

TEST REPORT

Product Name	:	Industrial tablet computer
Brand Name	:	Hosoton
Model	:	H101
Series Model	:	H102,H104,H40,H80,H60,Q10,Q12,Q13,Q801,Q802,Q601
FCC ID	:	2BNEC-H101
Applicant	:	Shenzhen Hosoton Technology Co.,Ltd.
Address	:	211 room, E building ,Mingxi Industry Park, Fuyong Street ,Baoan District ,Shenzhen, China ,518103
Manufacturer	:	Shenzhen Hosoton Technology Co.,Ltd.
Address	:	211 room, E building ,Mingxi Industry Park, Fuyong Street ,Baoan District ,Shenzhen, China ,518103
Standard(s)	:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of Receipt	:	Dec. 12, 2024
Date of Test	:	Dec. 12, 2024~ Jan. 02, 2025
Issued Date	:	Jan. 03, 2025

Issued By:

Guangdong Asia Hongke Test Technology Limited

EST TECHNO

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street,

Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639

7639 Fax.: +86 0755-230967639

Reviewed by:	Jeon Yi	Approved by:	Sean She	
	Leon.yi		Sean She	* TEST REPORT

Note: This device has been tested and found to comply with the standard(s) listed, this test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited. If there is a need to alter or revise this document, the right belongs to Guangdong Asia Hongke Test Technology Limited, and it should give a prior written notice of the revision document. This test report must not be used by the client to claim product endorsement.

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

Report Revise Record

Report Version	Issued Date	Notes
M1	Jan. 03, 2025	Initial Release

Contents

1	TES	T SUMMARY	
	1.1	Test Standards	4
	1.2	Test Summary	
	1.3	TEST FACILITY	5
	1.4	MEASUREMENT UNCERTAINTY	5
2	GEN	NGENERAL INFORMATION	6
	2.1	Environmental conditions	6
	2.2	GENERAL DESCRIPTION OF EUT	6
	2.3	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	7
	2.4	Special Accessories	8
	2.5	Equipment List for the Test	8
3	TES	ST CONDITIONS AND RESULTS	10
3	TES 3.1	T CONDITIONS AND RESULTS	
3			10
3	3.1	Conducted Emissions Test	
3	3.1 3.2	Conducted Emissions Test Radiated Emissions and Band Edge	
3	3.1 3.2 3.3	Conducted Emissions Test Radiated Emissions and Band Edge Maximum Peak Conducted Output Power	
3	3.1 3.2 3.3 3.4	Conducted Emissions Test Radiated Emissions and Band Edge Maximum Peak Conducted Output Power Power Spectral Density	
3	3.1 3.2 3.3 3.4 3.5	Conducted Emissions Test Radiated Emissions and Band Edge Maximum Peak Conducted Output Power Power Spectral Density 6dB Bandwidth.	
3	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Conducted Emissions Test Radiated Emissions and Band Edge Maximum Peak Conducted Output Power Power Spectral Density 6DB Bandwidth Out-of-band Emissions	

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spreda Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules

1.2 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	§15.203	Pass
On Time and Duty Cycle	1	/
AC Power Line Conducted Emission	§ 15.207(a)	Pass
Maximum Conducted Peak Output Power	§15.247 (b)(3)	Pass
-6dB Bandwidth	§15.247 (a)(2)	Pass
Power Spectral Density	§15.247 (e)	Pass
Transmitter Radiated Spurious Emission	§15.205/15.209	Pass
Restricted Bands	§15.205/15.209	PASS
Conducted Unwanted emissions and Bandedge	§15.205, §15.247(d)	Pass

1.3 Test Facility

Test Laboratory:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

The test facility is recognized, certified or accredited by the following organizations:

FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC — Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

1.4 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Guangdong Asia Hongke Test Technology Limited's quality system according to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Asia Hongke laboratory is reported:

