Appendix C. Calibration Certificate for Probe and Dipole The SPEAG calibration certificates are shown as follows. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D750V3-1013_Aug20 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** **CALIBRATION CERTIFICATE** Object **D750V3 - SN:1013** Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 13, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | Status | | Approved by: | Katja Pokovic | Technical Manager | alle | Issued: August 14, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1013_Aug20 Report No.: SFBBQZ-WTW-P21031117 Page 1 of 6 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook # **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1013_Aug20 Page 2 of 6 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | **Head TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.4 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 2242 | | # **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.48 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.53 W/kg ± 16.5 % (k=2) | Page 3 of 6 Certificate No: D750V3-1013_Aug20 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.0 Ω - 0.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.5 dB | | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.036 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D750V3-1013_Aug20 ### **DASY5 Validation Report for Head TSL** Date: 13.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1013** Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 42.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.97, 9.97, 9.97) @ 750 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.14 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.22 W/kg # SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.4 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 2.83 W/kg 0 dB = 2.83 W/kg = 4.52 dBW/kg Certificate No: D750V3-1013_Aug20 Page 5 of 6 # Impedance Measurement Plot for Head TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S S Schweizerischer Kalibrierdienst Service suisse
d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Certificate No: D835V2-4d121_Aug20 # **CALIBRATION CERTIFICATE** Object **D835V2 - SN:4d121** Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 13, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | A Letter | | | | | | | Approved by: | Katja Pokovic | Technical Manager | RUKC | Issued: August 14, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d121_Aug20 Report No.: SFBBQZ-WTW-P21031117 Page 1 of 6 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d121_Aug20 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.2 ± 6 % | 0.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | |---|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 2.43 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 9.52 W/kg ± 17.0 % (k=2) | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.21 W/kg ± 16.5 % (k=2) | Page 3 of 6 Certificate No: D835V2-4d121_Aug20 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.8 Ω - 3.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.4 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.394 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Yes | | |-----------------|---------| | | | | Manufactured by | I SPEAG | | Manuactured by | JI LAG | Certificate No: D835V2-4d121_Aug20 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 13.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d121** Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 42.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.61 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.60 W/kg #### SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 67.5% Maximum value of SAR (measured) = 3.21 W/kg 0 dB = 3.21 W/kg = 5.07 dBW/kg Certificate No: D835V2-4d121_Aug20 Page 5 of 6 # Impedance Measurement Plot for Head TSL Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is
one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Certificate No: D1750V2-1055 Aug20 # **CALIBRATION CERTIFICATE** Object D1750V2 - SN:1055 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 14, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | /Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | | | Approved by: | Katja Pokovic | Technical Manager | elles | Issued: August 14, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1750V2-1055_Aug20 Report No.: SFBBQZ-WTW-P21031117 Page 1 of 6 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1055_Aug20 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | # **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 8.89 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.69 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 18.9 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1055_Aug20 Page 3 of 6 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $50.3 \Omega + 0.8 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 41.5 dB | | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.000 | |-----------------------------------|----------| | Licethical Delay (offe direction) | 1.223 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------| | | or End | Certificate No: D1750V2-1055_Aug20 Page 4 of 6 ### **DASY5 Validation Report for Head TSL** Date: 14.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1055 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.35 \text{ S/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.58, 8.58, 8.58) @ 1750 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.6 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 16.6 W/kg #### SAR(1 g) = 8.89 W/kg; SAR(10 g) = 4.69 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54% Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg Certificate No: D1750V2-1055_Aug20 Page 5 of 6 # Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Certificate No:
D1900V2-5d036_Jan21 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d036 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: January 22, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | S. Lit | | Approved by: | Katja Pokovic | Technical Manager | MISS | Issued: January 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d036_Jan21 Page 1 of 6 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### **Calibration is Performed According to the Following Standards:** - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d036_Jan21 Page 2 of 6 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.2 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 3-4-4 | #### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | | |---|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 10.0 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 40.4 W/kg ± 17.0 % (k=2) | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | |---|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 5.23 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 21.1 W/kg ± 16.5 % (k=2) | | Page 3 of 6 Certificate No: D1900V2-5d036_Jan21 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $50.4 \Omega + 5.3 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 25.5 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.195 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D1900V2-5d036_Jan21 ### **DASY5 Validation Report for Head TSL** Date: 22.01.2021 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d036 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.11.2020 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.8 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.4 W/kg #### SAR(1 g) = 10.0 W/kg; SAR(10 g) = 5.23 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm Ratio of SAR at M2 to SAR at M1 = 55.3% Maximum value of SAR (measured) = 15.3 W/kg 0 dB = 15.3 W/kg = 11.85 dBW/kg Certificate No: D1900V2-5d036_Jan21 Page 5 of 6 # **Impedance Measurement Plot for Head TSL** ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Wiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Certificate No: D2300V2-1004_Jan21 # **CALIBRATION CERTIFICATE** Object D2300V2 - SN:1004 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: January 22,
2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | ype-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | ower meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | ower sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | ower sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | letwork Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | 14 | | Approved by: | Katja Pokovic | Technical Manager | Cole (| Issued: January 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2300V2-1004_Jan21 Page 1 of 6 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2300V2-1004_Jan21 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2300 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.7 ± 6 % | 1.71 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | # **SAR result with Head TSL** | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 49.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.01 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 16.5 % (k=2) | Certificate No: D2300V2-1004_Jan21 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.5 Ω - 3.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.2 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.164 ns | |----------------------------------|----------| | | 1112111 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2300V2-1004_Jan21 ### **DASY5 Validation Report for Head TSL** Date: 22.01.2021 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1004 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.71 \text{ S/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2300 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.5 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 23.0 W/kg #### SAR(1 g) = 12.5 W/kg; SAR(10 g) = 6.01 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 54.8% Maximum value of SAR (measured) = 19.5 W/kg 0 dB = 19.5 W/kg = 12.90 dBW/kg Certificate No: D2300V2-1004_Jan21 Page 5 of 6 # Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D2450V2-737_Aug20 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** **CALIBRATION CERTIFICATE** Object **D2450V2 - SN:737** Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 13, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in
the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | A. Latin | | | | T. I 1M | | | Approved by: | Katja Pokovic | Technical Manager | the ag | Issued: August 14, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-737_Aug20 Page 1 of 6 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook # **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-737_Aug20 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR** result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-737_Aug20 Page 3 of 6 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.8 Ω + 4.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.9 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.162 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-737_Aug20 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 13.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:737 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.4 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 25.6 W/kg # SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.12 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.2% Maximum value of SAR (measured) = 21.2 W/kg 0 dB = 21.2 W/kg = 13.27 dBW/kg Certificate No: D2450V2-737_Aug20 Page 5 of 6 #### Impedance Measurement Plot for Head TSL ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D2600V2-1020_Aug20 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** **CALIBRATION CERTIFICATE** Object D2600V2 - SN:1020 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 13, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 1D # | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------
-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | J. Lytun | | Approved by: | Katja Pokovic | Technical Manager | MUL | Issued: August 14, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1020_Aug20 Page 1 of 6 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1020_Aug20 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.3 ± 6 % | 2.01 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | |---|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 6.30 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 25.0 W/kg ± 16.5 % (k=2) | | Certificate No: D2600V2-1020_Aug20 Page 3 of 6 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.1 Ω - 5.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.7 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.154 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2600V2-1020_Aug20 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 13.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1020 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.01 \text{ S/m}$; $\varepsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.54, 7.54, 7.54) @ 2600 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.5 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.30 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.2% Maximum value of SAR (measured) = 23.2 W/kg 0 dB = 23.2 W/kg = 13.65 dBW/kg Certificate No: D2600V2-1020_Aug20 Page 5 of 6 ## Impedance Measurement Plot for Head TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Certificate No: D3500V2-1007_Jan21 ## **CALIBRATION CERTIFICATE** Object D3500V2 - SN:1007 Calibration procedure(s) QA CAL-22.v5 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: January 20, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|---| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100)
 Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | U | | Approved by: | Katja Pokovic | Technical Manager | MAI | | | | | Jan | Issued: January 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3500V2-1007_Jan21 Report No.: SFBBQZ-WTW-P21031117 Page 1 of 6 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured N/A not #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3500V2-1007_Jan21 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.4 ± 6 % | 2.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 504 | | ## **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 19.5 % (k=2) | Certificate No: D3500V2-1007_Jan21 Page 3 of 6 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.0 Ω - 5.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.4 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.135 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D3500V2-1007_Jan21 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 20.01.2021 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1007 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.88 \text{ S/m}$; $\varepsilon_r = 37.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52** Configuration: Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 30.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.81 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 17.8 W/kg #### SAR(1 g) = 6.56 W/kg; SAR(10 g) = 2.46 W/kg Smallest distance from peaks to all points 3 dB below = 8.6 mm Ratio of SAR at M2 to SAR at M1 = 75.1% Maximum value of SAR (measured) = 12.5 W/kg 0 dB = 12.5 W/kg = 10.97 dBW/kg Certificate No: D3500V2-1007_Jan21 Page 5 of 6 ## **Impedance Measurement Plot for Head TSL** ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D3700V2-1017_Sep20 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** ## **CALIBRATION CERTIFICATE** Object D3700V2 - SN:1017 Calibration procedure(s) QA CAL-22.v5 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: September 14, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | 4778
3244
3245
19394 (20k)
0982 / 06327
03 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-3503_Dec19)
27-Dec-19 (No. DAE4-601_Dec19) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 | |---
---|---| | 3245
19394 (20k)
0982 / 06327
03 | 01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-3503_Dec19) | Apr-21
Apr-21
Apr-21
Dec-20 | | 19394 (20k)
0982 / 06327
03 | 31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-3503_Dec19) | Apr-21
Apr-21
Dec-20 | | 0982 / 06327
03 | 31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-3503_Dec19) | Apr-21
Dec-20 | | 03 | 31-Dec-19 (No. EX3-3503_Dec19) | Dec-20 | | | , , | | | 1 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | | | | | Check Date (in house) | Scheduled Check | | 339512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | 37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Y41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | 0972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | 841080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Function | Signature | | rsner | Laboratory Technician | Sel Illan | | okovic | Technical Manager | Mac | | | 337292783
741092317
0972
341080477 | 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function Laboratory Technician | Issued: September 16, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3700V2-1017_Sep20 Page 1 of 6 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3700V2-1017_Sep20 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.6 ± 6 % | 3.08 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | - National I | **** | ## **SAR** result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.62 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 19.5 % (k=2) | Certificate No: D3700V2-1017_Sep20 Page 3 of 6 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.8 Ω - 9.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.8 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.136 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | 1 | | Certificate No: D3700V2-1017_Sep20 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 14.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1017 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.08 \text{ S/m}$; $\varepsilon_r = 36.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.14 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 18.9 W/kg #### SAR(1 g) = 6.62 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 8.6 mm Ratio of SAR at M2 to SAR at M1 = 73.3% Maximum value of SAR (measured) = 13.1 W/kg 0 dB = 13.1 W/kg = 11.17 dBW/kg Certificate No: D3700V2-1017_Sep20 Report No.: SFBBQZ-WTW-P21031117 ## Impedance Measurement Plot for Head TSL CALIBRATION LABORATORY CALIBRATION **CNAS L0570** Client **AUDEN** Certificate No: Z20-60430 #### **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1145 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: November 9, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------
--|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | ReferenceProbe EX3DV4 | SN-3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzerE5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | Name **Function** Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: November 19, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60430 Page 1 of 8 Glossary: TSL tissue simulating liquid ConvF* sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60430 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | #### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|------------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m - | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 4.76 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | and to the color | are and all aft. | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.78 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.5 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 24.2 % (k=2) | #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5,07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 5.14 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | an an arran | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.3 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 24.2 % (k=2) | #### Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 5.31 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | an de ma | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.5 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 24.2 % (k=2) | #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 53.1Ω - 9.17jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 20.6dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 58.7Ω - 0.77jΩ | |--------------------------------------|----------------| | Return Loss | - 21.9dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 56.5Ω - 2.83jΩ | |--------------------------------------|----------------| | Return Loss | - 23.5dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.067 ns | | |----------------------------------|----------|--| | L | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | *************************************** | | |---|-------| | Manufactured by | SPEAG | | | | #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1145 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Date: 11.09.2020 Medium parameters used: f = 5250 MHz; σ = 4.756 S/m; ϵ_r = 35.12; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.14 S/m; ϵ_r = 34.53; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.306 S/m; ϵ_r = 34.41; ρ = 1000 kg/m³, Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(5.39, 5.39, 5.39) @ 5250 MHz; ConvF(4.99, 4.99, 4.99) @ 5600 MHz; ConvF(5.1, 5.1, 5.1) @ 5750 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.55 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at
M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 17.9 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.50 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 35.7 W/kg SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.3 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62% Maximum value of SAR (measured) = 19.6 W/kg Certificate No: Z20-60430 Page 6 of 8 Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.32 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 34.7 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 61.8% Maximum value of SAR (measured) = 19.0 W/kg 0 dB = 19.0 W/kg = 12.79 dBW/kg #### Impedance Measurement Plot for Head TSL ## Calibration Laboratory of Schmid & Partner Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **B.V. ADT (Auden)** Certificate No: EX3-7472_Aug20 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:7472 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: August 24, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 660 | 27-Dec-19 (No. DAE4-660_Dec19) | Dec-20 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-19 (No. ES3-3013_Dec19) | Dec-20 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: August 25, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7472_Aug20 Page 1 of 22 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - *NORMx,y,z*: Assessed for E-field polarization ϑ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7472_Aug20 Page 2 of 22 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7472 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.58 | 0.49 | 0.42 | ± 10.1 % | | DCP (mV) ^B | 95.9 | 98.4 | 100.2 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |--------|-----------------------------|---|---------|-----------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 179.6 | ± 3.0 % | ± 4.7 % | | | | Υ | 0.00 | 0.00 | 1.00 | 1 | 187.5 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 198.7 | 1 | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 20.00 | 96.07 | 23.22 | 10.00 | 60.0 | ± 3.3 % | ± 9.6 % | | AAA | | Υ | 2.26 | 65.30 | 9.82 | | 60.0 | | | | | | Z | 3.00 | 67.85 | 11.16 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 107.24 | 27.73 | 6.99 | 80.0 | ± 2.4 % | ± 9.6 % | | AAA | | Υ | 1.47 | 65.03 | 8.85 | | 80.0 | | | | | | Z | 2.10 | 68.26 | 10.42 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 136.93 | 40.23 | 3.98 | 95.0 | ± 2.3 % | ± 9.6 % | | AAA | | Υ | 20.00 | 86.48 | 14.57 | | 95.0 | | | | water | | Z | 13.45 | 85.18 | 14.54 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 152.13 | 45.41 | 2.22 | 120.0 | ± 2.1 % | ± 9.6 % | | AAA | | Y | 20.00 | 102.32 | 20.70 | | 120.0 | | | | | | Z | 20.00 | 93.94 | 16.89 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | Х | 2.13 | 70.07 | 17.80 | 1.00 | 150.0 | ± 2.2 % | ± 9.6 % | | AAA | | Υ | 1.93 | 69.70 | 17.02 | | 150.0 | | | | | | Z | 1.54 | 65.58 | 14.39 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.97 | 72.85 | 18.60 | 0.00 | 150.0 | ± 2.0 % | ± 9.6 % | | AAA | | Υ | 2.45 | 70.03 | 17.25 | | 150.0 | | | | | | Z | 2.04 | 66.67 | 15.09 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.95 | 71.14 | 20.06 | 3.01 | 150.0 | ± 2.3 % | ± 9.6 % | | AAA | | Υ | 2.11 | 66.70 | 18.11 | | 150.0 | | | | | | Z | 2.34 | 68.06
 17.77 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.81 | 68.51 | 16.93 | 0.00 | 150.0 | ± 2.1 % | ± 9.6 % | | AAA | | Υ | 3.63 | 67.80 | 16.47 | | 150.0 | | | | | | Z | 3.43 | 66.65 | 15.52 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | Х | 5.05 | 66.07 | 16.11 | 0.00 | 150.0 | ± 1.9 % | ± 9.6 % | | AAA | | Υ | 4.89 | 65.99 | 15.98 | | 150.0 | | | | | | Z | 4.77 | 65.56 | 15.47 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. The uncertainties of Norm X,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the EX3DV4- SN:7472 August 24, 2020 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7472 #### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | X | 51.4 | 392.73 | 37.40 | 10.92 | 0.00 | 5.10 | 0.00 | 0.40 | 1.01 | | Υ | 37.7 | 286.14 | 36.77 | 5.39 | 0.00 | 4.96 | 0.00 | 0.16 | 1.01 | | Z | 36.8 | 274.17 | 35.42 | 3.20 | 0.00 | 4.98 | 1.47 | 0.00 | 1.01 | #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -94.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7472_Aug20 EX3DV4-SN:7472 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7472 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.54 | 10.54 | 10.54 | 0.23 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.11 | 10.11 | 10.11 | 0.34 | 0.95 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.92 | 9.92 | 9.92 | 0.32 | 0.80 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.94 | 8.94 | 8.94 | 0.36 | 0.80 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 8.80 | 8.80 | 8.80 | 0.34 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.74 | 8.74 | 8.74 | 0.30 | 0.87 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.35 | 8.35 | 8.35 | 0.35 | 0.87 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.17 | 8.17 | 8.17 | 0.31 | 0.87 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.94 | 7.94 | 7.94 | 0.33 | 0.95 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.69 | 7.69 | 7.69 | 0.38 | 0.95 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.53 | 7.53 | 7.53 | 0.28 | 0.95 | ± 12.0 % | | 3300 | 38.2 | 2.71 | 7.20 | 7.20 | 7.20 | 0.35 | 1.35 | ± 13.1 % | | 3500 | 37.9 | 2.91 | 7.10 | 7.10 | 7.10 | 0.35 | 1.35 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 7.07 | 7.07 | 7.07 | 0.40 | 1.35 | ± 13.1 % | | 3900 | 37.5 | 3.32 | 6.87 | 6.87 | 6.87 | 0.40 | 1.60 | ± 13.1 % | | 4100 | 37.2 | 3.53 | 6.60 | 6.60 | 6.60 | 0.40 | 1.60 | ± 13.1 % | | 4200 | 37.1 | 3.63 | 6.57 | 6.57 | 6.57 | 0.40 | 1.60 | ± 13.1 % | | 4400 | 36.9 | 3.84 | 6.40 | 6.40 | 6.40 | 0.40 | 1.70 | ± 13.1 % | | 4600 | 36.7 | 4.04 | 6.36 | 6.36 | 6.36 | 0.40 | 1.70 | ± 13.1 % | | 4800 | 36.4 | 4.25 | 6.26 | 6.26 | 6.26 | 0.40 | 1.80 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 5.97 | 5.97 | 5.97 | 0.40 | 1.80 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.72 | 5.72 | 5.72 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 5.04 | 5.04 | 5.04 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 5.25 | 5.25 | 5.25 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: EX3-7472_Aug20 F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:7472 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7472 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 6500 | 34.5 | 6.07 | 5.70 | 5.70 | 5.70 | 0.15 | 2.00 | ± 18.6 % | $^{^{\}rm C}$ Calibration procedure for frequencies above 6 GHz is pending accreditation. Frequency validity above 6 GHz is \pm 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Certificate No: EX3-7472_Aug20 Page 6 of 22 F At frequencies 6-10 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz ### **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR
(dB) | Unc ^E
(k=2) | |-------|-----|---|-----------|-------------|---------------------------| | 0 | | CW | CW | 0.00 | ± 4.7 % | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 % | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 % | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 % | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 % | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ± 9.6 % | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 % | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ± 9.6 % | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 % | | 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ± 9.6 %
± 9.6 % | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | | ± 9.6 % | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.10 | ± 9.6 % | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 4.57 | ± 9.6 % | | 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | | 7.78 | ± 9.6 % | | 10048 | CAA | DECT
(TDD, TDMA/FDM, GFSK, Full Slot, 24) | AMPS | 0.00 | ± 9.6 % | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 13.80 | ± 9.6 % | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | DECT | 10.79 | ± 9.6 % | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | TD-SCDMA | 11.01 | ± 9.6 % | | 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | GSM | 6.52 | ± 9.6 % | | 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ± 9.6 % | | 10061 | CAB | | WLAN | 2.83 | ± 9.6 % | | 10061 | CAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ± 9.6 % | | 10063 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 % | | 10063 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ± 9.6 % | | 10064 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ± 9.6 % | | | | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 % | | 10066 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 % | | 10067 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ± 9.6 % | | 10068 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ± 9.6 % | | 10069 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 % | | 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 % | | 10072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ± 9.6 % | | 10073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 % | | 10074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ± 9.6 % | | 10075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 % | | 10076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ± 9.6 % | | 10077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ± 9.6 % | | 10081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ± 9.6 % | | 10082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ± 9.6 % | | 10090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ± 9.6 % | | 10097 | CAB | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ± 9.6 % | | 10098 | CAB | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 % | | 10099 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 % | | 10100 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ± 9.6 % | | 10101 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10102 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10103 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | | | 10104 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | | ± 9.6 % | | 10105 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10108 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 10.01 | ± 9.6 % | | | · | | | 5.80 | ± 9.6 % | | 10111 | | | | | | | |--|-------|----------|--|---------|------|---------| | 10110 CAG | | | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10111 CAG | | | | LTE-FDD | 5.75 | ± 9.6 % | | 10113 CAG | | | | LTE-FDD | 6.44 | ± 9.6 % | | 10113 CAG LTE-FDD (SC-FDMA, 100% RB, 5MHz, 64-CAM) LTE-FDD CAG LTE-FDD (SC-FDMA, 100% RB, 5MHz, 64-CAM) WLAN 8.10 ± 9 | | | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | | ± 9.6 % | | 10115 CAC IEEE 802.11n (HT Greenfield, 13 Mbps, BPSK) WILAN 8.46 2.9 | | - | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | | 6.62 | ± 9.6 % | | 10116 CAC IEEE 802.11n (HT Greenfield, 81 Mbps, 16-CAM) WLAN 8.15 | | | | WLAN | | ± 9.6 % | | 101116 CAC IEEE 802.11n (HT Rizend 13.5 Mbps, 84-QAM) WLAN 8,15 29 10118 CAC IEEE 802.11n (HT Mized, 81 Mbps, 16-QAM) WLAN 8,59 39 10119 CAC IEEE 802.11n (HT Mized, 81 Mbps, 16-QAM) WLAN 8,59 34 10119 CAC IEEE 802.11n (HT Mized, 81 Mbps, 16-QAM) WLAN 8,59 34 10119 CAC IEEE 802.11n (HT Mized, 81 Mbps, 16-QAM) WLAN 8,13 4.9 10119 CAC IEEE 802.11n (HT Mized, 155 Mbps, 84-QAM) UTE-FDD 6,49 4.9 101141 CAC ITE-FDD (SC-FDMA, 100%, RB, 15 MHz, 16-QAM) LTE-FDD 6,53 4.9 101142 CAC ITE-FDD (SC-FDMA, 100%, RB, 15 MHz, 16-QAM) LTE-FDD 5,73 4.9 101142 CAC ITE-FDD (SC-FDMA, 100%, RB, 3 MHz, 64-QAM) LTE-FDD 5,73 4.9 101144 CAC ITE-FDD (SC-FDMA, 100%, RB, 3 MHz, 64-QAM) LTE-FDD 6,55 4.9 101144 CAC ITE-FDD (SC-FDMA, 100%, RB, 14 MHz, CPSK) LTE-FDD 6,55 4.9 101145 CAC ITE-FDD (SC-FDMA, 100%, RB, 14 MHz, 64-QAM) LTE-FDD 6,55 4.9 101145 CAC ITE-FDD (SC-FDMA, 100%, RB, 14 MHz, 64-QAM) LTE-FDD 6,65 4.9 101147 CAC ITE-FDD (SC-FDMA, 500%, RB, 14 MHz, 64-QAM) LTE-FDD 6,61 4.9 101147 CAC ITE-FDD (SC-FDMA, 500%, RB, 12 MHz, 64-QAM) LTE-FDD 6,62 4.9 101149 CAC ITE-FDD (SC-FDMA, 500%, RB, 20 MHz, 64-QAM) LTE-FDD 6,62 4.9 101150 CAC ITE-FDD (SC-FDMA, 500%, RB, 20 MHz, 64-QAM) LTE-FDD 6,62 4.9 101150 CAC ITE-FDD (SC-FDMA, 500%, RB, 20 MHz, 64-QAM) LTE-FDD 6,62 4.9 101151 CAG ITE-FDD (SC-FDMA, 500%, RB, 20 MHz, 64-QAM) LTE-FDD 6,62 4.9 101152 CAG ITE-FDD (SC-FDMA, 500%, RB, 20 MHz, 64-QAM) ITE-FDD 6,63 4.9 101152 CAG ITE-FDD (SC-FDMA, 500%, RB, 20 MHz, 64-QAM) ITE-FDD 6,63 4.9 101153 CAG ITE-FDD (SC-FDMA, 500%, RB, 10 MHz, 64-QAM) ITE-FDD 6,64 4.9 101155 CAG ITE-FDD (SC-FDMA, 500%, RB, 10 MHz, 64-QAM) ITE-FDD 6,64 4.9 101155 CAG ITE-FDD (SC-FDMA, 500%, RB, 10 MHz, 64-QAM) ITE-FDD 6,64 4.9 101155 CAG ITE-FDD (SC-FDMA, 500%, RB, 10 MHz, 64-QAM) ITE-FDD | | | | WLAN | 8.46 | ± 9.6 % | | 10111 CAC IEEE 802.11n (ITT Mixed, 13.5 Mbps, BPSK) | | | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | | ± 9.6 % | | 10119 CAC | | | | WLAN | | ± 9.6 % | | 10119 OAC IEEE 802.11n (HT Mixed, 138 Mbps, 64-OAM) | | CAC | | WLAN | 8.59 | ± 9.6 % | | 10141 | | .] | | WLAN | 8.13 | ± 9.6 % | | 10141 CAE LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) LTE-FDD 6.53 ± 9 | | | | LTE-FDD | 6.49 | ± 9.6 % | | 10142 CAE LTE-FDD (SC-FDMA, 100% RB, 3 MHz, CPSK) LTE-FDD 5,73 ±9 | | | | LTE-FDD | 6.53 | ± 9.6 % | | 10144 CAE | | | | LTE-FDD | 5.73 | ± 9.6 % | | 10144 CAE LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-OAM) | | | | LTE-FDD | 6.35 | ± 9.6 % | | 10145 CAF LITE-FDD (SC-FDMA, 100% RB, 14 MHz, QPSK) | | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ± 9.6 % | | 10146 CAF LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) LTE-FDD 6,72 ±9 | | CAF | | LTE-FDD | | ± 9.6 % | | 10147 CAF LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) LTE-FDD 6.72 | | | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ± 9.6 % | | 10149 | | | | LTE-FDD | 6.72 | ± 9.6 % | | 10150 CAE LTE-FDD (SC-FDMA, 50% RB, 20 MHz, G4-QAM) | | | | LTE-FDD | | ± 9.6 % | | 10151 CAG LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) LTE-TDD 9.28 ± 9 10153 CAG LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) LTE-TDD 10.05 ± 9 10154 CAG LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) LTE-TDD 10.05 ± 9 10155 CAG LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) LTE-FDD 6.43 ± 9 10156 CAG LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) LTE-FDD 6.43 ± 9 10157 CAG LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) LTE-FDD 6.43 ± 9 10158 CAG LTE-FDD (SC-FDMA, 50% RB, 50 MHz, QPSK) LTE-FDD 6.49 ± 9 10159 CAG LTE-FDD (SC-FDMA, 50% RB, 50 MHz, QPSK) LTE-FDD 6.69 ± 9 10159 CAG LTE-FDD (SC-FDMA, 50% RB, 50 MHz, 64-QAM) LTE-FDD 6.62 ± 9 10159 CAG LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) LTE-FDD 6.62 ± 9 10160 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) LTE-FDD 6.56 ± 9 10161 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) LTE-FDD 5.82 ± 9 10162 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, GA-QAM) LTE-FDD 6.58 ± 9 10163 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) LTE-FDD 6.43 ± 9 10164 CAE LTE-FDD (SC-FDMA, 50% RB, 14 MHz, GA-QAM) LTE-FDD 6.58 ± 9 10165 CAE LTE-FDD (SC-FDMA, 50% RB, 14 MHz, GA-QAM) LTE-FDD 6.58 ± 9 10166 CAF LTE-FDD (SC-FDMA, 50% RB, 14 MHz, GA-QAM) LTE-FDD 6.54 ± 9 10167 CAF LTE-FDD (SC-FDMA, 50% RB, 14 MHz, GA-QAM) LTE-FDD 6.54 ± 9 10168 CAF LTE-FDD (SC-FDMA, 50% RB, 14 MHz, GA-QAM) LTE-FDD 6.621 ± 9 10169 CAE LTE-FDD
(SC-FDMA, 10% RB, 20 MHz, GA-QAM) LTE-FDD 6.52 ± 9 10170 CAE LTE-FDD (SC-FDMA, 1 RB, 20 MHz, GA-QAM) LTE-FDD 6.52 ± 9 10171 CAG LTE-FDD (SC-FDMA, 1 RB, 20 MHz, GA-QAM) LTE-FDD 6.52 ± 9 10171 CAG LTE-FDD (SC-FDMA, 1 RB, 20 MHz, GA-QAM) LTE-FDD 6.50 ± 9 10172 CAG LTE-FDD (SC-FDMA, 1 RB, 20 MHz, GA-QAM) LTE-FDD 6.50 ± 9 10173 CAG LTE-FDD (SC-FDMA, 1 RB, 20 MHz, GA-QAM) LTE-FDD 6.5 | | | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | | ± 9.6 % | | 10162 CAG LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) LTE-TDD 9.92 ±9 10163 AG LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) LTE-TDD 10.05 ±9 10164 CAG LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) LTE-FDD 5.75 ±9 10155 CAG LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) LTE-FDD 5.75 ±9 10166 CAG LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) LTE-FDD 5.79 ±9 10167 CAG LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) LTE-FDD 6.49 ±9 10168 CAG LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) LTE-FDD 6.62 ±9 10159 CAG LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) LTE-FDD 6.56 ±9 10160 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 20 KM) LTE-FDD 6.56 ±9 10160 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 20 KM) LTE-FDD 6.56 ±9 10160 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) LTE-FDD 6.58 ±9 10160 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) LTE-FDD 6.58 ±9 10160 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) LTE-FDD 6.58 ±9 10167 CAF LTE-FDD (SC-FDMA, 50% RB, 14 MHz, 64-QAM) LTE-FDD 6.58 ±9 10168 CAF LTE-FDD (SC-FDMA, 50% RB, 14 MHz, 64-QAM) LTE-FDD 6.58 ±9 10168 CAF LTE-FDD (SC-FDMA, 50% RB, 14 MHz, 64-QAM) LTE-FDD 6.79 ±9 10170 CAE LTE-FDD (SC-FDMA, 50% RB, 14 MHz, 64-QAM) LTE-FDD 6.79 ±9 10171 CAE LTE-FDD (SC-FDMA, 17 RB, 20 MHz, 16-QAM) LTE-FDD 6.79 ±9 10171 CAE LTE-FDD (SC-FDMA, 17 RB, 20 MHz, 16-QAM) LTE-FDD 6.59 ±9 10171 CAE LTE-FDD (SC-FDMA, 17 RB, 20 MHz, 16-QAM) LTE-FDD 6.59 ±9 10171 CAG LTE-FDD (SC-FDMA, 17 RB, 20 MHz, 64-QAM) LTE-FDD 6.52 ±9 10172 CAG LTE-FDD (SC-FDMA, 17 RB, 20 MHz, 64-QAM) LTE-FDD 6.52 ±9 10173 CAG LTE-FDD (SC-FDMA, 17 RB, 20 MHz, 64-QAM) LTE-FDD 6.52 ±9 10174 CAG LTE-FDD (SC-FDMA, 17 RB, 20 MHz, 64-QAM) LTE-FDD 6.50 ±9 10174 CAG LTE-FDD (SC-FDMA, 17 RB, 20 MHz, 64-QAM) LTE-FDD 6.50 ±9 10175 CAG LTE-FDD (SC-FDMA, 17 RB, 20 MHz, 64-QAM) L | | | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | | ± 9.6 % | | 10153 | | | | LTE-TDD | 9.92 | ± 9.6 % | | 10154 CAG LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) LTE-FDD 6,43 ± 9, 10156 CAG LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) LTE-FDD 6,43 ± 9, 10157 CAG LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) LTE-FDD 6,579 ± 9, 10157 CAG LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) LTE-FDD 6,62 ± 9, 10158 CAG LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) LTE-FDD 6,62 ± 9, 10159 CAG LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) LTE-FDD 6,56 ± 9, 10160 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) LTE-FDD 6,56 ± 9, 10161 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) LTE-FDD 6,56 ± 9, 10161 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) LTE-FDD 