	と 決り CHNOLOGY					
	TEST REPOR	Τ				
FCC ID :	2A2Y8-FORZA60C					
Test Report No:	TCT220421E025					
Date of issue:	May 09, 2022					
Testing laboratory::	SHENZHEN TONGCE TESTING	LAB				
Testing location/ address:	TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China					
Applicant's name::	Guangdong Nanguang Photo & V					
Address:	DONGLI SECTION, HIGHWAY 3 CITY, GUANGDONG PROVINCE					
Manufacturer's name :	Guangdong Nanguang Photo & V					
Address:	DONGLI SECTION, HIGHWAY 3 CITY, GUANGDONG PROVINCE					
Standard(s):	FCC CFR Title 47 Part 15 Subpa FCC KDB 558074 D01 15.247 M ANSI C63.10:2013	art C Section 15.247				
Product Name::	LED RGBLAC Spot Light					
Trade Mark:	N/A ()					
Model/Type reference:	Forza 60C					
Rating(s):	Adapter Information: MODEL: FJ-SW2025G1506000D INPUT: AC 100-240V, 50/60Hz, 2 OUTPUT: DC 15.0V, 6.0A, 90.0V LED module: 88W	2.0A Max				
Date of receipt of test item	Apr. 21, 2022					
Date (s) of performance of test:	Apr. 21, 2022 ~ May 09, 2022					
Tested by (+signature) :	Rleo LIU	Pres Un TONGCED				
Check by (+signature) :	Beryl ZHAO	Boy 12 TCT				
Approved by (+signature):	Tomsin	Tomsm 40 00				
TONGCE TESTING LAB. Th	oduced except in full, without the his document may be altered or re ly, and shall be noted in the revisi apply to the tested sample.	evised by SHENZHEN TONGCE				

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1.	General Product Information	3
	1.2. Model(s) list	
	1.3 Operation Frequency	3
2.	Test Result Summary	4
3.	General Information	5
	3.1. Test environment and mode	
	3.2. Description of Support Units	5
4.	Facilities and Accreditations	6
	4.1. Facilities	6
	4.2. Location	6
	4.3. Measurement Uncertainty	
5.	Test Results and Measurement Data	7
	5.1. Antenna requirement	7
	5.2. Conducted Emission	8
	5.3. Conducted Output Power	12
	5.4. Emission Bandwidth	
	5.5. Power Spectral Density	14
	5.6. Conducted Band Edge and Spurious Emission Measurement	15
	5.7. Radiated Spurious Emission Measurement	17
Α	ppendix A: Test Result of Conducted Test	
Α	ppendix B: Photographs of Test Setup	
	Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	LED RGBLAC Spot Light	
Model/Type reference:		
Sample Number	TCT220421E025-0101	
Bluetooth Version:	V5.0	$\langle \mathcal{C} \rangle$
Operation Frequency:	2402MHz~2480MHz	
Channel Separation:	2MHz	
Data Rate:	LE 1M PHY, LE 2M PHY	
Number of Channel:	40	
Modulation Type:	GFSK	
Antenna Type:	PCB Antenna	
Antenna Gain:	2dBi	(\mathcal{C})
Rating(s):	Adapter Information: MODEL: FJ-SW2025G1506000D INPUT: AC 100-240V, 50/60Hz, 2.0A Max OUTPUT: DC 15.0V, 6.0A, 90.0W LED module: 88W	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	- 30	2462MHz
(C))1	2404MHz) 11	2424MHz	21	2444MHz	31	2464MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Channel 0, 1	9 & 39 ha	ave been tes	sted.			

Report No.: TCT220421E025

Page 3 of 65

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

5. After pre-testing the two earphones, the two earphones are left and right ears respectively; we found that the left earphone is the worst case, so the results are recorded in this report.

3. General Information

3.1. Test environment and mode

Operating Environment:							
Condition	Conducted Emission	Radiated Emission					
Temperature:	23.7 °C	24.3 °C					
Humidity:	53 % RH	45 % RH					
Atmospheric Pressure:	heric Pressure: 1010 mbar 1010 mbar						
Test Software:							
Software Information:	notifucation_helper						
Power Level:	Defaulted						
Test Mode:							
Engineering mode: Keep the EUT in continuous transmitting by select channel							
above the ground plane of 3	m chamber. Measurements i	ment below & above 1GHz n both horizontal and vertical n was maximized by: having					

the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
				1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

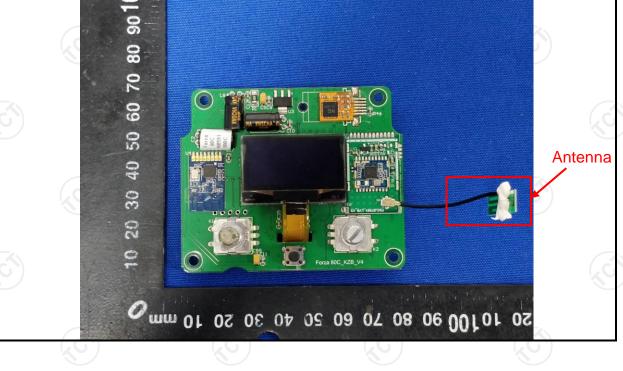
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	🕘 ± 4.22 dB 🌜
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

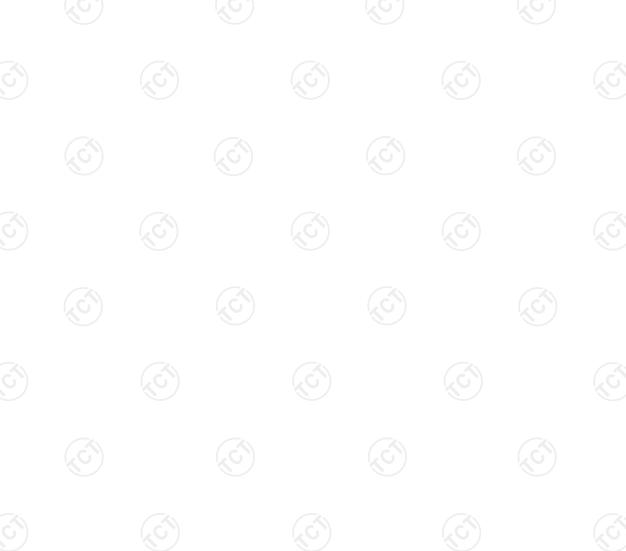
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 2dBi.

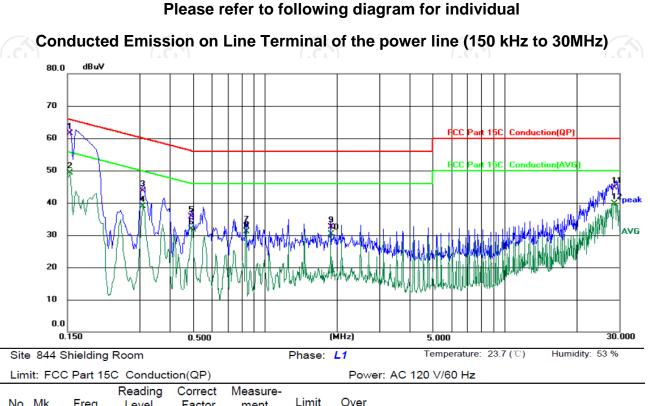
5.2. Conducted Emission


5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	No.
Test Method:	ANSI C63.10:2013		
Frequency Range:	150 kHz to 30 MHz	(C)	
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto
	Frequency range	Limit (dBuV)
	(MHz)	Quasi-peak	Average
Limits:	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	Refere	nce Plane	
Test Setup:	E.U.T Adap Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	ne	
Test Mode:	Transmitting Mode		
Test Procedure:	 The E.U.T is connerimpedance stabilizy provides a 500hm/s measuring equipme The peripheral device power through a Licoupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables and the provide a cables of the provide a cables. 	zation network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm terr diagram of the line are checke nce. In order to fi e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the mains a 50ohm/50uh nination. (Please test setup and ed for maximum nd the maximum upment and all o ged according to
	ANSI C63.10:2013 (on conducted mea	asurement.
Test Result:	ANSI C63.10:2013 (PASS	on conducted mea	asurement.

Page 8 of 65

5.2.2. Test Instruments


Conducted Emission Shielding Room Test Site (843)											
Equipment	Manufacturer	Model	Serial Number	er Calibration Due							
EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022							
Line Impedance Stabilisation Newtork(LISN)	n Schwarzbeck NSLK 8126		8126453	Feb. 24, 2023							
Line-5	Line-5 TCT		N/A	Jul. 07, 2022							
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A							

Page 9 of 65

5.2.3. Test data

TCT通测检测 TECT通测检测

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1539	51.91	9.59	61.50	65.79	-4.29	QP	
2		0.1539	39.66	9.59	49.25	55.79	-6.54	AVG	
3		0.3100	34.03	9.60	43.63	59.97	-16.34	QP	
4		0.3100	29.27	9.60	38.87	49.97	-11.10	AVG	
5		0.4939	26.09	9.69	35.78	56.10	-20.32	QP	
6		0.4939	22.23	9.69	31.92	46.10	-14.18	AVG	
7		0.8338	22.91	9.74	32.65	56.00	-23.35	QP	
8		0.8338	21.40	9.74	31.14	46.00	-14.86	AVG	
9		1.8778	22.71	9.86	32.57	56.00	-23.43	QP	
10		1.8778	20.52	9.86	30.38	46.00	-15.62	AVG	
11		28.6060	35.12	9.63	44.75	60.00	-15.25	QP	
12		28.6060	30.12	9.63	39.75	50.00	-10.25	AVG	

Note:

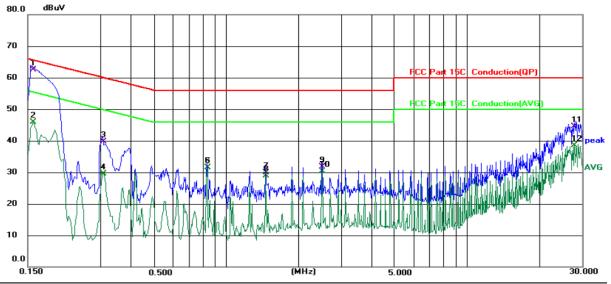
Freq. = Emission frequency in MHz

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$

 $Limit (dB\mu V) = Limit stated in standard$


Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Report No.: TCT220421E025

Power: AC 120 V/60 Hz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding RoomPhase: NTemperature: 23.7 (°C)Humidity: 53 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1580	52.81	9.69	62.50	65.57	-3.07	QP	
2		0.1580	36.28	9.69	45.97	55.57	-9.60	AVG	
3		0.3100	30.04	9.60	39.64	59.97	-20.33	QP	
4		0.3100	19.87	9.60	29.47	49.97	-20.50	AVG	
5		0.8338	21.68	9.74	31.42	56.00	-24.58	QP	
6		0.8338	21.76	9.74	31.50	46.00	-14.50	AVG	
7		1.4578	20.11	9.75	29.86	56.00	-26.14	QP	
8		1.4578	19.20	9.75	28.95	46.00	-17.05	AVG	
9		2.5019	21.90	9.77	31.67	56.00	-24.33	QP	
10		2.5019	20.62	9.77	30.39	46.00	-15.61	AVG	
11		27.9618	34.86	9.72	44.58	60.00	-15.42	QP	
12		27.9618	28.85	9.72	38.57	50.00	-11.43	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

TCT通测检测 TCT通测检测

Limit: FCC Part 15C Conduction(QP)

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	30dBm					
Test Setup:						
Test Mode:	Refer to item 3.1					
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 					
Test Result:	PASS					

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Model No. Serial Number		
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022	
Combiner Box	Combiner Box Ascentest AT890-F		N/A	Jul. 07, 2022	