Test	Measurement Uncertainty	Notes
Power Line Conducted Emission	150KHz~30MHz ±1.20 dB	(1)
Radiated Emission	9KHz~30Hz ±3.10dB	(1)
Radiated Emission	9KHz~1GHz ±3.75dB	(1)
Radiated Emission	1GHz~18GHz ±3.88 dB	(1)
Radiated Emission	18GHz-40GHz \pm 3.88dB	(1)
RF power, conducted	30MHz~6GHz \pm 0.16dB	(1)
RF power density, conducted	\pm 0.24dB	(1)
Spurious emissions, conducted	\pm 0.21dB	(1)
Temperature	±1℃	(1)
Humidity	$\pm 3\%$	(1)
DC and low frequency voltages	\pm 1.5%	(1)
Time	±2%	(1)
Duty cycle	±2%	(1)

The report uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty Multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%

2 GENGENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 General Description of EUT

Product Name:	Industrial tablet computer
Model/Type reference:	H101
Serial Model:	H102,H104,H40,H80,H60,Q10,Q12,Q13,Q801,Q802,Q601
Power Rating:	Input: DC 5V/2A DC 3.8V 8000mAh 30.4Wh Rechargeable Li-ion battery
Adapter Information:	Model: HP-050200A1-VDE Input:AC 100-240V~50/60Hz 0.3A Output: DC5V=2000mA
Hardware Version:	N/A
Software Version:	N/A
Sample(s) Status:	AiTSZ-241212036-1(Normal sample) AiTSZ-241212036-2(Engineer sample)
2.4G WIFI:	
Supported type:	802.11b/802.11g /802.11n(HT20)/802.11n(HT40)
Modulation:	802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40): 7
Channel separation:	5MHz
Antenna type:	PIFA antenna
Antenna gain:	1.24dBi
Remark: The above DUT's inform	ation was declared by manufacturer. For more detailed features

description, please refer to the manufacturer's specifications or the User's Manual.

2.3 Description of Test Modes and Test Frequency

There are 11 channels provided to the EUT for 20MHz protocol and 7 channels for 40 MHz protocol. Channel 01/06/11 were selected for 20MHz protocol mode test and channel 03/06/09 were selected for 40MHz protocol mode test.

Operation Frequency List:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

Note: The line display in grey were the channel selected for testing

Exploratory testing was performed under each mode combination test channel; only the final measurement of the worst combination was made and recorded in this report.

_	Explora	tory measurem	Final measurement Recorded			
Test case	Mode	Date rate	Channel	Mode	n Report Date rate	Channel
Maximum output power	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1~11Mbps 6~54Mbps MCS0~MCS7 MCS0~MCS7	⊠ Lowest ⊠ Middle ⊠ Highest	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1Mbps 6Mbps MCS0 MCS0	⊠ Lowest ⊠ Middle ⊠ Highest
Power spectral density	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1~11Mbps 6~54Mbps MCS0~MCS7 MCS0~MCS7	☑ Lowest☑ Middle☑ Highest	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1Mbps 6Mbps MCS0 MCS0	☑ Lowest☑ Middle☑ Highest
-6dB bandwidth	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1~11Mbps 6~54Mbps MCS0~MCS7 MCS0~MCS7	⊠ Lowest ⊠ Middle ⊠ Highest	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1Mbps 6Mbps MCS0 MCS0	☑ Lowest☑ Middle☑ Highest
Conducted Spurious Emissions	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1~11Mbps 6~54Mbps MCS0~MCS7 MCS0~MCS7	⊠ Lowest ⊠ Middle ⊠ Highest	1~11Mbps 6~54Mbps MCS0~MCS7 MCS0~MCS7	1Mbps 6Mbps MCS0 MCS0	☑ Lowest☑ Middle☑ Highest
Conducted Band edge	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1~11Mbps 6~54Mbps MCS0~MCS7 MCS0~MCS7	⊠ Lowest ⊠ Highest	1~11Mbps 6~54Mbps MCS0~MCS7 MCS0~MCS7	1Mbps 6Mbps MCS0 MCS0	⊠ Lowest ⊠ Highest
Radiated Band edge	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1~11Mbps 6~54Mbps MCS0~MCS7 MCS0~MCS7	⊠ Lowest ⊠ Highest	802.11n(HT40)	MCS0	⊠ Lowest ⊠ Highest
Radiated Emissions Above 1GHz	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1~11Mbps 6~54Mbps MCS0~MCS7 MCS0~MCS7	☑ Lowest☑ Middle☑ Highest	802.11b	1Mbps	☑ Lowest☑ Middle☑ Highest
Radiated Emissions Below 1GHz	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1~11Mbps 6~54Mbps MCS0~MCS7 MCS0~MCS7	☑ Lowest☑ Middle☑ Highest	802.11b	1Mbps	🛛 Middle
Conducted Emissions 9KHz-30 MHz	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	1~11Mbps 6~54Mbps MCS0~MCS7 MCS0~MCS7	⊠ Lowest ⊠ Middle ⊠ Highest	802.11b	1Mbps	🛛 Middle

