

Report Seal

Report No.: EED32Q80655102

Page 1 of 34

TEST REPORT

Product : UWB Kbeacon

Trade mark : Kbeacon

Model/Type reference: K7W, C3, C3W

Serial Number : N/A

Report Number : EED32Q80655102

FCC ID : 2AXZL-K7W Date of Issue : Jul. 30, 2024

Test Standards : 47 CFR Part 15 Subpart F

Test result : PASS

Prepared for:

KKM Company Limited 3CDE, Building6, Baoneng Science&Technology Park, Qingxiang Rd, Longhua Street, Longhua District, Shenzhen City, Guangdong

Province, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Frazer Li

Approved by:

Aaron Ma

Reviewed by:

Tom Chen

Jul. 30, 2024

Check No.: 6317170524

Contents

		Page
1 CONTENTS		2
2 VERSION		3
3 TEST SUMMARY		
4 GENERAL INFORMATION		5
4.1 CLIENT INFORMATION		
4.5 DESCRIPTION OF SUPPORT UNITS 5 TEST RESULTS AND MEASUREMENT DATA		
5.1 ANTENNA REQUIREMENT		
6 PHOTOGRAPHS OF TEST SETUP		
7 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DE	ETAILS	34

2 Version

Version No.	Date	Description		
00	Jul. 30, 2024	4 Original		
/	CS CS			(3)
((6)	(6.)	6.

3 Test Summary

o rest outilitially			
Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart F Section 15.519(a2) & Section 15.521(b) & Section 15.203	PASS	
AC power-line conducted emissions	47 CFR Part 15 Subpart F Section 15.207 & Section 15.505 & Section 15.521(j)	N/A	
Cessation Time	47 CFR Part 15 Subpart F Section 15.519(a)(1)		
UWB Bandwidth (-10dB Bandwidth)	47 CFR Part 15 Subpart F Section 15.503 & Section 15.521(e)		
EIRP (Equivalent Isotropic Radiated Power)	47 CFR Part 15 Subpart F Section 15.519 (c)&(e) & Section 15.521(g)		
Spurious Emissions Below 1GHz	47 CFR Part 15 Subpart F Section 15.519(c) & Section 15.209 & Section 15.521(c)&(d)&(h)		
Spurious Emissions Above 1GHz	47 CFR Part 15 Subpart F Section 15.519 (c)&(d) & Section 15.521(d)&(h)		

Remark:

N/A: Only battery supply is supported and this item is not considered.

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: K7W, C3, C3W

Only the model K7W was tested. Their electrical circuit design, layout, components used and internal wiring are identical. Only the case design is different.

4 General Information

4.1 Client Information

Applicant:	KKM Company Limited		
Address of Applicant:	3CDE, Building6, Baoneng Science&Technology Park, Qingxiang Rd, Longhua Street, Longhua District, Shenzhen City, Guangdong Province, China		
Manufacturer: KKM Company Limited			
Address of Manufacturer:	3CDE, Building6, Baoneng Science&Technology Park, Qingxiang Rd, Longhua Street, Longhua District, Shenzhen City, Guangdong Province, China		
Factory:	KKM Company Limited		
Address of Factory: 3CDE, Building6, Baoneng Science&Technology Park, Qingxiang I Longhua Street, Longhua District, Shenzhen City, Guangdong Province, China			

4.2 General Description of EUT

V 7	Ochiciai Bescription	01 201			
	Product Name:	UWB Kbeacon			
	Model No.:	K7W, C3, C3W			
	Test Model No.:	K7W		~°~	
	Trade Mark:	Kbeacon		(41)	
	Product Type:	Hand Held UWB systems			
	Operation Frequency:	UWB Channels 5: 6489.6MHz UWB Channels 9:7987.2MHz			523
	Modulation Type:	OFDM			
	Antenna Type:	PCB Antenna	(0,)		(0,)
	Antenna Gain:	UWB Channels 5: 1.96dBi, UWB Channels 9: 0.52dBi;			
	Power Supply:	Battery DC 3.0V,850mAh			
	Test Voltage:	DC 3.0V			
	Sample Received Date:	May 17, 2024			
	Sample tested Date:	May 25, 2024 to Jul. 06, 2024	/°>		(3)
			0.70		

Test Configuration

EUT Test Software Settings:	
Software:	RF Test
EUT Power Grade:	Default (Power level is built-in set parameters and cannot be changed and selected)

