	11745.0000	46.27	15.54	30.73	74	-27.73	214.8	Horizontal	PK	Pass	
4	11745.0000	39.04	15.54	23.5	54	-14.98	214.8	Horizontal	AV	Pass	
5	14430.0000	49.75	18.69	31.06	74	-24.25	71.4	Horizontal	PK	Pass	
5	14430.0000	43.57	18.69	24.88	54	-10.43	71.4	Horizontal	AV	Pass	
6	17956.2500	53.6	23.62	29.98	74	-20.4	-0.1	Horizontal	PK	Pass	
6	17956.2500	48.54	23.62	24.92	54	-5.46	-0.1	Horizontal	AV	Pass	

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET WSET WSET

WSET WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

W5 CT W5 CT W5 CT W5 CT ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

W5CT

深圳世标检测认证股份有限公司
World Standard ration Certification& Testing Group(Shenzhen) Co.,Ltd

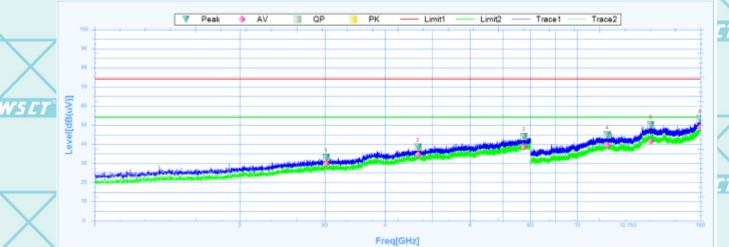
WELT

Page 35 of 262

WSET

WSET

W5CT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT

11ax20, 1 GHz to 18 GHz, Channel (6515 MHz), ANT H

WS ET

W5 CT

	Suspu	iteu Data Eis	5L									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	<
	1	3017.7500	32.98	-6.47	39.45	74	-41.02	81.6	Horizontal	PK	Pass	
_	1	3017.7500	29.92	-8.47	36.39	54	-24.08	81.6	Horizontal	AV	Pass	49
	2	4677.6250	38.38	-0.94	39.32	74	-35.62	167.8	Horizontal	PK	Pass	
	2	4677.6250	34.75	-0.94	35.69	54	-19.25	167.8	Horizontal	AV	Pass	
	3	7746.2500	43.89	7.71	36.18	74	-30.11	0.5	Horizontal	PK	Pass	
7	3	7746.2500	38.55	7.71	30.84	54	-15.45	0.5	Horizontal	AV	Pass	
	4	11533.7500	44.75	15.72	29.03	74	-29.25	359	Horizontal	PK	Pass	
	4	11533.7500	39.34	15.72	23.62	54	-14.66	359	Horizontal	AV	Pass	
	5	14195.0000	50.15	18.93	31.22	74	-23.85	212.5	Horizontal	PK	Pass	
	5	14195.0000	41.59	18.93	22.66	54	-12.41	212.5	Horizontal	AV	Pass	١.,
_	6	17968.7500	53.21	23.71	29.5	74	-20.79	284.2	Horizontal	PK	Pass	4
/	6	17988 7500	49 04	23.71	25.23	54	-5.06	284.2	Horizontal	Δ\/	Pass	1

												1
	6	17968.7500	48.94	23.71	25.23	54	-5.06	284.2	Horizontal	AV	Pass	
WSET		/v	YSET		WSET		W5L		,	WSET		
		SET		VS CT		WSET		/	VSET*		W/5	ET
WSET			SET		WSCT		WSL		<i>-</i> 14 <i>-</i>	WSET		
		SET		WS ET		WSET			VSET			CT°
X			X		X		\rangle			odinezipi. W	SET°	Group(Shenz

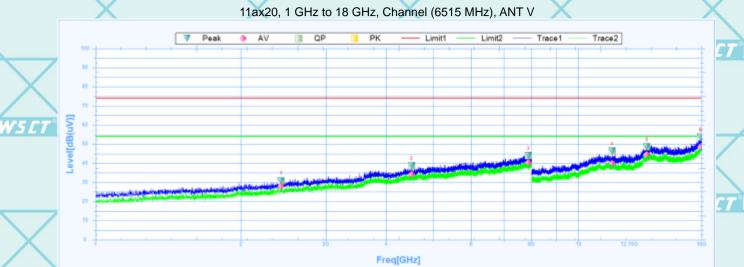
Member of the WSCT Group (WSCT SA)

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

Page 36 of 262

WSET

WSET WSET



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

0045/(WIT IS

W5 CT

WSET°

W5 CT

	Suspu	iteu Data Lis	5 L									_
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	<
	1	2422.7500	30.82	-8.98	39.8	74	-43.18	360.1	Horizontal	PK	Pass	
_	1	2422.7500	28.09	-8.98	37.07	54	-25.91	360.1	Horizontal	AV	Pass	4
	2	4514.0000	38.72	-1.75	40.47	74	-35.28	343.6	Horizontal	PK	Pass	
	2	4514.0000	34.15	-1.75	35.9	54	-19.85	343.6	Horizontal	AV	Pass	
	3	7881.8750	43.92	8	35.92	74	-30.08	2.7	Horizontal	PK	Pass	
-0	3	7881.8750	40.33	8	32.33	54	-13.67	2.7	Horizontal	AV	Pass	
	4	11745.0000	46.39	15.54	30.85	74	-27.61	357.7	Horizontal	PK	Pass	
	4	11745.0000	40.04	15.54	24.5	54	-13.96	357.7	Horizontal	AV	Pass	
	5	13867.5000	48.63	18.74	29.89	74	-25.37	81	Horizontal	PK	Pass	
	5	13867.5000	44.65	18.74	25.91	54	-9.35	81	Horizontal	AV	Pass	
,	6	17911.2500	53.71	23.34	30.37	74	-20.29	359.6	Horizontal	PK	Pass	5
	6	17911.2500	48.62	23.34	25.28	54	-5.38	359.6	Horizontal	AV	Pass	