Page 12 of 65

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No. Serial Nun		Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e) KDB 558074 D01 v05r02					
Test Method:						
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.					
Test Setup:						
	Spectrum Analyzer EUT					
Test Mode:	Refer to item 3.1					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 					
Test Result:	PASS					

5.5.2. Test Instruments

Name	Manufacturer	Manufacturer Model No. Serial Numbe		Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

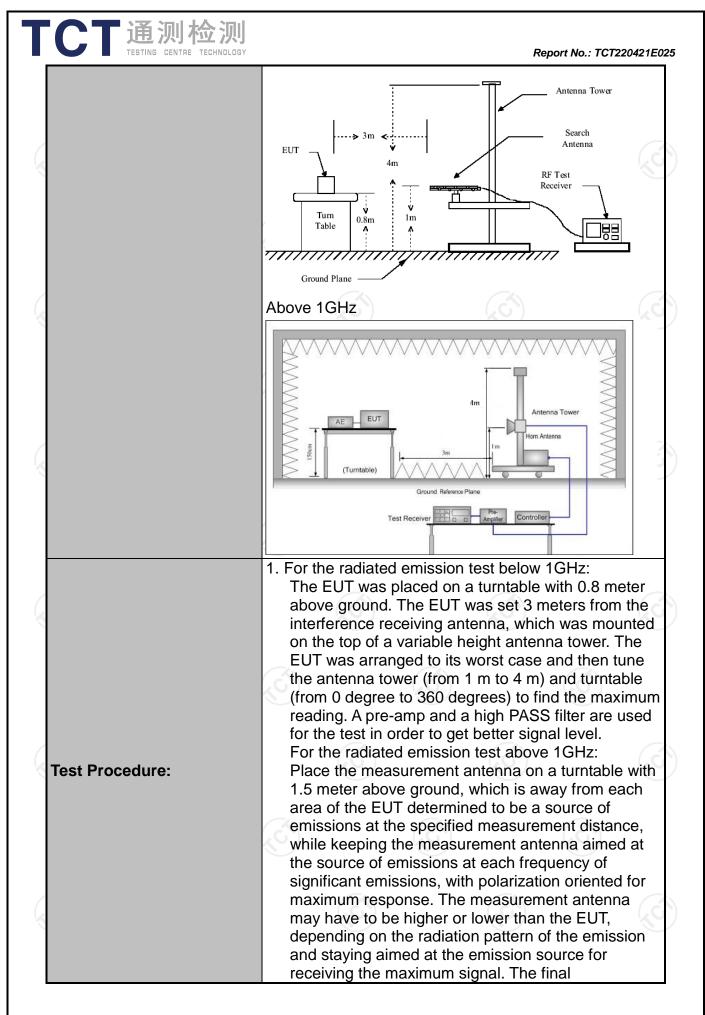
5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5.6.2. Test Instruments

_	Name	Manufacture	r Model No.	Serial Number	Calibration Due
Spectrum Analyzer Combiner Box		Agilent	N9020A	MY49100619	Jul. 18, 2022
		Ascentest	AT890-RFB	N/A	Jul. 07, 2022

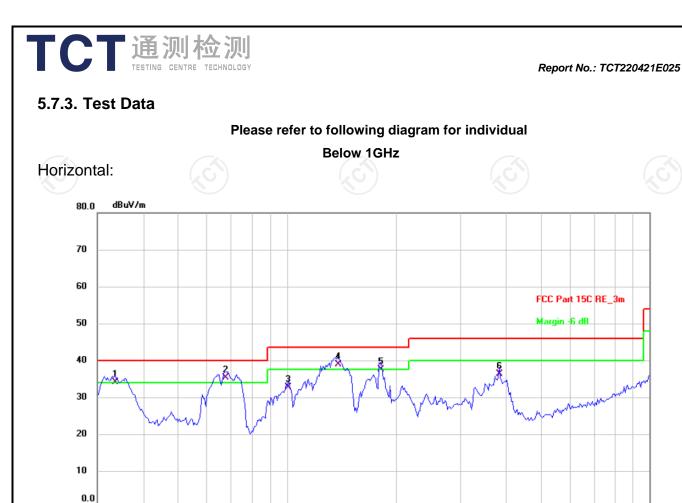

5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Frequency Range:	9 kHz to 25 GHz						
Measurement Distance:	3 m						
Antenna Polarization:	Horizontal & Vertical Refer to item 3.1						
Operation mode:							
	Frequency Dete 9kHz- 150kHz Quasi-			VBW 1kHz	Remark Quasi-peak Value		
Receiver Setup:	150kHz- 30MHz	Quasi-pea	k 9kHz	30kHz	Quasi-peak Value		
	30MHz-1GHz	Quasi-pea		300KHz	Quasi-peak Value		
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value		
	Frequen	су	Field Stre (microvolts		Measurement Distance (meters		
	0.009-0.4		2400/F(I		300		
	0.490-1.705		24000/F(30	(KHz)	30		
	1.705-3		100		30		
	88-216		150		3		
Limit:	216-96	0	200	3			
	Above 9	500	3				
	Frequency		Field Strength (microvolts/meter)		ment ce Detector rs)		
	Above 1CH	, (500		Average		
	Above 1GHz 5000			3	Peak		
	For radiated	emission	s below 30	OMHz			
	Distance = 3m Computer						
	Pre -Amplifier						
Test setup:	0.8m Turn table						
	30MHz to 10						

Page 17 of 65



CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT220421E
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS

5.7.2. Test Instruments

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022			
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022			
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023			
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023			
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022			
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022			
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022			
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022			
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023			
Antenna Mast	Keleto	RE-AM	N/A	N/A			
Coaxial cable	SKET	RC_DC18G-N	N/A	Feb. 24, 2023			
Coaxial cable	SKET	RC-DC18G-N	N/A	Feb. 24, 2023			
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			

Site #1 3m Anechoic Chamber Limit: FCC Part 15C RE 3m

60.000

90.000

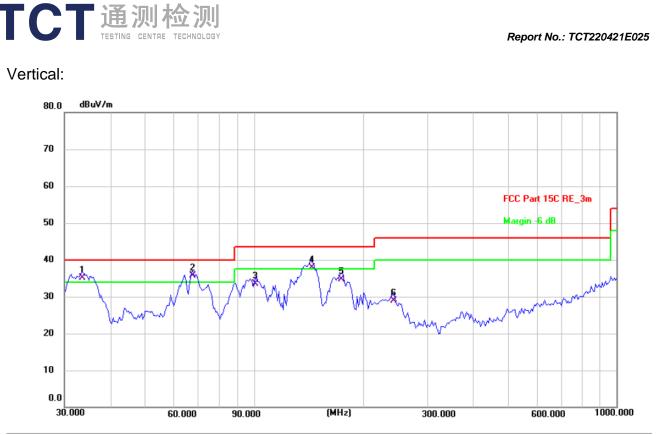
30.000

Polarization: Horizontal

300.000

(MHz)

Temperature: 24.3(C) Humidity: 45 %


600.000

1000.000

Limit:	FCC Part 150	C RE_3m	Power: AC 120 V/60 Hz						2
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 !	33.5623	21.05	12.98	34.03	40.00	-5.97	QP	Р	
2 !	67.6751	24.04	11.20	35.24	40.00	-4.76	QP	Р	
3	100.9338	22.72	9.95	32.67	43.50	-10.83	QP	Р	
4 *	138.3873	26.40	12.56	38.96	43.50	-4.54	QP	Р	
5!	180.6486	26.20	11.38	37.58	43.50	-5.92	QP	Р	
6	385.2803	20.59	15.68	36.27	46.00	-9.73	QP	Р	

 Image: Construction of the second second

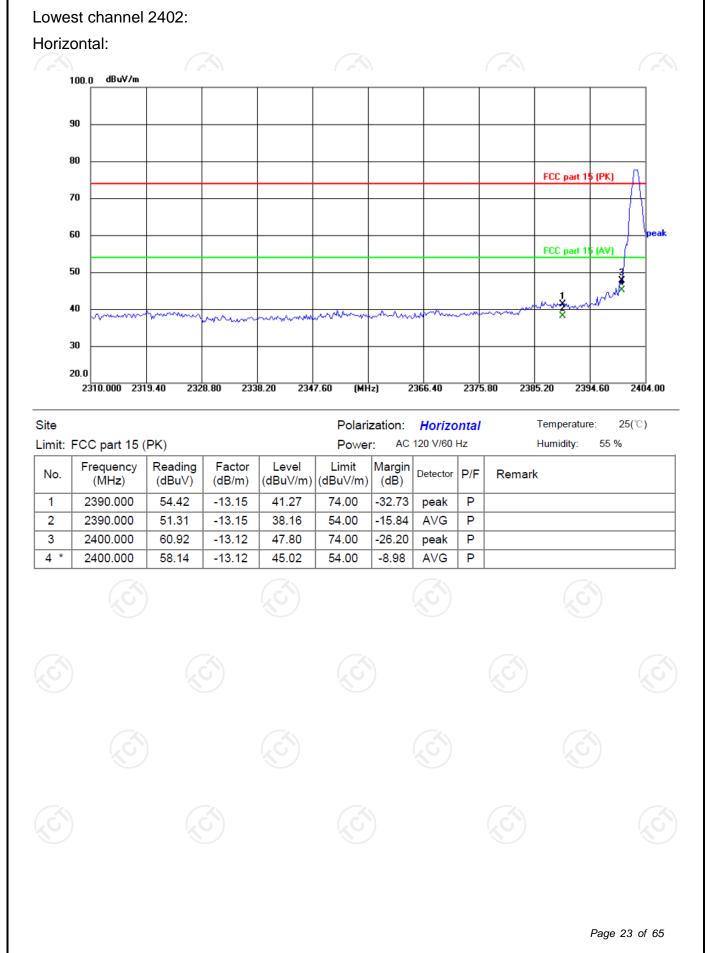
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

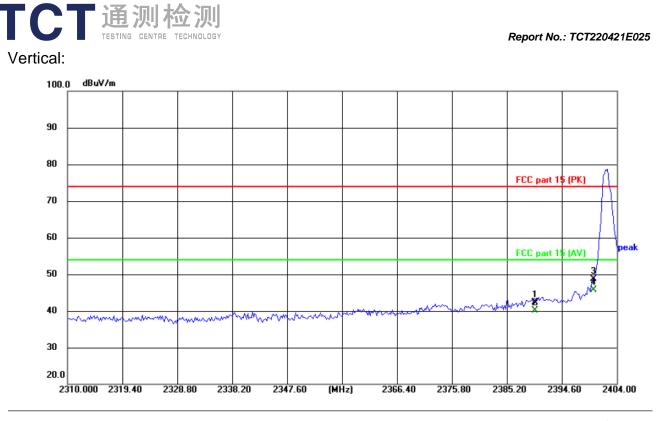
Site #	1 3m Anechoi	c Chambe	r	Polarization: Vertical				٦	Temperature:	24.3(C)	Humidity:	45 %
Limit:	FCC Part 150	Power: AC 120 V/60 Hz										
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark			
1!	33.5623	22.04	12.98	35.02	40.00	-4.98	QP	Ρ				
2 *	67.6751	24.58	11.20	35.78	40.00	-4.22	QP	Ρ				
3	100.9338	23.59	9.95	33.54	43.50	-9.96	QP	Ρ				
4 !	143.3259	25.09	12.77	37.86	43.50	-5.64	QP	Ρ				
5	174.4240	22.78	11.97	34.75	43.50	-8.75	QP	Ρ				
6	242.5252	16.73	12.23	28.96	46.00	-17.04	QP	Ρ				

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.

