

TEST REPORT									
	FCC Rules Part 15.247								
Report Reference No	MTEB24110305-R1 2BKT2-SA-T7D	Alisa Luo							
 (position+printed name+signature): Supervised by (position+printed name+signature): 	File administrators Alisa Luo Test Engineer Sunny Deng	Aisa Luo Sunny Deng Jutter							
Approved by (position+printed name+signature):	Manager Yvette Zhou	petter							
Date of issue	Nov.28,2024								
Representative Laboratory Name. :	Shenzhen Most Technology Ser	rvice Co., Ltd.							
Address	No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China.								
Applicant's name	Sintron Distribution GmbH								
Address:	Sudring 14, 76473 Iffezheim, Germany								
Test specification/ Standard:	FCC Rules Part 15.247								
TRF Originator	Shenzhen Most Technology Servi	ce Co., Ltd.							
Shenzhen Most Technology Service This publication may be reproduced in Shenzhen Most Technology Service Co material. Shenzhen Most Technology S liability for damages resulting from the placement and context.	whole or in part for non-commercia o., Ltd. is acknowledged as copyrig Service Co., Ltd. takes no responsit	ht owner and source of the pility for and will not assume							
Test item description:	TUBE STEREO PREAMPLIFIER								
Trade Mark	Vincent								
Model/Type reference:	SA-T7D								
Listed Models	N/A								
Modulation Type	GFSK								
Operation Frequency:	From 2402MHz to 2480MHz								
Hardware Version	V1.0								
Software Version	V1.0								
Rating	AC 120V/60Hz								
Result	PASS								

TEST REPORT

Equipment under Test	:	TUBE STEREO PREAMPLIFIER			
Model /Type	:	SA-T7D			
Listed Models	:	N/A			
Remark		N/A			
Applicant	:	Sintron Distribution GmbH			
Address	:	Sudring 14, 76473 Iffezheim, Germany			
Manufacturer	:	Zhongshan ShengYa audio electronics co., LTD			
Address	:	Taohuasha industrial Zone, Minan Road, Xiaolan, Zhongshan, Guangdong, P.R.China.			

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. REVISION HISTORY	4
2. TEST STANDARDS	5
3. SUMMARY	6
3.1. General Remarks	6
3.2. Product Description	
3.3. Equipment Under Test	
3.4. Short description of the Equipment under Test (EUT)	6
3.5. EUT operation mode	
3.6. Block Diagram of Test Setup	7
3.7. Test Item (Equipment Under Test) Description*	7
3.8. Auxiliary Equipment (AE) Description	
3.9. Antenna Information*	
3.10. EUT configuration	8
3.11. Modifications	8
4. TEST ENVIRONMENT	Q
4.1. Address of the test laboratory	q
4.2. Environmental conditions	
4.3. Test Description	
4.4. Statement of the measurement uncertainty	
4.5. Equipments Used during the Test	
5. TEST CONDITIONS AND RESULTS	12
5.1. AC Power Conducted Emission	12
5.2. Radiated Emission	
5.3. Maximum Peak Output Power	
5.4. Power Spectral Density	
5.5. 6dB Bandwidth and 99% Bandwidth	
5.6. Band Edge Compliance of RF Emission	
5.7. Spurious RF Conducted Emission	
5.8. Antenna Requirement	
6. TEST SETUP PHOTOS OF THE EUT	29
7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	
	54
APPENDIX I. Duty Cycle	
APPENDIX I. Duty Cycle APPENDIX II. Power Spectral Density	
APPENDIX II. Power Spectral Density APPENDIX III. Conducted Output Power	
APPENDIX II. Power Spectral Density APPENDIX III. Conducted Output Power APPENDIX IV. 99% Bandwidth	33 34 35
APPENDIX II. Power Spectral Density APPENDIX III. Conducted Output Power	33 34 35 36

1. <u>Revision History</u>

Revision	Issue Date	Revisions	Revised By
00	2024.11.28	Initial Issue	Alisa Luo

2. TEST STANDARDS

The tests were performed according to following standards:

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013 : American National Standard for Testing Unlicensed Wireless Devices

3. <u>SUMMARY</u>

3.1. General Remarks

Date of receipt of test sample	:	2024.11.18
Testing commenced on	:	2024.11.19
Testing concluded on	:	2024.11.28

3.2. Product Description

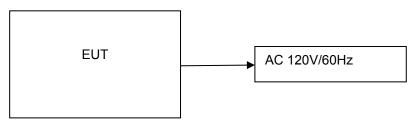
Product Name:	TUBE STEREO PREAMPLIFIER
Model/Type reference:	SA-T7D
Power Supply:	AC 120V/60Hz
Testing sample ID:	MTYP07413
Bluetooth :	
Supported Type:	BLE
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	External antenna
Antenna gain:	5dBi

3.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	lacksquare	120V / 60Hz
		0	12 V DC	0	24 V DC
		0	Other (specified in blank below)		

3.4. Short description of the Equipment under Test (EUT)


This is a TUBE STEREO PREAMPLIFIER For more details, refer to the user's manual of the EUT.

3.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT. Channel 00/19/39 was selected to test.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

3.6. Block Diagram of Test Setup

3.7. Test Item (Equipment Under Test) Description*

Short designation	EUT Name	EUT Description	Serial number	Hardware status	Software status
EUT A	/	/	/	/	/
EUT B	/	/	/	/	/

*: declared by the applicant. According to customers information EUTs A and B are the same devices.

3.8. Auxiliary Equipment (AE) Description

AE short designation	EUT Name (if available)	EUT Description	Serial number (if available)	Software (if used)
AE 1	/	1	1	1
AE 2		1	1	1

3.9. Antenna Information*

Short designation	Antenna Name	Antenna Type	Frequency Range	Serial number	Antenna Peak Gain
Antenna 1		External antenna	2.4–2.5 GHz		5dBi
Antenna 2	/	/	/	/	/

*: declared by the applicant.