6,58 ± 9, 10162 CAE LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) LTE-FDD 6,58 ± 9, 10166 CAF LTE-FDD (SC-FDMA, 50% RB, 14 MHz, QPSK) LTE-FDD 6,58 ± 9, 10166 CAF LTE-FDD (SC-FDMA, 50% RB, 14 MHz, QPSK) LTE-FDD 6,58 ± 9, 10166 CAF LTE-FDD (SC-FDMA, 50% RB, 14 MHz, QPSK) LTE-FDD 6,21 ± 9, 10168 CAF LTE-FDD (SC-FDMA, 50% RB, 14 MHz, GPSK) LTE-FDD 6,79 ± 9, 10168 CAF LTE-FDD (SC-FDMA, 50% RB, 14 MHz, GPSK) LTE-FDD 6,79 ± 9, 10170 CAE LTE-FDD (SC-FDMA, 17 RB, 20 MHz, QPSK) LTE-FDD 6,79 ± 9, 10171 CAE LTE-FDD (SC-FDMA, 17 RB, 20 MHz, GPSK) LTE-FDD 6,79 ± 9, 10171 CAE LTE-FDD (SC-FDMA, 17 RB, 20 MHz, GPSK) LTE-FDD 6,52 ± 9, 10173 CAG LTE-TDD (SC-FDMA, 17 RB, 20 MHz, GPSK) LTE-FDD 6,52 ± 9, 10173 CAG LTE-TDD (SC-FDMA, 17 RB, 20 MHz, GPSK) LTE-FDD 6,52 ± 9, 10173 CAG LTE-TDD (SC-FDMA, 17 RB, 20 MHz, GPSK) LTE-TDD 10,25 ± 9, 10173 CAG LTE-TDD (SC-FDMA, 17 RB, 20 MHz, GPSK) LTE-TDD 10,25 ± 9, 10176 CAG LTE-FDD (SC-FDMA, 17 RB, 20 MHz, GPSK) LTE-FDD 6,52 ± 9, 10177 CAI LTE-FDD (SC-FDMA, 17 RB, 50 MHz, GPSK) LTE-FDD 6,52 ± 9, 10178 CAG LTE-FDD (SC-FDMA, 17 RB, 50 MHz, GPSK) LTE-FDD 6,52 ± 9, 10178 CAG LTE-FDD (SC-FDMA, 17 RB, 50 MHz, GPSK) LTE-FDD 6,50 ± 9, 10178 CAG LTE-FDD (SC-FDMA, 17 RB, 50 MHz, GPSK) LTE-FDD 6,50 ± | | | | LTE-TDD | | ± 9.6 % | | 10155 CAG | | | | LTE-FDD | | ± 9.6 % | | 10156 CAG | | 1 | | LTE-FDD | | ± 9.6 % | | 10157 CAG | | | | LTE-FDD | | ± 9.6 % | | 10158 CAG | | | | LTE-FDD | | ± 9.6 % | | 10159 CAG | | <u> </u> | | LTE-FDD | | ± 9.6 % | | 10160 | | | | | | ± 9.6 % | | 10161 CAE | | CAE | | | | ± 9.6 % | | 10162 | | | | | | ± 9.6 % | | 10166 CAF | | · | | LTE-FDD | | ± 9.6 % | | 10167 | | | | LTE-FDD | | ± 9.6 % | | 10168 | | | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | | ± 9.6 % | | 10169 | | | | | | ± 9.6 % | | 10170 | | | | LTE-FDD | | ± 9.6 % | | 10171 | | | | | | ± 9.6 % | | 10172 CAG | | | | LTE-FDD | | ± 9.6 % | | 10173 | | | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | | ± 9.6 % | | 10174 | | | | LTE-TDD | | ± 9.6 % | | 10175 CAG LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) LTE-FDD 5.72 ±9. 10176 CAG LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) LTE-FDD 6.52 ±9. 10177 CAI LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) LTE-FDD 5.73 ±9. 10178 CAG LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) LTE-FDD 6.50 ±9. 10179 CAG LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-FDD 6.50 ±9. 10180 CAG LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.50 ±9. 10181 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) LTE-FDD 5.72 ±9. 10182 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.50 ±9. 10183 AAD LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.50 ±9. 10184 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 5.73 ±9. 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.50 ±9.< | | | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | | ± 9.6 % | | 10176 CAG LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) LTE-FDD 6.52 ± 9. 10177 CAI LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) LTE-FDD 5.73 ± 9. 10178 CAG LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) LTE-FDD 6.52 ± 9. 10179 CAG LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10180 CAG LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10181 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) LTE-FDD 5.72 ± 9. 10182 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10183 AAD LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10184 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, GPSK) LTE-FDD 5.73 ± 9. 10185 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 5.73 < | | | | LTE-FDD | | ± 9.6 % | | 10177 CAI LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) LTE-FDD 5.73 ± 9. 10178 CAG LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) LTE-FDD 6.52 ± 9. 10179 CAG LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10180 CAG LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10181 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) LTE-FDD 5.72 ± 9. 10182 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.52 ± 9. 10183 AAD LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10184 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, G4-QAM) LTE-FDD 5.73 ± 9. 10185 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.51 ± 9. 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 5.73 ± 9. 10187 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.52 | | | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | | ± 9.6 % | | 10178 CAG LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) LTE-FDD 6.52 ± 9. 10179 CAG LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10180 CAG LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10181 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) LTE-FDD 5.72 ± 9. 10182 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) LTE-FDD 6.52 ± 9. 10183 AAD LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10184 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-FDD 5.73 ± 9. 10185 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.51 ± 9. 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 6.50 ± 9. 10187 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.52 ± 9. 10188 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.52 | | | | | | ± 9.6 % | | 10179 CAG LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10180 CAG LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10181 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) LTE-FDD 5.72 ± 9. 10182 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) LTE-FDD 6.52 ± 9. 10183 AAD LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10184 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-FDD 5.73 ± 9. 10185 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) LTE-FDD 6.51 ± 9. 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10187 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 5.73 ± 9. 10188 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.52 ± 9. 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 | | | | LTE-FDD | | ± 9.6 % | | 10180 CAG LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10181 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) LTE-FDD 5.72 ± 9. 10182 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) LTE-FDD 6.52 ± 9. 10183 AAD LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10184 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-FDD 5.73 ± 9. 10185 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.51 ± 9. 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 6.50 ± 9. 10187 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) LTE-FDD 5.73 ± 9. 10188 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.52 ± 9. 10189 AAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.50 ± 9. 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 | | | | LTE-FDD | | ± 9.6 % | | 10181 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) LTE-FDD 5.72 ±9. 10182 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) LTE-FDD 6.52 ±9. 10183 AAD LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.50 ±9. 10184 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-FDD 5.73 ±9. 10185 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) LTE-FDD 6.51 ±9. 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.50 ±9. 10187 CAF LTE-FDD
(SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 5.73 ±9. 10188 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) LTE-FDD 6.52 ±9. 10189 AAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.50 ±9. 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 ±9. 10194 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, 64-QAM) WLAN 8.21 | | | | | | ± 9.6 % | | 10182 CAE LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) LTE-FDD 6.52 ± 9.0 10183 AAD LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.50 ± 9.0 10184 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-FDD 5.73 ± 9.0 10185 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) LTE-FDD 6.51 ± 9.0 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.50 ± 9.0 10187 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 5.73 ± 9.0 10188 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) LTE-FDD 6.52 ± 9.0 10189 AAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.50 ± 9.0 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 ± 9.0 10194 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, 64-QAM) WLAN 8.21 ± 9.0 10196 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, 64-QAM) WLAN | | | | LTE-FDD | | ± 9.6 % | | 10183 AAD LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD 6.50 ± 9.1 10184 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-FDD 5.73 ± 9.1 10185 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) LTE-FDD 6.51 ± 9.1 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.50 ± 9.1 10187 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 5.73 ± 9.1 10188 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) LTE-FDD 6.52 ± 9.1 10189 AAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.50 ± 9.1 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 ± 9.1 10194 CAC IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) WLAN 8.21 ± 9.1 10196 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) WLAN 8.10 ± 9.1 10198 CAC IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) WLAN 8.13 ± 9.1 10198 CAC IEEE 802.11n (HT Mixe | | | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | | ± 9.6 % | | 10184 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-FDD 5.73 ± 9.1 10185 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) LTE-FDD 6.51 ± 9.1 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.50 ± 9.1 10187 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 5.73 ± 9.1 10188 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) LTE-FDD 6.52 ± 9.1 10189 AAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.50 ± 9.1 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 ± 9.1 10194 CAC IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) WLAN 8.12 ± 9.1 10195 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) WLAN 8.10 ± 9.1 10197 CAC IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) WLAN 8.13 ± 9.1 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.2 | | | | LTE-FDD | | ± 9.6 % | | 10185 CAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) LTE-FDD 6.51 ± 9.1 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.50 ± 9.1 10187 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 5.73 ± 9.1 10188 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) LTE-FDD 6.52 ± 9.1 10189 AAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.50 ± 9.1 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 ± 9.1 10194 CAC IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) WLAN 8.12 ± 9.1 10195 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, 64-QAM) WLAN 8.21 ± 9.1 10196 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) WLAN 8.10 ± 9.1 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.13 ± 9.1 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN | | | | LTE-FDD | | ± 9.6 % | | 10186 AAE LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD 6.50 ± 9.0 10187 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 5.73 ± 9.0 10188 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) LTE-FDD 6.52 ± 9.0 10189 AAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.50 ± 9.0 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 ± 9.0 10194 CAC IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) WLAN 8.12 ± 9.0 10195 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, 64-QAM) WLAN 8.21 ± 9.0 10196 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) WLAN 8.10 ± 9.0 10197 CAC IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) WLAN 8.13 ± 9.0 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.27 ± 9.0 | | | | LTE-FDD | | ± 9.6 % | | 10187 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-FDD 5.73 ± 9.1 10188 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) LTE-FDD 6.52 ± 9.1 10189 AAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.50 ± 9.1 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 ± 9.1 10194 CAC IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) WLAN 8.12 ± 9.1 10195 CAC IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) WLAN 8.21 ± 9.1 10196 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) WLAN 8.10 ± 9.1 10197 CAC IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) WLAN 8.13 ± 9.1 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.27 ± 9.1 | | | | LTE-FDD | | ± 9.6 % | | 10188 CAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) LTE-FDD 6.52 ± 9.0 10189 AAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.50 ± 9.0 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 ± 9.0 10194 CAC IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) WLAN 8.12 ± 9.0 10195 CAC IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) WLAN 8.21 ± 9.0 10196 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) WLAN 8.10 ± 9.0 10197 CAC IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) WLAN 8.13 ± 9.0 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.27 ± 9.0 | | | | LTE-FDD | | ± 9.6 % | | 10189 AAF LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) LTE-FDD 6.50 ± 9.0 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 ± 9.0 10194 CAC IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) WLAN 8.12 ± 9.0 10195 CAC IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) WLAN 8.21 ± 9.0 10196 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) WLAN 8.10 ± 9.0 10197 CAC IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) WLAN 8.13 ± 9.0 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.27 ± 9.0 | | | | LTE-FDD | | ± 9.6 % | | 10193 CAC IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) WLAN 8.09 ± 9.0 10194 CAC IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) WLAN 8.12 ± 9.0 10195 CAC IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) WLAN 8.21 ± 9.0 10196 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) WLAN 8.10 ± 9.0 10197 CAC IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) WLAN 8.13 ± 9.0 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.27 ± 9.0 | | | | LTE-FDD | | ± 9.6 % | | 10194 CAC IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) WLAN 8.12 ± 9.0 10195 CAC IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) WLAN 8.21 ± 9.0 10196 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) WLAN 8.10 ± 9.0 10197 CAC IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) WLAN 8.13 ± 9.0 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.27 ± 9.0 | | | | WLAN | | ± 9.6 % | | 10195 CAC IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) WLAN 8.21 ± 9.0 10196 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) WLAN 8.10 ± 9.0 10197 CAC IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) WLAN 8.13 ± 9.0 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.27 ± 9.0 | | | | WLAN | | ± 9.6 % | | 10196 CAC IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) WLAN 8.10 ± 9.0 10197 CAC IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) WLAN 8.13 ± 9.0 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.27 ± 9.0 | | | | WLAN | | ± 9.6 % | | 10197 CAC IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) WLAN 8.13 ± 9.0 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.27 ± 9.0 | | | | WLAN | | ± 9.6 % | | 10198 CAC IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) WLAN 8.27 ± 9.0 | | | | | | ± 9.6 % | | 10010 0.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | WLAN | | ± 9.6 % | | 10210 000 IEEE 002.1111 (Π 1 MIXEQ, 7.2 MIDPS, BPSK) WLAN 8.03 ± 9.0 | 10219 | CAC | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ± 9.6 % | | 10220 | CAC | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | VA(I A N I | 0.10 | | |----------------|-------|---|------------|-------|--------------------| | 10220 | CAC | IEEE 802.111 (HT Mixed, 43.3 Mbps, 46-QAM) | WLAN | 8.13 | ± 9.6 % | | 10221 | CAC | IEEE 802.111 (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10223 | CAC | | WLAN | 8.06 | ± 9.6 % | | | | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAC | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ± 9.6 % | | 10225 | CAB | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ± 9.6 % | | 10226 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ± 9.6 % | | 10227 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ± 9.6 % | | 10228 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ± 9.6 % | | 10229 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10230 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10231 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.19 | ± 9.6 % | | 10232 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10233 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10234 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10235 | CAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10236 | CAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10237 | CAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10238 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10239 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10240 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10241 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | | | 10242 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ± 9.6 %
± 9.6 % | | 10243 | CAB | LTE-TDD
(SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | | | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.46 | ±9.6 % | | 10245 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | | ± 9.6 % | | 10246 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | | 10.06 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.30 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 9.91 | ± 9.6 % | | 10249 | CAG | LTE-TDD (3C-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 10.09 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.29 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ± 9.6 % | | 10251 | CAG | | LTE-TDD | 10.17 | ± 9.6 % | | | | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ± 9.6 % | | 10254 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ± 9.6 % | | 10255 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ± 9.6 % | | 10256 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ± 9.6 % | | 10257 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.08 | ± 9.6 % | | 10258 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ± 9.6 % | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ± 9.6 % | | 10260 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10261 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.83 | ± 9.6 % | | 10263 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.16 | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TDD | 9.23 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10266 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ± 9.6 % | | 10267 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10269 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.00 | ± 9.6 % | | 10270 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ± 9.6 % | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | | | 10275 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | | ± 9.6 % | | 10277 | CAA | PHS (QPSK) | PHS | 3.96 | ± 9.6 % | | 10278 | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | 10279 | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.38) | | 11.81 | ± 9.6 % | | 10273 | AAB | CDMA2000, RC1, SO55, Full Rate | PHS | 12.18 | ± 9.6 % | | 10290 | AAB | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 10291 | AAB | | CDMA2000 | 3.46 | ± 9.6 % | | 10232 | AAB | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ± 9.6 % | | 10202 | HAMD | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ± 9.6 % | | 10293 | A A D | | | | | | 10295 | AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | 10295
10297 | AAD | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ± 9.6 % | | 10295 | | | | | | | | T 0 6 5 | LITE EDD (OO ED)(A FOX DD OO) | | | | |---|---|---|--|---|---| | 10300 | AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10301 | AAA | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WiMAX | 12.03 | ± 9.6 % | | 10302 | AAA | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WiMAX | 12.57 | ± 9.6 % | | 10303 | AAA | IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 12.52 | ± 9.6 % | | 10304 | AAA | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 11.86 | ± 9.6 % | | 10305 | AAA | IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 15.24 | ± 9.6 % | | 10306 | AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 14.67 | ± 9.6 % | | 10307 | AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WiMAX | 14.49 | ± 9.6 % | | 10308 | AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WiMAX | 14.46 | ± 9.6 % | | 10309 | AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) | WiMAX | 14.58 | ± 9.6 % | | 10310 | AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WiMAX | 14.57 | ± 9.6 % | | 10311 | AAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAA | IDEN 1:3 | iDEN | 10.51 | ± 9.6 % | | 10314 | AAA | iDEN 1:6 | iDEN | 13.48 | ± 9.6 % | | 10315 | AAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) | WLAN | 1.71 | ± 9.6 % | | 10316 | AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10317 | AAC | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ± 9.6 % | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | | | ± 9.6 % | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic
Generic | 3.98 | ±9.6 % | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | | 2.22 | ± 9.6 % | | 10330 | AAA | QPSK Waveform, 1 MHz | Generic | 0.97 | ± 9.6 % | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.10 | ± 9.6 % | | 10396 | AAA | | Generic | 5.22 | ± 9.6 % | | 10399 | | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ± 9.6 % | | | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ± 9.6 % | | 10400 | AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10401 | AAD | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) | WLAN | 8.60 | ± 9.6 % | | 10402 | AAD | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | ± 9.6 % | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.77 | ± 9.6 % | | 10406 | AAB | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ± 9.6 % | | 10410 | AAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) | LTE-TDD | 7.82 | ± 9.6 % | | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ± 9.6 % | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ± 9.6 % | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10417 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ± 9.6 % | | 10419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ± 9.6 % | | 10422 | AAB | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ± 9.6 % | | 10423 | AAB | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ± 9.6 % | | 10424 | AAB | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ± 9.6 % | | 10425 | AAB | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ± 9.6 % | | 10426 | AAB | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ± 9.6 % | | 10427 | AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ± 9.6 % | | 10430 | AAD | | LTE-FDD | 8.28 | ± 9.6 % | | | | LIC-FUD (UFDIVIA, 3 IVIDZ. E-TIVI 3. I) | | | | | 10431 | | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | | | | | 10431
10432 | AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ± 9.6 % | | 10432 | AAD
AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)
LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD
LTE-FDD | 8.38
8.34 | ± 9.6 %
± 9.6 % | | 10432
10433 | AAD
AAC
AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)
LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)
LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD
LTE-FDD
LTE-FDD | 8.38
8.34
8.34 | ± 9.6 %
± 9.6 %
± 9.6 % | | 10432
10433
10434 | AAD
AAC
AAC
AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) | LTE-FDD
LTE-FDD
WCDMA | 8.38
8.34
8.34
8.60 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10432
10433
10434
10435 | AAD
AAC
AAC
AAA
AAF | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-FDD
LTE-FDD
LTE-FDD
WCDMA
LTE-TDD | 8.38
8.34
8.34
8.60
7.82 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10432
10433
10434
10435
10447 | AAD
AAC
AAC
AAA
AAF
AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)
LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD
LTE-FDD
WCDMA
LTE-TDD
LTE-FDD | 8.38
8.34
8.34
8.60
7.82
7.56 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10432
10433
10434
10435
10447
10448 | AAD
AAC
AAC
AAA
AAF
AAD
AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD
LTE-FDD
WCDMA
LTE-TDD
LTE-FDD
LTE-FDD | 8.38
8.34
8.60
7.82
7.56
7.53 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10432
10433
10434
10435
10447
10448
10449 | AAD AAC AAA AAF AAD AAD AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD LTE-FDD WCDMA LTE-TDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD | 8.38
8.34
8.34
8.60
7.82
7.56
7.53
7.51 | ± 9.6 %
± % | | 10432
10433
10434
10435
10447
10448
10449
10450 | AAD AAC AAA AAF AAD AAC AAC AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD LTE-FDD WCDMA LTE-TDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD | 8.38
8.34
8.34
8.60
7.82
7.56
7.53
7.51
7.48 | ± 9.6 %
± % | | 10432
10433
10434
10435
10447
10448
10449
10450
10451 | AAD AAC AAA AAF AAD AAC AAC AAA AAC AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | LTE-FDD LTE-FDD WCDMA LTE-TDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA | 8.38
8.34
8.60
7.82
7.56
7.53
7.51
7.48
7.59 | ± 9.6 %
± % | | 10432
10433
10434
10435
10447
10448
10449
10450
10451
10453 | AAD AAC AAA AAF AAD AAC AAC AAA AAC AAC AAC AAC AAC AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) | LTE-FDD LTE-FDD WCDMA LTE-TDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA Test | 8.38
8.34
8.60
7.82
7.56
7.53
7.51
7.48
7.59
10.00 | ± 9.6 %
± % | | 10432
10433
10434
10435
10447
10448
10449
10450
10451
10453
10456 | AAD AAC AAA AAF AAD AAC AAC AAC AAA AAC AAA AAC AAAA AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) | LTE-FDD LTE-FDD WCDMA LTE-TDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA Test WLAN | 8.38
8.34
8.60
7.82
7.56
7.53
7.51
7.48
7.59
10.00
8.63 | ± 9.6 %
± % | | 10432
10433
10434
10435
10447
10448
10449
10450
10451
10453
10456
10457 | AAD AAC AAA AAF AAD AAC AAC AAC AAC AAC AAA AAD AAA AAB AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) | LTE-FDD LTE-FDD WCDMA LTE-TDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA Test WLAN WCDMA | 8.38
8.34
8.60
7.82
7.56
7.53
7.51
7.48
7.59
10.00
8.63
6.62 | ± 9.6 %
± % | | 10432
10433
10434
10435