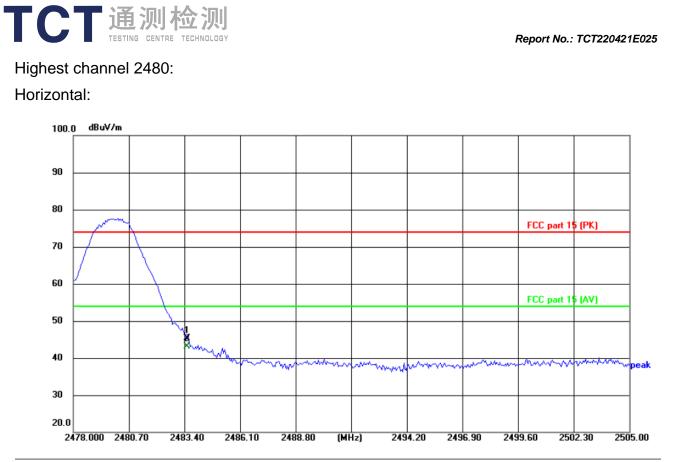
3. Freq. = Emission frequency in MHz


Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit $(dB\mu V/m) = Limit$ stated in standard Margin $(dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$ * is meaning the worst frequency has been tested in the test frequency range


Page 22 of 65

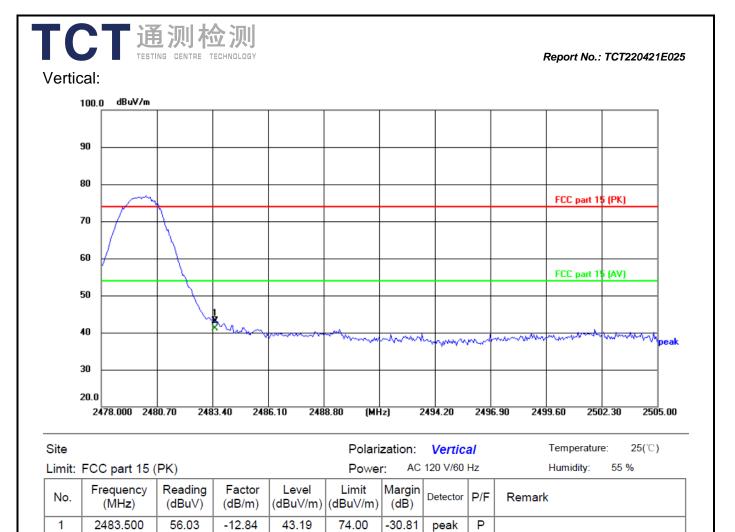
Test Result of Radiated Spurious at Band edges

TCT通测检测 TCT通测检测



Site					Polariz	ation:	Vertica	1	Temperature:	25(° ℃)
Limit: FCC part 15 (PK)					Power: AC 120 V/60 Hz			lz	Humidity: 55	%
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	2390.000	55.54	-13.15	42.39	74.00	-31.61	peak	Ρ		
2	2390.000	53.31	-13.15	40.16	54.00	-13.84	AVG	Ρ		
3	2400.000	61.81	-13.12	48.69	74.00	-25.31	peak	Ρ		
4 *	2400.000	58.75	-13.12	45.63	54.00	-8.37	AVG	Ρ		

Page 24 of 65


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Site					Polari	zation:	Horizo	ontal	Temperature: 25(°C)
Limit: FCC part 15 (PK)						Power: AC 120 V/60 Hz			Humidity: 55 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	58.19	-12.84	45.35	74.00	-28.65	peak	Ρ	
2 *	2483.500	55.90	-12.84	43.06	54.00	-10.94	AVG	Ρ	

Page 25 of 65

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Note: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

-12.97

AVG

Ρ

54.00

2 *

2483.500

53.87

-12.84

41.03

CT 通测检测 EBSTING CENTRE TECHNOLOGY Above 1GHz Low channel: 2402 MHz Frequency Ant. Pol. Peak AV Correction Emissi Frequency Ant. Pol. Peak AV Correction Emissi

Low onal	1101. 2402	111112							
Frequency	Ant Pol	Peak	AV	Correction	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBuV)	Factor (dB/m)	Peak AV (dBµV/m) (dBµV/m)			(dBµV/m)	
4804	Н	45.45		0.66	46.13		74	54	-7.87
7206	Н	36.63		9.50	46.13		74	54	-7.87
	Н								
				•					
4804	V	46.86		0.66	47.52	~	74	54	-6.48
7206	V	36.08	-420	9.50	45.58	<u> </u>	74	54	-8.42
	V								
				•		•			

Middle channel: 2440 MHz

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	Н	47.17		0.99	48.16	 74	54	-5.84
7320	Н	38.54		9.87	48.41	 74	54	-5.59
	Н			·	/	 		
			N.					
4880	V	45.30		0.99	46.29	74	54	-7.71
7320	V	35.96		9.87	45.83	 74	54	-8.17
	V					 		

High chanr	nel: 2480 N	/IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)		Margin (dB)
4960	Н	45.22	-+ 6	1.33	46.55		74	54	-7.45
7440	H	34.81		10.22	45.03		74	54	-8.97
	Н								
4960	V	44.68		1.33	46.01		74	54	-7.99
7440	V	35.49		10.22	45.71		74	54	-8.29
<u> </u>	V			/					

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

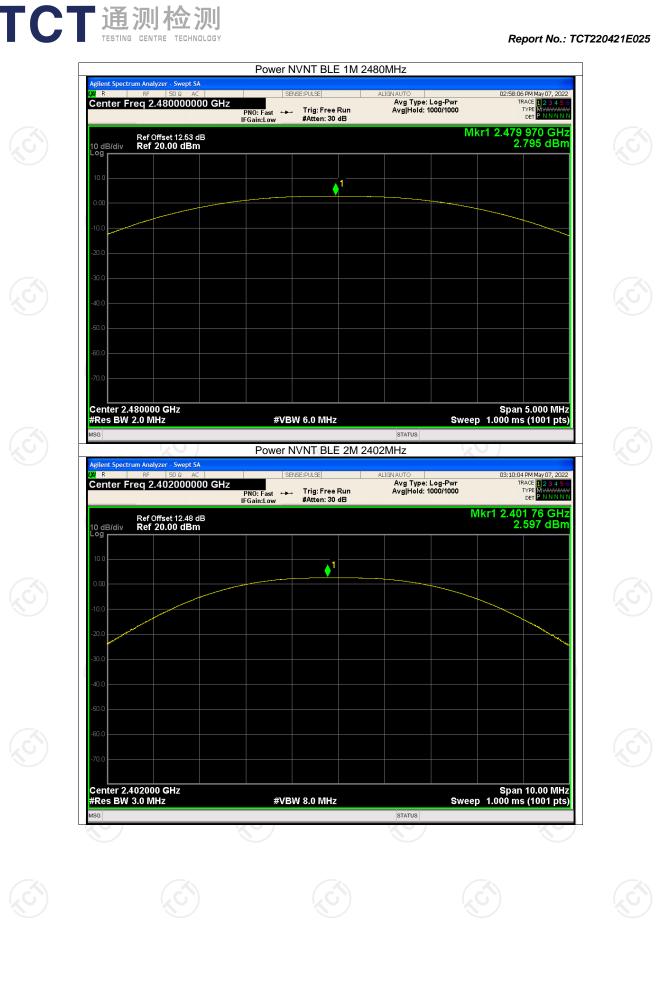
6. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

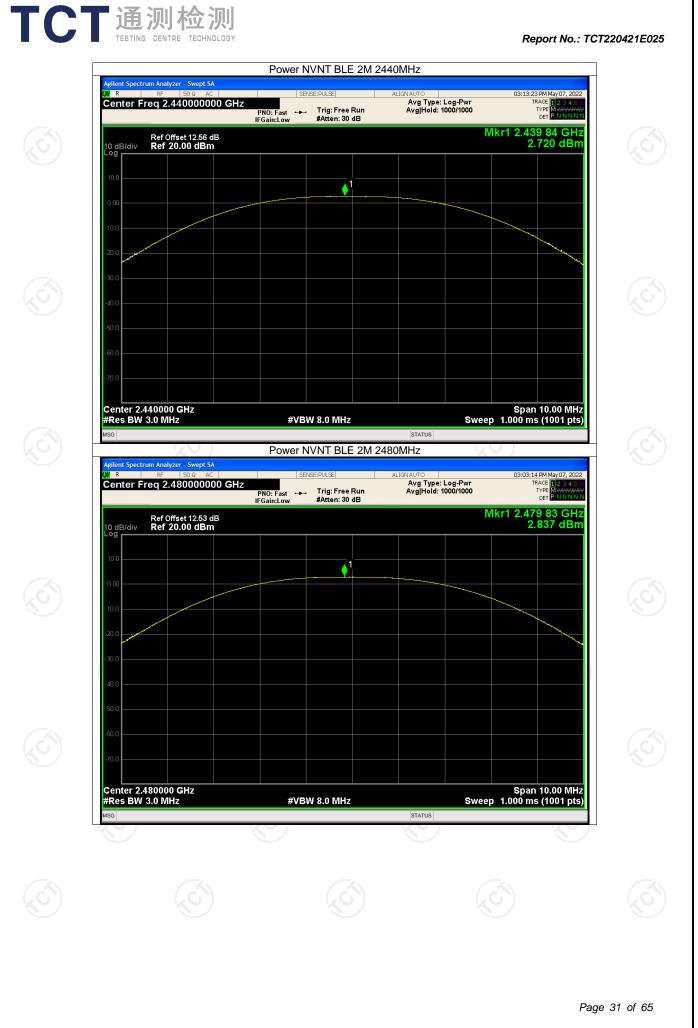
7. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power										
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict					
NVNT	BLE 1M	2402	2.569	30	Pass					
NVNT	BLE 1M	2440	2.767	30	Pass					
NVNT	BLE 1M	2480	2.795	30	Pass					
NVNT	BLE 2M	2402	2.597	30	Pass					
NVNT	BLE 2M	2440	2.720	30	Pass					
NVNT	BLE 2M	2480	2.837	30	Pass					

Page 28 of 65


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Span 5.000 MHz Sweep 1.000 ms (1001 pts)