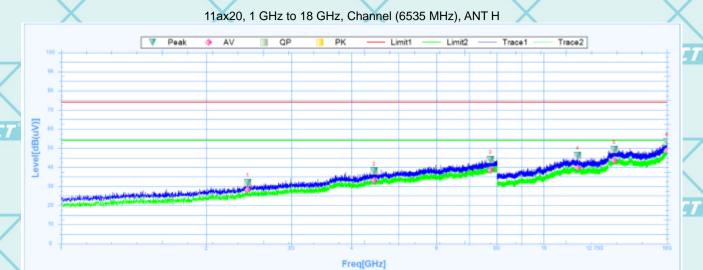
	6	17911.2500	48.62	23.34	25.28	54	-5.38	359.6	Horizontal	AV	Pass	
WSET		/	YS CT		WSET		WSL	7°		WSET		
	W	SET		VS ET		WSCT			VS CT		W.5	ET
WSET			(SET		WSET		WSI			WSET		,
		SET		VSCT		WSCT			V5.ET			67 °
\times			X		X		\rightarrow			Modern Carre	SCT°	Group (Shen,

SCT Gloup (WSCT BA)

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

Page 37 of 262

WSCT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT°

WS CT

W5 ET

	Suspu	ileu Dala Lis	5L									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	/
	1	2435.8750	32.03	-8.9	40.93	74	-41.97	194.1	Horizontal	PK	Pass	
,	1	2435.8750	28.29	-8.9	37.19	54	-25.71	194.1	Horizontal	AV	Pass	4
	2	4451.8750	38.04	-1.83	39.87	74	-35.96	196.5	Horizontal	PK	Pass	
	2	4451.8750	33.07	-1.83	34.9	54	-20.93	196.5	Horizontal	AV	Pass	
	3	7750.6250	43.87	7.73	36.14	74	-30.13	261	Horizontal	PK	Pass	
. 6	3	7750.6250	38.36	7.73	30.63	54	-15.64	261	Horizontal	AV	Pass	
	4	11745.0000	46.19	15.54	30.65	74	-27.81	41.6	Horizontal	PK	Pass	
	4	11745.0000	39.88	15.54	24.34	54	-14.12	41.6	Horizontal	AV	Pass	/
	5	13990.0000	49.29	19.09	30.2	74	-24.71	53.5	Horizontal	PK	Pass	1
	5	13990.0000	43.54	19.09	24.45	54	-10.46	53.5	Horizontal	AV	Pass	
7	6	17997.5000	53.24	23.91	29.33	74	-20.76	0	Horizontal	PK	Pass	7
	6	17997.5000	48.85	23.91	24.94	54	-5.15	0	Horizontal	AV	Pass	

		6	17997.5000	48.85	23.91	24.94	54	-5.15	0	Horizontal	AV	Pass	
	WS ET		M	SET		WSET		WSE	7°		WSET		
			567		VS ET		WSET			/SET		WS	ET*
/	WSET			SET		WSET		WSE		,	WSCT		,
À		W	SET*		VSET		WSET			SET		on& Testio	(T)
	\bigvee			$\overline{}$		\mathbf{X}		\times			South call	C CE	S Janoupl S

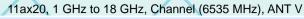
Member of the WSCT Group (WSCT SA)

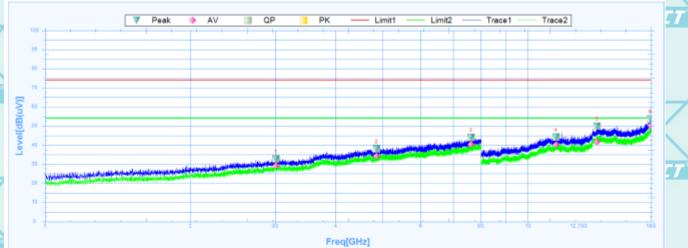
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

Page 38 of 262

SET WSET

WSET


W5ET



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT

WS C1

W5 CT

W5 CT

	Suspu	ited Data Lis	st									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	3008.1250	32.78	-6.51	39.29	74	-41.22	353.7	Horizontal	PK	Pass	5
	1	3008.1250	29.08	-6.51	35.59	54	-24.92	353.7	Horizontal	AV	Pass	
	2	4859.6250	37.94	-0.21	38.15	74	-36.06	276.6	Horizontal	PK	Pass	
	2	4859.6250	34.22	-0.21	34.43	54	-19.78	276.6	Horizontal	AV	Pass	
0	3	7622.8750	44.06	7.26	36.8	74	-29.94	360	Horizontal	PK	Pass	
	3	7622.8750	40.53	7.26	33.27	54	-13.47	360	Horizontal	AV	Pass	
	4	11442.5000	44.11	15.74	28.37	74	-29.89	230.4	Horizontal	PK	Pass	/
	4	11442.5000	40.18	15.74	24.44	54	-13.82	230.4	Horizontal	AV	Pass	
	5	13908.7500	49.87	18.85	31.02	74	-24.13	32	Horizontal	PK	Pass	
	5	13908.7500	41.71	18.85	22.86	54	-12.29	32	Horizontal	AV	Pass	4
	6	17937.5000	53.78	23.5	30.28	74	-20.22	-0.1	Horizontal	PK	Pass	
	6	17937.5000	50.09	23.5	26.59	54	-3.91	-0.1	Horizontal	AV	Pass	

W5 C1 W5 E7 W5 CI W5 C1

W5 ET

W5 CT W5 CT W5 ET W5E7

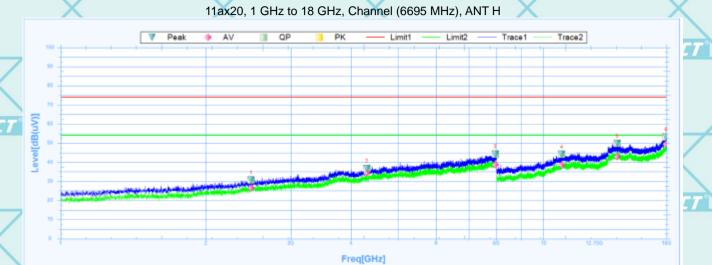
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

