Testing the Future LABORATORIES, INC.

Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices) of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China

TEST REPORT FOR

Mia Ultimate

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s) 15.207 & 15.247 (DTS 2400-2483.5 MHz)

Report No.: 101777-10

Date of issue: December 6, 2018

Test Certificate # 803.05

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 54 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	∠
Summary of Results	
Modifications During Testing	
Conditions During Testing	5
Equipment Under Test	ε
General Product Information	ε
FCC Part 15 Subpart C	7
15.247(a)(2) 6dB Bandwidth	7
15.247(b)(3) Output Power	10
15.247(e) Power Spectral Density	15
15.247(d) RF Conducted Emissions & Band Edge	20
15.247(d) Radiated Emissions & Band Edge	29
Supplemental Information	53
Measurement Uncertainty	53
Emissions Tost Datails	E 2

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Conceived and designed by:
Pacific Bioscience Laboratories, Inc.
(L'Oreal Beauty Devices) of Redmond, WA US /
Manufactured by: Jabil Circuit (Guangzhou) Co., LTD.

China

17425 NE Union Hill Rd Suite 150 Redmond, WA 98052

Representative: Rajen Shah

Customer Reference Number: 4200543734

DATE OF EQUIPMENT RECEIPT:

DATE(S) OF TESTING:

REPORT PREPARED BY:

Terri Rayle CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 101777

November 12, 2018

November 12-19, 2018 and December 4, 2018

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve 7 Be

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 54 Report No.: 101777-10

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.11

Site Registration & Accreditation Information

Location	NIST CB #	TAIWAN	CANADA	FCC	JAPAN
Canyon Park	US0081	SL2-IN-E-1145R	3082C-1	US1022	A-0148
Bothell, WA	030081	3L2-111-E-1143K	3062C-1	031022	A-0146

Page 4 of 54 Report No.: 101777-10

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NA1

NA = Not Applicable

NA1 = Not applicable because the EUT does not transmit while charging per manufacturer.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

<u> </u>	• •	<u> </u>	
Summary of Conditions			
None			

Page 5 of 54 Report No.: 101777-10

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 2 (BLE and Motor)

Equipment Tested:

Davisa	Manufacturer	Model #	C/N
Device	ivianuiacturer	iviodei #	S/N
Mia Ultimate	Conceived and designed by: Pacific Bioscience	Mia Ultimate	#2
	Laboratories, Inc. (L'Oreal Beauty Devices) of		
	Redmond, WA US / Manufactured by: Jabil		
	Circuit (Guangzhou) Co., LTD. China		

Support Equipment:

Device	Manufacturer	Model #	S/N
None			

Configuration 4

Equipment Tested:

Device	Manufacturer	Model #	S/N
Mia Ultimate	Conceived and designed by: Pacific Bioscience	Mia Ultimate	#4
	Laboratories, Inc. (L'Oreal Beauty Devices) of		
	Redmond, WA US / Manufactured by: Jabil		
	Circuit (Guangzhou) Co., LTD. China		

Support Equipment:

Device	Manufacturer	Model #	S/N
None			

General Product Information:

Product Information	Manufacturer-Provided Details
Floudet illioillation	Walidiacturer-Frovided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	802.15.1
Operating Frequency Range:	2402-2480MHz
Modulation Type(s):	GFSK
Maximum Duty Cycle:	100%
Number of TX Chains:	1
Antenna Type(s) and Gain:	PCB Trace 1dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	Battery 2.4VDC
Firmware / Software used for Test:	Version 0.61

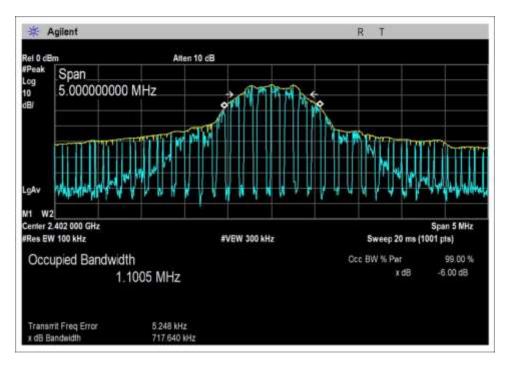
Page 6 of 54 Report No.: 101777-10

FCC Part 15 Subpart C

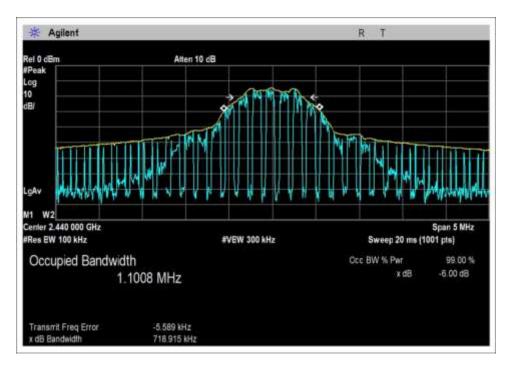
15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions				
Test Location:	Bothell Lab C3	Test Engineer:	M. Atkinson	
Test Method:	ANSI C63.10 (2013), KDB 558074 (v05 August 2018)	Test Date(s):	11/16/2018 to 11/19/2018	
Configuration: 2				
Test Setup: The EUT is on test table continuously transmitting with modulation.				

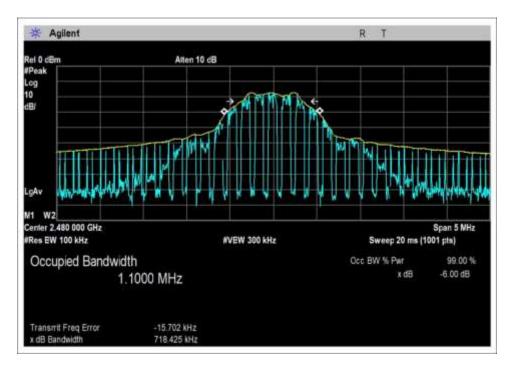
Environmental Conditions				
Temperature (°C)	19-23	Relative Humidity (%):	30-40	


	Test Equipment								
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due				
02673	Spectrum Analyzer	Agilent	E4446A	2/3/2017	2/3/2019				
P06540	Cable	Andrews	Heliax	10/30/2017	10/30/2019				
P06515	Cable	Andrews	Heliax	6/29/2018	6/29/2020				
01467	Horn Antenna	EMCO	3115	7/21/2017	7/21/2019				
P06503	Cable	Astrolab	32026-29801- 29801-36	3/13/2018	3/13/2020				
03540	Preamp	HP	83017A	5/2/2017	5/2/2019				

	Test Data Summary								
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results				
2402	1	GFSK	717.6	≥500	Pass				
2440	1	GFSK	718.9	≥500	Pass				
2480	1	GFSK	718.4	≥500	Pass				