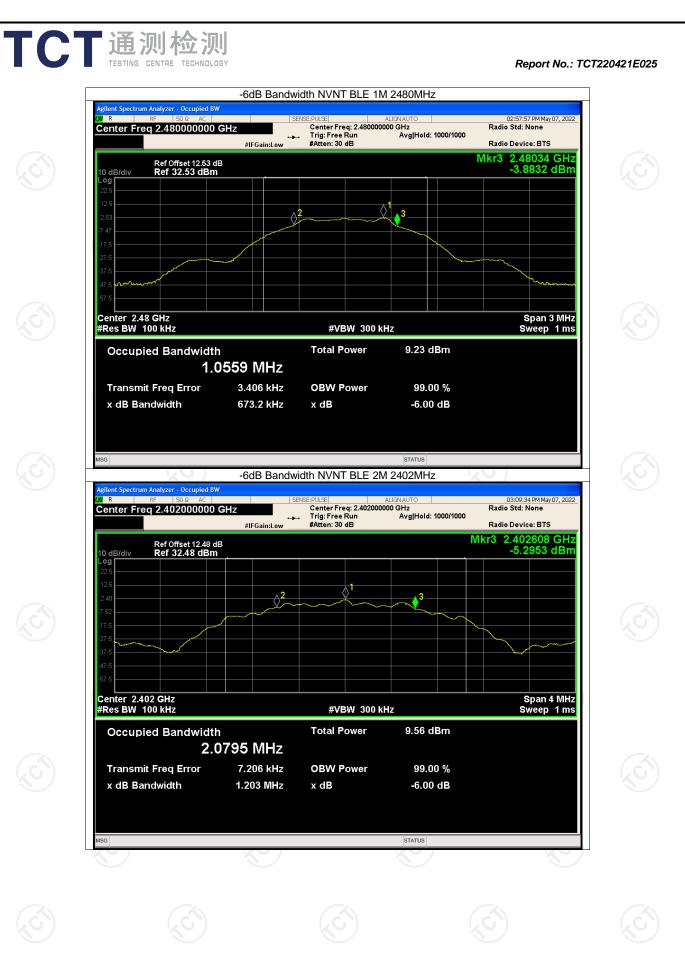
STATUS

#VBW 6.0 MHz

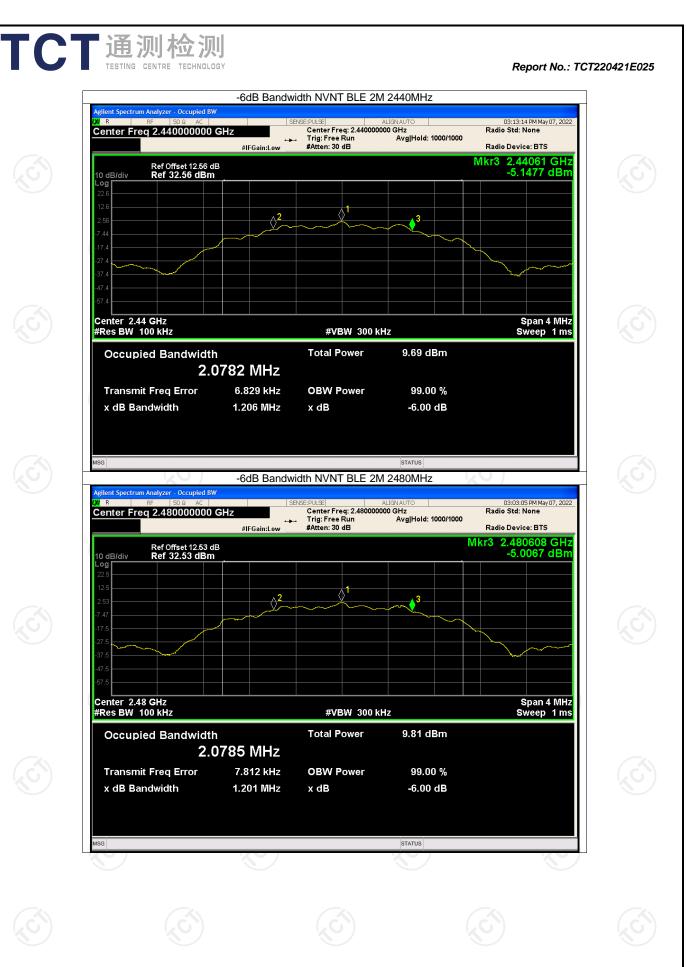
Center 2.440000 GHz #Res BW 2.0 MHz

Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict					
NVNT	BLE 1M	2402	0.672	0.5	Pass					
NVNT	BLE 1M	2440	0.675	0.5	Pass					
NVNT	BLE 1M	2480	0.673	0.5	Pass					
NVNT	BLE 2M	2402	1.203	0.5	Pass					
NVNT	BLE 2M	2440	1.206	0.5	Pass					
NVNT	BLE 2M	2480	1.201	0.5	Pass					

-6dB Bandwidth


Page	32	of	65
------	----	----	----

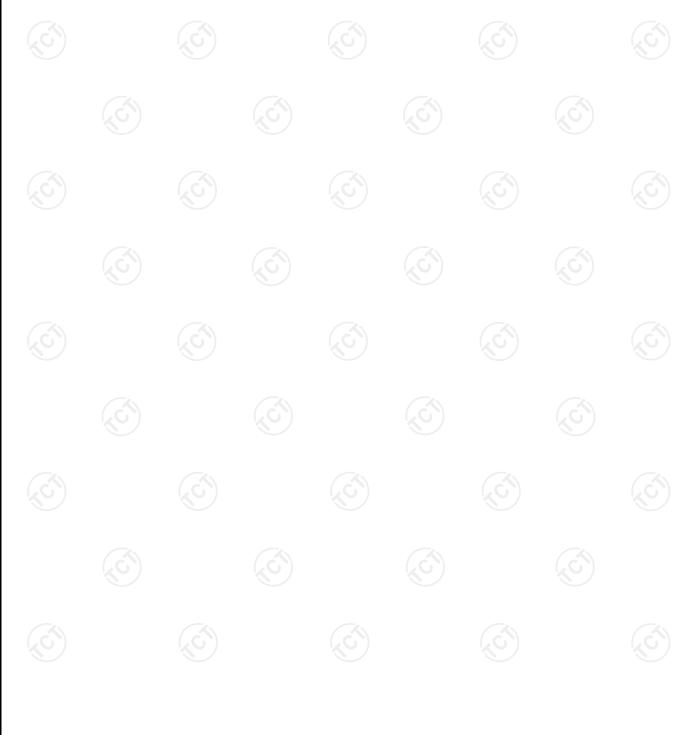
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Page 33 of 65

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

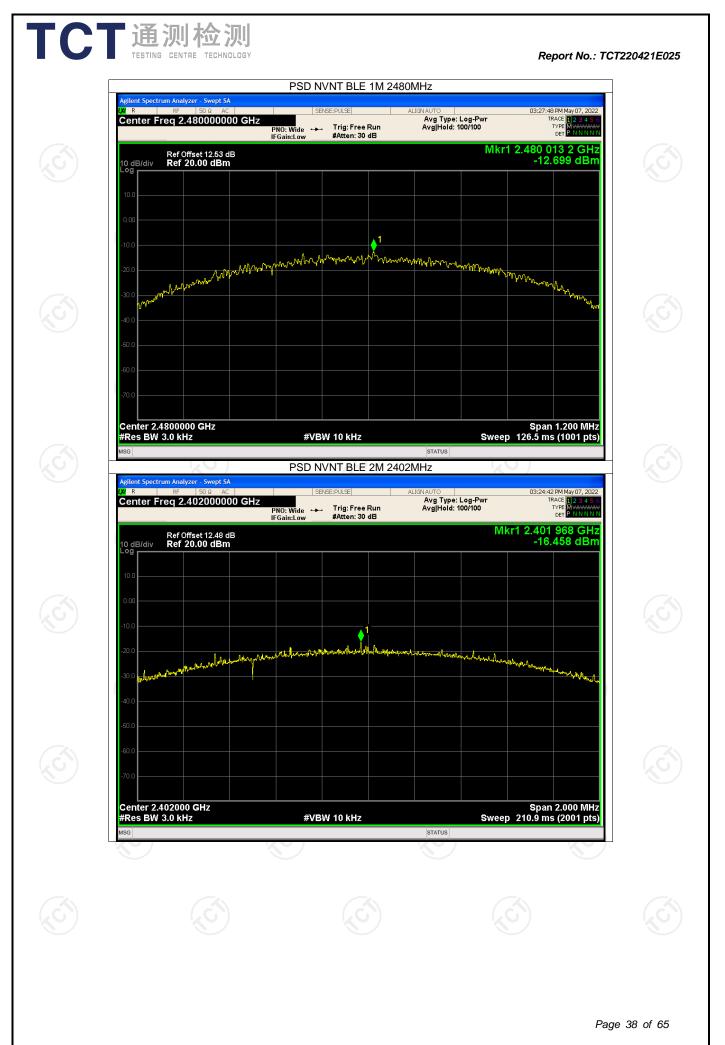
Page 34 of 65

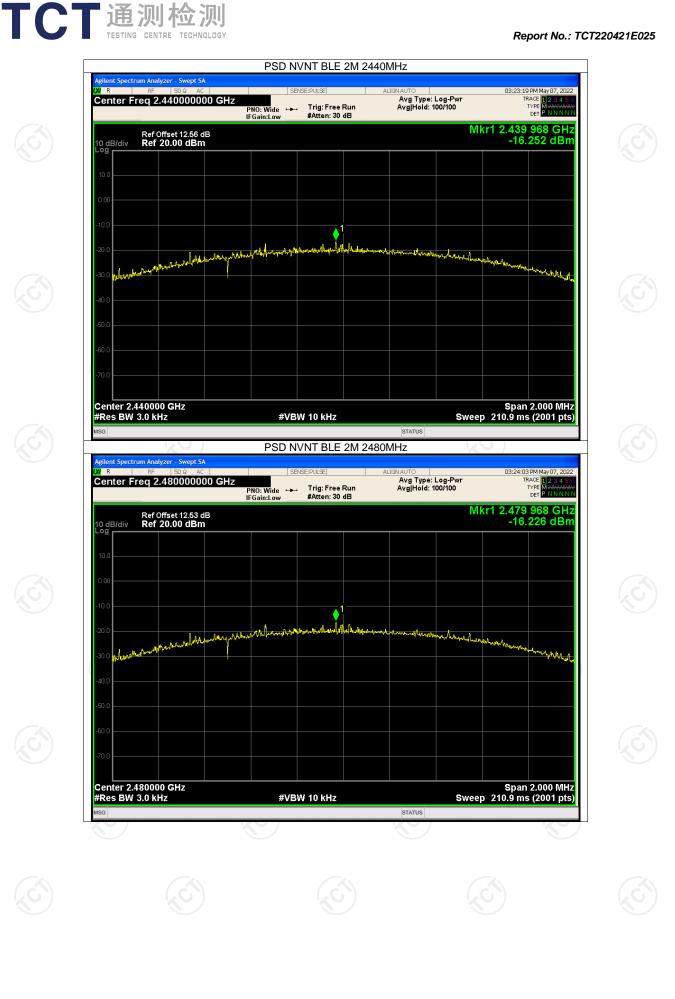
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Page 35 of 65