10447
10448
10449
10450
10451
10453
10456
10457
10458 | AAD AAC AAC AAC AAC AAC AAC AAC AAC AAA AAA AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | LTE-FDD LTE-FDD WCDMA LTE-TDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA Test WLAN | 8.38
8.34
8.60
7.82
7.56
7.53
7.51
7.48
7.59
10.00
8.63 | ± 9.6 %
± % | | 10432
10433
10434
10435
10447
10448
10449
10450
10451
10453
10456
10457
10458
10459 | AAD AAC AAA AAF AAD AAC AAC AAC AAC AAC AAA AAA AAA AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | LTE-FDD LTE-FDD WCDMA LTE-TDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA Test WLAN WCDMA | 8.38
8.34
8.60
7.82
7.56
7.53
7.51
7.48
7.59
10.00
8.63
6.62 | ± 9.6 %
± % | | 10432
10433
10434
10435
10447
10448
10449
10450
10451
10453
10456
10457
10458
10459
10460 | AAD AAC AAA AAC AAC AAC AAC AAC AAC AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | LTE-FDD LTE-FDD WCDMA LTE-TDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA Test WLAN WCDMA CDMA2000 | 8.38
8.34
8.60
7.82
7.56
7.53
7.51
7.48
7.59
10.00
8.63
6.62
6.55 | ± 9.6 %
± % | | 10432
10433
10434
10435
10447
10448
10449
10450
10451
10453
10456
10457
10458
10459 | AAD AAC AAA AAF AAD AAC AAC AAC AAC AAC AAA AAA AAA AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | LTE-FDD LTE-FDD WCDMA LTE-TDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA Test WLAN WCDMA CDMA2000 CDMA2000 | 8.38
8.34
8.60
7.82
7.56
7.53
7.51
7.48
7.59
10.00
8.63
6.62
6.55
8.25 | ± 9.6 %
± % | | 40400 | | 11 | | | | |-------|-----|---|---------|----------|---------| | 10463 | AAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10464 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10465 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10466 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10467 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10469 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10470 | AAF | LTE-TDD
(SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10471 | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10472 | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10473 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10474 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10475 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10477 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10478 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10479 | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10480 | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.18 | ± 9.6 % | | 10481 | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10482 | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.71 | ± 9.6 % | | 10483 | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TDD | 8.39 | ± 9.6 % | | 10484 | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.47 | ± 9.6 % | | 10485 | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.59 | ± 9.6 % | | 10486 | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.38 | ± 9.6 % | | 10487 | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.60 | ± 9.6 % | | 10488 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.70 | ± 9.6 % | | 10489 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 % | | 10490 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10491 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10492 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.41 | ± 9.6 % | | 10493 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ± 9.6 % | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10495 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.37 | ± 9.6 % | | 10496 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10497 | AAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 % | | 10498 | AAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ± 9.6 % | | 10499 | AAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ± 9.6 % | | 10500 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 % | | 10501 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.44 | ± 9.6 % | | 10502 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.52 | ± 9.6 % | | 10503 | AAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.72 | ± 9.6 % | | 10504 | AAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 % | | 10505 | AAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10506 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10507 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.36 | ± 9.6 % | | 10508 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ± 9.6 % | | 10509 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.99 | ± 9.6 % | | 10510 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.49 | ± 9.6 % | | 10511 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.51 | ± 9.6 % | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.42 | ± 9.6 % | | 10514 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10515 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10516 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 10517 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10518 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10519 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10520 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc) | WLAN | 8.12 | ± 9.6 % | | 10521 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 7.97 | ± 9.6 % | | 10522 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10523 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 10524 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10525 | AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10526 | AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10527 | AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc) | WLAN | 8.21 | ± 9.6 % | | | | ,,, | 1 | <u> </u> | | | 46-5- | 1 | | | | | |-------|-----|---|-----------|--------------|--------------------| | 10528 | AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10529 | AAB | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10531 | AAB | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10532 | AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10533 | AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10534 | AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10535 | AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10536 | AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10537 | AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) | WLAN | 8.44 | ± 9.6 % | | 10538 | AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10540 | AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10541 | AAB | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10542 | AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10543 | AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10544 | AAB | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10545 | AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10546 | AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ± 9.6 % | | 10547 | AAB | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10548 | AAB | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10550 | AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10551 | AAB | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10552 | AAB | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10553 | AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10554 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc) | WLAN | 8.47 | ±9.6 % | | 10556 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10557 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 10558 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc) | WLAN | 8.61 | ± 9.6 % | | 10560 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc) | WLAN | 8.73 | ± 9.6 % | | 10561 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ± 9.6 % | | 10562 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc) | WLAN | 8.69 | ± 9.6 %
± 9.6 % | | 10563 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10564 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) | WLAN | 8.25 | ± 9.6 %
± 9.6 % | | 10565 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 %
± 9.6 % | | 10566 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10567 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 %
± 9.6 % | | 10568 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 %
± 9.6 % | | 10569 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10571 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 %
± 9.6 % | | 10572 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 %
± 9.6 % | | 10573 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 %
± 9.6 % | | 10574 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 %
± 9.6 % | | 10575 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 %
± 9.6 % | | 10576 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 %
± 9.6 % | | 10577 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 %
± 9.6 % | | 10578 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 %
± 9.6 % | | 10579 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 %
± 9.6 % | | 10580 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 %
± 9.6 % | | 10581 | AAA | IEEE
802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.76 | | | 10582 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 %
± 9.6 % | | 10583 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 %
± 9.6 % | | 10584 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | 8.59 | | | 10585 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 %
± 9.6 % | | 10586 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | | | | 10587 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49
8.36 | ± 9.6 % | | 10588 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | | ± 9.6 % | | 10589 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.76 | ±9.6 % | | 10590 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10590 | AAB | IEEE 802.11a/II WIFI'S GHZ (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10591 | AAB | IEEE 802.1111 (HT Mixed, 20MHz, MCS0, 90pc dc) | WLAN | 8.63 | ± 9.6 % | | 10593 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10593 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10594 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.74
8.74 | ± 9.6 % | | | | , 30pc uc) | V V L/\IV | 0.74 | ± 9.6 % | | 10596 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8.71 | ± 9.6 % | |-------|-----|---|---------------------|--------------|-----------------------| | 10597 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10598 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ± 9.6 % | | 10599 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10600 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10601 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10602 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10603 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) | WLAN | 9.03 | ± 9.6 % | | 10604 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10605 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.97 | ± 9.6 % | | 10606 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10607 | AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10608 | AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ± 9.6 %
± 9.6 % | | 10609 | AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10610 | AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10611 | AAB | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10612 | AAB | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10613 | AAB | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10614 | AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10615 | AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10616 | AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10617 | AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10618 | AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ± 9.6 % | | 10619 | AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10620 | AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10621 | AAB | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10622 | AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ± 9.6 % | | 10623 | AAB | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10624 | AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10625 | AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ± 9.6 %
± 9.6 % | | 10626 | AAB | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 %
± 9.6 % | | 10627 | AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 %
± 9.6 % | | 10628 | AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.88 | | | 10629 | AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.85 | ±9.6 % | | 10630 | AAB | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc) | WLAN | 8.85 | ± 9.6 %
± 9.6 % | | 10631 | AAB | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc) | WLAN | | | | 10632 | AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc) | WLAN | 8.81
8.74 | ±9.6% | | 10633 | AAB | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc) | WLAN | 8.74 | ±9.6% | | 10634 | AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | | ± 9.6 % | | 10635 | AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc) | WLAN | 8.80