深圳世标检测认证股份有限公司

W5CT

W5 CT

Page 39 of 262



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5 CT

W5 CT

W5 CT

	Suspu	ited Data Lis	st									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	<
	1	2479.6250	30.79	-8.62	39.41	74	-43.21	77	Horizontal	PK	Pass	
-	1	2479.6250	26.46	-8.62	35.08	54	-27.54	77	Horizontal	AV	Pass	49
	2	4310.1250	36.79	-2.04	38.83	74	-37.21	132	Horizontal	PK	Pass	
	2	4310.1250	34.48	-2.04	36.52	54	-19.52	132	Horizontal	AV	Pass	
	3	7951.0000	44.3	8.14	36.16	74	-29.7	237.3	Horizontal	PK	Pass	
7	3	7951.0000	38.78	8.14	30.64	54	-15.22	237.3	Horizontal	AV	Pass	
	4	10917.5000	44.13	14.8	29.33	74	-29.87	359.5	Horizontal	PK	Pass	
	4	10917.5000	38.41	14.8	23.61	54	-15.59	359.5	Horizontal	AV	Pass	/
	5	14216.2500	49.89	18.91	30.98	74	-24.11	216.1	Horizontal	PK	Pass	
	5	14216.2500	42.8	18.91	23.89	54	-11.2	216.1	Horizontal	AV	Pass	
,	6	17965.0000	53.29	23.68	29.61	74	-20.71	208.9	Horizontal	PK	Pass	5
	6	17965.0000	49.48	23.68	25.8	54	-4.52	208.9	Horizontal	AV	Pass	

	6	17965.0000	53.29	23.68	29.61	74	-20.71	208.9	Horizontal	PK	Pass	
	6	17965.0000	49.48	23.68	25.8	54	-4.52	208.9	Horizontal	AV	Pass	
WSET		/	YSET		WSET		WSL			WSET		,
		\times		X		X			X			
	W	S C T		VS ET		W5 CT		/	V5 CT		W5	ET .
WSET		И	SET		WSET		WSI	7		WSET		
	W	SCT [*]	/	WS ET		WSET		\(\frac{1}{2}\)	VSET .	cati	on& Testio	(T)
Weet					W					dardization of the state of the	<u>5 C T</u>	Group(Shenzhe

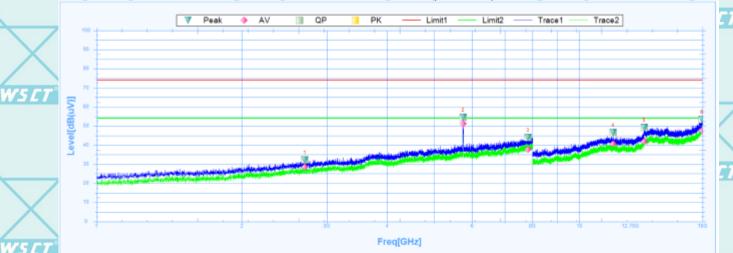
stoup (WSCT DA)

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

WE CT.

Page 40 of 262

WS CT WS CT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT

11ax20, 1 GHz to 18 GHz, Channel (6695 MHz), ANT V

W5 E1

W5 CT

	Suspu	ited Data Lis	st									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2697.5000	32.22	-7.87	40.09	74	-41.78	14.2	Horizontal	PK	Pass	5
/	1	2697.5000	28.41	-7.87	36.28	54	-25.59	14.2	Horizontal	AV	Pass	
	2	5744.2500	54.55	1.96	52.59	74	-19.45	360.1	Horizontal	PK	Pass	
	2	5744.2500	51.35	1.96	49.39	54	-2.65	360.1	Horizontal	AV	Pass	
	3	7828.5000	43.96	7.89	36.07	74	-30.04	311.4	Horizontal	PK	Pass	
	3	7828.5000	37.82	7.89	29.93	54	-16.18	311.4	Horizontal	AV	Pass	
	4	11745.0000	46.59	15.54	31.05	74	-27.41	237.7	Horizontal	PK	Pass	1
	4	11745.0000	40.58	15.54	25.04	54	-13.42	237.7	Horizontal	AV	Pass	\
	5	13627.5000	49.31	18.05	31.26	74	-24.69	127.7	Horizontal	PK	Pass	
	5	13627.5000	41.99	18.05	23.94	54	-12.01	127.7	Horizontal	AV	Pass	5
/	6	17951.2500	53.48	23.58	29.9	74	-20.52	247.2	Horizontal	PK	Pass	
	6	17951.2500	47.47	23.58	23.89	54	-6.53	247.2	Horizontal	AV	Pass	

	6	17951.2500	53.48	23.58	29.9	74	-20.52	247.2	Horizontal	PK	Pass	
X	6	17951.2500	47.47	23.58	23.89	54	-6.53	247.2	Horizontal	AV	Pass	
		/			/ \			1		/ \		
W5 CT			15 CT		WSET		W5L	7		WSET		
												$\overline{}$
		X		X					X)	
	W	C C T	/	VSCT		WSET		/7	VECT		WS	r T°
	W	S C T	/v	VS ET		WSET		_/V	VS CT		W5	CT°
	W	SET		VS ET		WSET		<u> </u>	V5 CT		W5	ET°
	W	SET®		VS CT°	X	WSET	$\overline{}$	<u>/</u> V	VS CT	X	W5	ET°
	W		X	VS CT°	X	WSCT			VS CT	X		CT°
WSCT	/w		SET	VSCT	WSCT	WSCT	W5L		VS CT	WSET		CT°

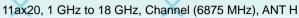
W5C7 W5 CT W5 E7 WSET

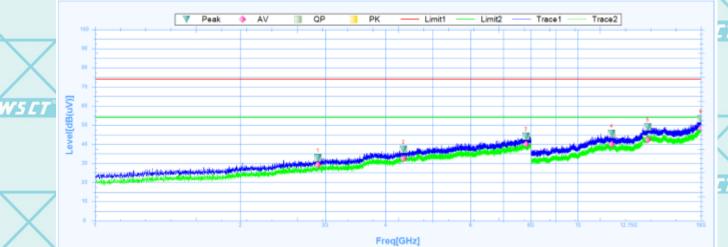
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, FAX: 0086-755-86376605

深圳世标检测认证股份有限公司

W5CT

Page 41 of 262





Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT"

WSET"