Maximum Power Spectral Density Level

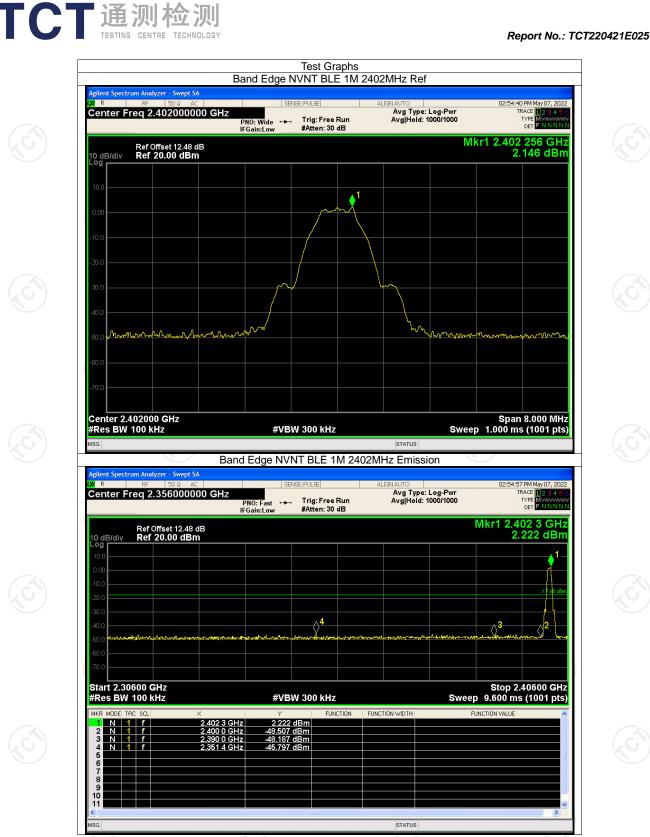

TCT通测检测 TCT通测检测



Page 36 of 65

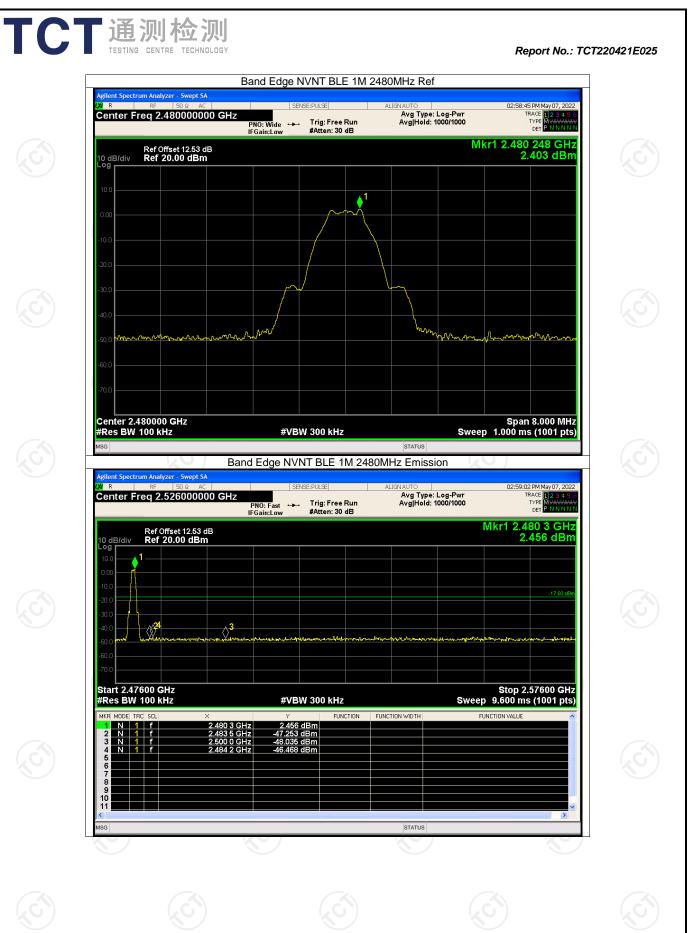
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

STATUS

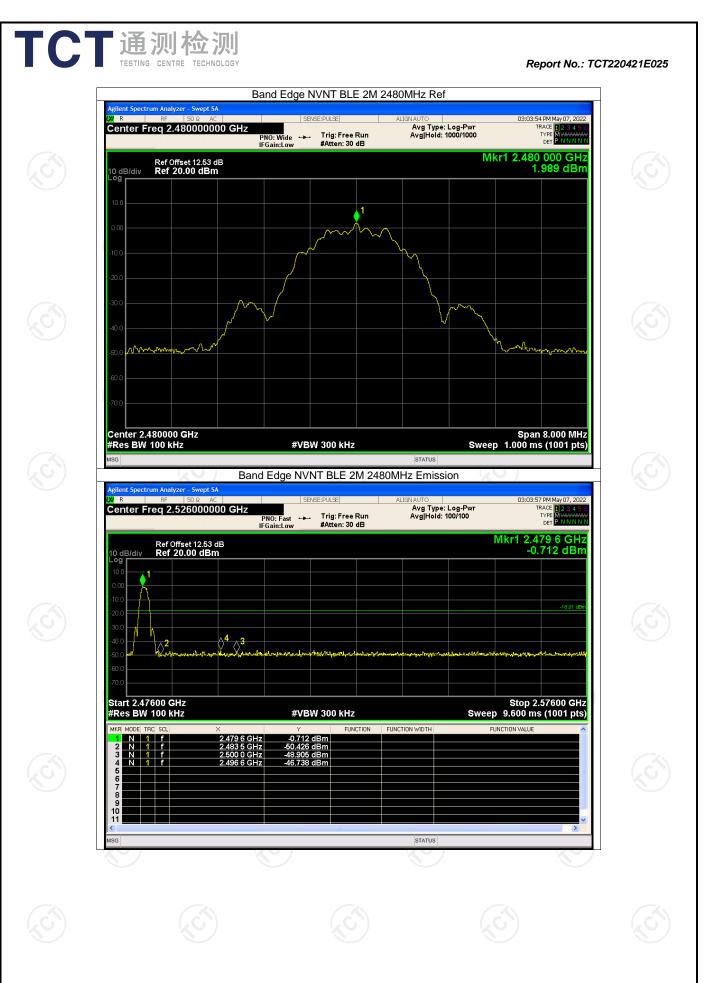


Page 39 of 65

Report No.: TCT220421E025


Verdict	it (dBc)	k Value (dBc)	Edge Max	ency (MHz		Mode	Condition
Pass	-20	-47.94		2402		BLE 1M	
Pass Pass	-20 -20	-48.86 -48.96		2480 2402	2	BLE 1M BLE 2M	NVNT E
Pass	-20	-48.72		2480	2	BLE 2M	NVNT E

TCT通测检测 TESTING CENTRE TECHNOLOGY

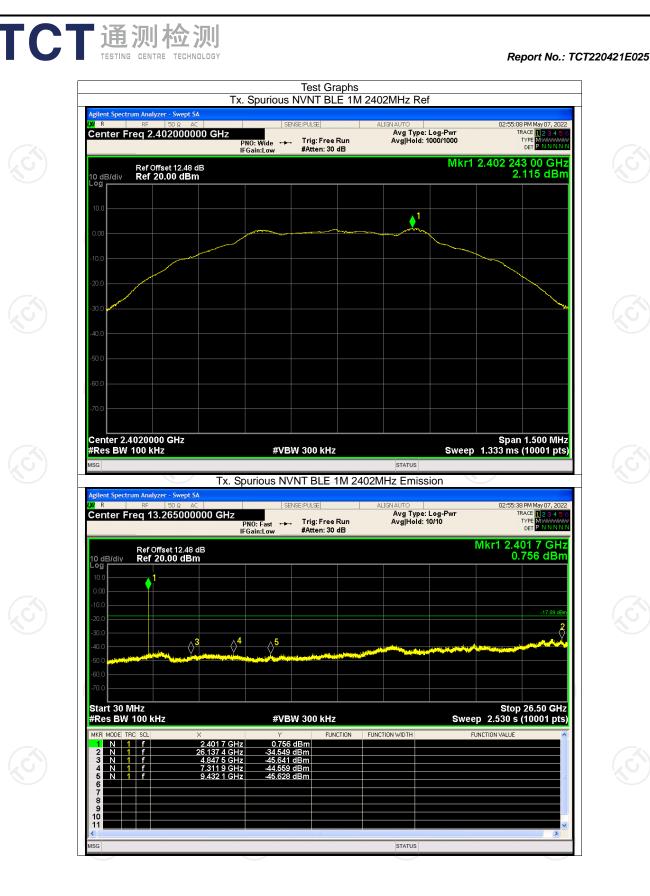


Page 41 of 65

Page 42 of 65

	<u> 通测检测</u> sting centre technology			Report No.: TCT2	20421E0
Agilent	Spectrum Analyzer - Swept SA	Band Edge NVNT BLE 2M 2	402MHz Ref		
Cent	er Freq 2.402000000 Gł	PNO:Wide 🛶 Trig:Free Run	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	03:08:01 PM May 07, 2022 TRACE 123456 TYPE MWWWWW DET PNNNNN	
	Ref Offset 12.48 dB	IFGain:Low #Atten: 30 dB	Mkr1	2.402 000 GHz	
10 dB Log	/div Ref 20.00 dBm			1.737 dBm	
10.0 -		1			
0.00 -		- mining the second sec			
-10.0 -					
-20.0 -					
-30.0 -					
-40.0 -				months man and	
	mh mh mh mh			Marin And And And	
-60.0 -					
-70.0 -					
	er 2.402000 GHz BW 100 kHz	#VBW 300 kHz	Sweep 1.	Span 8.000 MHz 000 ms (1001 pts)	
MSG		Band Edge NVNT BLE 2M 240	STATUS	7	
Agilent	Spectrum Analyzer - Swept SA RF 50 Ω AC	SENSE:PULSE	ALIGNAUTO	03:08:04 PM May 07, 2022	
Cent	er Freq 2.356000000 GI	IZ PNO: Fast ↔→ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
10 dE	Ref Offset 12.48 dB /div Ref 20.00 dBm		Mkı	1 2.402 0 GHz 0.737 dBm	
Log 10.0				1	
0.00 - 10.0 -					
-20.0					
-40.0	4		- Josephal gent fragment of the state of the	3	
CO. 0					
-60.0				Stop 2.40600 GHz	
-70.0 Star	2.30600 GHz				
-70.0 Start #Res	BW 100 KHz	#VBW 300 kHz	Sweep 9.	600 ms (1001 pts)	
-70.0 Star #Res MKR 1 2 3	BW 100 kHz ODE TRC SCL × N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402	Y FUNCTION 0 GHz 0.737 dBm 0 GHz -32.762 dBm 0 GHz -51.093 dBm	Sweep 9.0		
-70.0 Stari #Res 1 2 3 4 5 6	BW 100 kHz ODE TRC SCL × N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402	Y FUNCTION	Sweep 9.0		
-700 Star #Res 1 2 3 4 5 6 7 8 9	BW 100 kHz ODE TRC SCL × N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402	Y FUNCTION 0 GHz 0.737 dBm 0 GHz -32.762 dBm 0 GHz -51.093 dBm	Sweep 9.0		
-700 Star #Res 1 2 3 4 5 6 6 7 7 8 9 10 11	BW 100 kHz ODE TRC SCL × N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402	Y FUNCTION 0 GHz 0.737 dBm 0 GHz -32.762 dBm 0 GHz -51.093 dBm	Sweep 9.1		
-70.0 Start #Res 1 2 3 4 5 6 7 7 8 9 9	BW 100 kHz ODE TRC SCL × N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402	Y FUNCTION 0 GHz 0.737 dBm 0 GHz -32.762 dBm 0 GHz -51.093 dBm	Sweep 9.0	N VALUE	
-700 Star #Res 1 2 3 4 5 6 6 7 7 8 9 10 11	BW 100 kHz ODE TRC SCL × N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402	Y FUNCTION 0 GHz 0.737 dBm 0 GHz -32.762 dBm 0 GHz -51.093 dBm	Sweep 9.1	N VALUE	
-700 Star #Res 1 2 3 4 5 6 6 7 7 8 9 10 11	BW 100 kHz ODE TRC SCL × N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402 N 1 f 2.402	Y FUNCTION 0 GHz 0.737 dBm 0 GHz -32.762 dBm 0 GHz -51.093 dBm	Sweep 9.1	N VALUE	

