

Page 1 of 28

FCC Test Report

Report No.	:	1812C40183312502
Applicant	:	TRA COMPANY LTD.
Address	:	Osaka-shi, Chuo-ku, Kitahama-higashi 6-6 Osaka 540-0031 Japan
Product Name	:	Cheero Kikiyasu Wireless Hearing Amplifier - earphones
Report Date	:	Mar. 14, 2025

Shenzhen Anbotek Compliance Laboratory Limited

Contents

1. General Information	6
 1.1. Client Information	
 1.8. Description of Test Facility 1.9. Disclaimer 1.10. Test Equipment List 	9 10
2. Antenna requirement	
2.1. Conclusion	
3. Conducted Emission at AC power line	
3.1. EUT Operation3.2. Test Setup3.3. Test Data	13
4. 6dB Bandwidth	14
4.1. EUT Operation 4.2. Test Setup 4.3. Test Data	14
5. Maximum Conducted Output Power	15
5.1. EUT Operation 5.2. Test Setup 5.3. Test Data	15 15
6. Power Spectral Density	16
6.1. EUT Operation 6.2. Test Setup 6.3. Test Data	16 16
7. Emissions in non-restricted frequency bands	17
7.1. EUT Operation 7.2. Test Setup 7.3. Test Data	17
8. Band edge emissions (Radiated)	18
8.1. Test Setup 8.2. EUT Operation 8.3. Test Data	19
9. Emissions in frequency bands (below 1GHz)	20
9.1. EUT Operation	
9.3. Test Data	22
10. Emissions in frequency bands (above 1GHz)	24

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Report No.:1812C40183312502 FCC ID: 2AYJ7-CHE-S-002

10.1. EUT Operation	24
10.2. Test Setup	
10.3. Test Data	
APPENDIX I TEST SETUP PHOTOGRAPH	
APPENDIX II EXTERNAL PHOTOGRAPH	
APPENDIX III INTERNAL PHOTOGRAPH	28

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Report No.:1812C40183312502 FCC ID: 2AYJ7-CHE-S-002

TEST REPORT

Test Standard(s)	:	47 CFR Part 15.247 ANSI C63.10-2020 KDB 558074 D01 15.247 Meas Guidance v05r02
Rating(s)	:	Input: 5V≕50mA Earphone Battery Capacity: DC 3.7V, 50mAh Case Battery Capacity: DC 3.7V, 400mAh
Trade Mark	:	cheero
Model No.	:	CHE-S-002
Product Name	:	Cheero Kikiyasu Wireless Hearing Amplifier - earphones
Manufacturer	:	TRA COMPANY LTD.
Applicant	:	TRA COMPANY LTD.

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:

Dec. 18, 2024

Date of Test:

Prepared By:

Dec. 18, 2024 to Dec. 31, 2024

ecilia Chen

(Cecilia Chen)

Approved & Authorized Signer:

(KingKong Jin)

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email:service@anbotek.com

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	Mar. 14, 2025

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

1. General Information

1.1. Client Information

Applicant		TRA COMPANY LTD.
Address	:	Osaka-shi, Chuo-ku, Kitahama-higashi 6-6 Osaka 540-0031 Japan
Manufacturer	:	TRA COMPANY LTD.
Address	:	Osaka-shi, Chuo-ku, Kitahama-higashi 6-6 Osaka 540-0031 Japan
Factory	:	Fugle Products (HK) Co. Ltd.
Address	:	8th Floor, Building D, Zhenhan Industrial Park, Zhenhan Road, Jihua Street, Longgang District, Shenzhen, Guangdong, China

1.2. Description of Device (EUT)

Product Name	:	Cheero Kikiyasu Wireless Hearing Amplifier - earphones		
Model No.	:	CHE-S-002		
Trade Mark	:	cheero		
Test Power Supply	:	DC 5V from adapter input AC 120V/60Hz; DC 3.7V Battery inside		
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)		
Adapter	:	N/A		
RF Specification				
Operation Frequency	:	2402MHz to 2480MHz		
Number of Channel	:	40		
Modulation Type	:	GFSK		
Antenna Type	:	Ceramic antenna		
Antenna Gain(Peak)	:	2.2dBi		
Remark:				

(1) All of the RF specification are provided by customer.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(3) The EUT consists of two parts, the left and right earphone, both have been tested and only the test data of right earphone recorded in this report.