Power setting during the test:

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters:

Test Software Version	Engineering Mode					
Frequency	2412/2422MHz	2437MHz	2452/2462MHz			
802.11b	Default	Default	Default			
802.11g	Default	Default	Default			
802.11n(HT20)	Default	Default	Default			
802.11n(HT40)	Default	Default	Default			

2.4 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Serial No.	Provided by	Other
/	/	/	/	/	/
/	/	/	/	/	/

2.5 Equipment List for the Test

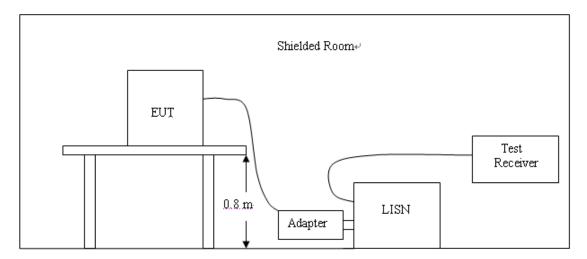
No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	EMI Measuring Receiver	R&S	ESR	101160	2024.09.25	2025.09.24
2	Spectrum Analyzer	R&S	FSV40	101470	2024.09.23	2025.09.22
3	Low Noise Pre Amplifier	SCHWARZBECK	BBV 9745	00282	2024.09.25	2025.09.24
4	Low Noise Pre Amplifier	CESHENG	CSKJLNA23101 6A	CSKJLNA231016 A	2024.09.25	2025.09.24
5	Passive Loop	ETS	6512	00165355	2024.08.29	2027.08.28
6	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9168	01434	2024.08.29	2027.08.28
7	Broadband Horn Antenna	Schwarzbeck	BBHA 9120D	452	2024.08.29	2027.08.28
8	Horn Antenna 15- 40GHz	SCHWARZBECK	BBHA9170	BBHA9170367	2024.08.28	2027.08.27
9	6dB Attenuator	JFW	50FPE-006	4360846-949-1	2024.09.24	2025.09.23
10	EMI Test Receiver	R&S	ESPI	100771	2024.09.25	2025.09.24
11	LISN	R&S	NNLK 8129	8130179	2024.09.24	2025.09.23
12	LISN	R&S	ESH3-Z5	892785/016	2024.09.23	2025.09.22
13	Pulse Limiter	R&S	ESH3-Z2	102789	2024.09.24	2025.09.23
14	RF Automatic Test system	TST	TSTPASS	21033016	2024.09.25	2025.09.24
15	Vector Signal Generator	Agilent	N5182A	MY50143009	2024.09.25	2025.09.24
16	Analog signal generator	Agilent	E8257	MY51554256	2024.09.25	2025.09.24

Page 9 of 26

Report No.: AiTSZ-241212036FW3

17	Spectrum Analyzer	Agilent	N9020A	MY51289843	2024.09.25	2025.09.24					
18	Spectrum Analyzer	Agilent	N9020A	MY53421570	2024.09.25	2025.09.24					
19	Power Sensor	Agilent	8481A	MY41097697	2024.09.25	2025.09.24					
20	Wideband Radio communication tester	R&S	CMW500	1201.0002K50	2024.09.24	2025.09.23					
21	DC power supply	ZHAOXIN	RXN-305D-2 28070002559		N/A	N/A					
22	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A					
23	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A					
24	RF Software	TST	TSTPASS	Version 2.0	N/A	N/A					
25	RF Software	cesheng	WCS-WCN	Version 2024.6.20	N/A	N/A					
26	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A					
		Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.									