8.81 | ±9.6% | | 10636 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10637 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc) | WLAN | 8.83 | ±9.6 % | | 10638 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc) | WLAN | | ± 9.6 % | | 10639 | AAC | IEEE 802.11ac WiF (160MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10640 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10641 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8.98 | ± 9.6 % | | 10642 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10643 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10644 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc) | WLAN | 8.89 | ±9.6 % | | 10645 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc) | WLAN | 9.05 | ± 9.6 % | | 10646 | AAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 9.11 | ± 9.6 % | | 10647 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | | 11.96 | ± 9.6 % | | 10647 | AAA | CDMA2000 (1x Advanced) | LTE-TDD
CDMA2000 | 11.96 | ± 9.6 % | | 10646 | AAE | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 3.45 | ± 9.6 % | | 10652 | AAE | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | | 6.91 | ± 9.6 % | | 10654 | AAD | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | ± 9.6 % | | 10654 | AAE | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | ± 9.6 % | | 10658 | AAA | Pulse Waveform (200Hz, 10%) | LTE-TDD | 7.21 | ± 9.6 % | | 10658 | AAA | Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) | Test | 10.00 | ± 9.6 % | | 10660 | AAA | Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%) | Test | 6.99 | ± 9.6 % | | 10661 | AAA | | Test | 3.98 | ± 9.6 % | | 10662 | AAA | Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) | Test | 2.22 | ± 9.6 % | | 10662 | AAA | | Test | 0.97 | ± 9.6 % | | | AAA | Bluetooth Low Energy IEEE 802.11ax (20MHz, MCS0, 90pc dc) | Bluetooth | 2.19
9.09 | ± 9.6 %
± 9.6 % | | 10671 | | LIELE OUZ. LIGA (ZUIVIEIZ IVIGGU MUDE DE) | WLAN | ana i | . <u>4 11 66 0/ </u> | Certificate No: EX3-7472_Aug20 | 10672 | AAA | IEEE 802.11ax (20MHz, MCS1, 90pc dc) | WLAN | 8.57 | ± 9.6 % | |-------|-------------|---------------------------------------|------|------|---------| | 10673 | AAA | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10674 | AAA | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10675 | AAA | IEEE 802.11ax (20MHz, MCS4, 90pc dc) | WLAN | 8.90 | | | 10676 | AAA | IEEE 802.11ax (20MHz, MCS5, 90pc dc) | WLAN | | ± 9.6 % | | 10677 | AAA | IEEE 802.11ax (20MHz, MCS6, 90pc dc) | | 8.77 | ± 9.6 % | | 10678 | AAA | IEEE 903.11ax (20MHz, MCC3, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | | | IEEE 802.11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10679 | AAA | IEEE 802.11ax (20MHz, MCS8, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10680 | AAA | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10681 | AAA | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 % | | 10682 | AAA | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10683 | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10684 | AAA | IEEE 802.11ax (20MHz, MCS1, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10685 | AAA | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10686 | AAA | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.28 | ± 9.6 % | | 10687 | AAA | IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN | 8.45 | | | 10688 | AAA | IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN | _ | ± 9.6 % | | 10689 | AAA | IEEE 802.11ax (20MHz, MCS6, 99pc dc) | | 8.29 | ± 9.6 % | | 10690 | AAA | | WLAN | 8.55 | ± 9.6 % | | 10691 | | IEEE 802.11ax (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | | AAA | IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10692 | AAA | IEEE 802.11ax (20MHz, MCS9, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10694 | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8.57 | ± 9.6 % | | 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10696 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8.91 | ± 9.6 % | | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ± 9.6 % | | 10698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10699 | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc dc) | WLAN | 8.82 | | | 10700 | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc dc) | WLAN | | ± 9.6 % | | 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | | 8.86 | ± 9.6
% | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10704 | | | WLAN | 8.82 | ± 9.6 % | | | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.56 | ± 9.6 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ± 9.6 % | | 10706 | AAA | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ± 9.6 % | | 10707 | AAA | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10708 | AAA | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10709 | AAA | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10710 | AAA | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10711 | AAA | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10712 | AAA | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | | | 10713 | AAA | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | | ± 9.6 % | | 10714 | AAA | IEEE 802.11ax (40MHz, MCS7, 99pc dc) | | 8.33 | ± 9.6 % | | 10715 | AAA | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10716 | AAA | | WLAN | 8.45 | ± 9.6 % | | 10717 | AAA | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | | | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10718 | AAA | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ± 9.6 % | | 10719 | AAA | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10720 | AAA | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10721 | AAA | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10722 | AAA | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ± 9.6 % | | 10723 | AAA | IEEE 802.11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10724 | AAA | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10725 | AAA | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | | | 10726 | AAA | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10727 | AAA | IEEE 802.11ax (80MHz, MCS8, 90pc dc) | WLAN | | ± 9.6 % | | 10728 | AAA | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | | 8.66 | ± 9.6 % | | 10729 | AAA | | WLAN | 8.65 | ± 9.6 % | | | | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10730 | AAA | IEEE 802.11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10731 | AAA | IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10732 | AAA | IEEE 802.11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10733 | AAA | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10734 | AAA | IEEE 802.11ax (80MHz, MCS3, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10735 | AAA | IEEE 802.11ax (80MHz, MCS4, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | | | | | | /0] | | 10736 | AAA | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 % | |--|---|---|---|--|---| | 10737 | AAA | IEEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10738 | AAA | IEEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10739 | AAA | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10740 | AAA | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10741 | AAA | IEEE 802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10742 | AAA | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10743 | AAA | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10744 | AAA | IEEE 802.11ax (160MHz, MCS1, 90pc dc) | WLAN | 9.16 | ± 9.6 % | | 10745 | AAA | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10746 | AAA | IEEE 802.11ax (160MHz, MCS3, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10747 | AAA | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | | | | 10748 | AAA | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 9.04 | ± 9.6 % | | 10749 | AAA | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10750 | AAA | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10751 | AAA | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10752 | AAA | IEEE 802.11ax (160MHz, MCS9, 90pc dc) | | 8.82 | ± 9.6 % | | 10753 | AAA | | WLAN | 8.81 | ± 9.6 % | | 10754 | AAA | IEEE 802.11ax (160MHz, MCS10, 90pc dc) IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 9.00 | ± 9.6 % | | | | | WLAN | 8.94 | ± 9.6 % | | 10755 | AAA | IEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.64 | ± 9.6 % | | 10756 | AAA | IEEE 802.11ax (160MHz, MCS1, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10757 | AAA | IEEE 802.11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10758 | AAA | IEEE 802.11ax (160MHz, MCS3, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10759 | AAA | IEEE 802.11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10760 | AAA | IEEE 802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10761 | AAA | IEEE 802.11ax (160MHz, MCS6, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10762 | AAA | IEEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10763 | AAA | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10764 | AAA | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10765 | AAA | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10766 | AAA | IEEE 802.11ax (160MHz, MCS11, 99pc dc) | WLAN | 8.51 | ± 9.6 % | | 10767 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ± 9.6 % | | 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10769 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10771 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10772 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ± 9.6 % | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ± 9.6 % | | 10774 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10775 | AAB | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | | 10776 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10777 | AAB | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10778 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10779 | AAB | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10780 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10781 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10783 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | | 10784 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ± 9.6 % | | 10785 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.40 | | | , | 1,010 | | | 8.35 | ± 9.6 %
± 9.6 % | | | AAC | 5G NR (CP-DEDM) 100% RB 2000007 (100% 15000) | | | T 27 D 7/0 | | 10786 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | | | | 10786
10787 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ± 9.6 % | | 10786
10787
10788 | AAC
AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD | 8.44
8.39 | ± 9.6 %
± 9.6 % | | 10786
10787
10788
10789 | AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD | 8.44
8.39
8.37 | ± 9.6 %
± 9.6 %
± 9.6 % | | 10786
10787
10788
10789
10790 | AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD | 8.44
8.39
8.37
8.39 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10786
10787
10788
10789
10790
10791 | AAC
AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD | 8.44
8.39
8.37
8.39
7.83 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10786
10787
10788
10789
10790
10791
10792 | AAC
AAC
AAC
AAC
AAC | 5G NR
(CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.44
8.39
8.37
8.39
7.83
7.92 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10786
10787
10788
10789
10790
10791
10792
10793 | AAC
AAC
AAC
AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.44
8.39
8.37
8.39
7.83
7.92
7.95 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10786
10787
10788
10789
10790
10791
10792
10793
10794 | AAC
AAC
AAC
AAC
AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.44
8.39
8.37
8.39
7.83
7.92
7.95
7.82 | ± 9.6 %
± % | | 10786
10787
10788
10789
10790
10791
10792
10793
10794
10795 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.44
8.39
8.37
8.39
7.83
7.92
7.95
7.82
7.84 | ± 9.6 %
± % | | 10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.44
8.39
8.37
8.39
7.83
7.92
7.95
7.82
7.84
7.82 | ± 9.6 %
± % | | 10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.44
8.39
8.37
8.39
7.83
7.92
7.95
7.82
7.84
7.82
8.01 | ± 9.6 %
± % | | 10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.44
8.39
8.37
8.39
7.83
7.92
7.95
7.82
7.84
7.82 | ± 9.6 %
± % | Certificate No: EX3-7472_Aug20 Page 19 of 22 | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | |-------|-------|--|---------------|------|--------------------| | 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ± 9.6 % | | 10803 | AAC | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10805 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10806 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10809 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10810 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10812 | AAC | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10817 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10818 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10819 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 % | | 10820 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10822 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | | | 10824 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 %