Shenzhen Anbotek Compliance Laboratory Limited

400-003-0500 www.anbotek.com

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.	
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J	
Cheero Kikiyasu Wireless Hearing Amplifier - earphones (Charging case)	TRA COMPANY LTD.	cheero	1	

1.4. Operation channel list

Operation Band:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT in continuously transmitting mode with GFSK modulation.

1.6. Measurement Uncertainty

Parameter	Uncertainty			
Conducted emissions (AMN 150kHz~30MHz)	3.4dB			
Occupied Bandwidth	925Hz			
Conducted Output Power	0.76dB			
Power Spectral Density	0.76dB			
Conducted Spurious Emission	1.24dB			
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB			
Radiated emissions (Below 30MHz)	3.53dB			
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB			
The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.				

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	1	Р
Conducted Emission at AC power line	1	N
6dB Bandwidth	Mode1	Р
Maximum Conducted Output Power	Mode1	Р
Power Spectral Density	Mode1	Р
Emissions in non-restricted frequency bands	Mode1	Р
Band edge emissions (Radiated)	Mode1	Р
Emissions in frequency bands (below 1GHz)	Mode1	Р
Emissions in frequency bands (above 1GHz)	Mode1	Р
Note: P: Pass N: N/A, not applicable	·	

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

Conducted Emission at AC power line						
Item	em Equipment Manufacturer Model No. Serial No. Last Cal. Cal.Due					Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	1	/
4	EMI Test Receiver(CE2#)	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08

Maxir Powe	6dB Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in non-restricted frequency bands					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

1.32

20

	Band edge emissions (Radiated) Emissions in frequency bands (above 1GHz)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/
5	Horn Antenna	A-INFO	LB-180400- KF	J2110606 28	2024-01-22	2027-01-21
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Emis	Emissions in frequency bands (below 1GHz)					
Item	em Equipment Manufacturer Model No. Serial No. Last Cal. Cal.Due			Cal.Due Date		
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K-30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	1

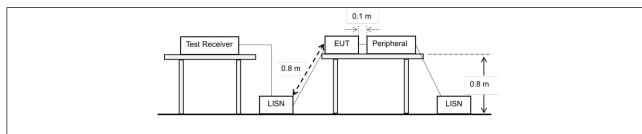
2. Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

2.1. Conclusion

The antenna is a Ceramic antenna which permanently attached, and the best case gain of the antenna is 2.2dBi. It complies with the standard requirement.

" "Olanon rimi"


3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).				
	Frequency of emission (MHz)	Conducted limit (dBµV)			
		Quasi-peak	Average		
T = (11) = (1	0.15-0.5	66 to 56*	56 to 46*		
Test Limit:	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of the frequency.				
Test Method:	ANSI C63.10-2020 section 6.2				
Procedure:	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power- line conducted emissions from unlicensed wireless devices				

3.1. EUT Operation

Operating Envir	Operating Environment:				
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.				

3.2. Test Setup

3.3. Test Data

Not applicable for DC power device.

4. 6dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude". 11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

4.1. EUT Operation

Operating Envi	Operating Environment:					
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.					

4.2. Test Setup

EUT	Spectrum Analyzer	
EUT	Spectrum Analyzer	

4.3. Test Data

Temperature: 24.3 °C Humi	y: 48 %	Atmospheric Pressure:	101 kPa
---------------------------	---------	-----------------------	---------

Please Refer to Appendix for Details.

5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

Operating Environment:		
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.	

5.2. Test Setup

5.3. Test Data

Temperature:	24.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

Operating Environment:			
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.		

6.2. Test Setup

Spectrum Analyzer		EUT Spectrum Analyze	er
-------------------	--	----------------------	----

6.3. Test Data

Temperature:24.3 °CHumidity:48 %Atmospheric Pressure:101 kPa	
--	--

Please Refer to Appendix for Details.

7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

Operating Environment:			
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.		