W5 CT

	Suspu	ited Data Lis	ST.									_
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	(
	1	2895.2500	32.83	-7.04	39.87	74	-41.17	210.8	Horizontal	PK	Pass	
_	1	2895.2500	29.2	-7.04	36.24	54	-24.8	210.8	Horizontal	AV	Pass	4
/	2	4355.6250	37.4	-1.94	39.34	74	-36.6	360	Horizontal	PK	Pass	
	2	4355.6250	32.38	-1.94	34.32	54	-21.62	360	Horizontal	AV	Pass	
	3	7805.7500	44.26	7.85	36.41	74	-29.74	8.7	Horizontal	PK	Pass	
78	3	7805.7500	40.1	7.85	32.25	54	-13.9	8.7	Horizontal	AV	Pass	
	4	11745.0000	45.83	15.54	30.29	74	-28.17	47.6	Horizontal	PK	Pass	
	4	11745.0000	40.1	15.54	24.56	54	-13.9	47.6	Horizontal	AV	Pass	/
	5	13955.0000	49.05	18.99	30.06	74	-24.95	24.9	Horizontal	PK	Pass	1
	5	13955.0000	42.44	18.99	23.45	54	-11.56	24.9	Horizontal	AV	Pass	
,	6	17992.5000	53.14	23.88	29.26	74	-20.86	124.1	Horizontal	PK	Pass	4
	6	17992.5000	48.29	23.88	24.41	54	-5.71	124.1	Horizontal	AV	Pass	

	6	17992.5000	48.29	23.88	24.41	54	-5.71	124.1	Horizontal	AV	Pass	
WSET		/v	YSET		WSET		W5L			WSET		
		\times		X		X			X			
	W	5 CT		V5 ET®	$\overline{}$	W5ET"	_	<u> </u>	15 CT		WS	[T°
WSET		/v	V5 CT		WSCT		WSI	7		WSET		
		SET		WS ET		WSET			VSET.			CT ²
X			X		X		X			rdization M	SET°	Group (Shenz

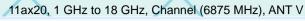
the WSCT Group (WSCT SA)

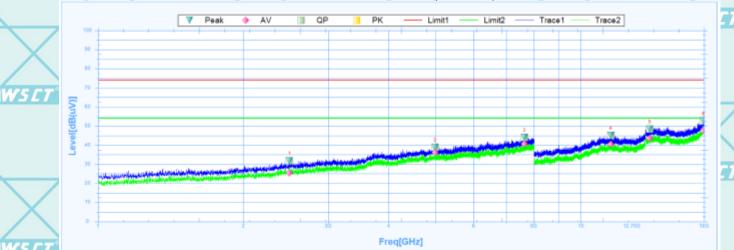
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

Page 42 of 262

WSET

WSET


W5ET



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT

W5 C1

W5 CT

Suspu	ited Data Lis	st									
NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
1	2491.8750	31.73	-8.54	40.27	74	-42.27	360	Horizontal	PK	Pass	3
1	2491.8750	25.51	-8.54	34.05	54	-28.49	360	Horizontal	AV	Pass	
2	4993.5000	38.93	0.16	38.77	74	-35.07	238.4	Horizontal	PK	Pass	
2	4993.5000	36.32	0.16	36.16	54	-17.68	238.4	Horizontal	AV	Pass]
3	7645.6250	43.88	7.35	36.53	74	-30.12	13.7	Horizontal	PK	Pass	
3	7645.6250	40.68	7.35	33.33	54	-13.32	13.7	Horizontal	AV	Pass]-
4	11531.2500	45.16	15.72	29.44	74	-28.84	37.9	Horizontal	PK	Pass	
4	11531.2500	40.38	15.72	24.66	54	-13.62	37.9	Horizontal	AV	Pass	
5	13895.0000	48.39	18.82	29.57	74	-25.61	342.7	Horizontal	PK	Pass]_
5	13895.0000	43.45	18.82	24.63	54	-10.55	342.7	Horizontal	AV	Pass	4
6	17958.7500	52.53	23.63	28.9	74	-21.47	88.2	Horizontal	PK	Pass	
6	17958.7500	47.55	23.63	23.92	54	-6.45	88.2	Horizontal	AV	Pass	

W5 C1 W5 ET W5 C1 W5C1

W5 ET

W5 CT W5 ET W5 ET W5E7

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

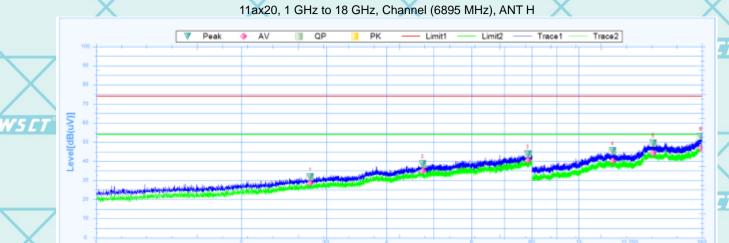
深圳世标检测认证股份有限公司

W5CT

Page 43 of 262

W5CT

W5CT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5 CT

Freq[GHz]

W5 CT

W5 ET

	Suspu	iteu Data Er	5L									1-
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2775.3750	31.79	-7.53	39.32	74	-42.21	345.9	Horizontal	PK	Pass	
	1	2775.3750	28.52	-7.53	36.05	54	-25.48	345.9	Horizontal	AV	Pass	4
	2	4747.6250	38.64	-0.56	39.2	74	-35.36	198.9	Horizontal	PK	Pass	
	2	4747.6250	34.88	-0.56	35.44	54	-19.12	198.9	Horizontal	AV	Pass	
	3	7839.8750	43.83	7.92	35.91	74	-30.17	67.4	Horizontal	PK	Pass	1
e	3	7839.8750	40.46	7.92	32.54	54	-13.54	67.4	Horizontal	AV	Pass	1
	4	11745.0000	45.41	15.54	29.87	74	-28.59	28.5	Horizontal	PK	Pass	
	4	11745.0000	40.26	15.54	24.72	54	-13.74	28.5	Horizontal	AV	Pass	1
	5	14245.0000	49.5	18.87	30.63	74	-24.5	297.4	Horizontal	PK	Pass	
	5	14245.0000	44.09	18.87	25.22	54	-9.91	297.4	Horizontal	AV	Pass	ŀ
,	6	17871.2500	52.93	23.08	29.85	74	-21.07	0	Horizontal	PK	Pass	4
	6	17871.2500	46.94	23.08	23.86	54	-7.06	0	Horizontal	AV	Pass	