Report No.: TCT220421E025

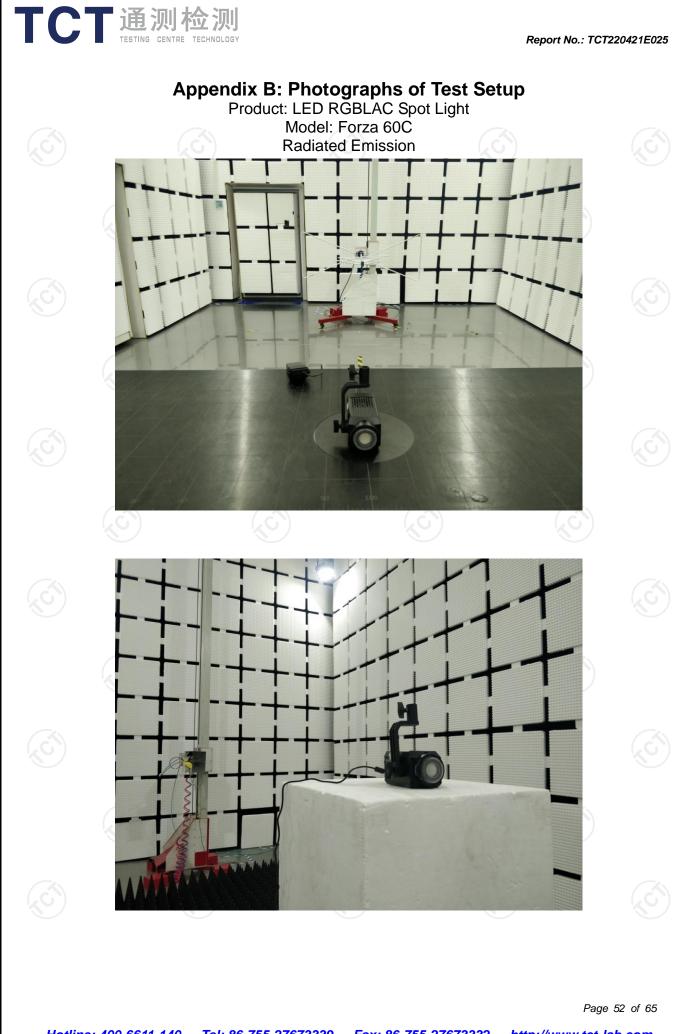


Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-36.66	-20	Pass
NVNT	BLE 1M	2440	-36.51	-20	Pass
NVNT	BLE 1M	2480	-37.24	-20	Pass
NVNT	BLE 2M	2402	-36.47	-20	Pass
NVNT	BLE 2M	2440	-36.68	-20	Pass
NVNT	BLE 2M	2480	-36.26	-20	Pass

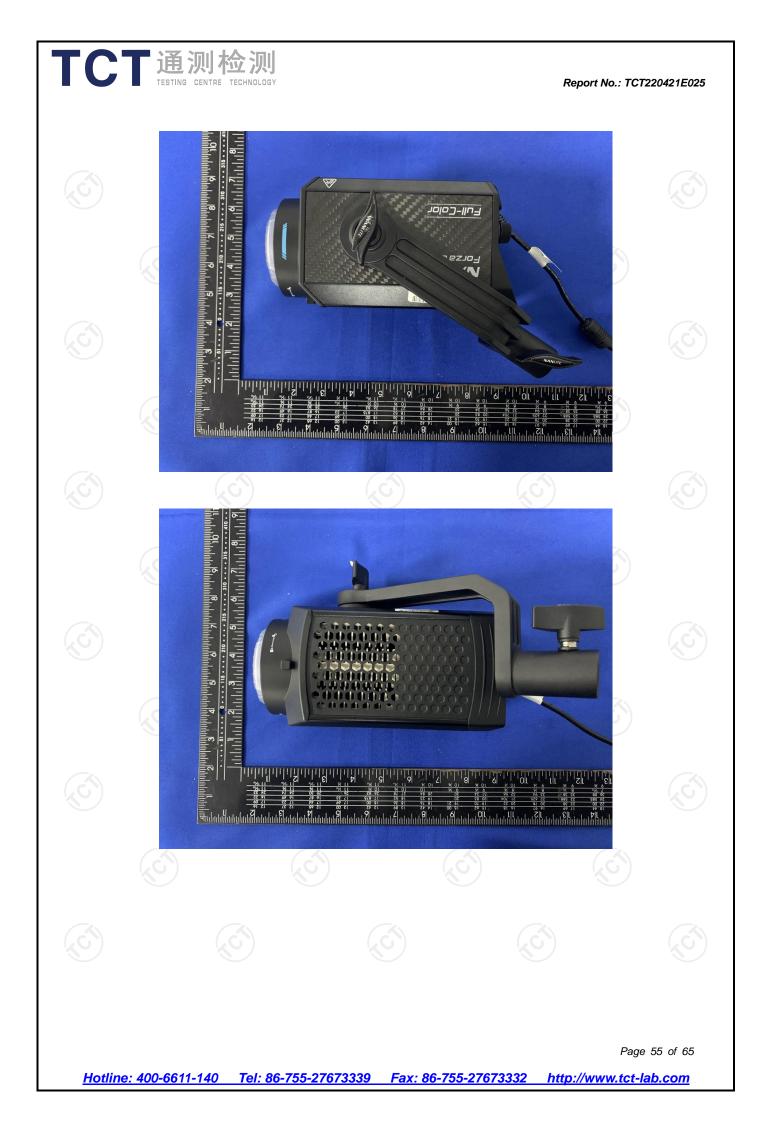
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

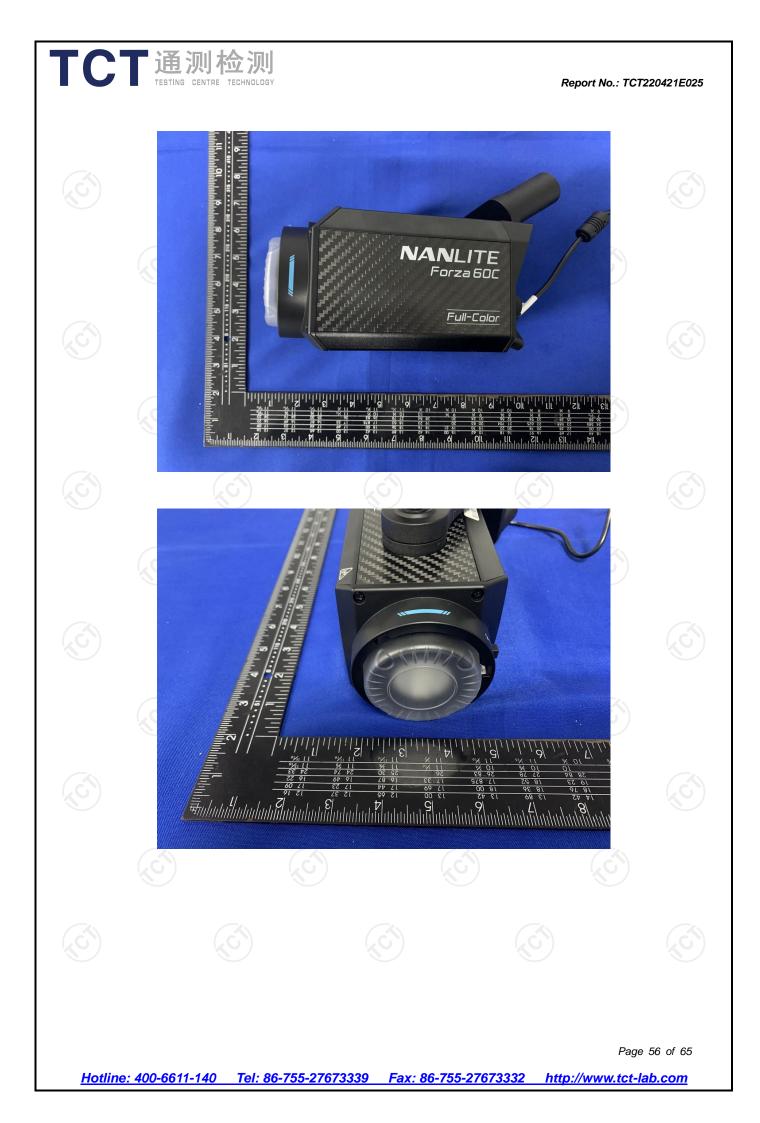
		2440MHz Ref	Spurious NVNT BLE 1M	Tx. Analyzer - Swept SA	CT 通
May 07, 2022 1 2 3 4 5 6 M WWWWWW P N N N N N	02:57:03 P TRAC TY	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	SENSE:PULSE	RF 50 Ω AC 2.440000000 GHz	LXI R
15 GHz	(r1 2.440 246		ain:Low #Atten: 30 dB		
6 dBm	2.2			ef 20.00 dBm	10 dB/div Log
					10.0
					-10.0
					-20.0
					-30.0
					-40.0
					-50.0
					-60.0
					-70.0
500 MHz 0001 pts)	Span 1 ep 1.333 ms (1	Swe	#VBW 300 kHz	00000 GHz 0 kHz	Center 2.4 #Res BW 1
	<u>x0</u> 7	STATUS 40MHz Emission	rious NVNT BLE 1M 24	Tx. Sp	MSG
May 07, 2022 1 2 3 4 5 6 M WWWWW	02:57:33 PI TRAC	ALIGNAUTO Avg Type: Log-Pwr	SENSE:PULSE	Analyzer - Swept SA RF 50 Ω AC 13.265000000 GHz	LXI R
PNNNN	۲۷ Mkr1 2.44	Avg Hold: 10/10	0: Fast ↔→ Trig: Free Run ain:Low #Atten: 30 dB	F IF	
8 dBm	2.3			tef Offset 12.56 dB tef 20.00 dBm	10 dB/div Log
					0.00
-17.70 dBm					-10.0
-17.70 dBm					
∂ ²					-30.0
¢2					-40.0 -50.0
	Stop 2			2	-40.0
	Stop 2 veep 2.530 s (1		#VBW 300 kHz Y Function	z 10 kHz 56L ×	-40.0 -50.0 -60.0 -70.0 Start 30 M #Res BW
2 .50 GHz 001 pts)	veep 2.530 s(1	Sw	#VBW 300 kHz Y FUNCTION 2.378 dBm -34.212 dBm -45.048 dBm -45.048 dBm	z 00 kHz f 2441 4 GHz f 25.054 7 GHz f 3958 7 GHz f 7 425 7 GHz	-40.0 -50.0 -50.0 -70.0 Start 30 M #Res BW MR Mode TR 1 N 1 2 N 1 3 N 1 4 N 1
2 .50 GHz 001 pts)	veep 2.530 s(1	Sw	#VBW 300 kHz Y FUNCTION 2.378 dBm -34.212 dBm -45.344 dBm	z 500 kHz 501 × 7 2441 4 GHz 7 25.054 7 GHz 7 4.958 7 GHz 7 7 425 7 GHz	-40.0 -50.0 -60.0 -70.0 Start 30 M #Res BW MKR MODE TR 1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6 7
	veep 2.530 s(1	Sw	#VBW 300 kHz Y FUNCTION 2.378 dBm -34.212 dBm -45.048 dBm -45.048 dBm	z 00 kHz f 2441 4 GHz f 25.054 7 GHz f 3958 7 GHz f 7 425 7 GHz	-40.0 -50.0 -60.0 -70.0 Start 30 M #Res BW MKR MODE TRI 1 N 1 2 N 1 3 N 1 4 N 1 6 N 1
2 .50 GHz 001 pts)	veep 2.530 s(1	Sw	#VBW 300 kHz Y FUNCTION 2.378 dBm -34.212 dBm -45.048 dBm -45.048 dBm	z 00 kHz f 2441 4 GHz f 25.054 7 GHz f 3958 7 GHz f 7 425 7 GHz	-40.0 -50.0 -70.0 Start 30 M #Res BW MKP, MODE TRU 1 N 1 3 N 1 4 N 1 5 N 1 6 7 8 9 9
	veep 2.530 s(1		#VBW 300 kHz Y FUNCTION 2.378 dBm -34.212 dBm -45.048 dBm -45.048 dBm	z 00 kHz f 2441 4 GHz f 25.054 7 GHz f 3958 7 GHz f 7 425 7 GHz	-40.0 -50.0 -50.0 -70.0 Start 30 M #Res BW MKR MODE TRI 1 N 1 2 N 1 3 N 1 5 N 1 6 7 8 9 9 10
	veep 2.530 s(1		#VBW 300 kHz Y FUNCTION 2.378 dBm -34.212 dBm -45.048 dBm -45.048 dBm	z 00 kHz f 2441 4 GHz f 25.054 7 GHz f 3958 7 GHz f 7 425 7 GHz	-40.0 -50.0 -50.0 -70.0 Start 30 M #Res BW MKR MODE TRI 1 N 1 2 N 1 3 N 1 5 N 1 6 7 8 9 9 10
	veep 2.530 s(1		#VBW 300 kHz Y FUNCTION 2.378 dBm -34.212 dBm -45.048 dBm -45.048 dBm	z 00 kHz f 2441 4 GHz f 25.054 7 GHz f 3958 7 GHz f 7 425 7 GHz	-40.0 -50.0 -50.0 -70.0 Start 30 M #Res BW MKR MODE TRI 1 N 1 2 N 1 3 N 1 5 N 1 6 7 8 9 9 10
	veep 2.530 s(1		#VBW 300 kHz Y FUNCTION 2.378 dBm -34.212 dBm -45.048 dBm -45.048 dBm	z 00 kHz f 2441 4 GHz f 25.054 7 GHz f 3958 7 GHz f 7 425 7 GHz	-40.0 -50.0 -50.0 -70.0 Start 30 M #Res BW MKR MODE TRI 1 N 1 2 N 1 3 N 1 5 N 1 6 7 8 9 9 10