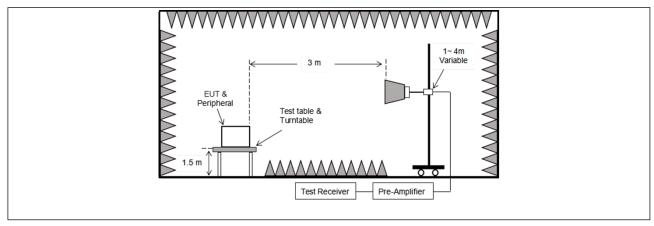
7.2. Test Setup

EUT	Spectrum Analyzer	

7.3. Test Data

		1			
Temperature:	24.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.


Å

45

8. Band edge emissions (Radiated)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).				
Test Limit:	Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in printentional radiators operation within However, operation within	Frequency (MHz)Field strength (microvolts/meter)Measurem distance (meters)0.009-0.4902400/F(kHz)3000.490-1.70524000/F(kHz)301.705-30.0303030-88100 **388-216150 **3216-960200 **3Above 9605003* Except as provided in paragraph (g), fundamental emissions from ntentional radiators operating under this section shall not be located in requency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MH lowever, operation within these frequency bands is permitted under oth			
	sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.				
Test Method:	ANSI C63.10-2020 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02				
Procedure:	ANSI C63.10-2020 section 6.10.5.2				

8.1. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

8.2. EUT Operation

Operating Environment:				
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.			

8.3. Test Data

Temperature: 24.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
----------------------	-----------	------	-----------------------	---------