3 TEST CONDITIONS AND RESULTS

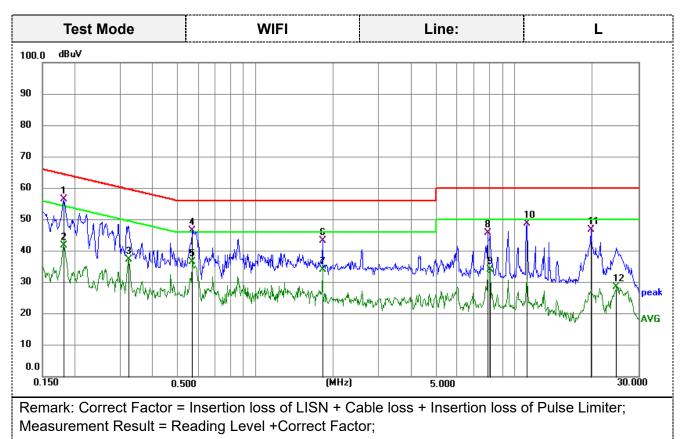

3.1 Conducted Emissions Test

<u>LIMIT</u>

	Limit (dBuV)						
Frequency range (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

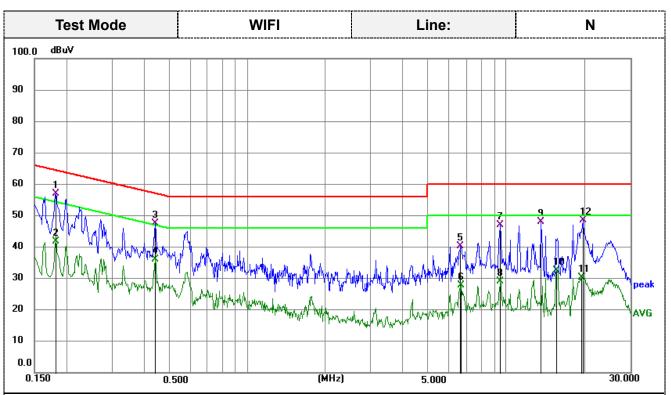
* Decreases with the logarithm of the frequency.

TEST CONFIGURATION


TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS


Remark: Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

Margin = Measurement Result	- Limit
-----------------------------	---------

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Γ
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)		
1	0.1814	45.72	10.68	56.40	64.42	-8.02	QP	
2	0.1814	31.09	10.68	41.77	54.42	-12.65	AVG	
3	0.3234	26.57	10.70	37.27	49.62	-12.35	AVG	
4	0.5685	35.91	10.68	46.59	56.00	-9.41	QP	
5	0.5685	25.83	10.68	36.51	46.00	-9.49	AVG	
6	1.8150	32.44	10.76	43.20	56.00	-12.80	QP	
7	1.8150	23.24	10.76	34.00	46.00	-12.00	AVG	
8	7.8630	34.67	11.06	45.73	60.00	-14.27	QP	
9	8.0430	22.99	11.06	34.05	50.00	-15.95	AVG	
10	11.1615	37.59	11.19	48.78	60.00	-11.22	QP	
11	19.7160	35.07	11.70	46.77	60.00	-13.23	QP	1
12	24.7875	16.78	11.77	28.55	50.00	-21.45	AVG	

Remark: Correct Factor = Insertion loss of LISN + Cable loss + Insertion loss of Pulse Limiter; Measurement Result = Reading Level +Correct Factor;

