

	Engineering Test Report No. 240	00141-01 Rev A	
Report Date	February 1, 2024		
Manufacturer Name	Appareo Systems		
Manufacturer Address	1830 NDSU Research Circle Fargo, ND 58102		
Product Name Brand/Model No.	TCU-NA,V1		
Part No.	2416826		
Date Received	February 1, 2024		
Test Dates	February 1, 2024		
Specifications	FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B Innovation, Science, and Economic Development Canada, ICES-003		
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515	FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107	
Signature	Janin Condenas		
Tested by	Javier Cardenas		
Signature	Raymond J Klouda,		
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illing	bis – 44894	
PO Number	50828		

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B and Innovation, Science, and Economic Development Canada, ICES-003 test specifications. The data presented in this test report pertains to the EUT on the test dates specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	3
2.	Introduction	4
3.	Power Input	4
4.	Grounding	4
5.	Support Equipment	4
6.	Interconnect Leads	4
7.	Modifications Made to the EUT	4
8.	Modes of Operation	4
8.1.	CAN Transmission	4
9.	Test Specifications	5
10.	Test Plan	
11.	Deviation, Additions to, or Exclusions from Test Specifications	5
12.	Laboratory Conditions	5
13.	Summary	
14.	Sample Calculations	5
15.	Statement of Conformity	
16.	Certification	6
17.	Photographs of EUT	7
18.	Equipment List	
19.	Block Diagram of Test Setup	9
20.	RF Radiated Emissions	10
21.	Scope of Accreditation	

1. Report Revision History

Revision	Date	Description		
-	7 FEB 2024	Initial Release of Engineering Test Report No. 2400141-01		
A	14 FEB 2024 By Javier C.	 Through the report: "Rev A" was added to the report number in the header. Title Page and Section 2: Changed model number from "TCU" to "TCU-NA,V1". 		

2. Introduction

This document presents the results of a radiated emissions test that was performed on one (1) Telematic Control Unit (hereinafter referred to as the Equipment Under Test (EUT)).

The EUT was identified as follows:

EUT Identification				
Description	Telematic Control Unit			
Model No.	TCU-NA,V1			
Part No.	2416826			
Serial No.	1038			
Highest Internal Frequency of the EUT	2.4GHz			

The EUT listed above was used throughout the test series.

3. Power Input

The EUT was powered by 12VDC from a twisted pair, 1-meter, harness.

4. Grounding

The EUT was not connected to ground.

5. Support Equipment

The EUT was submitted for testing along with the following support equipment:

Description	Model #	S/N
Lenovo Laptop	T460S	

6. Interconnect Leads

The following interconnect cables were submitted with the test item:

Item	Description
HSD to USB	Populates HSD Port
Fakra connector coax (Purple)	Connects EUT to antenna
Fakra connector coax (Green)	Connects EUT to antenna

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Modes of Operation

The EMC tests were performed with the EUTs operating in the test mode described below.

8.1. CAN Transmission

This mode was achieved by applying 12VDC to the EUT with the support equipment attached. The support equipment software was used to configure the EUT into the proper operating mode. The CAN messages were transmitted continuously between the EUT and the support equipment.

9. Test Specifications

The tests were performed to selected portions of, and in accordance with the following test specifications:

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart B
- ICES-003, Issue 7, October 15, 2020, "Information Technology Equipment (including Digital Apparatus)"
- RSS-Gen, Issue 5, February 2021, Amendment 2, "General Requirements for Compliance of Radio Apparatus"
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from Appareo Systems and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B, Innovation, Science, and Economic Development Canada, ICES-003, and ANSI C63.4-2014 specifications.

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

The following were the laboratory conditions while the EMC tests were performed:

Ambient Parameters	Value
Temperature	22°C
Relative Humidity	28%
Atmospheric Pressure	1017.9mb

13. Summary

The following EMC tests were performed, and the results are shown below:

Test Description	Test Requirements	Test Methods	Equipment Class	EUT S/N	Results
RF Radiated Emissions	FCC 15B 15.109 ISED ICES-003, Section 3.2.2	ANSI C63.4:2014	В	1038	Conforms

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL $(dB\mu V) = MTR (dB\mu V) + CF (dB)$.

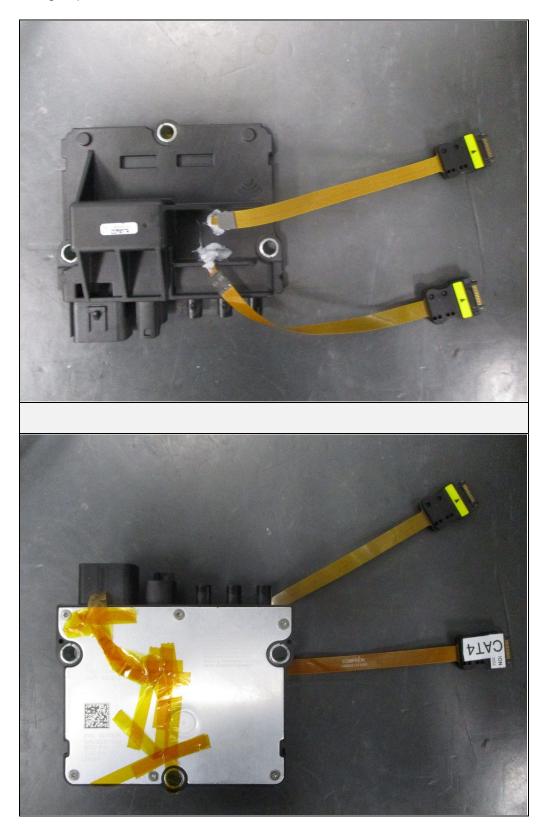
For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS $(dB\mu V/m) = MTR (dB\mu V) + AF (dB/m) + CF (dB) + (-PA (dB)) + DC (dB)$

To convert the Field Strength dB μ V/m term to μ V/m, the dB μ V/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in μ V/m terms.