TM1 /	CH: L
Spectrum 🕎	Spectrum 🕎
RefLevel 107.00 dBµ/ ■ RBW 1 MHz ● Att 10 dB ● SWT 1 ms ● VBW 3 MHz Mode Auto FFT SGL Count 10/10	Ref Level 107.00 dBy/ RBW 1 MHz 0 Att 10 db SWT 1 ms VBW 3 MHz Mode Auto FFT SGL Count 10/10
●1Pk Max M1[1] 36.06 dBµV	●1Pk Max
100 dBµV 2.390000 GHz	100 dBμV 35.20 dBμV 2.390000 GHz
90 dBµV	90 dBµV
80 dBµ/v	-V148b 08
D1 74.000 dBµV	D1 74.000 dBµV
60 dBµV	60 dBµV
50 dBµV	50 dBµV
40 dB/V	40 dBJV
30 dBµV	30 dBµV
20 dBµV	20 dBµV-
10 dBµV	10 dBµV-
Start 2.31 GHz 691 pts Stop 2.41 GHz Marker	Start 2.31 GHz 691 pts Stop 2.41 GHz Marker
Type Ref Trc X-value Y-value Function Function Result M1 1 2.39 GHz 36.06 dBµV	Type Ref Trc X-value Y-value Function Function Result M1 1 2.39 GHz 35.20 dBµV
Ready	Ready (111111) 4/4
Peak Value(Vertical)	Peak Value(Horizontal)
TM1 /	CH: H
Spectrum 🕎	Spectrum 🕎
RefLevel 107.00 dBµV	Spectrum []] Ref Level 107.00 dBµV ● RBW 1 MHz
Ref Level 107.00 d8µ/ ■ RBW 1 MHz Att 10 d8 SWT 3.8 µs ■ VBW 3 MHz Mode Auto FFT SGL Count U0/10 SGL SU10/10 SGL SGL <td< td=""><td>Spectrum Image: Constraint of the system of t</td></td<>	Spectrum Image: Constraint of the system of t
Ref Level 107.00 dBµ// ■ RBW 1 MHz Att 10 dB SWT 3.8 µs ■ VBW 3 MHz Mode Auto FFT SGL Count 10/10 ■ IPk Max ■ IPk Max ■ 10 Auto FFT	Spectrum mm Ref Level 107.00 dBµ/V RBW 1 MHz Att 10 dB SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL count 10/10 ●1Pk Max M1[1] 32.46 dBµV
Ref Level 107.00 dBµ/v ■ RBW 1 MHz Att 10 dB SWT 3.8 µs ■ VBW 3 MHz Mode Auto FFT SGL Count 10/10 ■ IPE Max ■ IPE Max 100 dBµ/v 2.4835000 GHz 100 dBµ/v ■ IPE Max ■ IPE Max ■ IPE Max 100 dBµ/v 2.4835000 GHz	Spectrum (TCC) Ref Level 107.00 dBμ/V RBW 1 MHz Att 10 db SWT 3.8 μs VBW 3 MHz Mode Auto FFT SGL count 10/10 •1Pk Max
Ref Level 107.00 dBµ// ■ RBW 1 MHz Att 10 dB SWT 3.8 µs ■ VBW 3 MHz Mode Auto FFT SGL Count 10/10 ■ IPk Max ■ IPk Max ■ 10 Auto FFT	Spectrum mm Ref Level 107.00 dBµ/V RBW 1 MHz Att 10 dB SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL count 10/10 ●1Pk Max M1[1] 32.46 dBµV
Ref Level 107.00 dBµ/v RBW 1 MHz Att 10 dB SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 10/10 Image: SGL Count 10/10 Image: SGL Count 10/10 Image: SGL Count 10/10 Image: SGL Count 10/10 IPIP Max Image: SGL Count 10/10 Image: SGL Count 10/10 Image: SGL Count 10/10 Image: SGL Count 10/10 I00 dBµ/v Image: SGL Count 10/10 Image: SGL Count 10/10 Image: SGL Count 10/10 Image: SGL Count 10/10 I00 dBµ/v Image: SGL Count 10/10 Image: SGL Count 10/10 Image: SGL Count 10/10 Image: SGL Count 10/10 I00 dBµ/v Image: SGL Count 10/10 I00 dBµ/v Image: SGL Count 10/10 Image:	Spectrum Image: Constraint of the system of t
Ref Level 107.00 dBµ// RBW 1 MHz Att 10 dB SWT 3.8 µS VBW 3 MHz Mode Auto FFT SGL Count 10/10 10/k Max 100 dBµ// 2.4835000 GHz 90 dBµ// 0 dBµ// 0 dBµ// 2.4835000 GHz	Spectrum Item Ref Level 107.00 dBµV RBW 1 MHz Att 10 dB SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 10/10 SGL Count 10/10 10 dB µV 2.4835000 GHz D10 dBµV 100 dBµV 2.4835000 GHz 90 dBµV
Ref Level 107.00 dBµ/v RBW 1 MHz Att 10 dB SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count U/10 • IPk Max • IPk Max • Int[1] • 2.4835000 GHz • 0 dBµV • 0 dBµV •	Spectrum Image: Constraint of the system of t
Ref Level 107.00 dBµV RBW 1 MHz Att 10 dB SWT 3.8 µS VBW 3 MHz Mode Auto FFT SGL Count J010 • IPk Max • Infl(1) • 6.50 dBµV • 2.4835000 GHz 90 dBµV • 100 dBµV • 101 • 2.4835000 GHz 90 dBµV • 100 dBµV • 100 dBµV • 100 dBµV • 100 dBµV 70 dBµV • 10 dBµV • 10 dBµV	Spectrum Image: Constraint of the system of t
