RETLIF TESTING LABORATORIES

			TABUL	AR DATA S	HEET				
TEST METHOD:	POWER O	POWER OUTPUT, EFFECTIVE RADIATED POWER METHOD, PARAGRAPH 2.985							
CUSTOMER:	Symbol Ted	Symbol Technologies JOB No.: R-8586-1							
TEST SAMPLE:		824.024-848.959 Palm computer with wireless area network(WAN) transmitter. FCC ID:H9PPPT2733							
MODEL No.:	PPT2733	PPT2733 SERIAL No.: 64							
TEST SPECIFICATION:	FCC Part 2 PARAGRAPH: 2,985								
OPERATING MODE:	CONTINUO	CONTINUOUSLY TRANSMITTING A CW SIGNAL AT CENTER FREQUENCY/CHANNEL SHOWN BELOW.							
TECHNICIAN:	Peter Lanan	Peter Lananna DATE: June 19, 2000							
NOTES:									
Center Frequency	Channel	Antenna Orientation	Meter Reading	Signal Gen. Output Level	Antenna Correction	Corrected Reading	Converted Reading	Limit	
MHz			dBuV	dBm	dB	dBm	mWatts	mWa	atts
004.00	I	\//4.4	00.0	00.0	0.0	00.0	400.0	40	-
824.03	low	V/1.1	92.6	20.0	2.2	22.2	166.0	43 	<u>/</u>
824.03	low	H/1.8	89.6	18.5	2.2	20.7	117.5	<u>i</u>	
835.04	middle	V/1.0	93.2	20.2	2.2	22.4	173.8		
835.04	middle	H/1.0	89.1	18.6	2.2	20.8	120.2		
000.04	middle	11/1.0	00.1	10.0	£.£	20.0	120.2		
848.95	high	V/1.1	91.8	17.6	2.2	19.8	95.5		
040.90	riigir	V/ 1.1	91.0	17.0	2.2	19.0	90.0		
848.95	high	H/1.8	89.6	20.3	2.2	22.5	177.8	V	
	The EUT was	placed on a ta	l abletop, and the	radiated output	level was meas	l sured with a bio	onilog. After the		
The EUT was placed on a tabletop, and the radiated output level was measured with a biconilog. After the level was maximized, the EUT was replaced with dipole and a signal generator. The level of the generator									
	was raised until it	matched the level	recorded from the	EUT.				·	
DATA SHEET	1 OF 1							R-85	 586-1