Formula 2: FS (µV/m) = AntiLog [(FS (dBµV/m))/20]


15. Statement of Conformity

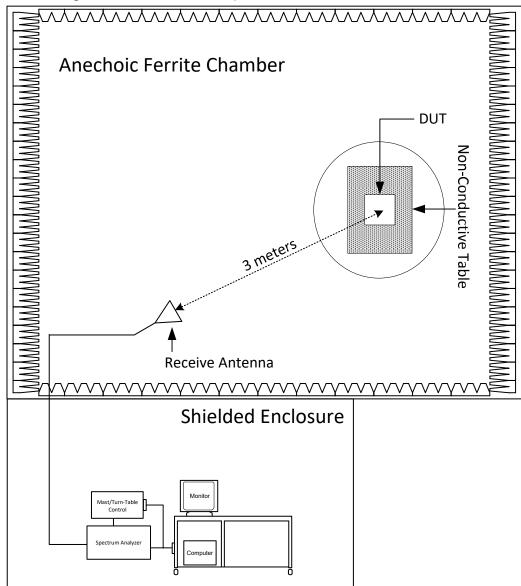
The Appareo Systems Telematic Control Unit, Part No. 2416826, Serial No. 1038, did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B and Innovation, Science, and Economic Development Canada, ICES-003.

16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B and Innovation, Science, and Economic Development Canada, ICES-003 test specifications. The data presented in this test report pertains to the EUT as received by the customer on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT

18. Equipment List


Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW3	PREAMPLIFIER	PLANAR ELECTRONICS	PE2-35-120-5R0- 10-12	PL2924	1GHZ-20GHZ	03/10/2023	03/10/2024
CDZ4	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
NTA4	BILOG ANTENNA	TESEQ	6112D	46660	20-2000GHZ	10/26/2022	10/26/2024
NWQ0	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66657	1GHZ-18GHZ	6/13/2022	6/13/2024
RBG3	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101592	2HZ-44GHZ	11/11/2022	2/11/2024
SHC2	Power Supplies	HENGFU	HF60W-SL-24	A11372702	24V	NOTE 1	
VBV2	CISPR EN FCC ICES RE.EXE	ELITE	CISPR EN FCC ICES RE.EXE			N/A	

 N/A: Not Applicable
 I/O: Initial Only
 CNR: Calibration Not Required

 NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Block Diagram of Test Setup

Radiated Measurements Test Setup

20. RF Radiated Emissions

EUT Information		
Manufacturer	Appareo Systems	
Product	Telematic Control Unit	
Part No.	2416826	
Serial No.	1038	
Mode	CAN Transmission	

Test Site Information				
Setup Format	Tabletop			
Height of Support	NA			
Type of Test Site	Semi-Anechoic Chamber			
Test Site Used	R21F			
Type of Antennas Used	Below 1GHz: Bilog (or equivalent) Above 1GHz: Double-ridged waveguide (or equivalent)			
Highest Internal Frequency	2.4GHz			
Highest Measurement Frequency	13GHz			
Notes	The cables were manually maximized during the preliminary emissions sweeps. The cable arrangement which resulted in the worst-case emissions was utilized.			

Measurement Uncertainty			
Measurement Type	Expanded Measurement Uncertainty		
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3		
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1		
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2		
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3		
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4		

Requirements

The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the values in the following tables.

FCC Part 15 Class B Radiated Emissions Limits (30MHz to 1GHz)						
Frequency of Emission (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)				
30 – 88	100	40				
88 – 216	150	43.5				
216 – 960	200	46				
Above 960	500	54				
FCC Part 15 Class B Radiated Emissions Limits (Above 1GHz)						
Frequency of Emission (MHz)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)				
Above 1000	74	54				

ICES-003 Class B Radiated Emissions Limits (30MHz to 1GHz)						
Frequency Range (MHz)	Field Strength at 3 meters (dBµV/m)	Field Strength at 10 meters (dBµV/m)				
30 – 88	40	30				
88 – 216	43.5	33.1				
216 – 230	46	35.6				
230 – 960	47	37				
960 - 1000	54	43.5				
ICES-003 Class B Radiated Emissions Limits (At and Above 1GHz)						
Frequency Range	Average	Peak				
(GHz)	(dBµV/m)	(dBµV/m)				
1 – F _M	54	74				
F_M = highest measurement frequency		·				

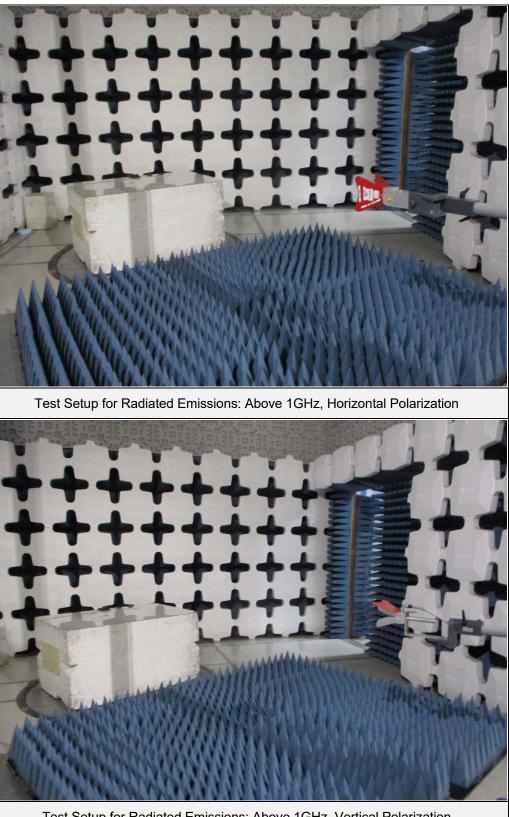
Procedure

Since a quasi-peak detector and an average detector requires long integration times, it is not practical to automatically sweep through the quasi-peak and average levels. Therefore, radiated emissions from the EUT were first scanned using a peak detector and automatically plotted. The frequencies where significant emission levels were noted were then remeasured using the quasi-peak detector or average detector.