Test Environment

	Operating Environment	:		
	Radiated Spurious Emi	ssions:		
	Temperature:	22~25.0 °C		
	Humidity:	50~55 % RH		
	Atmospheric Pressure:	1010mbar	_°>	
	RF Conducted:			
/	Temperature:	22~25.0 °C		
	Humidity:	50~55 % RH		
	Atmospheric Pressure:	1010mbar	-0.5	

4.5 **Description of Support Units**

N/A

4.6 Test Location

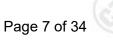
All tests were performed at:

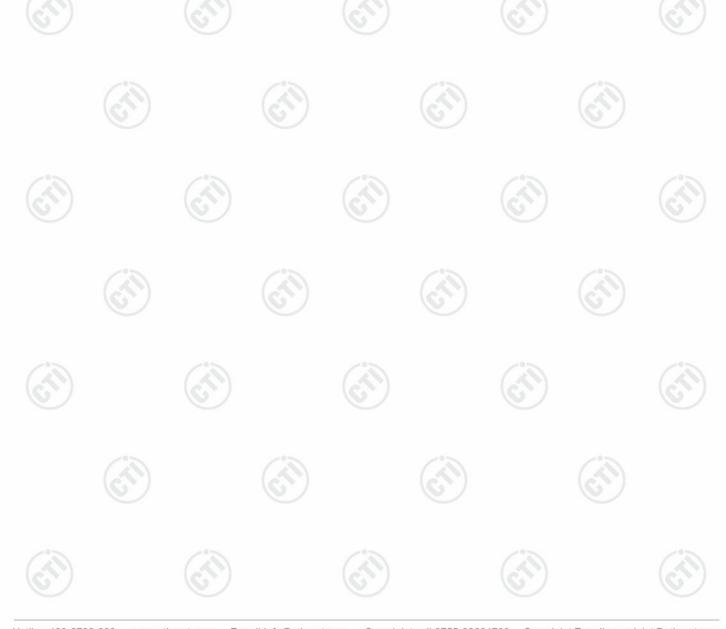
Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164





4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	DE nower conducted	0.46dB (30MHz-1GHz)	
'	RF power, conducted	0.55dB (1GHz-40GHz)	
		3.3dB (9kHz-30MHz)	
2	2 Radiated Spurious emission test	4.3dB (30MHz-1GHz)	
2		4.5dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	
3	Conduction emission	3.5dB (9kHz to 150kHz)	
3	Conduction emission	3.1dB (150kHz to 30MHz)	
4	Temperature test	0.64°C	
5	Humidity test	3.8%	
6	DC power voltages	0.026%	

4.8 Equipment List

	3M Semi-anechoic Chamber (2)- Radiated disturbance Test					
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due date (mm-dd-yyyy)	
3M Chamber &	5)	0		0)	6	
Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938-003	09/22/2023	09/21/2024	
Spectrum Analyzer	R&S	FSV40	101200	07/25/2023	07/24/2024	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023	12/13/2024	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/16/2024	04/15/2025	
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025	
Preamplifier	CD	PAP-1840-60	6041.6042	07/03/2023 06/19/2024	07/02/2024 06/18/2025	
Test software	Fara	EZ-EMC	EMEC-3A1-Pre	(<u> </u>	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A		- (8	
Cable line	Fulai(3M)	SF106	5216/6A			
Cable line	Fulai(3M)	SF106	5217/6A	(<u> </u>	

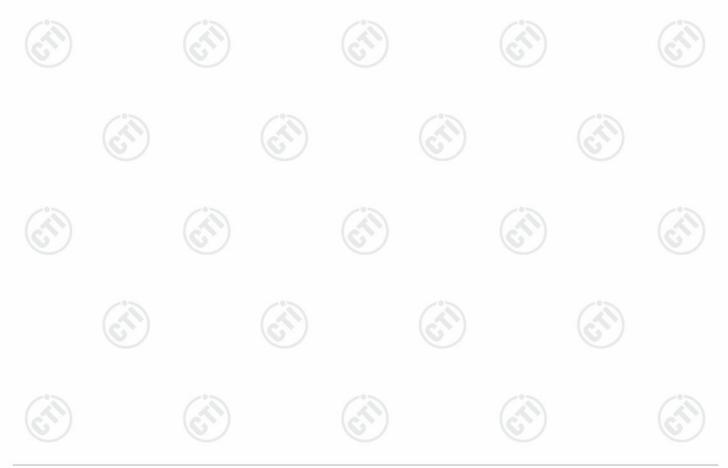
3M full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		(2
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021 07-03-2024	07-03-2024 07-02-2025
Preamplifier	EMCI	EMC184055SE	980597	04-12-2024	04-11-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(ے ۔۔۔
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		Ca
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(C)	@
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	- (<u> (%)</u>
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001		G