Page 7 of 54 Report No.: 101777-10

Plots



Low Channel

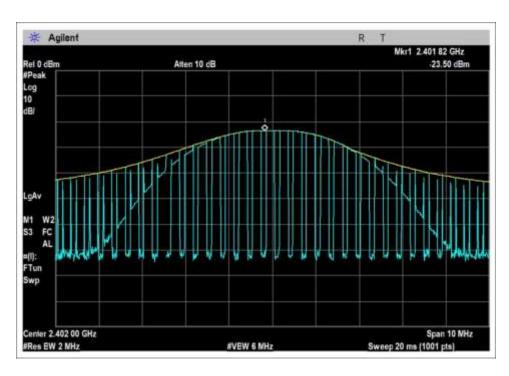
Middle Channel

High Channel

Test Setup Photo

15.247(b)(3) Output Power

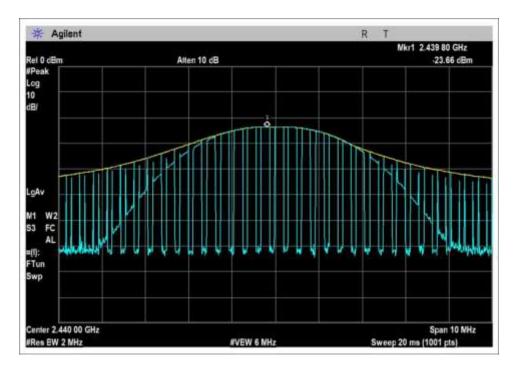
Test Data Summary - Voltage Variations

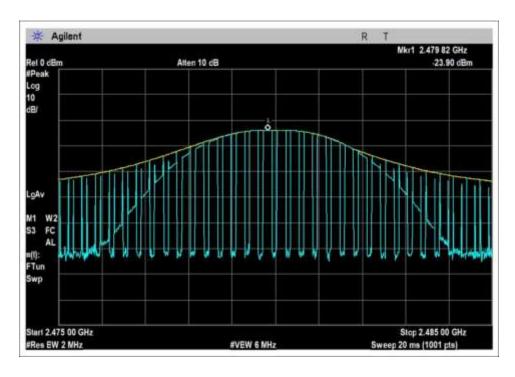

This equipment is battery powered and manufacturer declares the equipment cannot operate while charging. Power output tests were performed using a fresh battery.

	Power Output Te	est Data Summary -	RF Conducted	Measurement			
Measurement Option: RBW > DTS Bandwidth							
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results		
2402	GFSK	PCB Trace / 1 dBi	-3.3	≤30	Pass		
2440	GFSK	PCB Trace / 1 dBi	-3.6	≤30	Pass		
2480	GFSK	PCB Trace / 1 dBi	-3.8	≤30	Pass		

For fixed point-to-point antennas, the limit is calculated in accordance with 15.247(c)(1): $Limit = 30 - Roundup\left(\frac{G-6}{3}\right)$

For directional beamforming antennas, the limit is calculated in accordance with 15.247(c)(2) and KDB 662911.


Plots


Low Channel

Page 10 of 54 Report No.: 101777-10

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer: Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices)

of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China

Specification: 15.247(b) Power Output (2400-2483.5 MHz DTS)

Work Order #: 101777 Date: 11/19/2018
Test Type: Conducted Emissions Time: 09:24:11
Tested By: Michael Atkinson Sequence#: 20
Software: EMITest 5.03.11 Battery

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 4

Support Equipment:

Device Manufacturer Model # S/N
Configuration 4

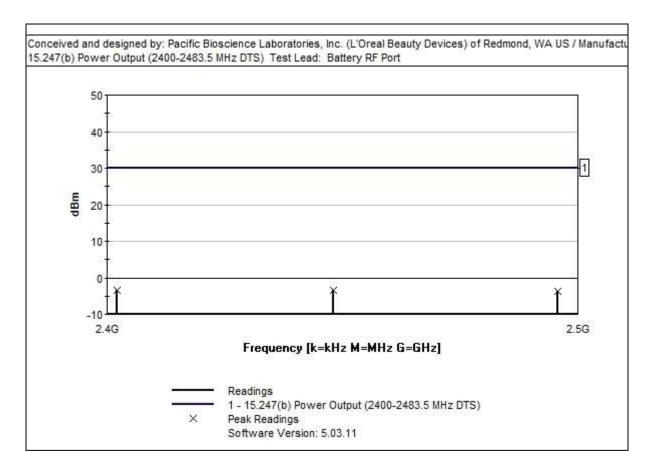
Test Conditions / Notes:

Temperature: 19-23°C Humidity: 30-40% Pressure: 102.5-104kPa

Frequency: Fundamental 2402, 2440, 2480MHz

Setup: The EUT has temporary RF port connected to take direct measurement.

The EUT is continuously transmitting modulated data.


The EUT has fresh charged battery installed.

Test Location: Bothell Lab C3

Test Method: ANSI C63.10 (2013), KDB 558074 (v05 August 2018)

Page 12 of 54 Report No.: 101777-10

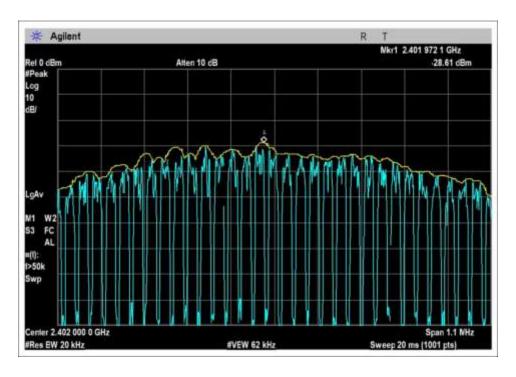
Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T1	ANP05747	Attenuator	PE7004-20	5/18/2018	5/18/2020

Meas	urement Data:	Re	Reading listed by margin.			gin. Test Lead: RF Port					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	2401.820M	-23.5	+20.2				+0.0	-3.3	30.0	-33.3	RF Po
2	2 2439.800M	-23.7	+20.1				+0.0	-3.6	30.0	-33.6	RF Po
3	3 2479.820M	-23.9	+20.1				+0.0	-3.8	30.0	-33.8	RF Po

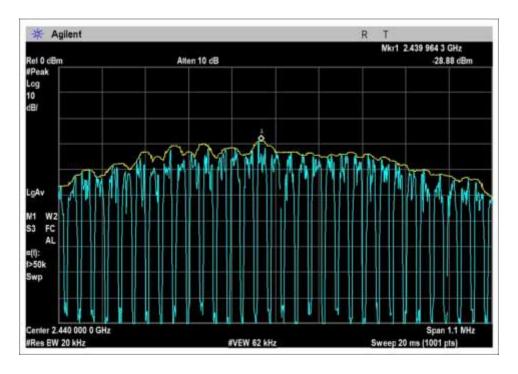
Page 13 of 54 Report No.: 101777-10

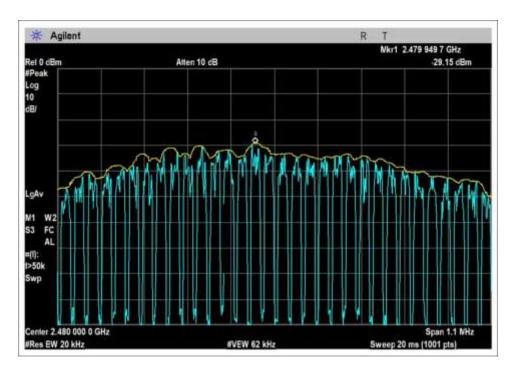
Test Setup Photo



15.247(e) Power Spectral Density

PSD Test Data Summary - RF Conducted Measurement							
Measurement Method: PKPSD							
Frequency (MHz)	Modulation	Measured (dBm/20kHz)	Limit (dBm/3kHz)	Results			
2402	GFSK	-8.4	≤8	Pass			
2440	GFSK	-8.8	≤8	Pass			
2480	GFSK	-9.0	≤8	Pass			