The EUT and all peripheral equipment were placed on an 80cm high non-conductive stand. The broadband measuring antenna was positioned at a 3-meter distance from the EUT. The frequency range from 30MHz to 1GHz was investigated using a peak detector function with the bilog antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The frequency range from 1GHz to 13GHz was investigated using a peak detector function with the double ridged waveguide antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The maximum levels for each antenna polarization were plotted.

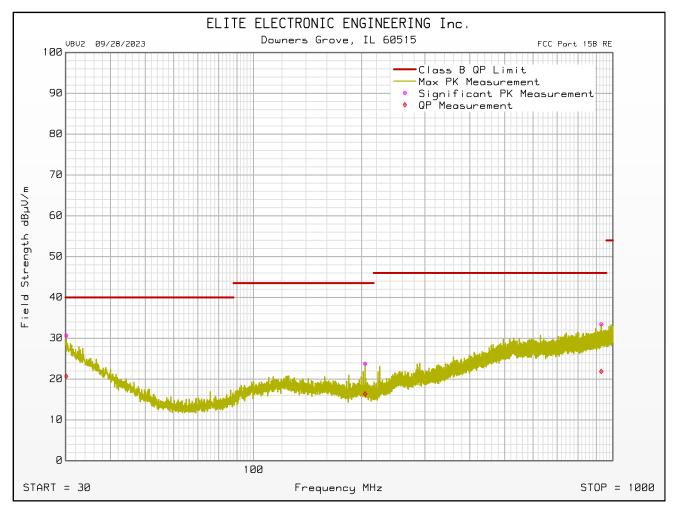
Final radiated emissions were performed on all significant broadband and narrowband emissions found in the exploratory sweeps using the following methods:

- 1) Measurements from 30MHz to 1GHz were made using a quasi-peak detector and a broadband bilog antenna. Measurements above 1GHz were made using an average detector and a broadband double ridged waveguide antenna.
- 2) To ensure that maximum or worst case, emission levels were measured, the following steps were taken:
 - a) The EUT was rotated so that all sides were exposed to the receiving antenna.
 - b) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - c) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
 - d) For hand-held or body-worn devices, the EUT was rotated through three orthogonal axes to determine which orientation produces the highest emission relative to the limit.



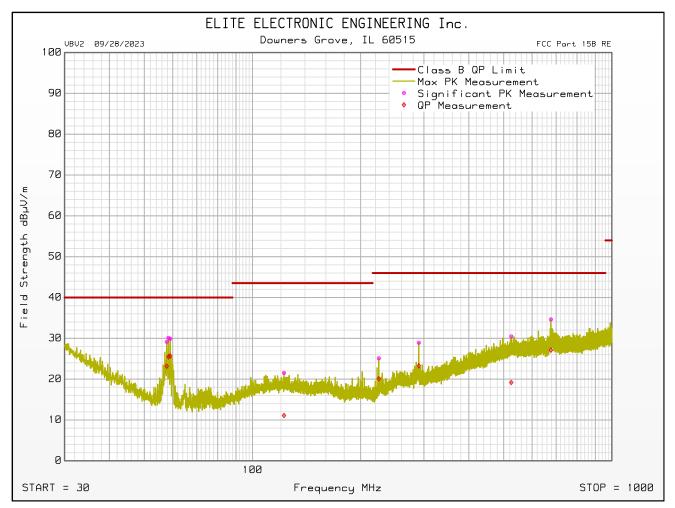
Test Setup for Radiated Emissions: 30MHz to 1GHz, Vertical Polarization

Test Setup for Radiated Emissions: Above 1GHz, Vertical Polarization



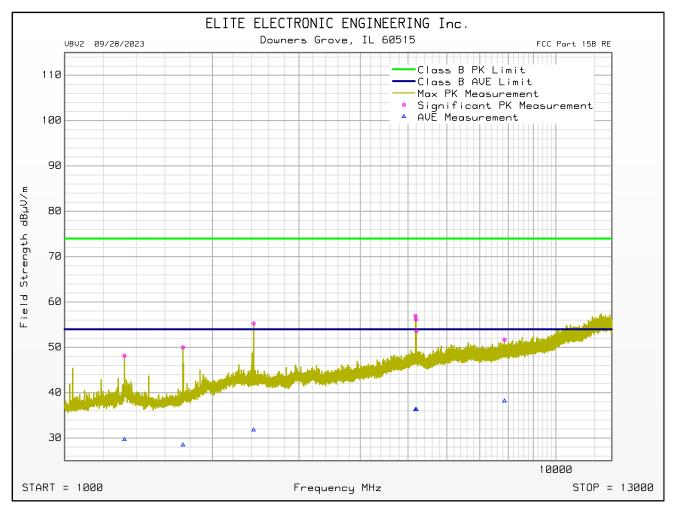
Manufacturer :	Appareo Systems
Part No :	2416826
Serial Number :	1038
DUT Mode :	CAN Transmission
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Scan Type :	Stepped Scan
Test RBW :	120 kHz
Prelim Dwell Time (s) :	0.0001
Notes :	None
Test Engineer :	J. Cardenas
Test Date :	Feb 01, 2024 07:45:43 AM