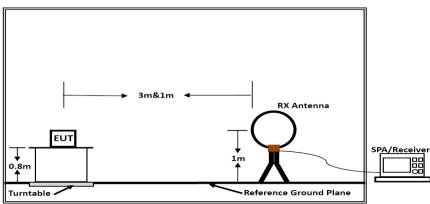
Margin = Measurement Result- Limit

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1814	46.37	10.68	57.05	64.42	-7.37	QP
2	0.1814	31.05	10.68	41.73	54.42	-12.69	AVG
3	0.4380	36.78	10.69	47.47	57.10	-9.63	QP
4	0.4380	25.44	10.69	36.13	47.10	-10.97	AVG
5	6.6435	29.15	11.01	40.16	60.00	-19.84	QP
6	6.6660	16.68	11.01	27.69	50.00	-22.31	AVG
7	9.4470	36.05	10.95	47.00	60.00	-13.00	QP
8	9.4740	18.11	10.95	29.06	50.00	-20.94	AVG
9	13.5960	36.74	11.37	48.11	60.00	-11.89	QP
10	15.5940	21.08	11.49	32.57	50.00	-17.43	AVG
11	19.4325	18.73	11.64	30.37	50.00	-19.63	AVG
12	19.7250	36.80	11.65	48.45	60.00	-11.55	QP

3.2 Radiated Emissions and Band Edge

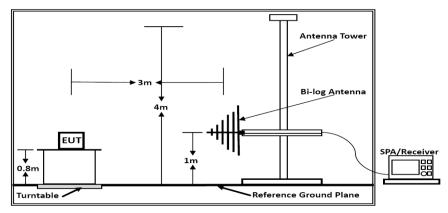
<u>Limit</u>

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

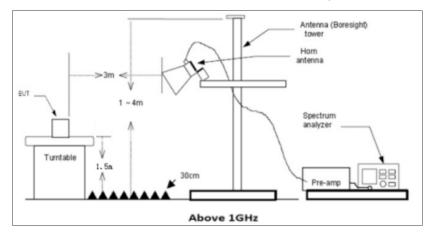

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)			
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)			
0.49-1.705	3	20log(24000/F(KHz))+40log(30/3)	24000/F(KHz)			
1.705-30	3	20log(30)+ 40log(30/3)	30			
30-88	3	40.0	100			
88-216	3	43.5	150			
216-960	3	46.0	200			
Above 960	3	54.0	500			

Radiated emission limits


TEST CONFIGURATION

Below 30MHz


(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

Below 1GHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°℃ to 360°℃ to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency	Test Receiver/Spectrum Setting	Detector		
range				
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP		
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep	QP		
301VITIZ-1011Z	time=Auto	QF		
	Peak Value: RBW=1MHz/VBW=3MHz,			
1GHz-40GHz	Sweep time=Auto	Peak		
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,			
	Sweep time=Auto			

TEST RESULTS

Remark: Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and The emission levels from 9kHz to 30MHz are attenuated 20dB below the limit and not recorded in report.

For 30MHz-1GHz

	T	est ı	node	:				,	WIFI			Pola	ariza	ation:		Horizontal					
80.0	d	BuV/π	1								_										
70																			-		
60					-													+			
50					-															HR	
40										3			5					6 X		┿┹┤	
30							2		/	∽∱∽∽∕	140	M WY	f	the Carment and an	Anna		mendor		فعستناجه		peak
20	1 daw	women	What portune of	Ann	wature	-	2	m	and the second of the second o	_								╫		$\left \right $	
10																		╫		$\left \right $	
0						+												╫		$\left - \right $	
-10																		╫		$\left \right $	
-20					+												+			\square	
-30					+													\parallel		\square	
-40 30).000				60.00					(MHz)			30)0.00				11	1	000.	000
Fac	ssio tor	on Le = An	evel = tenna nissio	a Fac	ctor -	+ Ca	able		; oss – Pre-ar	nplifier	;										
No) .		quen MHz)	су		adi IBu\			Factor (dB/m)	Le (dBı			(c	Limit IBuV/m)		Marg (dB			D)et.	
1		50).586	0	3	6.2	1		-16.64	19	.5	7		40.00		-20.4	43		C	λЬ	
2		84	.999	3	4	1.3)		-20.97	20	.3	3		40.00		-19.6	67		C	QΡ	
3		16	7.236	6	4	9.9	3		-16.75	33	.2	3		43.50		-10.2	27		C	λЬ	
4		21	5.267	7	5	5.6)		-20.29	35	.3	1		43.50		-8.1	9		C	ΩP	
5		26	9.428	32	5	2.8	1		-17.86	34	.9	5		46.00		-11.0)5		C	λЬ	
6		72	1.725	58	4	2.0	3		-7.65	34	.3	8		46.00		-11.6	62		C	ΩP	