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15 Subpart F Section 15.519(a2) & Section 15.521(b) & Section 15.203

15.203 requirement:

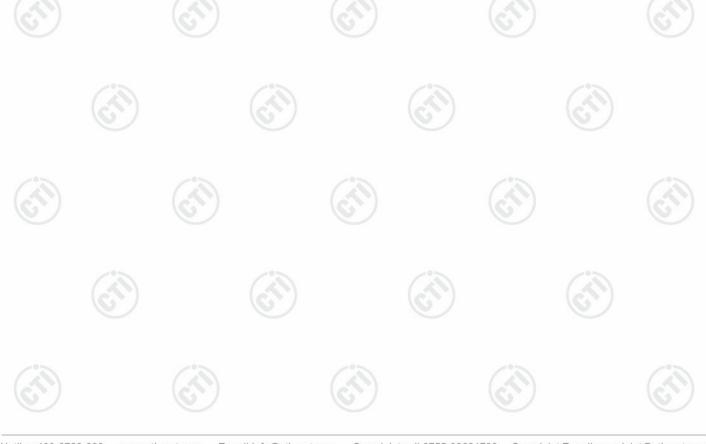

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of 15.211, 15.213, 15.217, 15.219, 15.221, or 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

15.519 requirement:

The use of antennas mounted on outdoor structures, e.g., antennas mounted on the outside of a building or on a telephone pole, or any fixed outdoors infrastructure is prohibited. Antennas may be mounted only on the hand held UWB device.

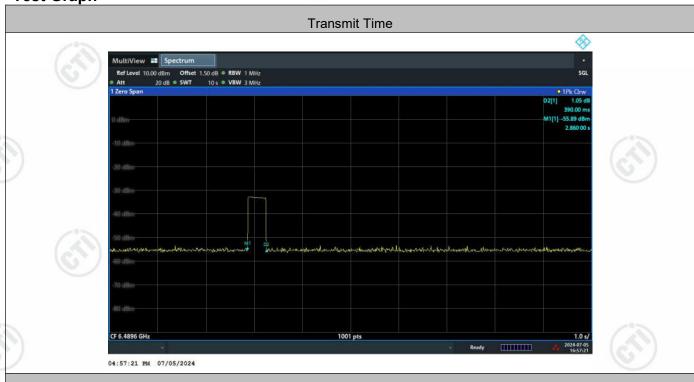
EUT Antenna: Please see Internal photos

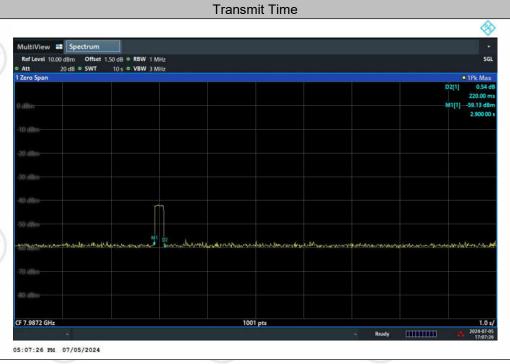
The antenna is PCB Antenna. The best case gain of the antenna is UWB Channels 5: 1.96dBi, UWB Channels 9: 0.52dBi;



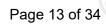
5.2 Cessation Time

Test Requirement:	47 CFR Part 15 Sub	part F Section 15.51	9(a)(1)
Test Method:	1		
Test Setup:	Cottol Computer Power Supply TEMPERATURE CABRET	-	RF test System istrument
	Remark: Offset=Cab	ole loss+ attenuation	factor.
Test Procedure:	a. Set RBW of spect b. Use a video trigg full pulses.	rum analyzer to 1 M er with the trigger lo quency on any frequero ero span.	JWB normal connection. Hz and VBW to 3 MHz. evel set to enable triggering only or lency would be measure and set the of one single pulse.
Limit:	≤10 seconds	(62)	(67)
Test Mode:	Normal		
Test Results:	Pass		