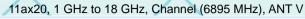
	6	17871.2500	46.94	23.08	23.86	54	-7.06	0	Horizontal	AV	Pass	
		_										
W5CT°			SET"		AWS CT		W5 L	7		W5CT°		
	/											
		X		X		X			X		\rightarrow	
	W	S C T	/V	VS CT°		W5 CT		/M	SCT		W5	CT"
X			X		X		X			X		
W5 CT°		_ / N	SET"		W5 CT		W5 L			W5CT°		/
	1		•									
		X		X		X			X			
	/W	SCT [®]		VS ET 🖺		W5 CT			SET°	incati	on& Testino	(7°)
										Ser.		ou
X			X		X		X			o difference of the state of th	SCT	h(Sh
		/								15 4		en _z

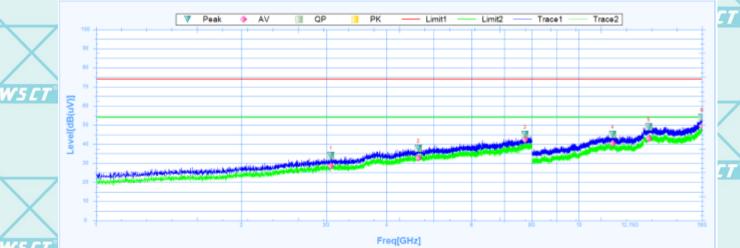
per of the WSCT Group (WSCT SA)

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

Page 44 of 262

WSCT WSCT





Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT

WS CT

Suspu	ited Data Lis	5L									
NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
1	3065.0000	33.96	-6.25	40.21	74	-40.04	61.4	Horizontal	PK	Pass	C
1	3065.0000	28.47	-6.25	34.72	54	-25.53	61.4	Horizontal	AV	Pass	
2	4651.3750	37.82	-1.1	38.92	74	-36.18	0.7	Horizontal	PK	Pass	
2	4651.3750	32.75	-1.1	33.85	54	-21.25	0.7	Horizontal	AV	Pass	
3	7737.5000	45	7.68	37.32	74	-29	4.6	Horizontal	PK	Pass	
3	7737.5000	42.36	7.68	34.68	54	-11.64	4.6	Horizontal	AV	Pass	
4	11745.0000	45.13	15.54	29.59	74	-28.87	152.8	Horizontal	PK	Pass	1
4	11745.0000	40.45	15.54	24.91	54	-13.55	152.8	Horizontal	AV	Pass	1
5	13953.7500	49.08	18.99	30.09	74	-24.92	0	Horizontal	PK	Pass	
5	13953.7500	42.79	18.99	23.8	54	-11.21	0	Horizontal	AV	Pass	5
6	18000.0000	54.15	23.93	30.22	74	-19.85	351.8	Horizontal	PK	Pass	
6	18000.0000	49.49	23.93	25.56	54	-4.51	351.8	Horizontal	AV	Pass	

NS CT	WSCT	W5 CT	WSET	W5CT°

W5 CT	W5 CT	W5 LT	WS CT"	W5 CT
-------	-------	-------	--------	-------

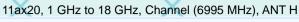
_					
	W5CT"	W5LT*	WSCT	WSET	W5CT

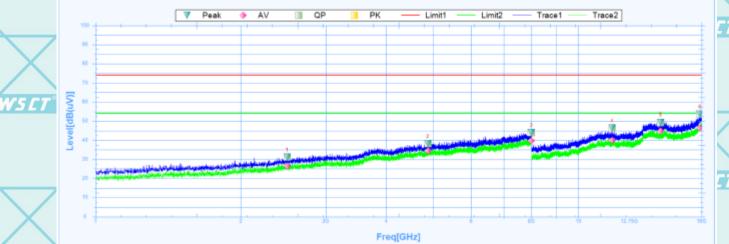
THE CO.		THE RESERVE OF THE PERSON OF T

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

深圳世标检测认证股份有限公司

Page 45 of 262





Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5 CT

W5E1

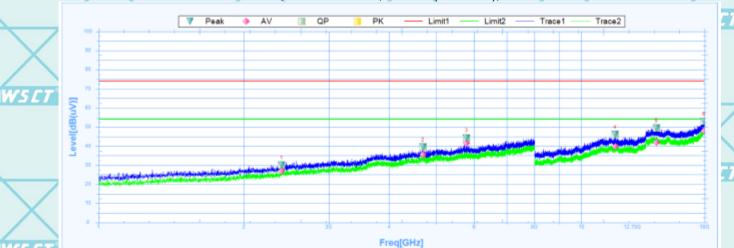
W5 CT

	Juspu	ousputed but List											
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict		
	1	2492.7500	31.24	-8.53	39.77	74	-42.76	25.4	Horizontal	PK	Pass		
_	1	2492.7500	26.45	-8.53	34.98	54	-27.55	25.4	Horizontal	AV	Pass	4	
	2	4877.1250	38.15	-0.17	38.32	74	-35.85	271.7	Horizontal	PK	Pass		
	2	4877.1250	34.55	-0.17	34.72	54	-19.45	271.7	Horizontal	AV	Pass		
	3	7993.8750	44.03	8.22	35.81	74	-29.97	9.3	Horizontal	PK	Pass		
7	3	7993.8750	39.73	8.22	31.51	54	-14.27	9.3	Horizontal	AV	Pass		
	4	11745.0000	46.43	15.54	30.89	74	-27.57	59.5	Horizontal	PK	Pass		
	4	11745.0000	40.05	15.54	24.51	54	-13.95	59.5	Horizontal	AV	Pass		
	5	14805.0000	49.37	18.33	31.04	74	-24.63	246	Horizontal	PK	Pass		
	5	14805.0000	44.81	18.33	26.48	54	-9.19	246	Horizontal	AV	Pass		
	6	17861.2500	53.66	23.01	30.65	74	-20.34	143.2	Horizontal	PK	Pass	49	