Freq MHz	Peak Mtr Rdg dBuV	QP Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	QP Total dBµV/m	QP Limit dBµV/m	QP Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive QP Level
30.120	5.3	-4.7	24.9	0.0	0.5	0.0	30.7	20.7	40.0	-19.3	Horizontal	200	180	
57.720	15.9	9.9	12.8	0.0	0.5	0.0	29.2	23.2	40.0	-16.8	Vertical	200	315	
58.380	17.0	12.3	12.7	0.0	0.5	0.0	30.1	25.5	40.0	-14.5	Vertical	200	315	
59.040	16.8	12.6	12.6	0.0	0.5	0.0	29.9	25.7	40.0	-14.3	Vertical	200	270	
122.380	2.6	-7.8	18.3	0.0	0.6	0.0	21.5	11.1	43.5	-32.4	Vertical	200	225	
204.460	7.3	-0.1	15.5	0.0	1.0	0.0	23.8	16.4	43.5	-27.2	Horizontal	200	180	
224.700	8.6	3.6	15.5	0.0	1.0	0.0	25.1	20.1	46.0	-25.9	Vertical	120	270	
290.340	9.0	3.4	18.9	0.0	1.0	0.0	28.9	23.3	46.0	-22.7	Vertical	340	270	
525.060	4.3	-7.0	24.7	0.0	1.5	0.0	30.5	19.2	46.0	-26.8	Vertical	120	270	
676.860	8.1	0.6	24.8	0.0	1.7	0.0	34.6	27.1	46.0	-18.9	Vertical	120	0	
928.800	4.6	-6.9	26.8	0.0	2.0	0.0	33.4	21.9	46.0	-24.1	Horizontal	200	180	



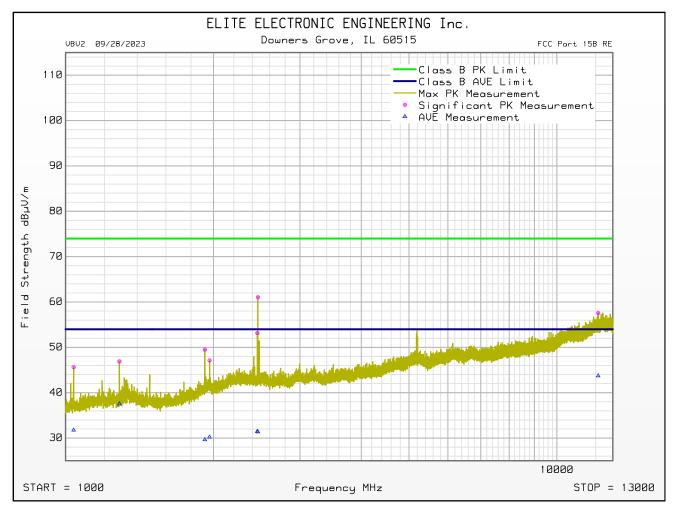
Part No : 2416826 Serial Number : 1038 DUT Mode : CAN Trai	nsmission
Turntable Step Angle (°):45Mast Positions (cm):120, 200,Antenna Polarization:HorizontaScan Type:SteppedTest RBW:120 kHzPrelim Dwell Time (s):0.0001Notes:NoneTest Engineer:J. CarderTest Date:Feb 01, 2	al Scan

Part No:Serial Number:DUT Mode:Turntable Step Angle (°):Mast Positions (cm):Antenna Polarization:Scan Type:Test RBW:Prelim Dwell Time (s):Notes:	Appareo Systems 2416826 1038 CAN Transmission 45 120, 200, 340 Vertical Stepped Scan 120 kHz 0.0001 None
	None J. Cardenas
0	Feb 01, 2024 07:45:43 AM


SW ID/Rev: VBV2 09/28/2023

Manufacturer	:	Appareo Systems
Part No	:	2416826
Serial Number	:	1038
DUT Mode	:	CAN Transmission
Turntable Step Angle (°)):	45
Mast Positions (cm)	:	120, 200, 340
Scan Type	:	Stepped Scan
Test RBW	:	1 MHz
Prelim Dwell Time (s)	:	0.0001
Notes	:	None
Test Engineer	:	J. Cardenas
Test Date	:	Feb 01, 2024 01:22:04 PM