Plots


Low Channel

Page 15 of 54 Report No.: 101777-10

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362) Customer: Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices)

of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China

15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)

Specification: Work Order #: 101777 Date: 11/19/2018 Test Type: Time: 09:42:49 **Conducted Emissions** Tested By: Michael Atkinson Sequence#: 21 Software: EMITest 5.03.11 Battery

Equipment Tested:

Device S/N Manufacturer Model # Configuration 4

Support Equipment:

Manufacturer Model # S/N Device Configuration 4

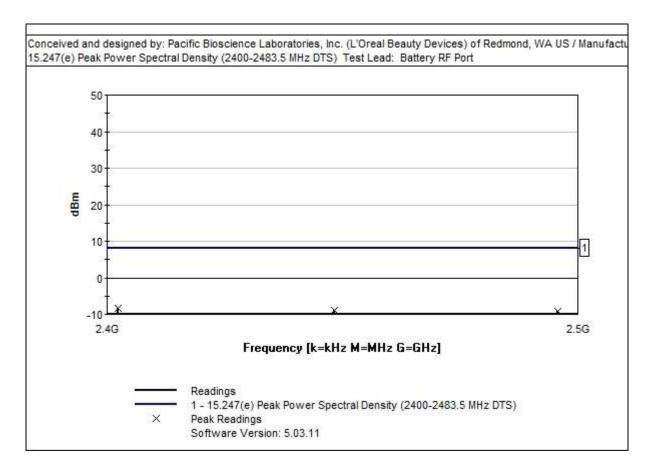
Test Conditions / Notes:

Temperature: 19-23°C Humidity: 30-40% Pressure: 102.5-104kPa

Frequency: Fundamental 2402, 2440, 2480MHz

Setup: The EUT has temporary RF port connected to take direct measurement.

The EUT is continuously transmitting modulated data.


The EUT has fresh charged battery installed.

Test Location: Bothell Lab C3

Test Method: ANSI C63.10 (2013), KDB 558074 (v05 August 2018)

> Page 17 of 54 Report No.: 101777-10

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date	
	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019	
T1	ANP05747	Attenuator	PE7004-20	5/18/2018	5/18/2020	

Meas	urement Data:	Re	Reading listed by margin.			rgin. Test Lead: RF Port					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	2401.972M	-28.6	+20.2				+0.0	-8.4	8.0	-16.4	RF Po
2	2 2439.964M	-28.9	+20.1				+0.0	-8.8	8.0	-16.8	RF Po
3	3 2479.950M	-29.1	+20.1				+0.0	-9.0	8.0	-17.0	RF Po

Page 18 of 54 Report No.: 101777-10

Test Setup Photo

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer: Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices)

of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 101777 Date: 12/4/2018
Test Type: Conducted Emissions Time: 11:31:59
Tested By: Michael Atkinson Sequence#: 22
Software: EMITest 5.03.11 Battery

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 4

Support Equipment:

Device Manufacturer Model # S/N
Configuration 4

Test Conditions / Notes:

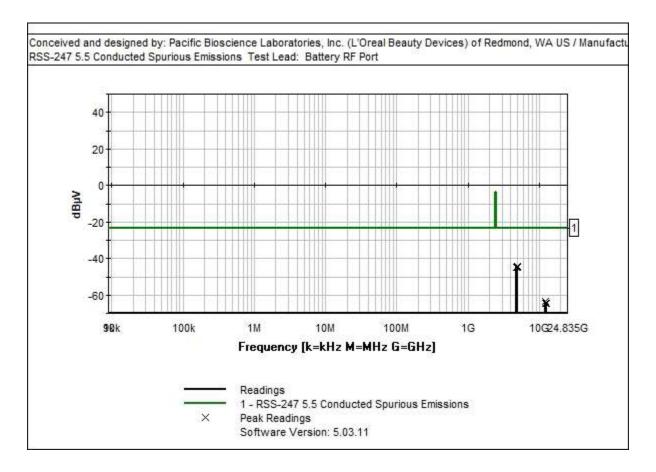
Temperature: 19-23°C Humidity: 30-40% Pressure: 102.5-104kPa

Frequency Investigated: 9kHz-24.835GHz

Frequency of Fundamental: 2402, 2440, 2480MHz

Setup: The EUT has temporary RF port connected to take direct measurement.

The EUT is continuously transmitting modulated data.

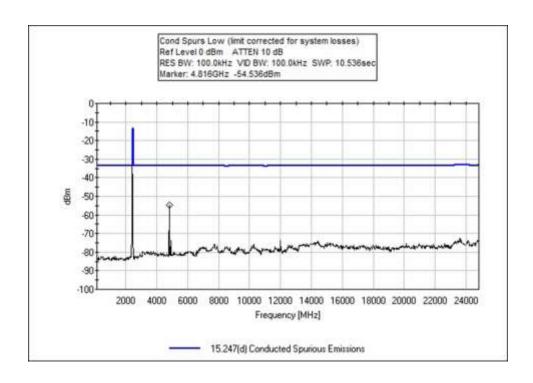

The EUT has fresh charged battery installed.

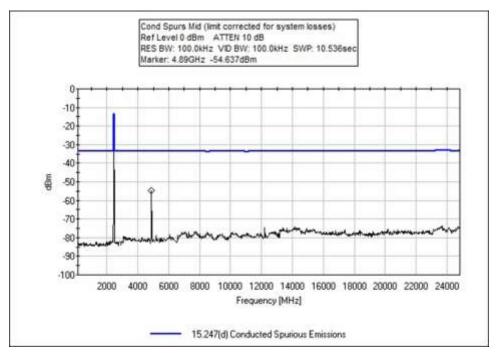
Test Location: Bothell Lab C3

Test Method: ANSI C63.10 (2013), KDB 558074 (v05 August 2018)

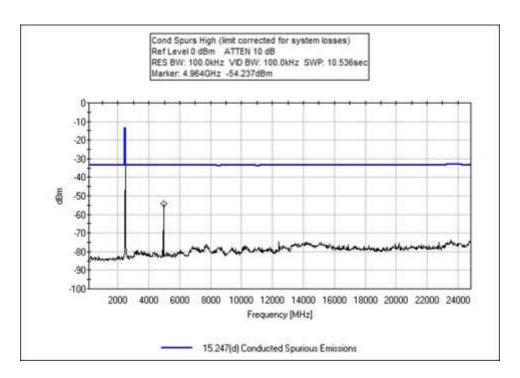
Page 20 of 54 Report No.: 101777-10

Test Equipment:

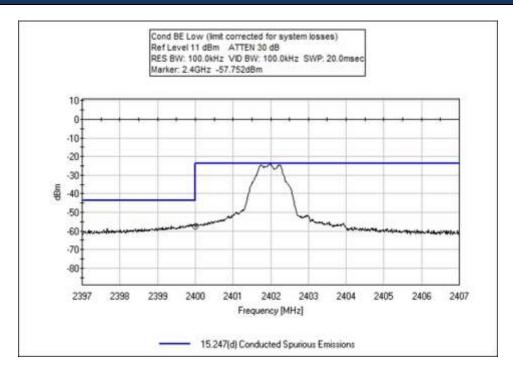

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T1	ANP06241	Attenuator	54A-10	3/13/2018	3/13/2020