3.10. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

• - supplied by the manufacturer

 $\odot\,$ - Supplied by the lab

ADAP [.]	TER	M/N:	1
		Manufacturer:	1

3.11. Modifications

No modifications were implemented to meet testing criteria.

4. <u>TEST ENVIRONMENT</u>

4.1. Address of the test laboratory

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 0031192610

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 6343.01

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

4.2. Environmental conditions

Radiated Emission:

Temperature:	21.6 ° C
Humidity:	48 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	21.6 ° C		
Humidity:	48 %		
Atmospheric pressure:	950-1050mbar		

4.3. Test Description

FCC and IC Requirements					
FCC Part 15.207	AC Power Conducted Emission	PASS			
FCC Part 15.247 (a)(2)	6dB Bandwidth & 99% Bandwidth	PASS			
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS			
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS			
FCC Part 15.247 (e)	Power Spectral Density	PASS			
FCC Part 15.205/15.209	Radiated Emissions	PASS			
FCC Part 15.247(d)	Band Edge	PASS			

Remark:

1. The measurement uncertainty is not included in the test result.

2. NA = Not Applicable; NP = Not Performed

4.4. Statement of the measurement uncertainty

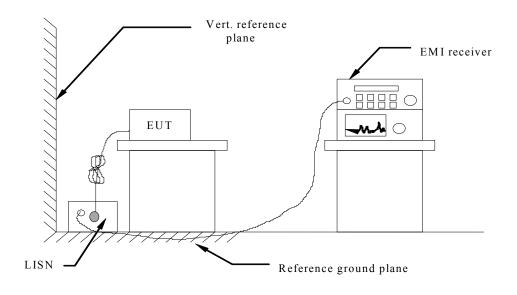
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)
6dB Bandwidth & 99% Bandwidth	/	5%	(1)
Maximum Conducted Output Power	/	0.80dB	(1)
Spurious RF Conducted Emission	1	1.6dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.5. Equipments Used during the Test


Item	Equipment	Manufacturer	Model No.	odel No. Serial No.		Last Cal.
1.	L.I.S.N.	R&S	R&S ENV216 100093		/	2024/03/15
2	Three-phase artificial power network	Schwarzback Mess	NNLK8129	8129178	/	2024/03/15
3.	Receiver	R&S	ESCI	100492	V3.0-10-2	2024/03/15
4	Receiver	R&S	ESPI	101202	V3.0-10-2	2024/03/15
5	Spectrum analyzer	Agilent	9020A	MT-E306	A14.16	2024/03/15
6	Bilong Antenna	Sunol Sciences	JB3	A121206	/	2024/08/15
7	Horn antenna	HF Antenna	HF Antenna	MT-E158	/	2024/03/15
8	Loop antenna	Beijing Daze	ZN30900B	/	1	2024/03/15
9	Horn antenna	R&S	OBH100400	26999002	1	2024/03/15
10	Wireless Communication Test R&S Set		CMW500	/	CMW-BASE- 3.7.21	2024/03/15
11	Spectrum analyzer	R&S	FSP	100019	V4.40 SP2	2024/03/15
12	High gain antenna	Schwarzbeck	LB-180400KF	MT-E389	/	2024/03/15
13	Preamplifier	Schwarzbeck	BBV 9743	MT-E390	1	2024/03/15
14	Pre-amplifier	EMCI	EMC051845S E	MT-E391	/	2024/03/15
15	Pre-amplifier	Agilent	83051A	MT-E392	1	2024/03/15
16	High pass filter unit	High pass filter unit Tonscend		MT-E393	1	2024/03/15
17	RF Cable(below1GHz)	Times	9kHz-1GHz	MT-E394	1	2024/03/15
18	RF Cable(above 1GHz)	Times	1-40G	MT-E395	1	2024/03/15
19	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	/	2024/03/15
20	Power meter	R&S	NRVS	100444	/	2024/03/15

Note: 1. The Cal.Interval was one year.

5. TEST CONDITIONS AND RESULTS

5.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

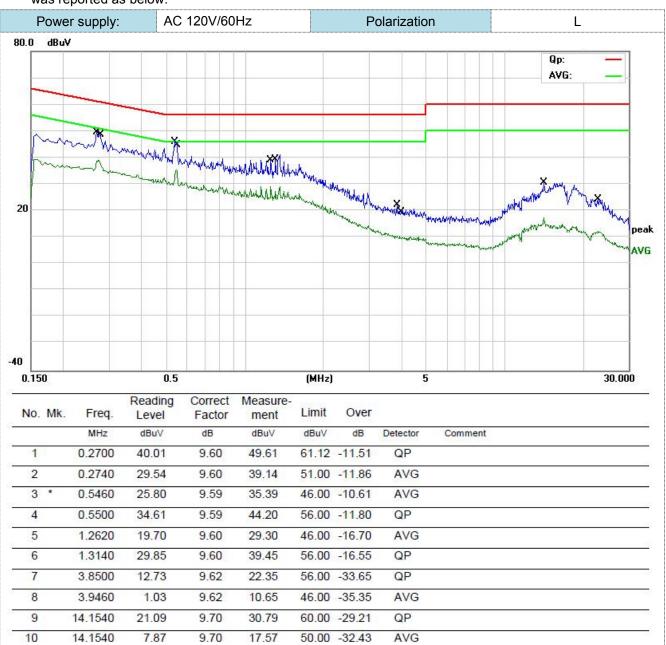
5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit


For unintentional device, according to RSS Gen 8.8 and § 15.207(a) Line Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

TEST RESULTS

Remark:

1. GFSK modes were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

QP

AVG

60.00 -35.76

50.00 -37.58

*:Maximum data x:Over limit I:over margin

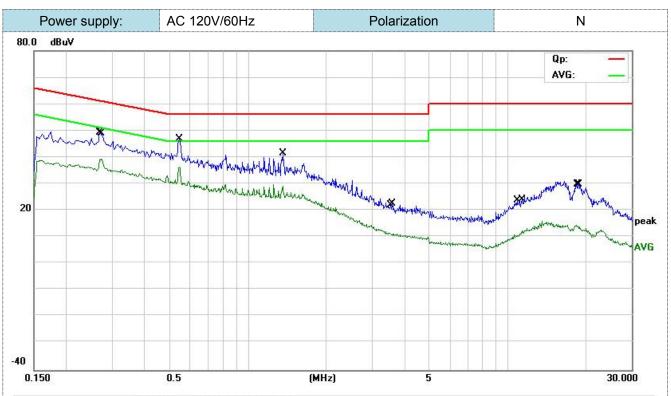
14.50

2.68

11

12

22.8100

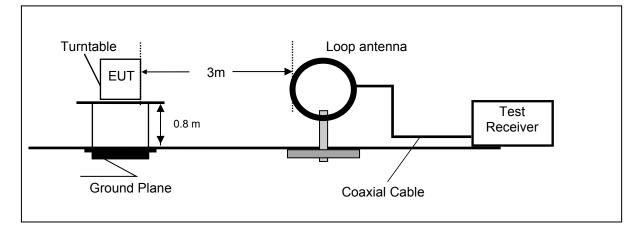

22.9860

9.74

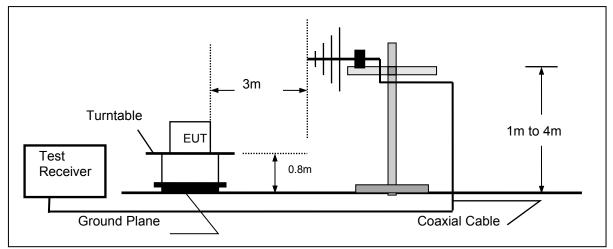
9.74

24.24

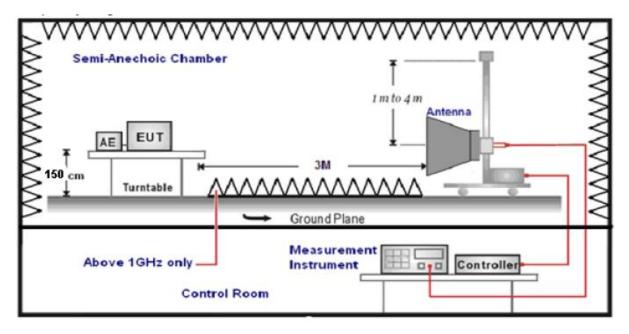
12.42


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2700	39.59	9.60	49.19	61.12	- <mark>11</mark> .93	QP	
2		0.2740	29.78	9.60	39.38	51.00	-11.62	AVG	
3	*	0.5460	37.11	9.59	46.70	56.00	-9.30	QP	
4		0.5460	26.73	9.59	36.32	46.00	-9.68	AVG	
5		1.3660	31.83	9.60	41.43	56.00	-14.57	QP	
6		1.3660	19.43	9.60	29.03	46.00	-16.97	AVG	
7		3.5220	1.91	9.62	11.53	46.00	-34.47	AVG	
8	6	3.5980	12.82	9.62	22.44	56.00	-33.56	QP	
9		10.8620	14.06	9.69	23.75	60.00	-36.25	QP	
10		11.2180	1.56	9.69	11.25	50.00	-38.75	AVG	
11	1	18.3380	4.67	9.72	14.39	50.00	-35.61	AVG	
12		18.7580	20.15	9.72	29.87	60.00	-30.13	QP	

*:Maximum data x:Over limit !:over margin


5.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,	
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

Transd=AF +CL-AG

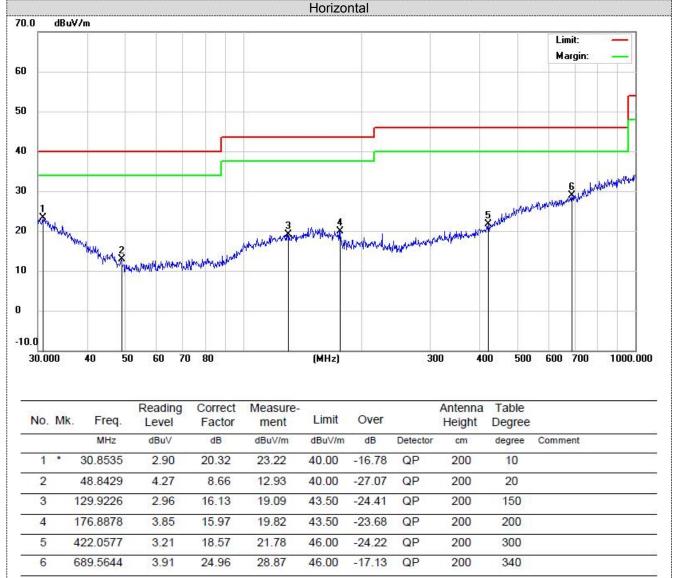
RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