Freq MHz	Peak Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	Peak Limit dBµV/m	Peak Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive Peak Level
1038.500	56.7	29.1	-42.2	2.1	0.0	45.6	74.0	-28.4	Vertical	120	90	
1287.000	56.7	29.6	-41.8	2.4	0.0	46.9	74.0	-27.1	Vertical	200	90	
1324.000	57.8	29.6	-41.6	2.4	0.0	48.2	74.0	-25.8	Horizontal	200	180	
1741.500	57.7	30.6	-41.1	2.8	0.0	50.0	74.0	-24.0	Horizontal	200	225	
1921.000	55.1	32.3	-40.8	2.9	0.0	49.5	74.0	-24.5	Vertical	340	0	
1963.500	52.3	32.6	-40.8	3.0	0.0	47.1	74.0	-26.9	Vertical	340	225	
2425.500	59.4	33.6	-41.1	3.4	0.0	55.3	74.0	-18.7	Horizontal	120	315	
2456.500	57.3	33.6	-41.2	3.4	0.0	53.2	74.0	-20.8	Vertical	340	45	
2463.000	65.2	33.6	-41.2	3.5	0.0	61.1	74.0	-12.9	Vertical	340	45	
5179.500	54.6	37.6	-40.4	5.1	0.0	57.0	74.0	-17.0	Horizontal	120	270	
5192.000	53.8	37.6	-40.4	5.1	0.0	56.2	74.0	-17.8	Horizontal	120	270	
5201.000	51.3	37.6	-40.4	5.1	0.0	53.6	74.0	-20.4	Horizontal	120	270	
7860.500	47.4	38.6	-40.7	6.4	0.0	51.7	74.0	-22.3	Horizontal	120	0	
12138.000	48.2	41.8	-40.4	8.0	0.0	57.6	74.0	-16.4	Vertical	340	90	
Freq	Average	Ant	Amp	Cbl	Dist	Average	Average	Average		Mast		Excessive
MHz	Mtr Rdg dBuV	Fac dB/m	Fac dB	Fac dB	Corr dB	Total dBµV/m	Limit dBµV/m	Lim Mrg dB	Ant Pol	Ht	Azim °	Average
MHz	Mtr Rdg dBuV	Fac dB/m	Fac	Fac dB	Corr dB	Total dBµV/m	Limit dBµV/m	Lim Mrg dB		Ht cm	۰	Average
	Mtr Rdg	Fac	Fac dB	Fac	Corr	Total	Limit	Lim Mrg	Pol	Ht	Azim ° 90 90	Average
MHz 1038.500	Mtr Rdg dBuV 42.9	Fac dB/m 29.1	Fac dB -42.2	Fac dB 2.1	Corr dB 0.0	Total dBµV/m 31.8	Limit dBµV/m 54.0	Lim Mrg dB -22.2	Pol Vertical	Ht cm 120	° 90	Average
MHz 1038.500 1287.000	Mtr Rdg dBuV 42.9 47.3	Fac dB/m 29.1 29.6	Fac dB -42.2 -41.8	Fac dB 2.1 2.4	Corr dB 0.0 0.0	Total dBµV/m 31.8 37.5	Limit dBµV/m 54.0 54.0	Lim Mrg dB -22.2 -16.5	Pol Vertical Vertical	Ht cm 120 200	• 90 90	Average
MHz 1038.500 1287.000 1324.000	Mtr Rdg dBuV 42.9 47.3 39.3	Fac dB/m 29.1 29.6 29.6	Fac dB -42.2 -41.8 -41.6	Fac dB 2.1 2.4 2.4	Corr dB 0.0 0.0 0.0	Total dBµV/m 31.8 37.5 29.7	Limit dBµV/m 54.0 54.0 54.0	Lim Mrg dB -22.2 -16.5 -24.3	Pol Vertical Vertical Horizontal	Ht cm 120 200 200	90 90 180	Average
MHz 1038.500 1287.000 1324.000 1741.500	Mtr Rdg dBuV 42.9 47.3 39.3 36.2	Fac dB/m 29.1 29.6 29.6 30.6	Fac dB -42.2 -41.8 -41.6 -41.1	Fac dB 2.1 2.4 2.4 2.8	Corr dB 0.0 0.0 0.0 0.0 0.0	Total dBμV/m 31.8 37.5 29.7 28.5	Limit dBµV/m 54.0 54.0 54.0 54.0 54.0	Lim Mrg dB -22.2 -16.5 -24.3 -25.5	Pol Vertical Vertical Horizontal Horizontal	Ht cm 120 200 200 200	90 90 180 225	Average
MHz 1038.500 1287.000 1324.000 1741.500 1921.000	Mtr Rdg dBuV 42.9 47.3 39.3 36.2 35.2	Fac dB/m 29.1 29.6 29.6 30.6 32.3	Fac dB -42.2 -41.8 -41.6 -41.1 -40.8	Fac dB 2.1 2.4 2.4 2.8 2.9	Corr dB 0.0 0.0 0.0 0.0 0.0 0.0	Тоtal dBµV/m 31.8 37.5 29.7 28.5 29.6	Limit dBµV/m 54.0 54.0 54.0 54.0 54.0 54.0	Lim Mrg dB -22.2 -16.5 -24.3 -25.5 -24.3	Pol Vertical Vertical Horizontal Horizontal Vertical	Ht cm 120 200 200 200 340	90 90 180 225 0	Average
MHz 1038.500 1287.000 1324.000 1741.500 1921.000 1963.500	Mtr Rdg dBuV 42.9 47.3 39.3 36.2 35.2 35.4	Fac dB/m 29.1 29.6 29.6 30.6 32.3 32.6	Fac dB -42.2 -41.8 -41.6 -41.1 -40.8 -40.8	Fac dB 2.1 2.4 2.4 2.8 2.9 3.0	Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Total dBµV/m 31.8 37.5 29.7 28.5 29.6 30.2	Limit dBµV/m 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Lim Mrg dB -22.2 -16.5 -24.3 -25.5 -24.3 -23.8	Pol Vertical Vertical Horizontal Horizontal Vertical Vertical	Ht cm 120 200 200 200 340 340	90 90 180 225 0 225	Average
MHz 1038.500 1287.000 1324.000 1741.500 1921.000 1963.500 2425.500	Mtr Rdg dBuV 42.9 47.3 39.3 36.2 35.2 35.4 35.9	Fac dB/m 29.1 29.6 30.6 32.3 32.6 33.6 33.6 33.6	Fac dB -42.2 -41.8 -41.6 -41.1 -40.8 -40.8 -40.8 -41.1	Fac dB 2.1 2.4 2.4 2.8 2.9 3.0 3.4	Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Total dBµV/m 31.8 37.5 29.7 28.5 29.6 30.2 31.8	Limit dBµV/m 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Lim Mrg dB -22.2 -16.5 -24.3 -25.5 -24.3 -23.8 -23.8 -22.2	Pol Vertical Horizontal Horizontal Vertical Vertical Horizontal	Ht cm 120 200 200 200 340 340 340 120	90 90 180 225 0 225 315	Average
MHz 1038.500 1287.000 1324.000 1741.500 1921.000 1963.500 2425.500 2456.500	Mtr Rdg dBuV 42.9 47.3 39.3 36.2 35.2 35.4 35.9 35.6	Fac dB/m 29.1 29.6 29.6 30.6 32.3 32.6 33.6 33.6	Fac dB -42.2 -41.8 -41.6 -41.1 -40.8 -40.8 -40.8 -41.1 -41.2	Fac dB 2.1 2.4 2.4 2.8 2.9 3.0 3.4 3.4	Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Total dBµV/m 31.8 37.5 29.7 28.5 29.6 30.2 31.8 31.5	Limit dBµV/m 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Lim Mrg dB -22.2 -16.5 -24.3 -25.5 -24.3 -23.8 -23.8 -22.2 -22.5	Pol Vertical Vertical Horizontal Vertical Vertical Vertical	Ht cm 120 200 200 340 340 340 120 340	90 90 180 225 0 225 315 45	Average
MHz 1038.500 1287.000 1324.000 1741.500 1921.000 1963.500 2425.500 2456.500 2456.500 2463.000 5179.500 5192.000	Mtr Rdg dBuV 42.9 47.3 39.3 36.2 35.2 35.4 35.6 35.6 35.5 33.9 33.9 33.9	Fac dB/m 29.1 29.6 29.6 30.6 32.3 32.6 33.6 33.6 33.6 33.6 37.6 37.6	Fac dB -42.2 -41.8 -41.6 -41.1 -40.8 -40.8 -40.8 -41.1 -41.2 -40.4 -40.4	Fac dB 2.1 2.4 2.4 2.8 2.9 3.0 3.4 3.4 3.4 3.5 5.1 5.1	Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Total dBµV/m 31.8 37.5 29.7 28.5 29.6 30.2 31.8 31.5 31.4 36.3 36.3	Limit dBµV/m 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Lim Mrg dB -22.2 -16.5 -24.3 -25.5 -24.3 -23.8 -22.2 -22.5 -22.5 -22.6 -17.7 -17.7	Pol Vertical Vertical Horizontal Vertical Vertical Vertical Vertical Vertical	Ht cm 120 200 200 200 340 340 120 340 340 340 120 120	90 90 180 225 0 225 315 45 45 45 270 270	Average
MHz 1038.500 1287.000 1324.000 1741.500 1921.000 1963.500 2425.500 2456.500 2466.500 2466.000 5179.500	Mtr Rdg dBuV 42.9 47.3 39.3 36.2 35.2 35.4 35.6 35.5 33.9 33.9 33.9	Fac dB/m 29.1 29.6 30.6 32.3 32.6 33.6 33.6 33.6 33.6 33.6 37.6	Fac dB 42.2 -41.8 -41.6 -41.1 -40.8 -40.8 -40.8 -41.1 -41.2 -41.2 -41.2 -40.4 -40.4	Fac dB 2.1 2.4 2.8 2.9 3.0 3.4 3.4 3.5 5.1	Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Total dBµV/m 31.8 37.5 29.7 28.5 29.6 30.2 31.8 31.5 31.4 36.3 36.3	Limit dBµV/m 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Lim Mrg dB -22.2 -16.5 -24.3 -25.5 -24.3 -23.8 -22.8 -22.2 -22.5 -22.6 -17.7	Pol Vertical Horizontal Horizontal Vertical Vertical Vertical Vertical Vertical Horizontal	Ht cm 120 200 200 340 340 120 340 340 340 120 120 120	90 90 180 225 0 225 315 45 45 45 270	Average
MHz 1038.500 1287.000 1324.000 1741.500 1921.000 1963.500 2425.500 2456.500 2456.500 2463.000 5179.500 5192.000	Mtr Rdg dBuV 42.9 47.3 39.3 36.2 35.2 35.4 35.6 35.6 35.5 33.9 33.9 33.9	Fac dB/m 29.1 29.6 29.6 30.6 32.3 32.6 33.6 33.6 33.6 33.6 37.6 37.6	Fac dB -42.2 -41.8 -41.6 -41.1 -40.8 -40.8 -40.8 -41.1 -41.2 -40.4 -40.4	Fac dB 2.1 2.4 2.4 2.8 2.9 3.0 3.4 3.4 3.4 3.5 5.1 5.1	Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Total dBµV/m 31.8 37.5 29.7 28.5 29.6 30.2 31.8 31.5 31.4 36.3 36.3	Limit dBµV/m 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Lim Mrg dB -22.2 -16.5 -24.3 -25.5 -24.3 -23.8 -22.2 -22.5 -22.5 -22.6 -17.7 -17.7	Pol Vertical Horizontal Horizontal Vertical Vertical Vertical Vertical Vertical Horizontal Horizontal	Ht cm 120 200 200 200 340 340 120 340 340 340 120 120	90 90 180 225 0 225 315 45 45 45 270 270	Average