± 9.6 % | | 10825 | AAC | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | | | | 10827 | AAC | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10828 | AAC | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | | 8.42 | ± 9.6 % | | 10829 | AAC | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10829 | AAC | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10831 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ± 9.6 % | | 10832 | AAC | | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10832 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ± 9.6 % | | 10833 | | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10834 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 % | | | | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10836 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ± 9.6 % | | 10837 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 % | | 10839 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10840 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 % | | 10841 | AAC | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ± 9.6 % | | 10843 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ± 9.6 % | | 10844 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10846 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10854 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10855 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10856 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10857 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10858 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10859 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10860 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10861 | AAC | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10863 | AAC | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10864 | AAC | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10865 | AAC | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10866 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ± 9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ± 9.6 % | | 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ± 9.6 % | | 10877
| AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 % | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | | | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10883 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | | 5.96 | ± 9.6 % | | 10884 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ± 9.6 % | | 10885 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ± 9.6 % | | 10000 | _ ^^D | OO NIT (DI 1-3-OI DINI, 1 ND, 30 INITIZ, 04QAINI, 120 KTZ) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | Certificate No: EX3-7472_Aug20 Page 20 of 22 | 40000 | T 4 4 D | To No. | | | | |-------|-------------------|--|--------------------------------|--------------|--------------------| | 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ± 9.6 % | | 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ± 9.6 % | | 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ± 9.6 % | | 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ± 9.6 % | | 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10897 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ± 9.6 % | | 10898 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10899 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10900 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10901 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10902 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10903 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10906 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ± 9.6 % | | 10908 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10909 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | | | | 10910 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ± 9.6 % | | 10911 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | | 5.83 | ± 9.6 % | | 10912 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10913 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10913 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % | | 10916 | AAA | | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10916 | | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | | AAA | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10918 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10919 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10920 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10921 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10922 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ± 9.6 % | | 10923 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10924 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10925 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ± 9.6 % | | 10926 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10927 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10928 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10929 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10930 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10931 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10932 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10936 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10938 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10939 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 % | | 10940 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 % | | 10941 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | | | 10942 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | | ± 9.6 % | | 10943 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10944 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10945 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | | 5.81 | ± 9.6 % | | 10946 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10947 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10948 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10949 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10949 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10000 | <u> </u> | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | | | | 5G NR FR1 FDD | 5.92 | ± 9.6 % | | 10951 | AAA | | | | | | | AAA
AAA
AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD
5G NR FR1 FDD | 8.25
8.15 | ± 9.6 %
± 9.6 % | | 10954 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ± 9.6 % | |-------|-----|---|---------------|------|---------| | 10955 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10956 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | | 10957 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | | 10958 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ± 9.6 % | | 10959 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | 10960 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ± 9.6 % | | 10961 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ± 9.6 % | | 10962 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ± 9.6 % | | 10963 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10964 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ±9.6% | | 10965 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | 10966 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10967 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | 10968 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | | | | | | | ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for
the recognition of calibration certificates Client B.V. ADT (Auden) Certificate No: EX3-7554_Sep20 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:7554 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: September 28, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 660 | 27-Dec-19 (No. DAE4-660_Dec19) | Dec-20 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-19 (No. ES3-3013_Dec19) | Dec-20 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | Function, Name Laboratory Technician Calibrated by: Jeton Kastrati Katja Pokovic Technical Manager Approved by: Issued: September 30, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7554_Sep20 Page 1 of 23 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossarv: tissue simulating liquid **TSL** NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A, B, C, D o rotation around probe axis Polarization @ 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle ### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - *NORMx,y,z:* Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,v,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.v.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7554_Sep20 Page 2 of 23 EX3DV4 – SN:7554 September 28, 2020 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7554 **Basic Calibration Parameters** | Ducio Guinal di Gio | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.62 | 0.67 | 0.64 | ± 10.1 % | | DCP (mV) ^B | 97.2 | 97.4 | 96.6 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |---------------|---|---|---------|------------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 139.2 | ± 3.0 % | ± 4.7 % | | U | | Y | 0.00 | 0.00 | 1.00 | | 152.7 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 136.4 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 20.00 | 96.04 | 23.86 | 10.00 | 60.0 | ± 5.0 % | ± 9.6 % | | AAA | , 4,000 , 1,000 ,
1,000 , 1,000 | Y | 6.29 | 76.14 | 14.74 | | 60.0 | | | | , , , , | | Z | 20.00 | 96.99 | 23.93 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 96.45 | 23.08 | 6.99 | 80.0 | ± 2.9 % | ± 9.6 % | | AAA | , | Y | 20.00 | 86.94 | 17.04 | | 80.0 | | ĺ | | , | | Z | 20.00 | 100.31 | 24.54 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 99.76 | 23.39 | 3.98 | 95.0 | ± 1.4 % | ± 9.6 % | | AAA | 3. | Y | 20.00 | 88.22 | 16.70 | | 95.0 | | | | | | Z | 20.00 | 107.30 | 26.55 | | 95.0 | | | | 10355- Puls | Pulse Waveform (200Hz, 60%) | X | 20.00 | 104.14 | 24.16 | 2.22 | 120.0 | ± 1.2 % | ± 9.6 % | | | | Y | 20.00 | 91.64 | 17.41 | | 120.0 | | | | | | Z | 20.00 | 113.80 | 28.19 | | 120.0 | | | | 10387- QP | QPSK Waveform, 1 MHz | X | 1.71 | 64.57 | 14.34 | 1.00 | 150.0 | ± 1.7 % | ± 9.6 % | | AAA | · | Y | 1.72 | 65.65 | 14.86 | | 150.0 | | | | | | Z | 1.64 | 64.53 | 14.20 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.19 | 66.71 | 14.91 | 0.00 | 150.0 | ± 1.2 % | ± 9.6 % | | AAA | | Y | 2.26 | 67.67 | 15.53 | | 150.0 | | | | | | Z | 2.12 | 66.36 | 14.82 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 3.03 | 69.83 | 18.33 | 3.01 | 150.0 | ± 0.8 % | ± 9.6 % | | AAA | | Y | 3.07 | 71.30 | 19.33 | | 150.0 | | | | | | Z | 2.84 | 69.54 | 18.38 | | 150.0 | | | | 10399-
AAA | 64-QAM Waveform, 40 MHz | Х | 3.54 | 66.71 | 15.44 | 0.00 | 150.0 | ± 0.9 % | ± 9.6 % | | | | Υ | 3.57 | 67.08 | 15.74 | | 150.0 | | | | | | Z | 3.48 | 66.48 | 15.37 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.78 | 64.78 | 14.99 | 0.00 | 150.0 | ± 2.2 % | ± 9.6 % | | AAA | | Υ | 4.77 | 65.00 | 15.19 | | 150.0 | 1 | | | = - | | Z | 4.91 | 65.41 | 15.35 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7554_Sep20 $^{^{\}rm A}$ The uncertainties of Norm X,Y,Z do not affect the E $^{\rm 2}$ -field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:7554 September 28, 2020 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7554 #### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | X | 56.6 | 420.64 | 35.14 | 20.74 | 0.20 | 5.10 | 1.13 | 0.32 | 1.01 | | Y | 49.3 | 368.90 | 35.56 | 19.15 | 0.00 | 5.01 | 1.49 | 0.18 | 1.01 | | Ż | 49.4 | 368.64 | 35.43 | 14.15 | 0.00 | 5.10 | 1.46 | 0.18 | 1.01 | #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -135.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7554_Sep20 EX3DV4- SN:7554 September 28, 2020 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7554 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.39 | 10.39 | 10.39 | 0.53 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.05 | 10.05 | 10.05 | 0.35 | 1.01 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.78 | 9.78 | 9.78 | 0.44 | 0.91 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.92 | 8.92 | 8.92 | 0.34 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.58 | 8.58 | 8.58 | 0.33 | 0.87 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.26 | 8.26 | 8.26 | 0.31 | 0.87 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.05 | 8.05 | 8.05 | 0.32 | 0.87 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.62 | 7.62 | 7.62 | 0.27 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.41 | 7.41 | 7.41 | 0.35 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.28 | 7.28 | 7.28 | 0.42 | 0.90 | ± 12.0 % | | 3300 | 38.2 | 2.71 | 6.90 | 6.90 | 6.90 | 0.30 | 1.35 | ± 13.1 % | | 3500 | 37.9 | 2.91 | 6.87 | 6.87 | 6.87 | 0.30 | 1.35 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.67 | 6.67 | 6.67 | 0.30 | 1.35 | ± 13.1 % | | 3900 | 37.5 | 3.32 | 6.59 | 6.59 | 6.59 | 0.35 | 1.50 | ± 13.1 % | | 4100 | 37.2 | 3.53 | 6.39 | 6.39 | 6.39 | 0.35 | 1.50 | ± 13.1 % | | 4200 | 37.1 | 3.63 | 6.41 | 6.41 | 6.41 | 0.35 | 1.60 | ± 13.1 % | | 4400 | 36.9 | 3.84 | 6.02 | 6.02 | 6.02 | 0.40 | 1.60 | ± 13.1 % | | 4600 | 36.7 | 4.04 | 5.97 | 5.97 | 5.97 | 0.40 | 1.60 | ± 13.1 % | | 4800 | 36.4 | 4.25 | 5.99 | 5.99 | 5.99 | 0.40 | 1.80 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 5.78 | 5.78 | 5.78 | 0.40 | 1.80 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.12 | 5.12 | 5.12 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.65 | 4.65 | 4.65 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.80 | 4.80 | 4.80 | 0.40 | 1.80 | ± 13.1 % | Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (a and π) can be releved to ± 100 MHz. Certificate No: EX3-7554_Sep20 Page 5 of 23 F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.