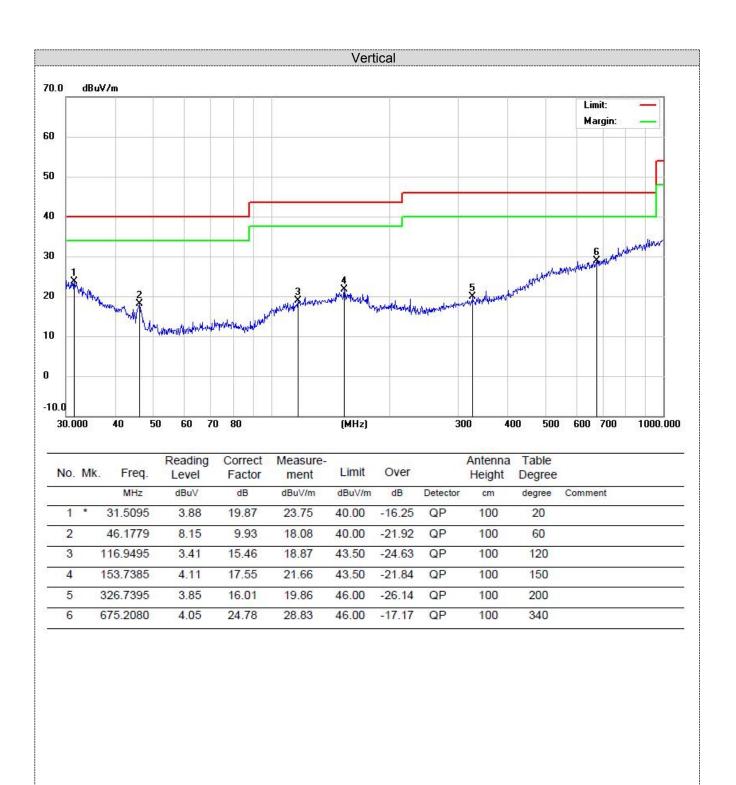
In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission

Unwanted emissions that fall into restricted bands shall comply with the limits specified in RSS-Gen; and Unwanted emissions that do not fall within the restricted frequency bands shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.


Frequency (MHz)	Distance	Radiated (dBµV/m)	Radiated (µV/m)
	(Meters)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS


Remark:

- 1. We measured Radiated Emission at GFSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 2. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

*:Maximum data x:Over limit !:over margin

Report No.: MTEB24110305-R1

For 1GHz to 25GHz

FULIGHZ															
				GFSK (abo	ve 1GHz)										
Freque	ncy(MHz)):	24	02	Pola	arity:	HORIZONTAL								
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)						
4804.00	56.83	PK	74	17.17	54.93	31.42	6.98	36.5	1.9						
4804.00	45.44	AV	54	8.56	43.54	31.42	6.98	36.5	1.9						
7206.00	55.36			18.64	44.76 37.03		8.87	35.3	10.6						
7206.00	206.00 42.63 AV 54 11.3		11.37	32.03	37.03	8.87	35.3	10.6							

Freque	ncy(MHz)	:	24	02	Pola	arity:	VERTICAL							
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)					
4804.00	56.8	PK	74	17.2	54.9	31.42	6.98	36.5	1.9					
4804.00	44.78	AV	54	9.22	42.88	31.42	6.98	36.5	1.9					
7206.00	53.2	PK	74	20.8	42.6	37.03	8.87	35.3	10.6					
7206.00	7206.00 42.78 AV 54		11.22	32.18	37.03	8.87	35.3	10.6						

Freque	ncy(MHz)	:	24	40	Pola	arity:	HORIZONTAL						
Frequency (MHz)	(dBuV/m) (56.37 PK		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)				
4880.00	56.37	PK	74	17.63	54.31	30.98	7.58	36.5	2.06				
4880.00	45	AV	54	9	42.94	30.98	7.58	36.5	2.06				
7320.00	54.35	PK	74	19.65	43.43	37.66	8.56	35.3	10.92				
7320.00	41.15 AV		54 12.85		30.23	37.66	8.56	35.3	10.92				

Freque	ncy(MHz)	:	24	40	Pola	arity:	VERTICAL							
Frequency (MHz)	Le	Level (dBuV/m) (dBuV 53.7 PK 74	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)					
4880.00	53.7	PK	74	20.3	51.64	30.98	7.58	36.5	2.06					
4880.00	44.09	AV	54	9.91	42.03	30.98	7.58	36.5	2.06					
7320.00	55.9	PK	74	18.1	44.98	37.66	8.56	35.3	10.92					
7320.00	42.44	AV	54	11.56	31.52	37.66	8.56	35.3	10.92					

Freque	ncy(MHz)	:	24	80	Pola	arity:	HORIZONTAL						
Frequency (MHz)	MHz) (dBuV/m) (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)				
4960.00	53.56	PK	74	20.44	50.49	31.47	7.8	36.2	3.07				
4960.00	46.88	AV	54	7.12	43.81	31.47	7.8	36.2	3.07				
7440.00	54.12	PK	74	19.88	42.38	38.32	8.72	35.3	11.74				
7440.00	7440.00 43.72 AV 54		54	10.28	31.98	38.32	8.72	35.3	11.74				

Freque	ncy(MHz)	:	24	80	Pola	arity:	VERTICAL						
Frequency (MHz)	Lev	Emission (description) (evel) (fector) (fector)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)				
4960.00	55.62	PK	74	18.38	52.55	31.47	7.8	36.2	3.07				
4960.00	46.94	AV	54	7.06	43.87	31.47	7.8	36.2	3.07				
7440.00	52.4	PK	74	21.6	40.66	38.32	8.72	35.3	11.74				
7440.00	7440.00 42.03 AV 54		54	11.97	30.29	38.32	8.72	35.3	11.74				

Report No.: MTEB24110305-R1

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction F
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable
 Margin value = Limit value- Emission level.
 -- Mean the PK detector measured value is below average
 The other emission levels were very low against the limit.
- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier Margin value = Limit value- Emission level. -- Mean the PK detector measured value is below average limit.

5.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2.

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

LIMIT

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

See Appendix III

5.4. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

1.Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

2.Set the RBW =3 kHz.

3.Set the VBW =10 KHz.

4.Set the span to 1.5 times the DTS channel bandwidth.

5.Detector = peak.

6.Sweep time = auto couple.

7.Trace mode = max hold.

8.Allow trace to fully stabilize.

9.Use the peak marker function to determine the maximum power level.