	6	17861.2500	53.66	23.01	30.65	74	-20.34	143.2	Horizontal	PK	Pass	
	6	17861.2500	46.51	23.01	23.5	54	-7.49	143.2	Horizontal	AV	Pass	
WSET		/v	YS ET		WSET		WSE	7	,	WSET		
		<		X		X			X			\langle
	W	5 CT		VS ET®		W5 CT		_/\	SET®		W5	ET N
WSET		M	SET		WSCT		WSE	7		WSET		,
	W	SET S		VSET		WSET			VS ET		on& Test	CT°
X			X		X		X			irdization M	5 C T °	Group(Sher

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue,

Page 46 of 262



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT

11ax20, 1 GHz to 18 GHz, Channel (6995 MHz), ANT V

W5 ET

W5 C1

	Suspu	iteu Data Lis	9L					Susputed Data List							
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict				
	1	2393.0000	30.08	-9.15	39.23	74	-43.92	82.8	Horizontal	PK	Pass	Z			
	1	2393.0000	26.86	-9.15	36.01	54	-27.14	82.8	Horizontal	AV	Pass				
	2	4695.1250	39.63	-0.85	40.48	74	-34.37	330.3	Horizontal	PK	Pass				
	2	4695.1250	35.67	-0.85	36.52	54	-18.33	330.3	Horizontal	AV	Pass				
, 6	3	5784.5000	44.29	2.1	42.19	74	-29.71	359.9	Horizontal	PK	Pass				
	3	5784.5000	41.56	2.1	39.46	54	-12.44	359.9	Horizontal	AV	Pass				
	4	11745.0000	46.13	15.54	30.59	74	-27.87	339.8	Horizontal	PK	Pass	1			
	4	11745.0000	39.68	15.54	24.14	54	-14.32	339.8	Horizontal	AV	Pass				
	5	14301.2500	49.45	18.82	30.63	74	-24.55	234	Horizontal	PK	Pass				
	5	14301.2500	41.91	18.82	23.09	54	-12.09	234	Horizontal	AV	Pass	4			
	6	17948.7500	53.08	23.57	29.51	74	-20.92	207.7	Horizontal	PK	Pass				
_															

8 17948.7500 47.9 23.57 24.33 54 -8.1 207.7 Horizontal AV P

WSET WSET WSET WSET WSET

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

Signal WSCT Street

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.
TEL: 0086-755-26996192 26998053, 28998144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard attion Certification & Testing Group (Shenzhen) Co., Ltd

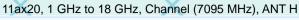
W5 CT

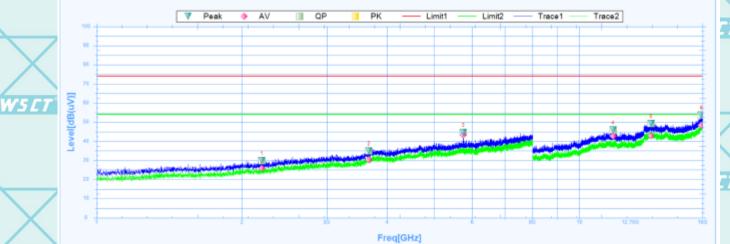
WS CT WS CT

Page 47 of 262

ge 47 of 262

WSCT





Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5CT

WSET

W5 CT

	Suspu	ited Data Lis	st									-
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	1
ſ	1	2198.7500	29.76	-10.38	40.14	74	-44.24	360.1	Horizontal	PK	Pass	
_[1	2198.7500	25.94	-10.38	36.32	54	-28.06	360.1	Horizontal	AV	Pass	4
	2	3665.2500	34.88	-4.03	38.91	74	-39.12	261.1	Horizontal	PK	Pass	
	2	3665.2500	30.3	-4.03	34.33	54	-23.7	261.1	Horizontal	AV	Pass	
	3	5750.3750	44.69	1.98	42.71	74	-29.31	191.8	Horizontal	PK	Pass	
્ર	3	5750.3750	43.34	1.98	41.36	54	-10.66	191.8	Horizontal	AV	Pass	
	4	11746.2500	46	15.54	30.46	74	-28	213.7	Horizontal	PK	Pass	
	4	11746.2500	42.55	15.54	27.01	54	-11.45	213.7	Horizontal	AV	Pass	1
	5	14073.7500	49.22	19.05	30.17	74	-24.78	149.2	Horizontal	PK	Pass	
	5	14073.7500	42.93	19.05	23.88	54	-11.07	149.2	Horizontal	AV	Pass	
_[6	17900.0000	53.68	23.26	30.42	74	-20.32	168.3	Horizontal	PK	Pass	4
	6	17900.0000	48.35	23.26	25.09	54	-5.65	168.3	Horizontal	AV	Pass	

	6	17900.0000	48.35	23.26	25.09	54	-5.65	168.3	Horizontal	AV	Pass	
Aveca		/-	//CCT		Nuc ex							
WSCT	-		VS ET		WS ET		W5 L		$\overline{}$	WS CT	1	$\overline{}$
		X		X		X			X			
	W	5 CT	/\	VS ET®		WSET		_/\	V5 CT		W5	ET"
			\times		\sim		\rightarrow			\times		
WSET		4	YSET"		WSET		W5 L			WSET		
- WEIGH	1	<u> </u>		$\overline{}$		$\overline{}$			$\overline{}$		1	$\overline{}$

WS ET WS ET WS ET WS ET WS ET STATE OF THE S

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

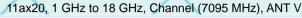
深圳世标检测认证股份有限公司
World Standardization Certification & Testing Group (Shenzhen) Co., Lite

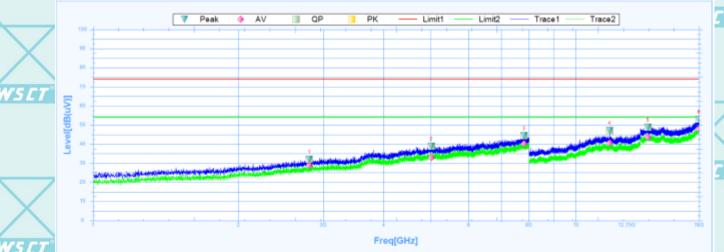
of the WSC (Gloup (WSC (SA)