Part No Serial Number DUT Mode Turntable Step Angle (°) Mast Positions (cm) Antenna Polarization Scan Type Test RBW Prelim Dwell Time (s) Notes		Appareo Systems 2416826 1038 CAN Transmission 45 120, 200, 340 Horizontal Stepped Scan 1 MHz 0.0001 None J. Cardenas
	-	
		Feb 01, 2024 01:22:04 PM

Manufacturer Part No Serial Number DUT Mode Turntable Step Angle (°) Mast Positions (cm) Antenna Polarization Scan Type Test RBW Prelim Dwell Time (s) Notes Test Engineer		Appareo Systems 2416826 1038 CAN Transmission 45 120, 200, 340 Vertical Stepped Scan 1 MHz 0.0001 None J. Cardenas
	-	
Test Engineer Test Date		Feb 01, 2024 01:22:04 PM

21. Scope of Accreditation

Valid To: June 30, 2025

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC. 1516 Centre Circle Downers Grove, IL 60515 Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168 Email: rbugielski@elitetest.com Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112 Email: cfanning@elitetest.com Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163 Email: blugo@elitetest.com Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123 Email: reking@elitetest.com Website: www.elitetest.com

ELECTRICAL

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic</u> <u>compatibility and other electrical tests</u>:

<u>Test Technology:</u>	Test Method(s) ¹ :
Transient Immunity (Max Voltage 60V/Max current 100A)	ISO 7637-2 (including emissions); ISO 7637-3; ISO 16750-2:2012, Sections 4.6.3 and 4.6.4; CS-11979, Section 6.4; CS.00054, Section 5.9; EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222); GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12; ECE Regulation 10.06 Annex 10
Electrostatic Discharge (ESD) (Up to +/-25kV)	ISO 10605 (2001, 2008); CS-11979 Section 7.0; CS.00054, Section 5.10; EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13; GMW 3097 Section 3.6
Conducted Emissions	CISPR 25 (2002, 2008), Sections 6.2 and 6.3; CISPR 25 (2016), Sections 6.3 and 6.4; CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2; GMW 3097, Section 3.3.2; EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421, CE 430, CE440)