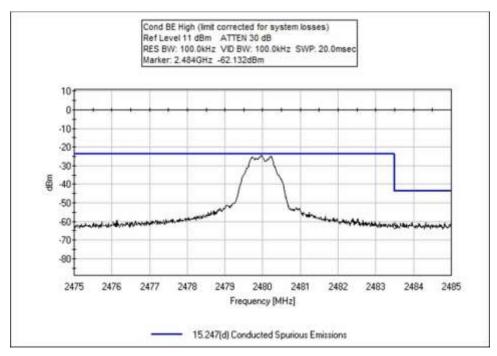

Measi	irement Data:	Re	eading lis	ted by r	nargin.			Test Lea	d: RF Port		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	4964.000M	-54.2	+10.0				+0.0	-44.2	-23.5	-20.7	RF Po
									High		
2	4816.000M	-54.5	+10.0				+0.0	-44.5	-23.5	-21.0	RF Po
									Low		
3	4890.000M	-54.6	+10.0				+0.0	-44.6	-23.5	-21.1	RF Po
									Mid		
4	12008.000	-73.6	+10.0				+0.0	-63.6	-23.5	-40.1	RF Po
	M										
									Low		
5	12206.000	-74.4	+9.9				+0.0	-64.5	-23.5	-41.0	RF Po
	M										
									Mid		
6	12403.000	-74.7	+10.0				+0.0	-64.7	-23.5	-41.2	RF Po
	M										
									High		

Page 22 of 54 Report No.: 101777-10



Plots


Band Edge


	Band Edge Summary							
Limit applied	Limit applied: Max Power/100kHz - 20dB.							
Frequency (MHz) Modulation Measured Limit (dBm) Re								
2400.0	GFSK	-37.6	<-23.5	Pass				
2483.5	GFSK	-42.0	<-23.5	Pass				

Page 25 of 54 Report No.: 101777-10

Plots

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices)

of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 101777 Date: 12/4/2018
Test Type: Conducted Emissions Time: 11:09:32
Tested By: Michael Atkinson Sequence#: 21
Software: EMITest 5.03.11 Battery

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 4

Support Equipment:

Device Manufacturer Model # S/N
Configuration 4

Test Conditions / Notes:

Temperature: 19-23°C Humidity: 30-40% Pressure: 102.5-104kPa

Frequency Investigated: Band Edge

Frequency of Fundamental: 2402, 2480MHz

Setup: The EUT has temporary RF port connected to take direct measurement.

The EUT is continuously transmitting modulated data.

The EUT has fresh charged battery installed.

Test Location: Bothell Lab C3

Test Method: ANSI C63.10 (2013), KDB 558074 (v05 August 2018)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T1	ANP05747	Attenuator	PE7004-20	5/18/2018	5/18/2020

Measurement Data: Reading listed by margin. Test Lead: RF Port T1 Dist Corr Spec Margin Polar Freq Rdng MHz dB_µV dB dB dB dB Table $dB\mu V$ $dB\mu V$ dΒ Ant -57.8 +20.2+0.0-37.6 -23.5 -14.1 RF Po 1 2400.000M 2 2483.500M -62.1 +20.1-42.0 -23.5 -18.5 RF Po +0.0

> Page 27 of 54 Report No.: 101777-10

Test Setup Photos

Page 28 of 54 Report No.: 101777-10

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer: Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices)

of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China

of Redmond, WA US/ Manuactured by: Jabii Circuit (Guangznou) Co., L

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 101777 Date: 11/16/2018
Test Type: Maximized Emissions Time: 14:57:56
Tested By: Michael Atkinson Sequence#: 18

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Temperature: 19-23°C Humidity: 30-40% Pressure: 102.5-104kPa

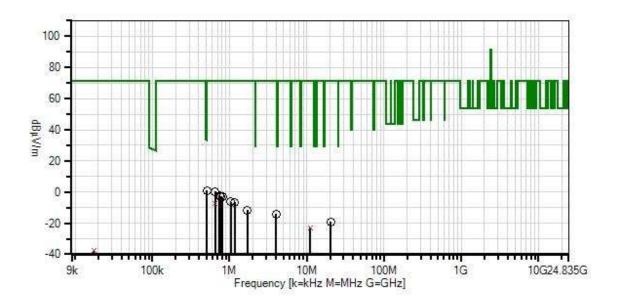
Frequency: 9kHz-30MHz

Setup: The EUT is continuously transmitting with modulation.

Low, Mid, and High investigated, X, Y, and Z EUT axes investigated, worst case reported.

Fresh charged battery installed.

3 orthogonal antenna axes investigated, worst case reported.


Test Location: Bothell Lab C3

Test Method: ANSI C63.10 (2013), KDB 558074 (v05 August 2018)

Page 29 of 54 Report No.: 101777-10

Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices) of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China WO#: 101777 Sequence#: 18 Date: 11/16/2018 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perp

- Readings
 QP Readings
- - 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings Software Version: 5.03.11

Page 30 of 54 Report No.: 101777-10

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T2	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	AN00052	Loop Antenna	6502	5/7/2018	5/7/2020

Measurement Data:		Reading listed by margin.				Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m \\$	dB	Ant
1	505.419k	31.2	+0.0	+0.0	+0.0	+9.7	-40.0	0.9	71.5	-70.6	Para
2	651.768k	30.4	+0.0	+0.0	+0.0	+9.8	-40.0	0.2	71.5	-71.3	Groun
3	745.850k	27.8	+0.0	+0.0	+0.0	+9.9	-40.0	-2.3	71.5	-73.8	Para
4	773.029k	27.3	+0.0	+0.0	+0.0	+10.0	-40.0	-2.7	71.5	-74.2	Para
5	814.843k	27.0	+0.0	+0.0	+0.0	+10.0	-40.0	-3.0	71.5	-74.5	Para
6	1.030M	23.9	+0.0	+0.0	+0.0	+9.9	-40.0	-6.2	71.5	-77.7	Para
7	1.166M	23.5	+0.0	+0.0	+0.0	+9.9	-40.0	-6.6	71.5	-78.1	Para
8	651.768k OP	23.1	+0.0	+0.0	+0.0	+9.8	-40.0	-7.1	71.5	-78.6	Para
9	1.703M	18.6	+0.0	+0.0	+0.1	+9.8	-40.0	-11.5	71.5	-83.0	Para
10	3.998M	16.1	+0.0	+0.0	+0.1	+9.7	-40.0	-14.1	71.5	-85.6	Para
11	20.433M	12.8	+0.0	+0.0	+0.2	+7.9	-40.0	-19.1	71.5	-90.6	Para
12	11.136M QP	7.6	+0.0	+0.0	+0.2	+9.2	-40.0	-23.0	71.5	-94.5	Perp
٨	11.136M	13.4	+0.0	+0.0	+0.2	+9.2	-40.0	-17.2	71.5	-88.7	Perp
14	17.546k QP	30.0	+0.0	+0.0	+0.0	+12.3	-80.0	-37.7	71.5	-109.2	Perp
٨	17.546k	36.6	+0.0	+0.0	+0.0	+12.3	-80.0	-31.1	71.5	-102.6	Perp