10.If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

11. The resulting peak PSD level must be 8 dBm.

<u>LIMIT</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

See APPENDIX II

5.5. 6dB Bandwidth and 99% Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB558074 D01 V03 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

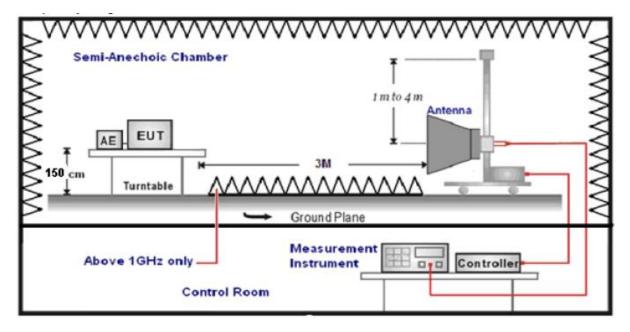
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 43 KHz RBW and 150 KHz VBW record the 99% bandwidth.

<u>LIMIT</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS


See Appendix IV&Appendix V

5.6. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°℃ to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

te et recent en opeetram de r		
Test Frequency range	Test Receiver/Spectrum Setting	Detector
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

<u>LIMIT</u>

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

Results of Band Edges Test (Radiated)

Results of			(Naulateu)	GFS	K								
Freque	ncy(MHz)	:	24	02	Pola	arity:	HORIZONTAL						
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)				
2390.00	57.86	PK	74	16.14	63.27	27.49	3.32	36.22	-5.41				
2390.00	40.68	AV	54	13.32	46.09	27.49	3.32	36.22	-5.41				
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL					
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)				
2390.00	56.64	PK	74	17.36	62.05	27.49	3.32	36.22	-5.41				
2390.00	39.52	AV	54	14.48	44.93	27.49	3.32	36.22	-5.41				
Freque	ncy(MHz)	:	24	80	Pola	arity:	н	IORIZONTA	NL				
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)				
2483.50	55.15	PK	74	18.85	60.66	27.45	3.38	36.34	-5.51				
2483.50	38.88	AV	54	15.12	44.39	27.45	3.38	36.34	-5.51				
Freque	ncy(MHz)	:	2480		Pola	arity:		VERTICAL					
Frequency (MHz)			Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)					
2483.50	56.28	, PK	74	17.72	61.79	27.45	3.38	36.34	-5.51				
2483.50	2483.50 39.22 AV 54 14.78			44.73	36.34								

REMARKS:

Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
 Margin value = Limit value- Emission level.
 -- Mean the PK detector measured value is below average limit.

5.7. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and mwasure frequeny range from 9KHz to 25GHz.

<u>LIMIT</u>

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

TEST RESULTS

See Appendix VI

5.8. Antenna Requirement

Standard Applicable

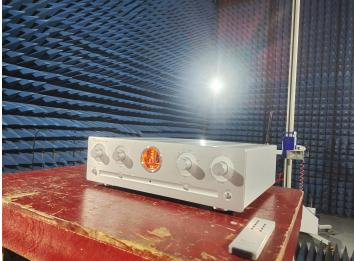
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

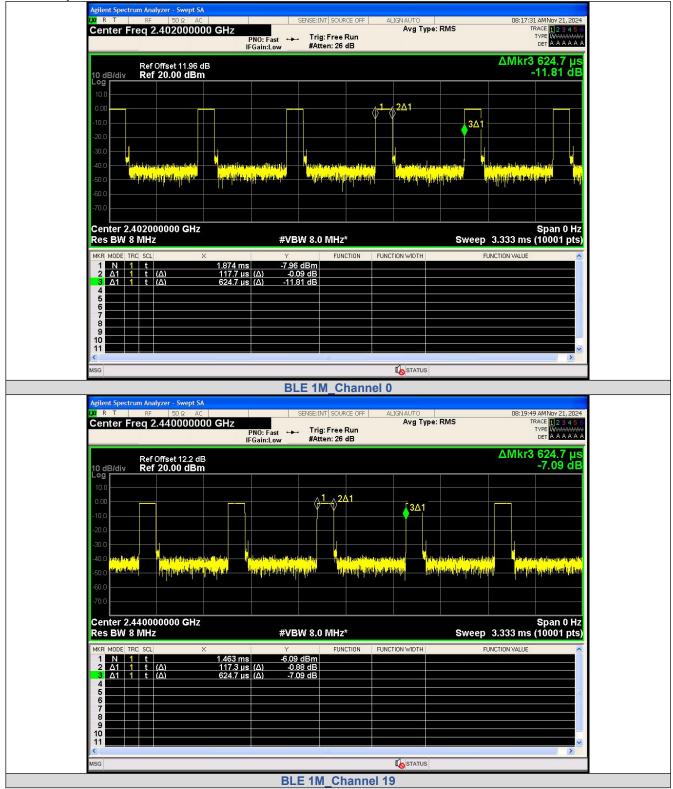
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.


Antenna Connected Construction


The directional gains of antenna used for transmitting is 5dBi, and the antenna is an External antenna to PCB board and no consideration of replacement. Please see EUT photo for details.

Results: Compliance.

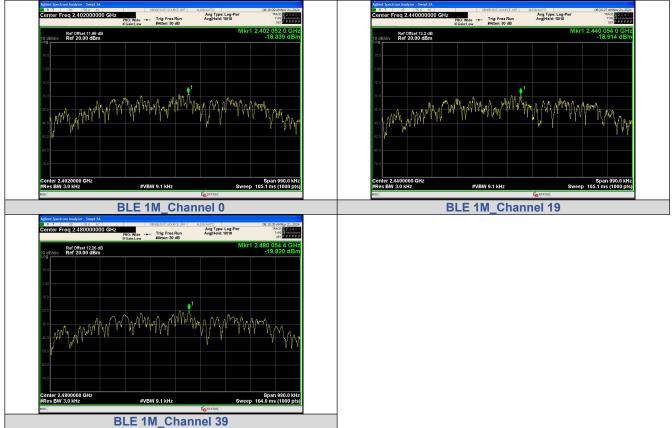
6. Test Setup Photos of the EUT


7. External and Internal Photos of the EUT

See related photo report.