	通测检测 TESTING CENTRE TECHNOLOGY	Tx. Spurious NVNT BLE 1M	2480MHz Ref	Report No.: TCT2	220421E02
LXI	R RF 50Ω AC enter Freq 2.480000000 GH	Z PNO: Wide ++- Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	02:59:13 PM May 07, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
10	Ref Offset 12.53 dB dB/div Ref 20.00 dBm	IFGalltLOW #Attent of the	Mkr1 2.4	180 249 30 GHz 2.321 dBm	
	9 		.1		
0	00				
	.0				
-5					
-6					
	.0				
C #F	enter 2.4800000 GHz Res BW 100 kHz	#VBW 300 kHz	Sweep 1.	Span 1.500 MHz 333 ms (10001 pts)	
		x. Spurious NVNT BLE 1M 24)	
UX1	R RF 50 Ω AC enter Freq 13.265000000 GI	PNO: Fast +++ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	02:59:43 PM May 07, 2022 TRACE 1 2 3 4 5 6 TYPE Museument DET P N N N N N	
10	Ref Offset 12.53 dB dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mk	r1 2.481 1 GHz 0.786 dBm	
1	dB/div Ref 20.00 dBm				
	0.0			-17.68 dBm	
	3.0 3 .0 3	4 5			
-6					
s	art 30 MHz	#\/BW/ 200 LU-		Stop 26.50 GHz	
м	Res BW 100 kHz IR MODE TRC SCL X IN 1 f 2.481 1	#VBW 300 kHz Y FUNCTION GHz 0.786 dBm		2.530 s (10001 pts)	
	N 1 f 2.481 1 2 N 1 f 26.063 2 3 N 1 f 5.141 4 4 N 1 f 7.394 0 5 N 1 f 10.022 4	GHz -45.528 dBm			
1					
MS	5	N. C.	STATUS	C	

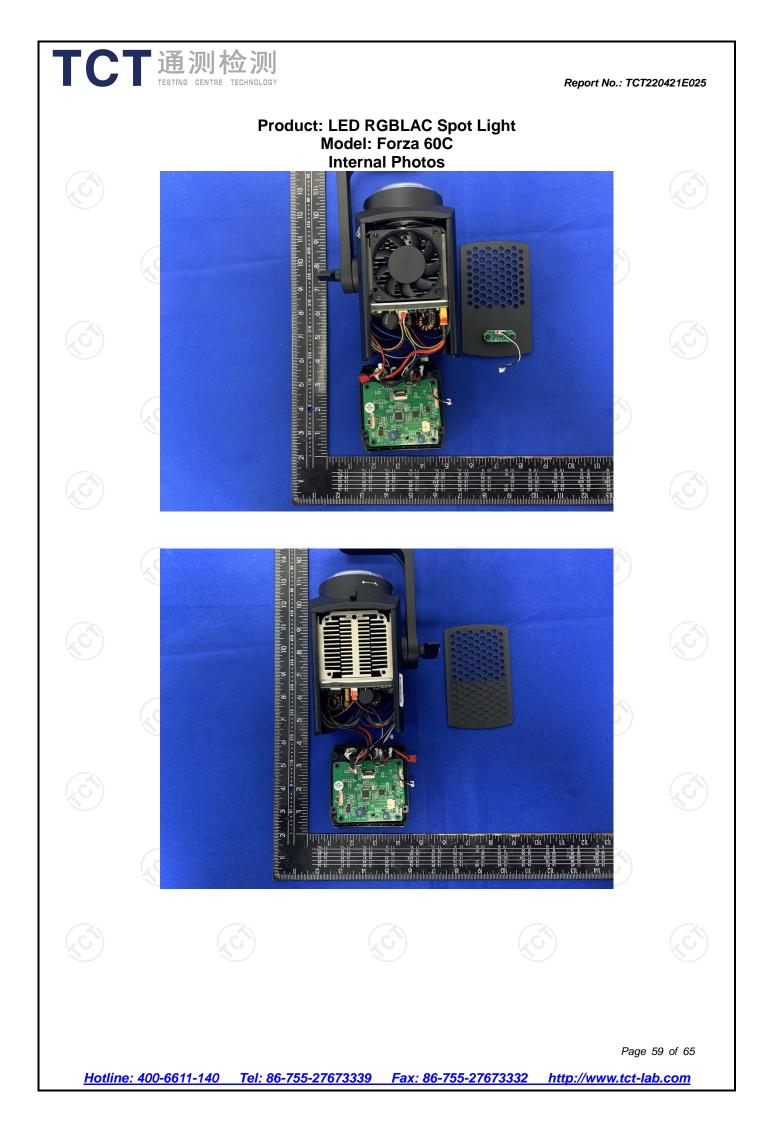
Page 48 of 65

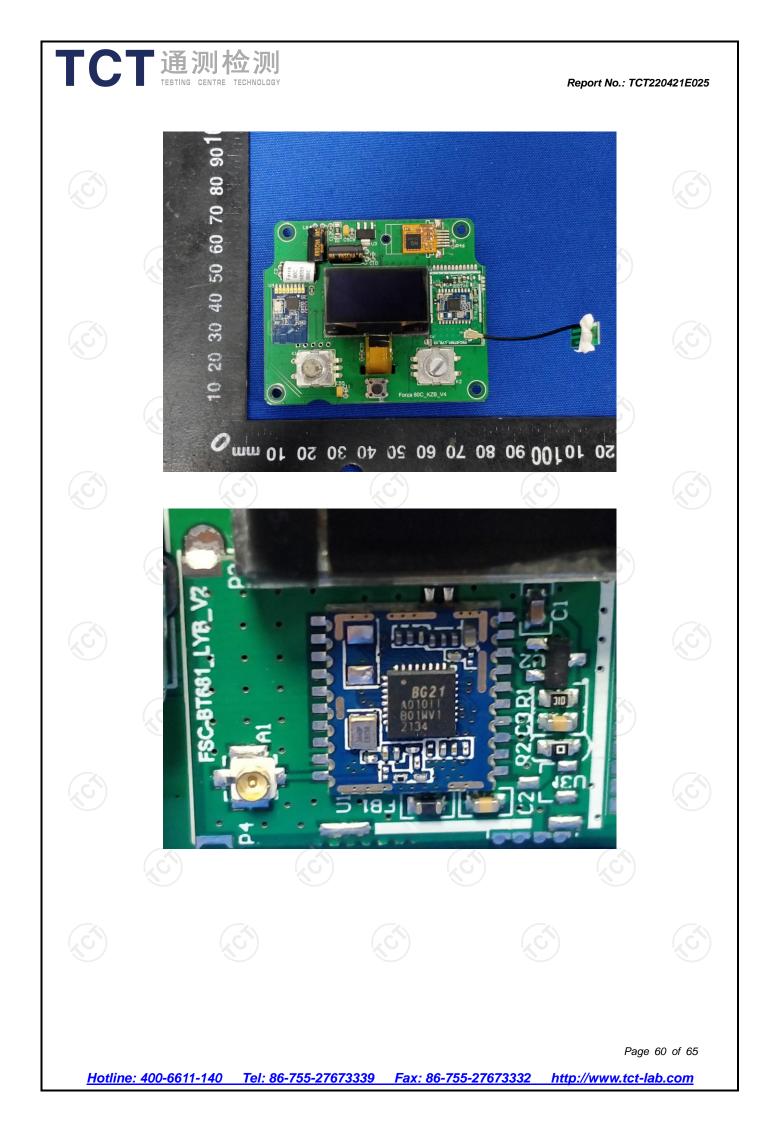
CT					Report No.: TC	T220421E02
Agi	ent Spectrum Analyzer - Swept S	A	ous NVNT BLE 2M	2402MHz Ref		
	R RF 50 Ω A0 enter Freq 2.4020000		SENSE:PULSE	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	03:08:15 PM May 07, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
	Ref Offset 12.48	IFGain:Low	#Atten: 30 dB	Mkr1 2	2.402 000 60 GHz	
10	dB/div Ref 20.00 dBn	n 			1.691 dBm	
10	.0		1			
0.		m		Man	NIKANIKU MA	
-10	0					
-20	0					
-30	o					
-40	0					
-50	0					
-60	o					
-70	0					
	nter 2.4020000 GHz es BW 100 kHz	ŧ	¢VBW 300 kHz		Span 1.500 MHz 1.333 ms (10001 pts)	
MSG		Tx. Spurious	NVNT BLE 2M 240	STATUS 02MHz Emission	<i>)</i>)	
LXI	<mark>ent Spectrum Analyzer - Swept S</mark> R RF 50 Ω AG	A	SENSE:PULSE	ALIGNAUTO	03:08:45 PM May 07, 2022	
Ce	nter Freq 13.265000	000 GHz PNO: Fast IFGain:Low		Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 123456 TYPE MWWWWW DET PNNNNN	
10	Ref Offset 12.48 dB/div Ref 20.00 dBr	dB		N	1kr1 2.401 7 GHz -1.893 dBm	
Lo						
-21					-18.31 dBm	
-40			5			
-50	.0					
-70						
	art 30 MHz les BW 100 kHz	#	≠VBW 300 kHz	Sweep	Stop 26.50 GHz 2.530 s (10001 pts)	
	N 1 f	× 2.401 7 GHz -1 25.626 5 GHz -34	Y FUNCTION .893 dBm .790 dBm	FUNCTION WIDTH FUN	CTION VALUE	
	N 1 f N 1 f	4.969 3 GHz -45 7.086 9 GHz -45	.924 dBm .593 dBm .404 dBm			
		3.400 0 GHZ -40				
10						
				STATUS	× *	
	9	N.			N.	