(A2LA Cert. No. 1786.01) 08/15/2023

Page 1 of 9

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

<u>Test Technology:</u>	<u>Test Method(s)¹:</u>
Radiated Emissions Anechoic (Up to 6GHz)	CISPR 25 (2002, 2008), Section 6.4; CISPR 25 (2016), Section 6.5; CS-11979, Section 5.3; CS.00054, Section 5.6.3; GMW 3097, Section 3.3.1; EMC-CS-2009.1 (RE 310); FMC1278 (RE310, RE320);
Vehicle Radiated Emissions	CISPR 12; CISPR 36; ICES-002; ECE Regulation 10.06 Annex 5
Bulk Current Injection (BC1) (1 to 400MHz 500mA)	ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1; GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112); ECE Regulation 10.06 Annex 9
Radiated Immunity Anechoic (Up to 6GHz and 200V/m) (Including Radar Pulse 600V/m)	ISO 11452-2; CS-11979, Section 6.2; CS.00054, Section 5.8.2; GMW 3097, Section 3.4.2; EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21; ECE Regulation 10.06 Annex 9
Radiated Immunity Magnetic Field	ISO 11452-8; FMC 1278 (RI140)
Radiated Immunity Reverb (360MHz to 6GHz and 100V/m)	ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3; EMC-CS-2009.1 (RI114); FMC1278 (RI114); ISO 11452-11
Radiated Immunity (Portable Transmitters) (Up to 6GHz and 20W)	ISO 11452-9; EMC-CS-2009.1 (RI115); FMC1278 (RI115); GMW 3097, Sec 3.4.4
Vehicle Radiated Immunity (ALSE)	ISO 11451-2; ECE Regulation 10.06 Annex 6
Vehicle Product Specific EMC Standards	EN 14982; EN ISO 13309; ISO 13766; EN 50498; EC Regulation No. 2015/208; EN 55012
Electrical Loads	ISO 16750-2
Stripline	ISO 11452-5
Transverse Electromagnetic (IEM) Cell	ISO 11452-3

M Page 2 of 9

Test Technology:

Test Method(s)¹:

Emissions Radiated and Conducted (3m Semi-anechoic chamber, up to 40 GHz)	47 CFR, FCC Part 15 B (using ANSI C63.4:2014); 47 CFR, FCC Part 18 (using FCC MP-5:1986); ICES-001; ICES-003; ICES-005; IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010); KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); CISPR 11; EN 55011; KS C 9811; CNS 13803 (1997, 2003);
	CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; CISPR 16-2-1 (2008); CISPR 16-2-1; KS C 9814-1; KN 14-1; IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000); EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz); CISPR 32; EN 55032; KS C 9832; KN 32;
	ECE Regulation 10.06 Annex 7 (Broadband); ECE Regulation 10.06 Annex 8 (Narrowband); ECE Regulation 10.06 Annex 14 (Conducted)
Cellular Radiated Spurious Emissions	ETSI TS 151 010-1 GSM; 3GPP TS 51.010-1, Sec 12; ETSI TS 134 124 UMTS; 3GPP TS 34.124; ETSI TS 136 124 LTE; E-UTRA; 3GPP TS 36.124
Current Harmonics	IEC 61000-3-2; IEC 61000-3-12; EN 61000-3-2; KN 61000-3-2; KS C 9610-3-2; ECE Regulation 10.06 Annex 11
Flicker and Fluctuations	IEC 61000-3-3; IEC 61000-3-11; EN 61000-3-3; KN 61000-3-3; KS C 9610-3-3; ECE Regulation 10.06 Annex 12
Immunity	
Electrostatic Discharge	EC 61000-4-2, Ed. 1.2 (2001); EC 61000-4-2 (1995) + A1(1998) + A2(2000); EN 61000-4-2 (1995); EN 61000-4-2 (2009-05); KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EC 61000-4-2; EN 61000-4-2; KN 61000-4-2; KS C 9610-4-2; EEEE C37.90.3 2001
Radiated Immunity	IEC 61000-4-3 (1995) + A1(1998) + A2(2000); IEC 61000-4-3, Ed. 3.0 (2006-02); IEC 61000-4-3, Ed. 3.2 (2010); KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3; KS C 9610-4-3; IEEE C37.90.2 2004
	1

Page 3 of 9

<u>Test Technology:</u>	Test Method(s) ¹ :
Immunity (cont'd) Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011); IEC 61000-4-4 (1995) + A1(2000) + A2(2001); KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008); IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4; KS C 9610-4-4; ECE Regulation 10.06 Annex 15
Surge	IEC 61000-4-5 (1995) + A1(2000); IEC 61000-4-5, Ed 1.1 (2005-11); EN 61000-4-5 (1995) + A1(2001); KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5; KS C 9610-4-5; IEEE C37.90.1 2012; IEEE STD C62.41.2 2002; ECE Regulation 10.06 Annex 16
Conducted Immunity	IEC 61000-4-6 (1996) + A1(2000); IEC 61000-4-6, Ed 2.0 (2006-05); IEC 61000-4-6 Ed. 3.0 (2008); KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6; EN 61000-4-6; KN 61000-4-6; KS C 9610-4-6
Power Frequency Magnetic Field Immunity (<i>Down to 3 A/m</i>)	IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009); EN 61000-4-8 (1994) + A1(2000); KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8
Voltage Dips, Short Interrupts, and Line Voltage Variations	IEC 61000-4-11, Ed. 2 (2004-03); KN 61000-4-11 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11; KS C 9610-4-11
Ring Wave	IEC 61000-4-12, Ed. 2 (2006-09); EN 61000-4-12:2006; IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEEE STD C62.41.2 2002