Page 31 of 54 Report No.: 101777-10

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)
Customer: Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices)

of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 101777 Date: 11/12/2018
Test Type: Maximized Emissions Time: 14:45:26
Tested By: Michael Atkinson Sequence#: 12

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

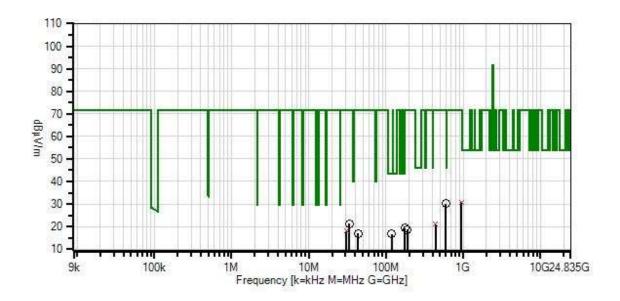
Temperature: 19-23°C Humidity: 30-40% Pressure: 102.5-104kPa

Frequency: 30-1000MHz

Setup: The EUT is continuously transmitting with modulation.

Low, Mid, and High investigated, X, Y, and Z EUT axes investigated, worst case reported.

Fresh charged battery installed.


Test Location: Bothell Lab C3

Test Method: ANSI C63.10 (2013), KDB 558074 (v05 August 2018)

Page 32 of 54 Report No.: 101777-10

Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices) of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China WO#: 101777 Sequence#: 12 Date: 11/12/2018 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

- Readings
- × QP Readings
 ▼ Ambient
- 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings Software Version: 5.03.11

Page 33 of 54 Report No.: 101777-10

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T1	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T2	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019
T3	AN02307	Preamp	8447D	1/15/2018	1/15/2020
T4	ANP05360	Cable	RG214	1/31/2018	1/31/2020
T5	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T6	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019

Measurement Data:		Re	Reading listed by margin.			Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	956.213M	22.9	+0.4	+1.6	-27.2	+2.1	+0.0	30.7	46.0	-15.3	Horiz
	QP		+5.9	+25.0							
^	956.213M	28.1	+0.4	+1.6	-27.2	+2.1	+0.0	35.9	46.0	-10.1	Horiz
			+5.9	+25.0							
3	593.077M	28.8	+0.3	+1.3	-28.2	+1.5	+0.0	30.1	46.0	-15.9	Horiz
			+5.9	+20.5							
4	33.630M	28.6	+0.1	+0.3	-28.0	+0.3	+0.0	21.2	40.0	-18.8	Horiz
			+5.9	+14.0							
5	30.700M	24.0	+0.1	+0.3	-28.0	+0.3	+0.0	18.1	40.0	-21.9	Horiz
	QP		+5.9	+15.5							
^	30.700M	28.4	+0.1	+0.3	-28.0	+0.3	+0.0	22.5	40.0	-17.5	Horiz
			+5.9	+15.5							
7	43.260M	29.3	+0.1	+0.3	-27.9	+0.3	+0.0	16.9	40.0	-23.1	Horiz
			+5.9	+8.9							
8	174.500M	29.3	+0.2	+0.6	-27.4	+0.7	+0.0	19.2	43.5	-24.3	Horiz
			+5.9	+9.9							
9	189.970M	28.8	+0.2	+0.7	-27.3	+0.8	+0.0	18.7	43.5	-24.8	Horiz
			+5.9	+9.6							
10		23.5	+0.2	+1.1	-27.8	+1.2	+0.0	21.1	46.0	-24.9	Horiz
	QP		+5.9	+17.0							
^	440.100M	28.9	+0.2	+1.1	-27.8	+1.2	+0.0	26.5	46.0	-19.5	Horiz
			+5.9	+17.0							
12	118.400M	29.7	+0.2	+0.6	-27.6	+0.6	+0.0	16.8	43.5	-26.7	Horiz
			+5.9	+7.4							

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362) Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices) Customer:

of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China

15.247(d) / 15.209 Radiated Spurious Emissions Specification:

Work Order #: 101777 Date: 11/12/2018 Test Type: **Maximized Emissions** Time: 14:36:50 Tested By: Sequence#: 11 Michael Atkinson

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N Configuration 2

Support Equipment:

Device Manufacturer Model # S/N Configuration 2

Test Conditions / Notes:

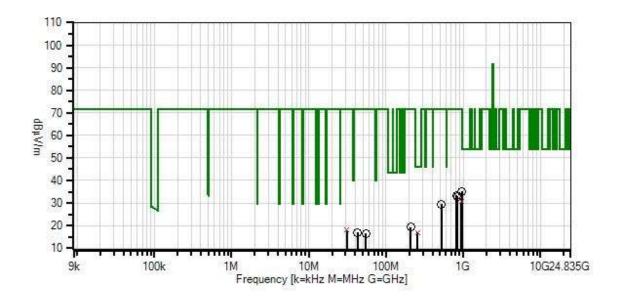
Temperature: 19-23°C Humidity: 30-40% Pressure: 102.5-104kPa

Frequency: 30-100MHz

Setup: The EUT is continuously transmitting with modulation.

Low, Mid, and High investigated, X, Y, and Z EUT axes investigated, worst case reported.

Fresh charged battery installed.


Test Location: Bothell Lab C3

ANSI C63.10 (2013), KDB 558074 (v05 August 2018) Test Method:

> Page 35 of 54 Report No.: 101777-10

Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices) of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China WO#: 101777 Sequence#: 11 Date: 11/12/2018 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

- Readings
- × QP Readings
 ▼ Ambient
- 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings Software Version: 5.03.11

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T2	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T3	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019
T4	AN02307	Preamp	8447D	1/15/2018	1/15/2020
T5	ANP05360	Cable	RG214	1/31/2018	1/31/2020
T6	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T7	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	257.100M	23.0	+0.0	+0.2	+0.8	-27.0	+0.0	16.8	46.0	-29.2	Vert
	QP		+0.9	+5.9	+13.0						
^	257.100M	28.9	+0.0	+0.2	+0.8	-27.0	+0.0	22.7	46.0	-23.3	Vert
			+0.9	+5.9	+13.0						
3	957.381M	27.4	+0.0	+0.4	+1.6	-27.2	+0.0	35.2	71.5	-36.3	Vert
			+2.1	+5.9	+25.0						
4	822.500M	28.1	+0.0	+0.3	+1.5	-27.7	+0.0	33.4	71.5	-38.1	Vert
			+1.8	+5.9	+23.5						
5	840.033M	27.8	+0.0	+0.3	+1.5	-27.6	+0.0	33.0	71.5	-38.5	Vert
			+1.8	+5.9	+23.3						
6	946.288M	22.9	+0.0	+0.4	+1.6	-27.2	+0.0	30.5	71.5	-41.0	Vert
	QP		+2.0	+5.9	+24.9						
^	946.288M	28.0	+0.0	+0.4	+1.6	-27.2	+0.0	35.6	71.5	-35.9	Vert
			+2.0	+5.9	+24.9						
8	524.700M	28.8	+0.0	+0.3	+1.2	-28.2	+0.0	29.5	71.5	-42.0	Vert
			+1.4	+5.9	+20.1						
9	208.800M	28.3	+0.0	+0.2	+0.7	-27.2	+0.0	19.3	71.5	-52.2	Vert
			+0.8	+5.9	+10.6						
10	31.190M	24.0	+0.0	+0.1	+0.3	-28.0	+0.0	17.9	71.5	-53.6	Vert
	QP		+0.3	+5.9	+15.3						
^	31.190M	28.4	+0.0	+0.1	+0.3	-28.0	+0.0	22.3	71.5	-49.2	Vert
			+0.3	+5.9	+15.3						
12	42.740M	29.2	+0.0	+0.1	+0.3	-27.9	+0.0	17.0	71.5	-54.5	Vert
			+0.3	+5.9	+9.1						
13	55.200M	31.0	+0.0	+0.1	+0.4	-27.9	+0.0	16.4	71.5	-55.1	Vert
			+0.4	+5.9	+6.5						