Page 48 of 262

SET WS

WSCT





Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5 CT

NS CT

Susputed Data List										
NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	2805.1250	32.11	-7.4	39.51	74	-41.89	343.5	Horizontal	PK	Pass
1	2805.1250	29.06	-7.4	36.46	54	-24.94	343.5	Horizontal	AV	Pass
2	5018.0000	38.93	0.19	38.74	74	-35.07	222.8	Horizontal	PK	Pass
2	5018.0000	32.93	0.19	32.74	54	-21.07	222.8	Horizontal	AV	Pass
3	7812.7500	44.38	7.86	36.52	74	-29.62	316.1	Horizontal	PK	Pass
3	7812.7500	40.3	7.86	32.44	54	-13.7	316.1	Horizontal	AV	Pass
4	11745.0000	47.16	15.54	31.62	74	-26.84	344.9	Horizontal	PK	Pass
4	11745.0000	40.63	15.54	25.09	54	-13.37	344.9	Horizontal	AV	Pass
5	14097.5000	48.76	19.03	29.73	74	-25.24	-0.1	Horizontal	PK	Pass
5	14097.5000	43.48	19.03	24.45	54	-10.52	-0.1	Horizontal	AV	Pass
6	17998.7500	52.94	23.92	29.02	74	-21.06	-0.1	Horizontal	PK	Pass
6	17998.7500	47.81	23.92	23.89	54	-6.19	-0.1	Horizontal	AV	Pass

Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Emission Level= Reading Level+ Probe Factor +Cable Loss.
- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

WS CT

WS CT

WSET

深圳世标检测认证股份有限公司

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. FAX: 0086-755-86376605 TEL: 0086-755-26996192 26996053 26996144

Page 49 of 262

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

7.4 ANTENNA REQUIREMENTS

Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

Antenna Gain

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = GANT + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices.

Array Gain = 10 log(NANT/NSS=1) dB.

For power measurements on IEEE 802.11 devices.

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4 .

Directional gain may be calculated by using the formulas applicable to equal gain antennas with

GANT set equal to the gain of the antenna having the highest gain:

The EUT supports CDD mode.

For power, the directional gain GANT is set equal to the antenna having the highest gain, i.e.,

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The directional gain "DG" is calculated as following table.

	<cdd modes=""></cdd>	Ant1 Ant2		DG for power	DG for PSD	
73		(dBi)	(dBi)	(dBi)	(dBi)	
	5925~7125MHz	2.92	2.40	2.92	5.67	

Power limit reduction = Composite gain - 6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

Page 50 of 262

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

7.5 26DB & 99% OCCUPIED BANDWIDTH MEASUREMENT

LIMIT OF 26DB & 99% OCCUPIED BANDWIDTH

<FCC 14-30 CFR 15.407>

(a)(10) The maximum transmitter channel bandwidth for U-NII devices in the 5.925-7.125 GHz band is 320 megahertz.

MEASURING INSTRUMENTS

See list of measuring equipment of this test report.

7.5.3 TEST PROCEDURES 5

- 1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \geq 3 * RBW.
- 8. Measure and record the results in the test report.

TEST SETUP

EUT Spectrum Analyzer

Page 51 of 262

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

W5 CT

Test Result of 26dB & 99% Occupied Bandwidth									
	Mode	Frequency	-26 dB	Limit -26 dB	99%	Verdict			
W5		(MHz)	Bandwidth	Bandwidth	Bandwidth		W5CT°		
			(MHz)	(MHz)	(MHz)				
X	ax20	5955	21.46	0.5	18.908	Pass			
	ax20	6175	21.24	0.5	18.901	Pass			
Weeken!	ax20	6415	21.38	0.5	18.901	Pass			
WSCT	ax20	6435	21.24	0.5	18.932	Pass			
	ax20	6475	22.11	0.5	18.952	Pass			
<i></i>	ax20	6515	21.37	0.5	18.876	Pass			
	ax20	6535	22.13	0.5	18.903	Pass			
W51	ax20	6695//5/	21.31	W 5 0.5	18.883	Pass	WSET [®]		
	ax20	6875	20.83	0.5	18.881	Pass			
\times	ax20	6895	21.40	0.5	18.970	Pass			
	ax20	6995	21.63	0.5	18.914	Pass			
West of the second	ax20	7095	22.45	0.5	18.891	Pass			
W5 CT°	ax40	5965	52.31	0.5	37.630	Pass			
	ax40	6165	39.21	0.5	37.471	Pass			
X	ax40	6405	39.14	0.5	37.487	Pass	X		
	ax40	6445	39.33	0.5	37.634	Pass			
W51	ax40	6485//5/	39.25	W 5 0.5	37.4845	Pass	W5CT		
	ax40	6525	39.07	0.5	37.522	Pass			
\times	ax40	6565	39.26	0.5	37.425	Pass			
	ax40	6685	39.22	0.5	37.533	Pass			
WEET	ax40	6845	39.40	0.5	37.430	Pass			
WSET	ax40	6885	39.18	0.5	37.468	Pass			
	ax40	6965	39.26	0.5	37.473	Pass			
X	ax40	7085	50.06	0.5	37.643	Pass	X		
	ax80	5985	79.78	0.5	77.086	Pass			
W5 L	ax80	6145 <i>V 5 L</i>	79.68	W 5 0.5	76.641	Pass	W5CT°		
	ax80	6385	79.79	0.5	76.808	Pass			
\times	ax80	6465	79.95	0.5	76.741	Pass			
	ax80	6545	79.79	0.5	76.888	Pass			
WSCT	ax80	6625	79.63	0.5	76.827	Pass			
	ax80	6705	79.63	0.5	76.766	Pass			
	ax80	6865	79.78	0.5	76.553	Pass			
_	ax80	6945	79.82	0.5	76.660	Pass			
	ax80	7025	86.79	0.5	76.716	Pass			
W5 L	ax160	6025 / 5/	160.8	W 5 0.5	155.04	Pass	W5 CT		
	ax160	6185	160.6	0.5	154.81	Pass			
X	ax160	6345	160.7	0.5	155.06	Pass			
	ax160	6505	160.5	0.5	154.92	Pass			
W5CT°	ax160	6665	161.1	0.5	155.46	Pass			
	ax160	6825	161.0	0.5	155.23	Pass			
	ax160	6985	161.0	0.5	154.96	Pass			