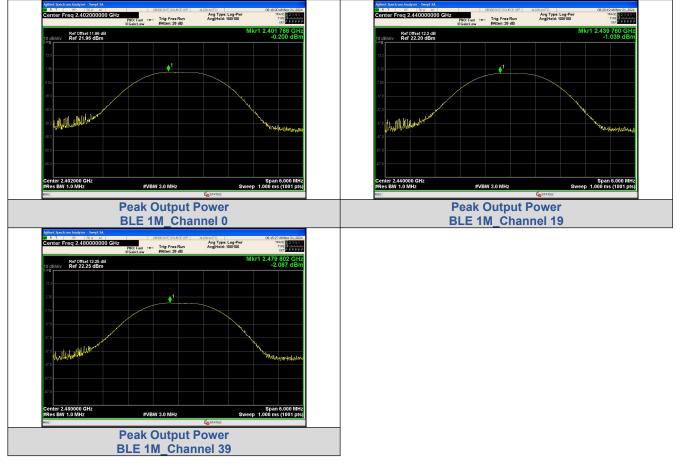
APPENDIX I.	Duty Cycle
-------------	------------

|--|


Mode	Channel	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle (linear)	Duty Cycle Factor (dB)
	0	0.118	0.625	18.84	0.1884	7.2492
BLE 1M	19	0.117	0.625	18.78	0.1878	7.263
	39	0.117	0.625	18.78	0.1878	7.263

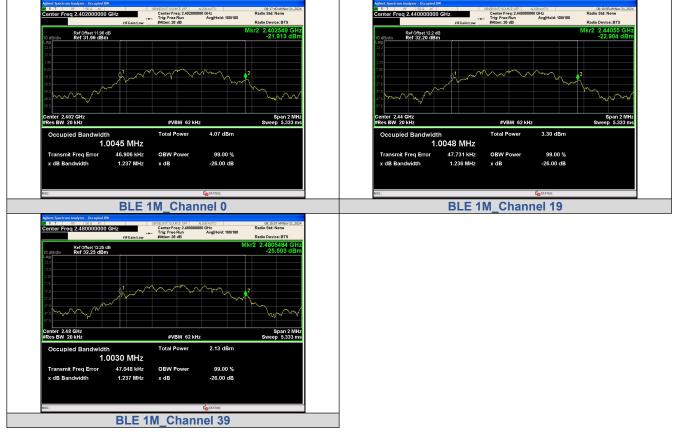
Agilent Sp	ectr		Analy RF		<mark>Swep</mark> iO Ω		-					CEN	CC. IN	r sou		e l		IGN AU	TO	-					00-14	-50.4	Ad Alley	/21,20	224
Center	F						0 G		PN0 IFGa): Fas	st -		Trig:	Free en: 26	Run	+	AL		g Typ	e: R	MS				08:14	TRA TY		2 3 4 2 3 4 4 4 4	56 444 A A
10 dB/di Log	iv				t 12.2 10 dl		3					Ĩ			1			Ì						ΔΛ	/kr	36	524 -6.8	.7 10 d	IS B
10.0 — 0.00 —										1				1	<u>2/</u>	1			1.0						****				
-10.0 — -20.0 —														Ť	Ĭ				_ ● ³	Δ1									
	19202	Dulk		n 1	<u>Albijui</u>	n na la característica de l Característica de la característica de la carac	liji je de	utik pitat				ati a di		4.				li na ili				i e li dive		ul aul o			alualied	lluon	in da
-50.0 <mark>4114</mark> -60.0	إخفارا		y u		() , Ma ani		(1916)	Aniple A		Navi	n hinin	linimini.	in the second		ji lin	ali filina	16.].4	lan) hi	in.		hayd, Ma	<mark>d a liite</mark>	مىڭ يې <u>تە</u>	i ini j		- ^H IL N		الىلىم <mark>را</mark> ل	al al
-70.0 Center	. 2.	480	00	000	0 GI	17																					Spar	n 0 H	-17
Res BV											#V	'ΒW	8.0	MHz	*						ş	Swee	р 3	3.33	3 m	s (1	1000	01 pi	s)
MKR MODI	1.1		CL			×			1		Y			FUN	ICTION	s [/]	FUNCT	FION WI	DTH				FUN	CTION	VALUE				•
1 Ν 2 Δ1 3 Δ1	1						1	568 m 17.3 µ 24.7 µ	IS (Z	1) 1)	-	00 dE 1.54 (6.80 (dB																
4 5 6																													
7 8 9																													
10														11														>	~
MSG	-	-	-	_	_	-	-	_	-	-	_	_	-	_	-	_	-	I ST	ATUS	_	-	_	_	-	_	-	-		-

APPENDIX II. Power Spectral Density


Test Result				
Mode	Channel	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
BLE 1M	0	-18.339	≤8	PASS
BLE 1M	19	-18.914	≤8	PASS
BLE 1M	39	-19.820	≤8	PASS

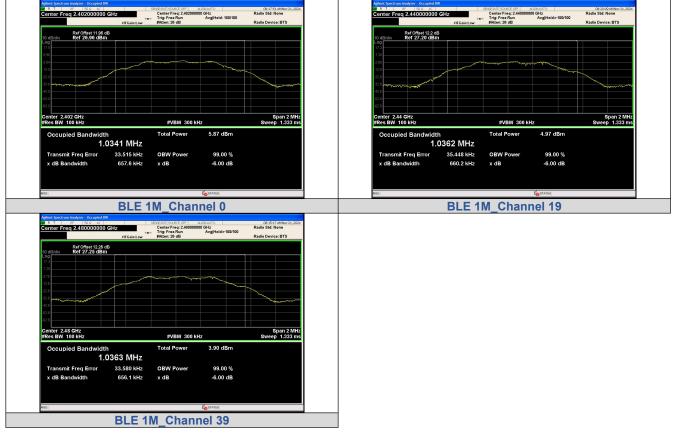
APPENDIX III. Conducted Output Power

Test Result


Mode	Channel	Peak Output Power (dBm)	Peak Output Power (mW)	Max. Avg. Power (dBm)	Limit (dBm)	Result
	0	-0.200	0.95	None	≤30	PASS
BLE 1M	19	-1.039	0.79	None	≤30	PASS
	39	-2.087	0.62	None	≤30	PASS