Page 37 of 54 Report No.: 101777-10

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362) Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices) Customer:

of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China

15.247(d) / 15.209 Radiated Spurious Emissions Specification:

Work Order #: 101777 Date: 11/13/2018 Test Type: **Maximized Emissions** Time: 12:21:01 Tested By: Sequence#: 16 Michael Atkinson

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N Configuration 2

Support Equipment:

Device Manufacturer Model # S/N Configuration 2

Test Conditions / Notes:

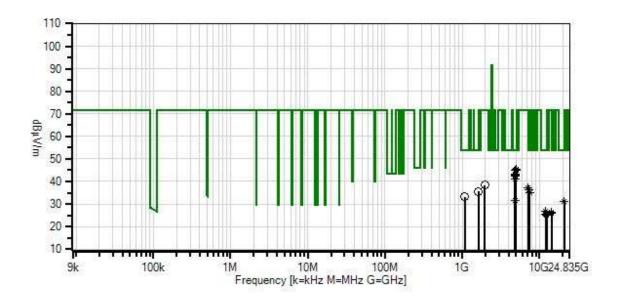
Temperature: 19-23°C Humidity: 30-40% Pressure: 102.5-104kPa

Frequency: 1-25GHz

Setup: The EUT is continuously transmitting with modulation.

Low, Mid, and High investigated, X, Y, and Z EUT axes investigated, worst case reported.

Fresh charged battery installed.


Test Location: Bothell Lab C3

ANSI C63.10 (2013), KDB 558074 (v05 August 2018) Test Method:

Report No.: 101777-10

Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices) of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China WO#: 101777 Sequence#: 16 Date: 11/13/2018 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

- Readings
- × QP Readings
 ▼ Ambient
- 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings Software Version: 5.03.11

Page 39 of 54 Report No.: 101777-10

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T2	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T5	ANP06503	Cable	32026-29801-	3/13/2018	3/13/2020
			29801-36		
T6	AN01467	Horn Antenna-ANSI	3115	7/21/2017	7/21/2019
		C63.5 Calibration			
T7	AN02741	Active Horn	AMFW-5F-	3/30/2017	3/30/2019
		Antenna	12001800-20-10P		
Т8	AN02763-69	Waveguide	Multiple	4/23/2018	4/23/2020
Т9	ANP06678	Cable	32026-29801-	3/13/2018	3/13/2020
			29801-144		
T10	AN03122	Cable	32026-2-29801-36	3/13/2018	3/13/2020
T11	AN02742	Horn Antenna	MWH-1826/B	10/16/2018	10/16/2020

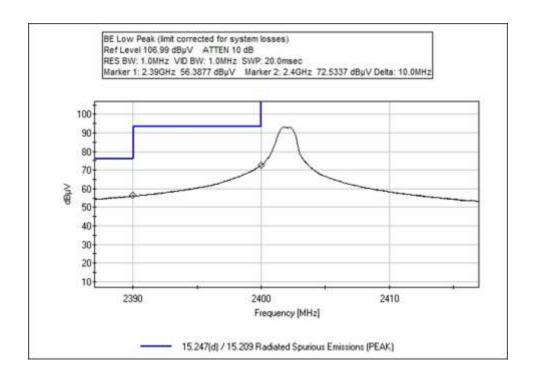
Meas	urement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters	}	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4960.030M	40.0	+0.0	+0.5	+4.2	-33.2	+0.0	45.6	54.0	-8.4	Horiz
	Ave		+1.6	+32.5	+0.0	+0.0			High		
			+0.0	+0.0	+0.0						
_	4960.030M	48.7	+0.0	+0.5	+4.2	-33.2	+0.0	54.3	54.0	+0.3	Horiz
			+1.6	+32.5	+0.0	+0.0			High		
			+0.0	+0.0	+0.0				•		
3	4880.020M	39.4	+0.0	+0.5	+4.2	-33.2	+0.0	44.9	54.0	-9.1	Horiz
	Ave		+1.6	+32.4	+0.0	+0.0			Mid		
			+0.0	+0.0	+0.0						
	4880.020M	47.6	+0.0	+0.5	+4.2	-33.2	+0.0	53.1	54.0	-0.9	Horiz
			+1.6	+32.4	+0.0	+0.0			Mid		
			+0.0	+0.0	+0.0						
5	4959.530M	39.2	+0.0	+0.5	+4.2	-33.2	+0.0	44.8	54.0	-9.2	Horiz
	Ave		+1.6	+32.5	+0.0	+0.0			High		
			+0.0	+0.0	+0.0				_		
/	4959.530M	48.9	+0.0	+0.5	+4.2	-33.2	+0.0	54.5	54.0	+0.5	Horiz
			+1.6	+32.5	+0.0	+0.0			High		
			+0.0	+0.0	+0.0				-		