Ref Level 107.00 dbµ/ • RBW 1 MHz Att 10 db SWT 3.8 µs • VBW 3 MHz Mode Auto FFT SGL Count 10/10 • IPK Max • 10 db • 10 db • 10 db • IPK Max • 0 dbµ/ • 10 db • 10 db • 10 db • 10 db 90 dbµ/ • 0 dbµ/ 50 dbµ/ • 0 dbµ/ 50 dbµ/ • 0 dbµ/	Spectrum Transmission Ref Level 107.00 dBµV • RBW 1 MHz • Att 10 dB SWT 3.8 µs • VBW 3 MHz Mode Auto FFT SGL Count 10/10 • PIK Max • Att 3000 GHz • 2.4835000 GHz 100 dBµV • 10 dB • 11(1) • 2.4835000 GHz 90 dBµV • 10 74.000 dBµV • 10
Ref Level 107.00 dbµ/ RBW 1 MHz Att 10 db SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 10/10 BWT 3.8 µs VBW 3 MHz Mode Auto FFT PIP Max 100 dbµ/ 2.4835000 GHz 2.4835000 GHz 90 dbµ/ 0 100 dbµ/ 2.4835000 GHz 90 dbµ/ 0 0 100 dbµ/ 50 dbµ/ 0 0 100 dbµ/ 90 dbµ/ 0 0 100 dbµ/ 100 dbµ/ 0 0 100 dbµ/ 10 dbµ/ 0 0 100 dbµ/ 10 dbµ/ 0 0 100 dbµ/ 10 dbµ/ 0 0 0 10 dbµ/ 0 0 0	Spectrum Image: Constraint of the system of t
Ref Level 107.00 dbµ/ RBW 1 MHz Att 10 db SWT 3.8 µs VBW 3 MHz SGL Count 10/10 ID db SWT 3.8 µs VBW 3 MHz ID db gµ/ ID db SWT 3.8 µs VBW 3 MHz ID db gµ/ ID db SWT 3.8 µs VBW 3 MHz ID db gµ/ ID db SWT 3.8 µs M1[1] 36.50 dbµ/ ID db gµ/ ID db SWT 3.8 µs M1[1] 36.50 dbµ/ ID db gµ/ ID db SWT 3.8 µs ID db SWT 3.8 µs ID db SWT 3.8 µs ID db gµ/ ID db SWT 3.8 µs ID db SWT 3.8 µs ID db SWT 3.8 µs ID db gµ/ ID db SWT 3.8 µs ID db SWT 3.8 µs ID db SWT 3.8 µs ID db gµ/ ID db SWT 3.8 µs ID db SWT 3.8 µs ID db SWT 3.8 µs ID db gµ/ ID db SWT 3.8 µs ID db SWT 3.8 µs ID db SWT 3.8 µs ID db gµ/ ID db SWT 3.8 µs ID db SWT 3.8 µs ID db SWT 3.8 µs ID db gµ/ ID db SWT 3.8 µs ID db SWT 3.8 µs ID db SWT 3.8 µs ID db gµ/ ID db SWT 3.8 µs ID db gµ/ ID	Spectrum Tmm Ref Level 107.00 dBµV RBW 1 MHz Att 10 dB SGL Count 10/10 PIP Max M1[1] 32.46 dBµV 00 dBµV 100 dBµV
Note Note Note Note Att 10 ds SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 10/10 ID ds SWT 3.8 µs VBW 3 MHz Mode Auto FFT ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID d	Spectrum The Ref Level 107.00 dBµV RBW 1 MHz Att 10 dB SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 10/10 SWT 3.8 µs VBW 3 MHz Mode Auto FFT IO0 dBµV M1[1] 2.4835000 GHz 90 dBµV 0 10 90 dBµV 10 10 90 dBµV 10 10 90 dBµV 10 10
Ref Level 107.00 dbµ/ • RBW 1 MHz Att 10 db SWT 3.8 µs • VBW 3 MHz Mode Auto FFT SGL Count 10/10 • IMHx • Mode Auto FFT • IPH Max • Max • Additional State (State	Spectrum Image: Constraint of the system of t
Ref Level 107.00 dbµ/ RBW 1 MHz Att 10 db SWT 3.8 µs VBW 3 MHz SGL count 10/10 IVF Max 36.50 dbµ/ 100 dbµ/ 10 db SWT 3.8 µs VBW 3 MHz 90 dbµ/ 10 dbµ/ 2.483000 GHz 90 dbµ/ 10 dbµ/ 10 dbµ/ 100 dbµ/ 10 dbµ/ 10 dbµ/ 90 dbµ/ 10 dbµ/ 10 dbµ/ 90 dbµ/ 10 dbµ/ 10 dbµ/ 90 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/	Spectrum Tm Ref Level 107.00 dByV RBW 1 MHz Att 10 dB SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 10/10 Image: Superstand State Stat
Note PBW 1 MHz Att 10 ds SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 10/10 ID ds SWT 3.8 µs VBW 3 MHz Mode Auto FFT ID ds ID ds WT 3.8 µs VBW 3 MHz Mode Auto FFT ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID ds ID	Spectrum Tropic Supervision Tropic Supervision <thtttropic supervision<="" th=""> Tropic Supervisi</thtttropic>
Ref Level 107.00 dbµ/ RBW 1 MHz Att 10 db SWT 3.8 µs VBW 3 MHz SGL count 10/10 IVF Max 36.50 dbµ/ 100 dbµ/ 10 db SWT 3.8 µs VBW 3 MHz 90 dbµ/ 10 dbµ/ 2.483000 GHz 90 dbµ/ 10 dbµ/ 10 dbµ/ 100 dbµ/ 10 dbµ/ 10 dbµ/ 90 dbµ/ 10 dbµ/ 10 dbµ/ 90 dbµ/ 10 dbµ/ 10 dbµ/ 90 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/ 10 dbµ/	Spectrum Tm Ref Level 107.00 dByV RBW 1 MHz Att 10 dB SWT 3.8 µs VBW 3 MHz Mode Auto FFT SGL Count 10/10 Image: Superstand State Stat