APPENDIX IV. 99% Bandwidth

Test Result


Mode	Channel	Center Frequency (MHz)	99% BW (MHz)
BLE 1M	0	2402	1.0045
BLE 1M	19	2440	1.0048
BLE 1M	39	2480	1.0030

APPENDIX V. 6dB Bandwidth

Test Result

Mode	Channel	Center Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
	0	2402	0.6576		PASS
BLE 1M	19	2440	0.6602	≥0.5	PASS
	39	2480	0.6561		PASS

APPENDIX VI. Conducted Out Of Band Emission Test Result

Mode	Channel	OOB Emission Frequency (MHz)	OOB Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result
	0	2398.81	-45.931	-20.55	-25.381	PASS
		2400.00	-50.947	-20.55	-30.397	PASS
		4803.60	-49.068	-20.55	-28.518	PASS
		7205.10	-53.845	-20.55	-33.295	PASS
		9602.20	-39.755	-20.55	-19.205	PASS
		9609.10	-63.805	-20.55	-43.255	PASS
		4880.42	-44.895	-21.35	-23.545	PASS
BLE 1M	19	7320.62	-53.815	-21.35	-32.465	PASS
		9753.94	-40.499	-21.35	-19.149	PASS
		9760.81	-61.167	-21.35	-39.817	PASS
	39	2483.50	-51.923	-22.43	-29.493	PASS
		4960.33	-51.337	-22.43	-28.907	PASS
		7441.10	-59.316	-22.43	-36.886	PASS
		9914.37	-39.972	-22.43	-17.542	PASS
		9918.74	-63.059	-22.43	-40.629	PASS

Agilent Spectrum Analyzer - Swept SA DB_R_TRFS0ACSENSED/01 SOURCE OFFALISVAUTO08:18:23.441Nov.21, 2024	Agilent Spectrum Analyzer - Swigt SA 001 R T 16 S0.0 AC SERVEDTI SOURCE OFF ALIZINAUTO 08:18:43 AMINOV 23, 2024
Center Freq 2.40200000 GHz Avg Type: Log-Per Tree Run Avg Type: Log-Per Run	Center Freq 2.400000000 GHz Free Run Avg Type: Leg-Per Motor Branch Avg Type: Leg-Per Motor Branch Avg Type: Leg-Per Avg
Ref Offset 11.96 dB Mkr3 2.402 053 3 GHz 10 dB/div Ref 15.00 dBm -0.555 dBm	Ref Offset 11.95 dB Mkr1 2.398 81 GHz 10 dB/div Ref 15.00 dBm -45.931 dBm
	5.00
500	-5.00 -15.0
5.00	
16.0	460
	Center 2.400000 GHz Span 10.00 MHz
	#Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) MrR MODE TRC: SQL X Y Function Runction whoth Runctio
	1 N 1 f 2.398 81 GHz 45.931 dBm 2 N 1 f 2.400.00 GHz 50.947 dBm 3
Center 2.4020000 GHz Span 986.4 kHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts)	το ε
	Out Of Band Emission
BLE 1M_Channel 0	BLE 1M_Channel 0
Agilent Spectrum Analyzer - Swept SA	Addres Spectrum Analyzer - Sweet SA
	0 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
Ref Offset 11.96 dB Mkr5 2.402 2 GHz 10 dBldiv Ref 15.00 dBm -0.660 dBm	Ref offset 12.2 dB Mkr3 2.440 050 5 GHz 10 dBidiv Ref 15.00 dBm -1.348 dBm
5.00 5	
-5.00 	500 4 3
350	160
	-350
	-36.0
Start 30 MHz Stop 25.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.387 s (40001 pts)	-45.0
MRR MODEL TRC SCI. X Y RUNCTION WOTH RUNCTION WALLE	65.0
2 N 1 f 7 72051GHz 538454Bm 3 N 1 f 9 980220Hz 337554Bm 4 N 1 f 9 980220Hz 5387554Bm	65.0
6 7 7	75.0
	Center 2.4400000 GHz Span 990.3 KHz
	Conter 2.4400000 GHz Span 990.3 KHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) mol
30.0 MHz - 25000.0 MHz	In-Band Reference Level
BLE 1M Channel 0	BLE 1M Channel 19