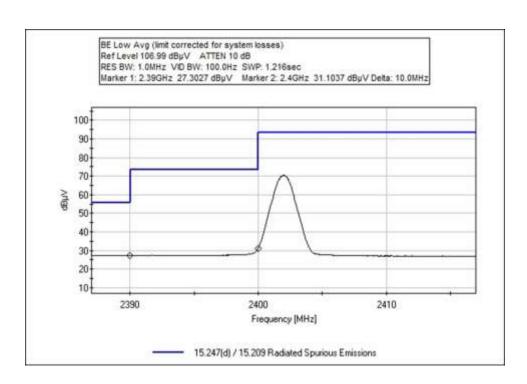
Page 40 of 54 Report No.: 101777-10

7 4970 44034	27.0	· O. O	.0.5	. 1.2	22.2	.00	12.4	510	10.6	II
7 4879.440M	37.9	$+0.0 \\ +1.6$	+0.5 +32.4	$+4.2 \\ +0.0$	-33.2 +0.0	+0.0	45.4	54.0 Mid	-10.6	Horiz
Ave		+1.0 +0.0	+32.4	+0.0 +0.0	+0.0			IVIIU		
^ 4879.440M	48.7	+0.0	+0.0	+4.2	-33.2	+0.0	54.2	54.0	+0.2	Horiz
40/7.44UM	40./	+0.0 +1.6	+0.5	+4.2	-33.2 +0.0	±0.0	54.2	Mid	+0.∠	110112
			+0.0	+0.0	+0.0			IVIIU		
9 4804.050M	38.0	+0.0	+0.5	+4.1	-33.2	+0.0	13.2	54.0	-10.8	Horiz
9 4804.050M	38.0	+0.0	+32.3	+4.1 +0.0	-33.2 +0.0	+0.0	43.2	Low	-10.8	HOUZ
Ave		+1.3 +0.0	+32.3	+0.0 +0.0	+0.0			LUW		
^ 4804.000M	46.4	+0.0	+0.5	+4.1	-33.2	+0.0	51.6	54.0	-2.4	Horiz
+004.000101	40.4	+0.0	+32.3	+4.1 +0.0	+0.0	+0.0	51.0	Low	-2.4	110112
		+0.0	+0.0	+0.0	10.0			LOW		
11 4803.600M	37.6	+0.0	+0.5	+4.1	-33.2	+0.0	42.8	54.0	-11.2	Horiz
Ave	57.0	+0.0	+32.3	+4.1 +0.0	+0.0	10.0	7∠.0	Low	-11.4	TIOTIZ
1110		+0.0	+0.0	+0.0	10.0			1 0 W		
12 4804.078M	37.0	+0.0	+0.5	+4.1	-33.2	+0.0	42.2	54.0	-11.8	Vert
Ave	31.0	+0.0	+32.3	+4.1 +0.0	+0.0	10.0	74.4	Low	-11.0	v CI t
1110			+0.0	+0.0	10.0			20 11		
13 4803.480M	36.0	+0.0	+0.5	+4.1	-33.2	+0.0	41 2	54.0	-12.8	Vert
Ave	50.0	+1.5	+32.3	+0.0	+0.0	7 0.0	11.4	Low	12.0	, 011
1110			+0.0	+0.0	10.0			2011		
^ 4803.480M	45.9	+0.0	+0.5	+4.1	-33.2	+0.0	51.1	54.0	-2.9	Vert
1000. FOOTVI	,	+1.5	+32.3	+0.0	+0.0	. 5.0	J 1.1	Low	2.7	. 011
		+0.0	+0.0	+0.0	0					
15 7319.340M	25.7	+0.0	+0.9	+5.4	-34.1	+0.0	36.5	54.0	-17.5	Horiz
Ave	20.7	+2.1	+36.5	+0.0	+0.0			Mid		
		+0.0	+0.0	+0.0	0					
^ 7319.340M	36.8	+0.0	+0.9	+5.4	-34.1	+0.0	47.6	54.0	-6.4	Horiz
	2.2.0	+2.1	+36.5	+0.0	+0.0			Mid	~··	
		+0.0	+0.0	+0.0						
17 1620.000M	41.4	+0.0	+0.4	+2.2	-34.8	+0.0	35.5	54.0	-18.5	Horiz
	== *	+0.6	+25.7	+0.0	+0.0				~	
			+0.0	+0.0						
18 7439.760M	23.9	+0.0	+1.1	+5.5	-34.4	+0.0	35.1	54.0	-18.9	Horiz
Ave	= +5	+2.2	+36.8	+0.0	+0.0			High	- **	_
		+0.0	+0.0	+0.0	-			•		
^ 7439.760M	34.0	+0.0	+1.1	+5.5	-34.4	+0.0	45.2	54.0	-8.8	Horiz
	. •	+2.2	+36.8	+0.0	+0.0		- /-	High		_
		+0.0	+0.0	+0.0	-			C		
20 1088.000M	42.6	+0.0	+0.4	+1.8	-36.4	+0.0	33.1	54.0	-20.9	Horiz
33.33311	== -	+0.5	+24.2	+0.0	+0.0				***	
		+0.0	+0.0	+0.0						

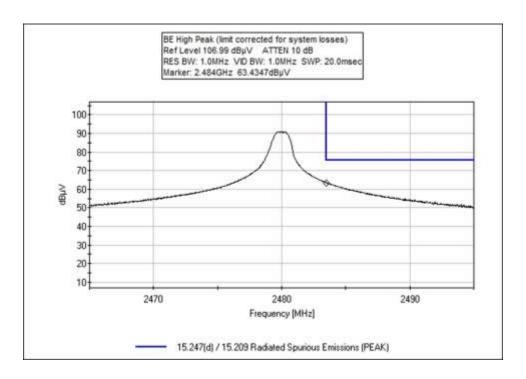
21 4803.600M	26.2	+0.0	+0.5	+4.1	-33.2	+0.0	31.4	54.0	-22.6	Horiz
Ave		+1.5	+32.3	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 4803.600M	47.5	+0.0	+0.5	+4.1	-33.2	+0.0	52.7		-1.3	Horiz
		+1.5	+32.3	+0.0	+0.0			Low		
		+0.0	+0.0	+0.0						
23 21000.600	32.3	+0.0	+0.0	+0.0	+0.0	+0.0	31.0	54.0	-23.0	Vert
M		+0.0	+0.0	+0.0	+2.0					
Ave		+8.8	+2.3	-14.4						
^ 21000.600	41.1	+0.0	+0.0	+0.0	+0.0	+0.0	39.8	54.0	-14.2	Vert
M		+0.0	+0.0	+0.0	+2.0					
		+8.8	+2.3	-14.4						
25 12008.890	32.1	+0.0	+1.0	+6.8	+0.0	+0.0	26.6	54.0	-27.4	Vert
M		+0.0	+0.0	-13.3	+0.0					
Ave		+0.0	+0.0	+0.0				Low		
^ 12008.890	41.3	+0.0	+1.0	+6.8	+0.0	+0.0	35.8	54.0	-18.2	Vert
M		+0.0	+0.0	-13.3	+0.0					
		+0.0	+0.0	+0.0				Low		
27 12198.760	30.8	+0.0	+1.0	+6.9	+0.0	+0.0	25.6	54.0	-28.4	Vert
M		+0.0	+0.0	-13.1	+0.0					
Ave		+0.0	+0.0	+0.0				Mid		
^ 12198.760	41.1	+0.0	+1.0	+6.9		+0.0	35.9	54.0	-18.1	Vert
M		+0.0	+0.0	-13.1	+0.0					
		+0.0	+0.0	+0.0				Mid		
29 12008.860	30.9	+0.0	+1.0	+6.8	+0.0	+0.0	25.4	54.0	-28.6	Horiz
M		+0.0	+0.0	-13.3	+0.0					
Ave		+0.0	+0.0	+0.0				Low		
^ 12008.860	39.3	+0.0	+1.0	+6.8	+0.0	+0.0	33.8	54.0	-20.2	Horiz
M		+0.0	+0.0	-13.3	+0.0					
		+0.0	+0.0	+0.0				Low		
31 12401.120	30.3	+0.0	+1.1	+7.0	+0.0	+0.0	25.0	54.0	-29.0	Vert
M		+0.0	+0.0	-13.4	+0.0					
Ave		+0.0	+0.0	+0.0				High		
^ 12401.120	40.3	+0.0	+1.1	+7.0	+0.0	+0.0		54.0	-19.0	Vert
M		+0.0	+0.0	-13.4	+0.0					
		+0.0	+0.0	+0.0				High		
33 1952.000M	41.5	+0.0	+0.3	+2.4		+0.0	38.4	71.5	-33.1	Vert
		+0.8	+27.8	+0.0	+0.0			-		
		+0.0	+0.0	+0.0						
-										