5

6

465.5994

642.8612

44.54

43.54

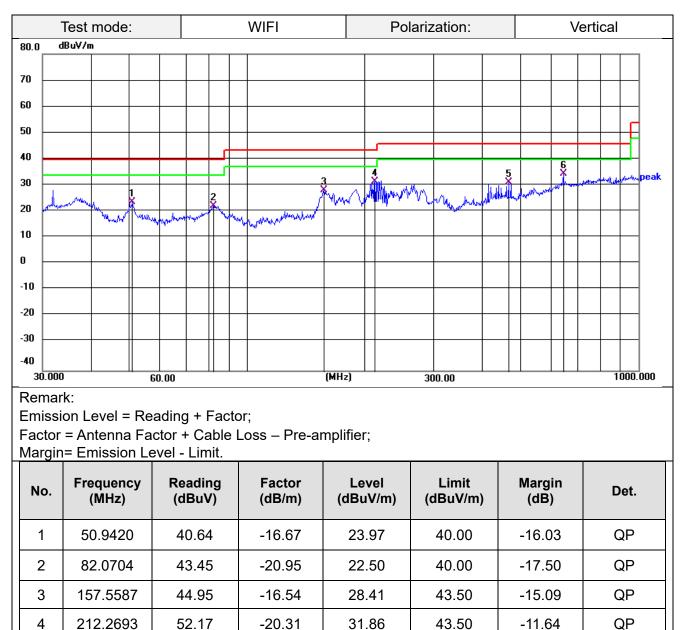
-13.00

-8.95

31.54

34.59

46.00


46.00

-14.46

-11.41

QP

QP

For 1GHz to 25GHz

	802.11b (above 1GHz)											
Frequenc	cy(MHz):	24	12	Polarity: Horizontal								
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector						
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Туре						
4824.50	63.17	-7.34	55.83	74	-18.17	PEAK						
4824.50	54.08	-7.34	46.74	54	-7.26	AVG						
7235.90	49.57	-1.34	48.23	74	-25.77	PEAK						
						AVG						

Frequenc	cy(MHz):	24	12	Polarity:	VERT	TICAL	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB/m)	(dB/m) (dBµV/m) (d		(dB)	Туре	
4824.50	63.97	-7.34	56.63	74	-17.37	PEAK	
4824.50	54.12	-7.34	46.78	54	-7.22	AVG	
7235.90	50.26	-1.34	48.92	74	-25.08	PEAK	
						AVG	

Frequency(MHz):		24	37	Polarity:	Horiz	ontal
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4873.70	61.81	-6.82	54.99	74	-19.01	PEAK
4873.70	52.20	-6.82	45.38	54	-8.62	AVG
7311.20	51.04	-0.61	50.43	74	-23.57	PEAK
						AVG

Frequency(MHz):		2437		Polarity:	VERT	ICAL
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4873.70	62.01	-6.82	55.19	74	-18.81	PEAK
4873.70	53.43	-6.82	46.61	54	-7.39	AVG
7311.20	51.28	-0.61	50.67	74	-23.33	PEAK
						AVG

Frequency(MHz):		2462		Polarity:	Horiz	ontal
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924.30	47.02	-6.23	53.32	74	-20.68	PEAK
						AVG
7386.00	46.47	0.05	47.60	74	-26.40	PEAK
						AVG

Frequency(MHz):		2462		Polarity:	VERT	ICAL
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924.30	45.63	-6.23	54.28	74	-19.72	PEAK
4924.30	52.47	-6.23	46.24	54	-7.76	AVG
7386.00	45.02	0.05	48.78	74	-25.22	PEAK
						AVG

REMARKS:

- 1. Emission level (dBuV/m) = Reading (dBuV)+ Factor (dB/m)
- 2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Emission level- Limit value.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. Other emission levels are attenuated 20dB below the limit and not recorded in report.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Radiation Restricted band

802.11n(HT40)								
Frequenc	cy(MHz):		-22	Polarity:	Horiz	ontal		
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2388.17	60.95	-4.07	56.88	74	-17.12	PEAK		
2388.17	51.99	-4.07	47.92	54	-6.08	AVG		
2390.00	40.62	-4.10	54.30	74	-19.70	PEAK		
2390.00	51.71	-4.10	47.61	54	-6.39	AVG		