Report No.: MTEB24110305-R1

2 R T BF S00 AC 003259 AMM/22,2025 Center Freq 12.515000000 CH2 Proc.set →→ Trig: Free Run Avg feid: 1010 Proc.set →→ Trig: Free Run Avg feid:	Advento Sportman Analyzer: Senget SA Generation Sen
Ref Offset 122 dB Mkr5 2.439 6 GHz 10 dB/div Ref 15.00 dBm -2.608 dBm	Ref Officet 12.25 dB Mkr3 2.480 050 2 GH 10 dBldiv Ref 15.00 dBm -2.425 dB
500	500
25.0	500
	160
	-25.0
Start 30 MHz Stop 25.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.387 s (40001 pts)	45.0
MCR MODELTEC SCL. X. Y. FUNCTION MOTH FUNCTION VALUE	A5.0
N 1 f f 4.000 d.CHr. 24.459 d.Bm N 1 r 7.320 d.Chr. 43.816 d.Bm 40.01 d.Bm N 1 r 9.010 d.Chr. 43.416 d.Bm 40.01 d.Bm N 1 r 9.010 d.Chr. 43.01 d.Bm 40.01 d.Bm N 1 r 9.010 d.Chr. 43.01 d.Bm 40.01 d.Bm N 1 r 9.010 d.Chr. 43.01 d.Bm 40.01 d.Bm N 1 r 9.010 d.Chr. 43.01 d.Bm 40.01 d.Bm N 1 r 9.010 d.Chr. 43.01 d.Bm 40.01 d.Bm	85.0
4 N 1 f 9.769 8.9Hz - 61.167.4Bm 6 N 1 f 2.439 6.0Hz - 2.609 4Bm 6	
	Center 2.4800000 GHz Span 984.2 kH #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pt
vsa tostarus	MSG 🔥 STATUS
30.0 MHz - 25000.0 MHz	In-Band Reference Level
BLE 1M_Channel 19	BLE 1M_Channel 39
Agilent Spectrum Analyzer - Swigt SA R T RF S0 0 AC SERVEEINT SOURCE OFF ALIXIAUTO 08:16:08 AMIN/ 21, 2024	Agient Spectrum Analyzer - Swept SA SEVER.DT SCURE OFF ALIGNAUTO OB:16:43.04110/v12, 23 UP_R_T FF SD_4 SEVER.DT SCURE OFF ALIGNAUTO OB:16:43.04110/v12, 23
Center Freq 2.483500000 GHz Avg Type: Log-Pwv TR4CT 12.415 T	Center Freq 12.515000000 GHz Avg Type: Log-Pwr TRACE 12.3 4
PN0: Wide ++ Trig: Free Run Avg Hold: 100/100 TVE Avenue IFGainLow #Atten: 25 dB ter PPPPP	Center Freq 12.515000000 GHz Avg Type: Log-Pwr PRO: Fart → Trig: Free Run Avg[Hold: 1010 trig @Gaint.ew Attac: 14 48
PNC: Wide → Trg. Free Run Avg Heid: 100/100 Pres Ppp p #Gein:Low #Atten: 26 dB	PHO: Fast Ing: Pree kun Avgirtoid: 10/10
PN0: Wilde ++ Trig: Free Run Avg Hold: 100/100 1/16 PPPPPP IFGain:Low #Atten: 25 dB tel PPPPPP	PN0: Fast Ing: Free Run Avginoid: 10/10 Det PP P 2 IFGaint.ow Atten: 14 dB Det
PNC: Wide → Trg. Free Run Avg Heid: 100/100 Pres Ppp p #Gein:Low #Atten: 26 dB	PHO: Fast Ing: Pree kun Avgirtoid: 10/10
PNC: Wide → Trg. Free Run Avg Heid: 100/100 Pres Ppp p #Gein:Low #Atten: 26 dB	Instruction Ref offset 32.05 eB Material & Ref offset 32.05 eB Mixtro 2.479 & C H Second and a conduction Ref offset 32.05 eB Mixtro 2.479 & C H 4.247 (B H Second and a conduction Image: Second and a conduction Image: Second and a conduction 4.247 (B H Second and a conduction Image: Second and a conduction Image: Second and a conduction Image: Second and a conduction 4.247 (B H
Pitto Wile - Trig Free Run Arginise: 100100 1100 1100 1100 1100 1100 1100	Pion Set
PRO:Wile Trig:Free Run Argina: too100 too1000 too1000000 Ref.Orset 1226 dB Mkr2 2.483 50 GHz -61.923 dB -61.923 dB 0.0804/v Ref 15.00 dBm -61.923 dB -61.923 dB	Instruction Ref offset 32.05 eB Material & Adjende 100 <
PRO:Wile Trig:Free Run Argina: 100100 100070000 Ref.Orset 12:26 dB Mkr2:2.483 50 GHz -61.923 dB 0:dBidliv Ref.Orset 12:26 dB -61.923 dB	Instruction Ref offset 32.05 eB Material & Adjende 100 <
Interview Trighters Run Arginist: 100100 Interview Arginist: 100100 Interview Interview Arginist: 100100 Interview	No. 1 Ref Onfest 12:26 dB Addr. H dB Mark 19:48 torin Mark 19:26 dB 10 dblade Ref Onfest 12:26 dB Mark 19:48 torin Mark 19:47 dB Mark 19:47 dB 10 dblade Ref Onfest 12:26 dB Mark 19:48 torin Mark 19:47 dB Mark 19:47 dB 10 dblade Ref Onfest 12:26 dB Mark 19:47 dB Mark 19:47 dB Mark 19:47 dB 10 dblade Ref Onfest 12:26 dB Mark 19:40 dB Mark 19:47 dB Mark 19:47 dB 10 dblade Ref Onfest 12:26 dB Mark 19:40 dB Mark 19:47 dB Mark 19:47 dB 10 dblade Ref Onfest 12:26 dB Mark 19:40 dB Mark 19:47 dB Mark 19:47 dB 10 dblade Ref Onfest 12:26 dB Mark 19:40 dB Mark 19:47 dB Mark 19:40 dB 10 dblade Ref Onfest 12:26 dB Ref Onfest 12:26 dB Mark 19:40 dB Mark 19:40 dB Mark 19:40 dB 10 dblade Ref Onfest 12:26 dB Ref Onfest 12:26 dB Mark 19:40 dB Mark 19:40 dB 10 dblade Ref Onfest 12:26 dB Ref Onfest 12:26 dB Mark 19:40 dB Mark 19:40 dB 10 dblade Ref Onfes
Provide to the provide state of the provide state o	Yes
Ref of South and	Yes
Productive Production Angletic toology (c)	Image: Note of the second se
Productive Production Angletic toology (c)	Yes
Productive Production Angletic toology (c)	Yes
Provide Viza della	Indicate Figure 1 Figure 2
Pitto Wile - Trig Free Rei - Arginete 100100 ten in Free Pere - Arginete 100100 ten in	Ingression Angression Angression Angression Angression Angression Angression Angression Mitrit 2, 2479 C Composition

.....End of Report.....