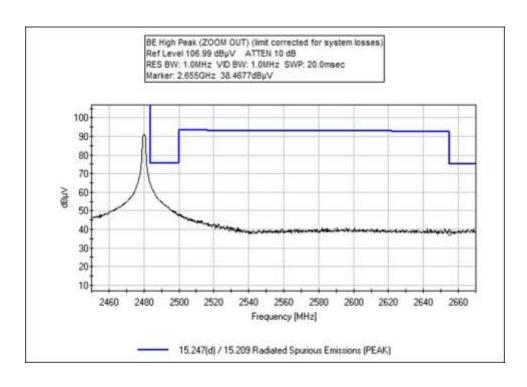
34 7205.290M	26.9	+0.0	+0.7	+5.3	-33.9	+0.0	37.3	71.5	-34.2	Horiz
Ave		+2.1	+36.2	+0.0	+0.0			Low		
		+0.0	+0.0	+0.0						
^ 7205.290M	39.4	+0.0	+0.7	+5.3	-33.9	+0.0	49.8	71.5	-21.7	Horiz
		+2.1	+36.2	+0.0	+0.0			Low		
		+0.0	+0.0	+0.0						
36 14410.900	32.3	+0.0	+0.7	+8.0	+0.0	+0.0	26.4	71.5	-45.1	Vert
M		+0.0	+0.0	-14.6	+0.0					
Ave		+0.0	+0.0	+0.0				Low		
^ 14410.900	43.8	+0.0	+0.7	+8.0	+0.0	+0.0	37.9	71.5	-33.6	Vert
M		+0.0	+0.0	-14.6	+0.0					
		+0.0	+0.0	+0.0				Low		
38 14410.710	31.7	+0.0	+0.7	+8.0	+0.0	+0.0	25.8	71.5	-45.7	Horiz
M		+0.0	+0.0	-14.6	+0.0					
Ave		+0.0	+0.0	+0.0				Low		
^ 14410.710	42.5	+0.0	+0.7	+8.0	+0.0	+0.0	36.6	71.5	-34.9	Horiz
M		+0.0	+0.0	-14.6	+0.0					
		+0.0	+0.0	+0.0				Low		

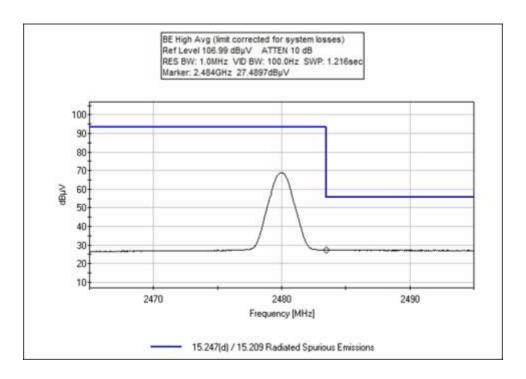

Band Edge

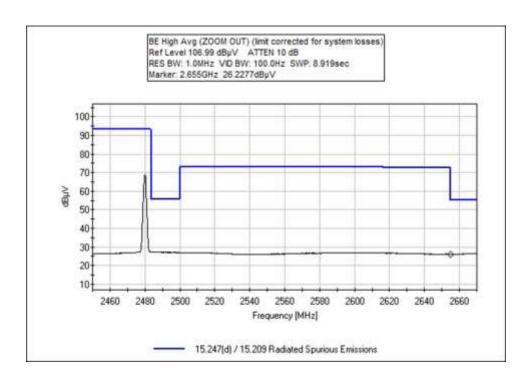

Band Edge Summary										
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results					
2390.0 (PEAK)	GFSK	Internal Trace, 1dBi	54.5	<74	Pass					
2390.0 (AVE)	GFSK	Internal Trace, 1dBi	25.4	<54	Pass					
2400.0 (PEAK)	GFSK	Internal Trace, 1dBi	70.6	<91.5	Pass					
2400.0 (AVE)	GFSK	Internal Trace, 1dBi	29.2	<71.5	Pass					
2483.5 (PEAK)	GFSK	Internal Trace, 1dBi	61.6	<74	Pass					
2483.5 (AVE)	GFSK	Internal Trace, 1dBi	25.7	<54	Pass					

Page 44 of 54 Report No.: 101777-10




Band Edge Plots





Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362) Customer: Conceived and designed by: Pacific Bioscience Laboratories, Inc. (L'Oreal Beauty Devices)

of Redmond, WA US / Manufactured by: Jabil Circuit (Guangzhou) Co., LTD. China

15.247(d) / 15.209 Radiated Spurious Emissions Specification:

Work Order #: 101777 Date: 11/13/2018 Test Type: **Maximized Emissions** Time: 15:30:45 Tested By: Michael Atkinson Sequence#: 17

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N Configuration 2

Support Equipment:

Device Manufacturer Model # S/N Configuration 2

Test Conditions / Notes:

Temperature: 19-23°C Humidity: 30-40% Pressure: 102.5-104kPa

Frequency: Band Edge

Setup: The EUT is continuously transmitting with modulation.

Low, Mid, and High investigated, X, Y, and Z EUT axes investigated, worst case reported.

Fresh charged battery installed.

Test Location: Bothell Lab C3

ANSI C63.10 (2013), KDB 558074 (v05 August 2018) Test Method:

Page 48 of 54

Report No.: 101777-10

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2017	2/3/2019
T2	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T5	ANP06503	Cable	32026-29801-	3/13/2018	3/13/2020
			29801-36		
T6	AN01467	Horn Antenna-ANSI	3115	7/21/2017	7/21/2019
		C63.5 Calibration			

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	2483.500M	27.5	+0.0	+0.4	+2.7	-34.0	+0.0	25.7	54.0	-28.3	Horiz
	Ave		+1.0	+28.1							
^	2483.500M	63.4	+0.0	+0.4	+2.7	-34.0	+0.0	61.6	74.0	-12.4	Horiz
			+1.0	+28.1							
3	2390.000M	27.3	+0.0	+0.4	+2.6	-34.0	+0.0	25.4	54.0	-28.6	Horiz
	Ave		+1.0	+28.1							
^	2390.000M	56.4	+0.0	+0.4	+2.6	-34.0	+0.0	54.5	74.0	-19.5	Horiz
			+1.0	+28.1							
5	2400.000M	31.1	+0.0	+0.4	+2.6	-34.0	+0.0	29.2	71.5	-42.3	Horiz
	Ave		+1.0	+28.1							
^	2400.000M	72.5	+0.0	+0.4	+2.6	-34.0	+0.0	70.6	91.5	-20.9	Horiz
			+1.0	+28.1							

Page 49 of 54 Report No.: 101777-10

Test Setup Photos

Below 1GHz

Above 1GHz, Cone placement

X Axis

Y Axis

Z Axis

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS									
	Meter reading	(dBμV)								
+	Antenna Factor	(dB/m)								
+	Cable Loss	(dB)								
-	Distance Correction	(dB)								
-	Preamplifier Gain	(dB)								
=	Corrected Reading	(dBμV/m)								

Page 53 of 54 Report No.: 101777-10

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 54 of 54 Report No.: 101777-10