Note: When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

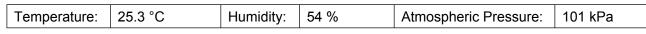
9. Emissions in frequency bands (below 1GHz)

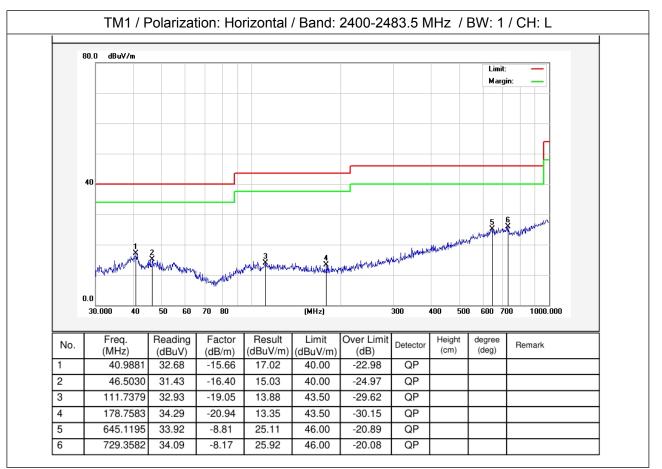
Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`					
Test Limit:	Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in partice intentional radiators operate frequency bands 54-72 MH However, operation within sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and	Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 ** 500 aragraph (g), fundamental emiss ing under this section shall not b tz, 76-88 MHz, 174-216 MHz or these frequency bands is permit § 15.231 and 15.241. e, the tighter limit applies at the b in the above table are based on peak detector except for the free above 1000 MHz. Radiated emis	Measurement distance (meters) 300 30 30 30 3 3 3 3 3 3 3 3 3 3 3 3 3			
	these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	ANSI C63.10-2020 section 6.6.4					

9.1. EUT Operation

Operating Er	ivironment:
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.

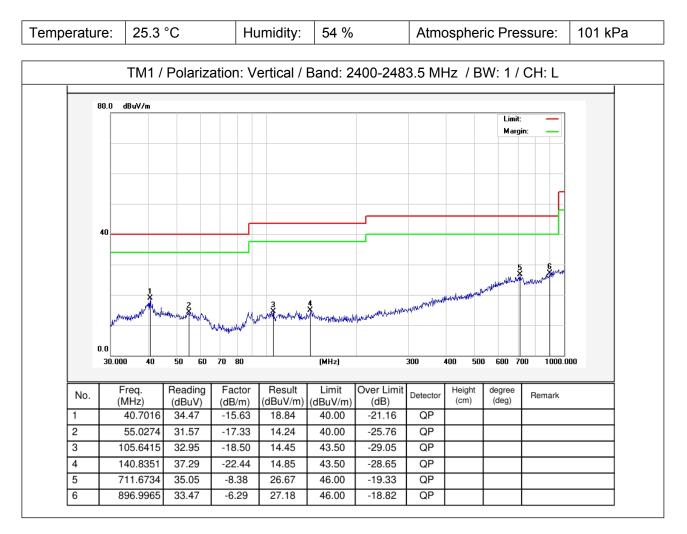
9.2. Test Setup


Shenzhen Anbotek Compliance Laboratory Limited


Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

9.3. Test Data

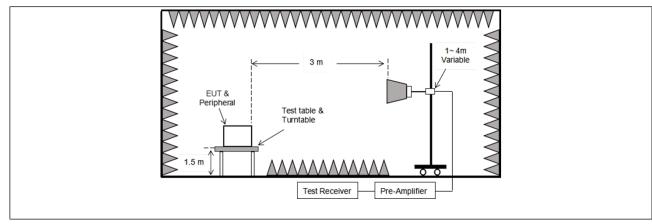
The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.


Shenzhen Anbotek Compliance Laboratory Limited

lia

Report No.:1812C40183312502 FCC ID: 2AYJ7-CHE-S-002

Note: Only record the worst data in the report.


10. Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § $15.205(a)$, must also comply with the radiated emission limits specified in § $15.209(a)(see \ 15.205(c))$.					
Test Limit:	intentional radiators operations of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and these three bands are bas	05(c)). Field strength (microvolts/meter) Measureme distance (meters) 2400/F(kHz) 300 24000/F(kHz) 30 30 30 100 ** 3 200 ** 3 500 3 baragraph (g), fundamental emissions from ating under this section shall not be located in the lHz, 76-88 MHz, 174-216 MHz or 470-806 MHz in these frequency bands is permitted under oth §§ 15.231 and 15.241. ve, the tighter limit applies at the band edges. in in the above table are based on measurement i-peak detector except for the frequency bands				
Test Method:	detector. ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	ANSI C63.10-2020 section 6.6.4					

10.1. EUT Operation

Operating Envir	ronment:
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.