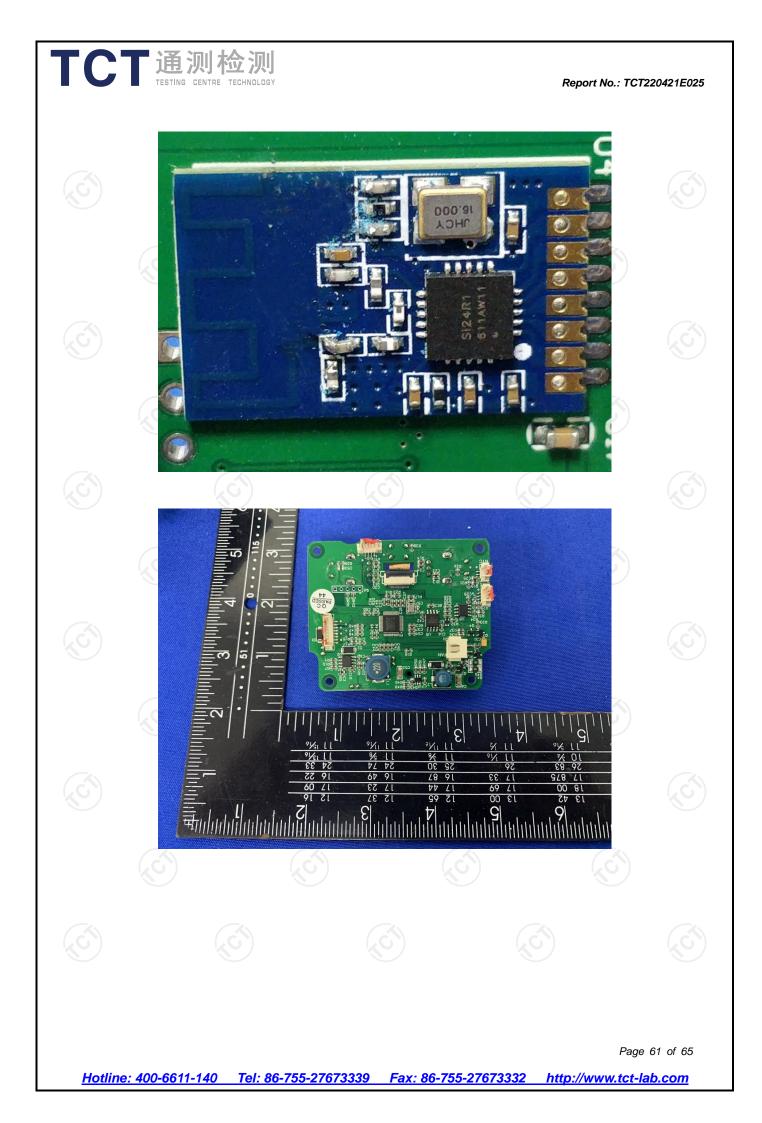

СТ	通测检测 TESTING CENTRE TECHNOLOGY			Report No.: TCT2	20421E0
		Tx. Spurious NVNT BLE 2M	2440MHz Ref		
	Agilent Spectrum Analyzer - Swept SA 20 R RF 50 Q AC Center Freq 2.440000000 GHz	SENSE:PULSE PNO: Wide -→- Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	03:14:06 PM May 07, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
	Ref Offset 12.56 dB 10 dB/div Ref 20.00 dBm		Mkr1 2.4	139 998 05 GHz 1.791 dBm	
2	Log				
	10.0	↓ 1			
	-10.0				
	-30.0				
	-40.0				
	-50.0				
	-60.0				
	-70.0				
	Center 2.4400000 GHz			Span 1.500 MHz	
	#Res BW 100 kHz	#VBW 300 kHz	Sweep 1.	333 ms (10001 pts)	
) [Agilent Spectrum Analyzer - Swept SA	Spurious NVNT BLE 2M 24	40MHz Emission)	
	Center Freq 13.265000000 GH	Z PNO: East →→ Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 10/10	03:14:36 PM May 07, 2022 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	
	Ref Offset 12.56 dB	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB		r1 2.438 8 GHz	
	10 dB/div Ref 20.00 dBm			-0.766 dBm	
	0.00				
	-10.0			-18.21 dBm	
	-30.0			tertagenetistics and a star of the star	
	-50.0				
	-70.0 Start 30 MHz			Stop 26.50 GHz	
	#Res BW 100 kHz	#VBW 300 kHz		2.530 s (10001 pts)	
	1 N 1 f 2.438.8 (2 N 1 f 25.578.8 (3 N 1 f 4.961.4 (GHz -34.894 dBm GHz -45.823 dBm			
	4 N 1 f 7.44950 5 N 1 f 9.89270 6 7	GHz -45.562 dBm GHz -46.796 dBm		=	
	8 9 10				
	MSG	Ш	STATUS		
		NC N		N N	

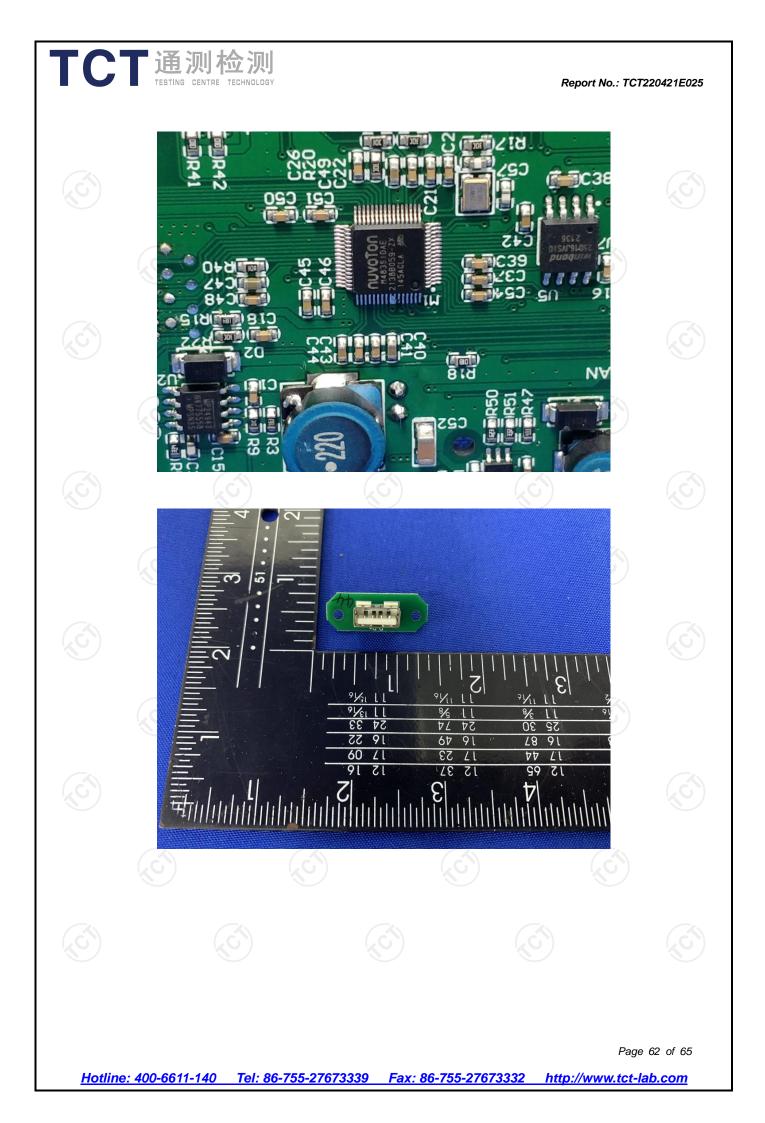

Agilent Spectrum Analyzer - Swept SA		SENSE:PULSE ALIGNAUTO 03:04:	
Center Freq 2.480000000 G		Avg Type: Log-Pwr Avg Hold: 1000/1000	04:08 PM May 07, 2022 TRACE 1 2 3 4 5 6 TYPE MIMMANN DET P N N N N N
Ref Offset 12.53 dB 10 dB/div Ref 20.00 dBm		Mkr1 2.479	996 70 GHz 1.944 dBm
10.0			
0.00			m
-20.0			
-30.0			
40.0			
50.0			
-60.0			
Center 2.4800000 GHz		sr	an 1.500 MHz
f Res BW 100 kHz	#VBW 300 kHz Tx. Spurious NVNT BLE 2M 2480	Sweep 1.333 r	ns (10001 pts)
Ref Offset 12.53 dB Ref 20.00 dBm 10 dB/div 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10	IFGain:Low #Atten: 30 dB	Mkr1 2	HAGE 12 3 4 5 6 TYPE MUNUNU 481 1 GHz 1.285 dBm
-40.0			
-70.0 Start 30 MHz		st	op 26.50 GHz
		Sweep 2.530	s (10001 pts)
#Res BW 100 kHz	1 1 GHz -1.285 dBm 4 4 GHz -34.325 dBm		
MKR MODE TRC SCL X 1 N 1 f 2.43 2 N 1 f 25.54 3 N 1 f 5.02 4 N 1 f 7.40	44 GHz 34320 GBM 75 GHz 45.750 GBm 60 GHz 45.815 dBm		×
MKR MODE TRC SCL X 1 N 1 f 2.48 2 N 1 f 25.54 3 N 1 f 25.54 4 N 1 f 7.02 6 1 f 7.40 5 7 8 9.99 9 9 10 9 9 9 9	7 5 GHz -45.750 dBm 7 2 GHz -45.503 dBm	STATUS	

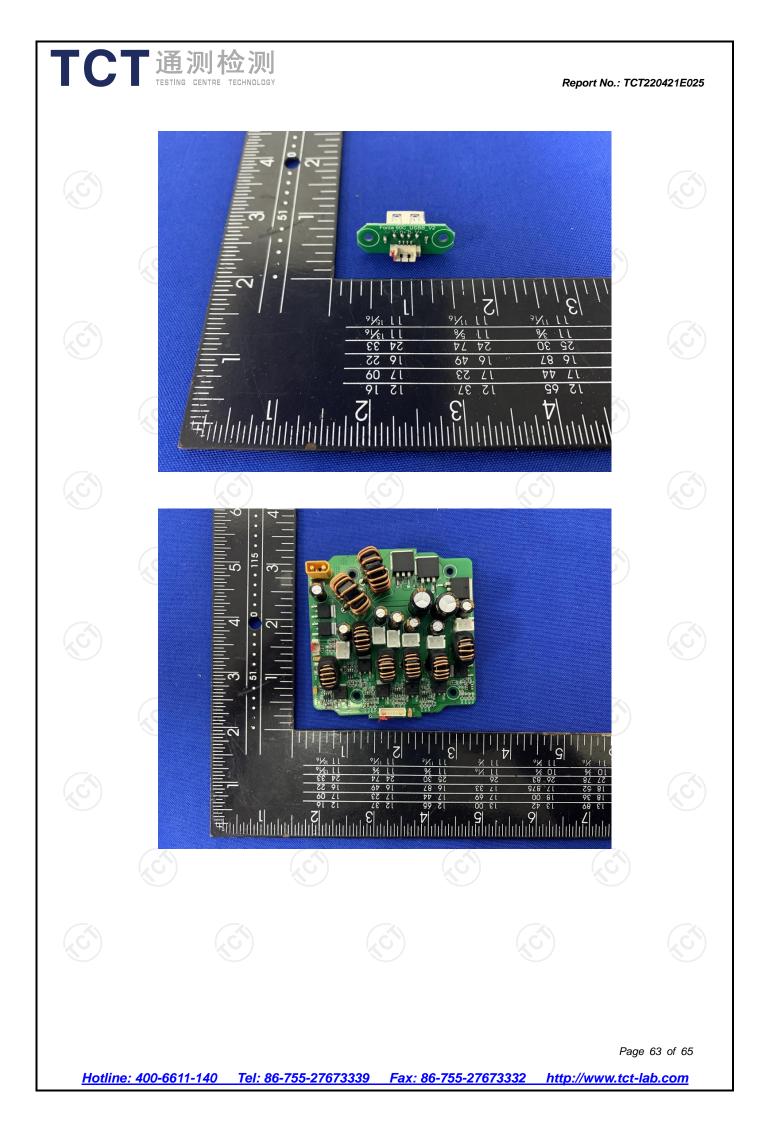











20421E025	port No.: TCT2				则检测 CENTRE TECHNOLOG	ГС
)		aapaqaa ahaa ahaa ahaa ahaa ahaa ahaa ah	
	1 1 1 1 1 0 1 1 1 1 1 0 1 2 10 2 0 10 2 0 10 2 0 11 2 0					
		Ś		Ś	Ś	