M Page 4 of 9

<u>Test Technology:</u>	Test Method(s) ¹ :
Generic and Product Specific EMC Standards	IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3; IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2
TxRx EMC Requirements	EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20
European Radio Test Standards	ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 440-2; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 300 328; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 908-2; ETSI EN 302 502; EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4
Canadian Radio Tests	RSS-102 measurement (RF Exposure Evaluation); RSS-102 measurement (Nerve Stimulation); SPR-002; RSS-111; RSS-112; RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243; RSS-244; RSS-247; RSS-248; RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN
Mexico Radio Tests	IFT-008-2015; NOM-208-SCFI-2016
Japan Radio Tests	Radio Law No. 131, Ordinance of MPT No. 37, 1981, MIC Notification No. 88:2004, Table No. 22-11; ARIB STD-T66, Regulation 18
Taiwan Radio Tests	LP-0002 (July 15, 2020)
	1

Page 5 of 9

<u>Test Technology:</u>	<u>Test Method(s)¹:</u>
Australia/New Zealand Radio Tests	AS/NZS 4268; Radiocommunications (Short Range Devices) Standard (2014)
Hong Kong Radio Tests	HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7; HKCA 1061; HKCA 1068; HKCA 1043; HKCA 1057; HKCA 1073
Korean Radio Test Standards	KN 301 489-1; KN 301 489-3; KN 301 489-9; KN 301 489-17; KN 301 489-52; KS X 3124; KS X 3125; KS X 3130; KS X 3126; KS X 3129
Vietnam Radio Test Standards	QCVN 47:2015/BTTTT; QCVN 54:2020/BTTTT; QCVN 55:2011/BTTTT; QCVN 65:2013/BTTTT; QCVN 73:2013/BTTTT; QCVN 74:2020/BTTTT; QCVN 112:2017/BTTTT; QCVN 117:2020//BTTTT
Vietnam EMC Test Standards	QCVN 18:2014/BTTTT; QCVN 86:2019/BTTTT; QCVN 96:2015/BTTTT; QCVN 118:2018/BTTTT
Unlicensed Radio Frequency Devices (3 Meter Semi-Anechoic Room)	47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H (using ANSI C63.10:2013, ANSI C63.17:2013 and FCC KDB 905462 D02 (v02))
Licensed Radio Service Equipment	47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87, 90, 95, 96, 97, 101 (using ANSI/TIA-603-E, TIA-102.CAAA-E, ANSI C63.26:2015)
OIA (Over the Air) Performance GSM, GPRS, EGPRS UMTS (W-CDMA) LTE including CAT M1 A-GPS for UMTS/GSM LTS A-GPS, A-GLONASS, SIB8/SIB16 Large Device/Laptop/Tablet Testing Integrated Device Testing WiFi 802.11 a/b/g/n/a	CTIA Test Plan for Wireless Device Over-the-Air Performance (Method for Measurement for Radiated Power and Receiver Performance) V3.8.2; CTIA Test Plan for RF Performance Evaluation of WiFi Mobile Converged Devices V2.1.0

Page 6 of 9

<u>Test Technology:</u>	<u>Test Method(s)¹:</u>
Electrical Measurements and	
Simulation	
AC Voltage / Current	FAA AC 150/5345-10H;
(1mV to 5kV) 60 Hz	FAA AC 150/5345-43J;
(0.1V to 250V) up to 500 MHz	FAA AC 150/5345-44K;
(1µA to 150A) 60 Hz	FAA AC 150/5345-46E;
	FAA AC 150/5345-47C;
DC Voltage / Current	FAA EB 67D
(1mV to 15 kV) / (1µA to 10A)	
Power Factor / Efficiency / Crest Factor	
(Power to 30kW)	
Resistance	
$(1 \mathbf{m} \Omega \text{ to } 4000 \mathbf{M} \Omega)$	

Surge (Up to 10 kV / 5 kA) (Combination Wave and Ring Wave)

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

¹ When the date, edition, version, etc. is not identified in the scope of accreditation, laboratories may use the version that immediately precedes the current version for a period of one year from the date of publication of the standard measurement method, per part C., Section 1 of A2LA *R101 - General Requirements-Accreditation (f ISO-IEC 17025 Laboratories.*

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	40000
Industrial, Scientific, and Medical Equipment Part 18	FCC MP-5 (February 1986)	40000
<u>Intentional Radiators</u> Part 15C	ANSI C63.10:2013	40000
(A2LA Cert. No. 1786.01) 08/15/2023	hu	Page 7 of 9

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A 1^2

Rule Subpart/Technology	Test Method		Maximum Frequency (MHz)
Unlicensed Personal Communication			<u>, </u>
<u>Systems Devices</u> Part 15D	ANSI C63.17:2013		40000
<u>U-NII without DFS Intentional Radiators</u> Part 15E	ANSI C63.10:2013		40000
U-NII with DFS Intentional Radiators Part 15E	FCC KDB 905462 D	02 (v02)	40000
<u>UWB Intentional Radiators</u> Part 15F	ANSI C63.10:2013		40000
<u>BPL Intentional Radiators</u> Part 15G	ANSI C63.10:2013		40000
White Space Device Intentional Radiators Part 15H	ANSI C63.10:2013		40000
Commercial Mobile Services (FCC Licensed Radio Service Equipment) Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015		40000
<u>General Mobile Radio Services (FCC</u> <u>Licensed Radio Service Equipment)</u> Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015		40000
<u>Citizens Broadband Radio Services (FCC</u> <u>Licensed Radio Service Equipment)</u> Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015		40000
Maritime and Aviation Radio Services Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015		40000
<u>Microwave and Millimeter Bands Radio</u> <u>Services</u> Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	4	40000
(A2LA Cert. No. 1786.01) 08/15/2023		In	Page 8 of 9

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A 1^2

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Broadcast Radio Services Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Signal Boosters</u> Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000

² Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

Page 9 of 9

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of August 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 1786.01 Valid to June 30, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.