10.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Report No.:1812C40183312502 FCC ID: 2AYJ7-CHE-S-002

400 T .

Temperature:	24.2 °C	Humidity:	57 %	Atmospher	ic Pressure:	101 kPa
		٦	「M1 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4804.00	30.19	15.27	45.46	74.00	-28.54	Vertical
7206.00	29.96	18.09	48.05	74.00	-25.95	Vertical
9608.00	31.41	23.76	55.17	74.00	-18.83	Vertical
12010.00	*			74.00		Vertical
14412.00	*			74.00		Vertical
4804.00	29.71	15.27	44.98	74.00	-29.02	Horizontal
7206.00	31.13	18.09	49.22	74.00	-24.78	Horizontal
9608.00	28.86	23.76	52.62	74.00	-21.38	Horizontal
12010.00	*			74.00		Horizontal
14412.00	*			74.00		Horizontal
Average value:	:					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarizatior
4804.00	18.46	15.27	33.73	54.00	-20.27	Vertical
7206.00	19.01	18.09	37.10	54.00	-16.90	Vertical
9608.00	20.88	23.76	44.64	54.00	-9.36	Vertical
12010.00	*			54.00		Vertical
14412.00	*			54.00		Vertical
4804.00	18.04	15.27	33.31	54.00	-20.69	Horizontal
7206.00	20.16	18.09	38.25	54.00	-15.75	Horizontal
9608.00	18.37	23.76	42.13	54.00	-11.87	Horizontal

Horizontal

Horizontal

Shenzhen Anbotek Compliance Laboratory Limited

*

*

12010.00

14412.00

54.00

54.00

Report No.:1812C40183312502 FCC ID: 2AYJ7-CHE-S-002

TM1 / CH: M						
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	29.74	15.42	45.16	74.00	-28.84	Vertical
7320.00	29.93	18.02	47.95	74.00	-26.05	Vertical
9760.00	30.91	23.80	54.71	74.00	-19.29	Vertical
12200.00	*			74.00		Vertical
14640.00	*			74.00		Vertical
4880.00	29.52	15.42	44.94	74.00	-29.06	Horizontal
7320.00	31.00	18.02	49.02	74.00	-24.98	Horizontal
9760.00	28.58	23.80	52.38	74.00	-21.62	Horizontal
12200.00	*			74.00		Horizontal
14640.00	*			74.00		Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	18.55	15.42	33.97	54.00	-20.03	Vertical
7320.00	18.87	18.02	36.89	54.00	-17.11	Vertical
9760.00	20.73	23.80	44.53	54.00	-9.47	Vertical
12200.00	*			54.00		Vertical
14640.00	*			54.00		Vertical
4880.00	18.15	15.42	33.57	54.00	-20.43	Horizontal
7320.00	20.51	18.02	38.53	54.00	-15.47	Horizontal
9760.00	18.67	23.80	42.47	54.00	-11.53	Horizontal
12200.00	*			54.00		Horizontal
14640.00	*			54.00		Horizontal

TM1 / CH: H						
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	29.87	15.58	45.45	74.00	-28.55	Vertical
7440.00	30.09	17.93	48.02	74.00	-25.98	Vertical
9920.00	31.61	23.83	55.44	74.00	-18.56	Vertical
12400.00	*			74.00		Vertical
14880.00	*			74.00		Vertical
4960.00	29.66	15.58	45.24	74.00	-28.76	Horizontal
7440.00	31.21	17.93	49.14	74.00	-24.86	Horizontal
9920.00	28.96	23.83	52.79	74.00	-21.21	Horizontal
12400.00	*			74.00		Horizontal
14880.00	*			74.00		Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	19.67	15.58	35.25	54.00	-18.75	Vertical
7440.00	20.14	17.93	38.07	54.00	-15.93	Vertical
9920.00	21.38	23.83	45.21	54.00	-8.79	Vertical
12400.00	*			54.00		Vertical
14880.00	*			54.00		Vertical
4960.00	19.33	15.58	34.91	54.00	-19.09	Horizontal
7440.00	21.31	17.93	39.24	54.00	-14.76	Horizontal
9920.00	18.82	23.83	42.65	54.00	-11.35	Horizontal
12400.00	*			54.00		Horizontal
14880.00	*			54.00		Horizontal

Remark:

1. Result =Reading + Factor

2. Test frequency are from 1GHz to 25GHz, "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