Frequency(MHz):		2422		Polarity:	Vert	tical
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2387.66	61.66	-4.06	57.60	74	-16.40	PEAK
2387.66	53.57	-4.06	49.51	54	-4.49	AVG
2390.00	58.51	-4.10	54.41	74	-19.59	PEAK
2390.00	53.58	-4.10	49.48	54	-4.52	AVG

Frequenc	Frequency(MHz):		52	Polarity:	Horiz	ontal
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	60.19	-3.09	57.10	74	-16.90	PEAK
2483.50	51.22	-3.09	48.13	54	-5.87	AVG
2485.52	52.70	-3.06	49.64	74	-24.36	PEAK
						AVG

Frequency(MHz):		2452		Polarity:	Vertical	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	60.32	-3.09	57.23	74	-16.77	PEAK
2483.50	52.87	-3.09	49.78	54	-4.22	AVG
2484.74	53.30	-3.08	50.22	74	-23.78	PEAK
						AVG

REMARKS:

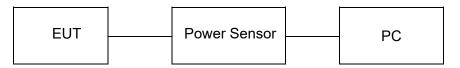
- 1. Emission level (dBuV/m) = Reading (dBuV)+ Factor (dB/m)
- 2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3. Margin value = Emission level- Limit value.

4. Other emission levels are attenuated 20dB below the limit and not recorded in report.

5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

3.3 Maximum Peak Conducted Output Power


<u>Limit</u>

The maximum peak conducted output power shall not exceed 1.0 W.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power Meter.

Test Configuration

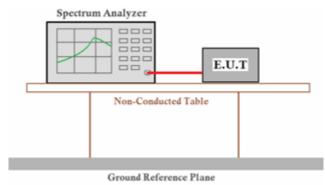
Test Results

🛛 Pass

Not Applicable

Note:

3.4 Power Spectral Density


<u>Limit</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

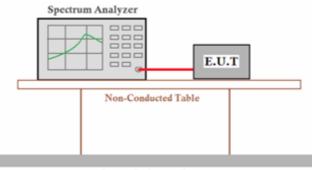
Test Configuration

Test Results

☑ Pass
□ Not Applicable

Note:

3.5 6dB Bandwidth


<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. Measured the 6dB bandwidth by related function of the spectrum analyzer.

Test Configuration

Ground Reference Plane

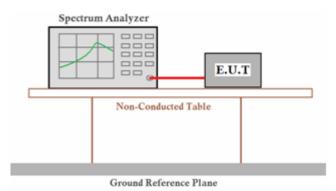
Test Results

🛛 Pass

Not Applicable

Note:

3.6 Out-of-band Emissions


<u>Limit</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

☑ Pass
□ Not Applicable

Note:

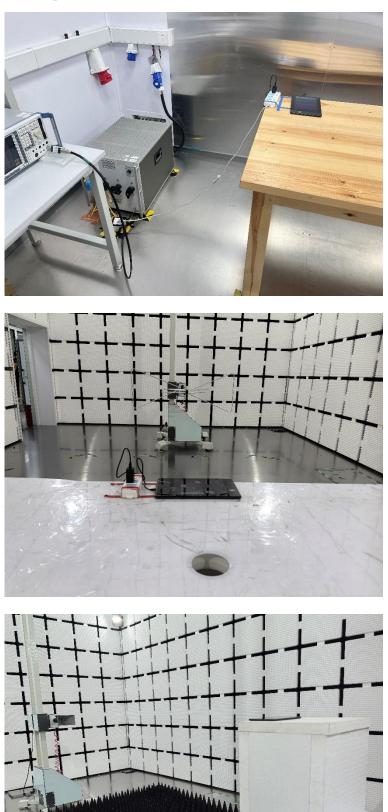
3.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(b) (4):


(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

<u>Test Result</u>

The maximum gain of antenna was 1.24dBi with impedance 50 Ω.

4 Test Setup Photographs of EUT

5 Photos of EUT

Please refer to test report No.: AiTSZ-241212036FW1.