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

Page 53 of 262

E-mail: fengbing.wang@wsct-cert.com

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

FAX: 0086-755-86376605

W5C1

VSCT WSCT

深圳世标检测认证股份有限公司

MON #

TEL: 0086-755-26996192 26996053 26996144

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3 -26dB Bandwidth ax20 6415MHz Spectrum Analyzer 1 Occupied BW SCPI + KEYSIGHT Input: RF Input Z: 50 Ω Atten: 30 dB Trig: Free Run Center Freq: 6.415000000 GHz Avg|Hold: 100/100 Radio Std: None Corr CCorr Freq Ref: Int (S) Preamp: Off Gate: Off #IF Gain: Low RΙ Align: Auto Mkr3 6.425672000 GHz 1 Granh Ref Lvl Offset 5.68 dB Ref Value 25.68 dBm -28.43 dBm Scale/Div 10.0 dB Center 6.41500 GHz #Res BW 200.00 kHz #Video BW 620.00 kHz Span 30 MHz Sweep 1.33 ms (10001 pts) 2 Metrics Measure Trace Trace 1 Occupied Bandwidth 18.901 MHz Total Power 16.3 dBm Transmit Freq Error -20.159 kHz % of OBW Power 99.00 % 21.38 MHz -26.00 dB Sep 24, 2024 5:22:59 PM * * 丽 -26dB Bandwidth ax20 6435MHz Spectrum Analyzer 1 Occupied BW SCPI + Input Z: 50 Ω Atten: 30 dB Center Freq: 6.435000000 GHz KEYSIGHT Input: RF Trig: Free Run Corr CCorr Freq Ref: Int (S) Preamp: Off Gate: Off #IF Gain: Low Avg|Hold: 100/100 Radio Std: None Align: Auto Mkr3 6.445615000 GHz 1 Graph Ref Lvi Offset 5.68 dB Ref Value 25.68 dBm -30.26 dBm Scale/Div 10.0 dB Constraint which he way ~~~_\|M~~\|M\~ Span 30 MHz Sweep 1.33 ms (10001 pts) Center 6.43500 GHz #Video BW 620.00 kHz #Res BW 200.00 kHz

2 Metrics Measure Trace Trace 1 Occupied Bandwidth 18.932 MHz Total Power 16.5 dBm Transmit Freq Error x dB Bandwidth -2.787 kHz % of OBW Power 99.00 % 21.24 MHz -26.00 dB x dB Sep 24, 2024 5:25:49 PM

ation& Tes

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

10M # 深圳世标检测认证股份有限公司

VS CI

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Zation Certification & Testing Group (Shenzhen) Co.,Ltd.

VS CI

Page 55 of 262

SCT° W

WSC

WSCT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

ADD: Building A-B,Baoll'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Zation Certification & Testing Group (Shenzhen) Co.,Ltc

WELL WELL

Page 56 of 262

WSET

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

Malalaha **ac-MRA** Malalalal

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

10M # 深圳世标检测认证股份有限公司

VS CI

Page 57 of 262

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.
TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Zation Certification & Testing Group (Shenzhen) Co.,Ltc

VS CI

Page 58 of 262

WSET

4

ANSI National Accreditation Board
A C C R E D I T E D

SOUICE 17023
TESTING LABORATORY

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

ADD: Building A-B, Baoil'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26998053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

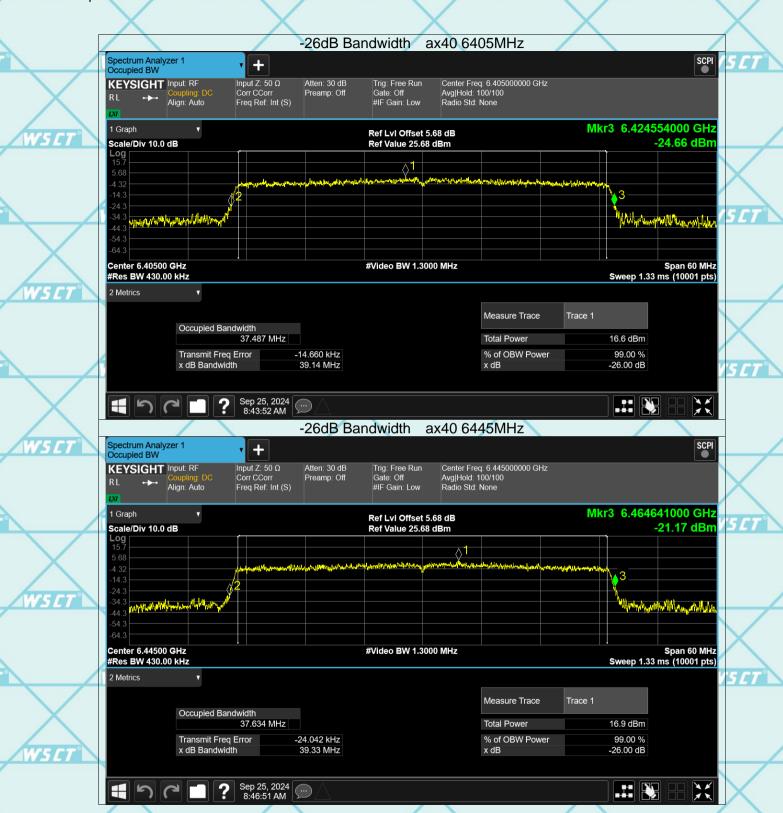
深圳世标检测认证股份有限公司
World Standard cation Certification& Testing Group(Shenzhen) Co.,Ltr

oc r Group (WSC r GA)

Page 59 of 262

W5C7

VSCT WSCT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi3

Malalalal

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

深圳世标检测认证股份有限公司

15 Ci

10M #

TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

ation& Tes