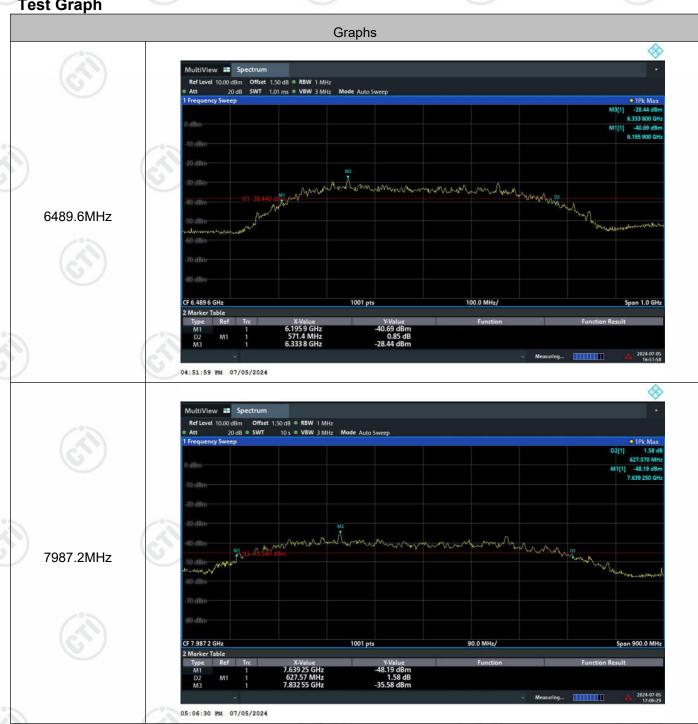
Test Result


Test Channel	Center Frequency (MHz)	Transmit Time (ms)	Limit (s)	Results
5	6489.6	390.00	≤10	pass
9	7987.2	220.00	≤10	pass

Test Graph

5.3 **UWB Bandwidth (-10dB Bandwidth)**

Test Requirement:	47 CFR Part 15 Subpart F Section 15.503 & Section 15.521(e)
Test Method:	ANSI C63.10:2013 Section 10.1
Test Setup:	Control Computer Power Supply Power Foot Attenuator Temperature Cabriet Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	The frequency at which the maximum power level is measured with the peak detector is designated fM. The peak power measurements shall be made using a spectrum analyzer or EMI receiver with a 1 MHz resolution bandwidth and a video bandwidth of 1 MHz or greater. The instrument shall be set to peak detection using the maximum-hold trace mode. The outermost 1 MHz segments above and below fM, where the peak power falls by 10 dB relative to the level at fM, are designated as fH and fL, respectively: b) For the lowest frequency bound fL, the emission is searched from a frequency lower than fM that has, by inspection, a peak power much lower than 10 dB less than the power at fM and increased toward fM until the peak power indicates 10 dB less than the power at fM. The frequency of that segment is recorded. b) This process is repeated for the highest frequency bound fH, beginning at a frequency higher than fM that has, by inspection, a peak power much lower than 10 dB below the power at fM. The frequency of that segment is recorded. c) The two recorded frequencies represent the highest fH and lowest fL bounds of the UWB transmission, and the -10 dB bandwidth (B - 10) is defined as (fH - fL). The center frequency(fc) is mathematically determined from (fH - fL) /2. d) The fractional bandwidth is defined as 2(fH - fL) / (fH + fL).e) Determine whether the -10 dB bandwidth (fH - fL) is ≥ 500 MHz, or whether the fractional bandwidth 2(fH - fL)/ (fH + fL) is ≥ 0.2.
Limit:	≥500MHz
Test Mode:	Continuous Tx Mode, Keep the EUT Transmitting with Modulation
Test Results:	Pass



Test Result

Test Frequency	FM(MHz)	FL (MHz)	FH (MHz)	10dB	Limit	Results
(MHz)	1 101(101112)	1 2 (111112)	111 (11112)	bandwidth(MHz)	(MHz)	Results
6489.6	6333.800	6195.900	6767.300	571.400	≧500	pass
7987.2	7832.550	7639.250	8266.82	627.570	≧500	pass

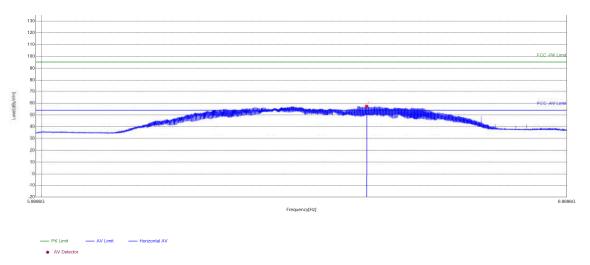
Test Graph

Page 15 of 34

5.4 **EIRP** (Equivalent Isotropic Radiated Power)

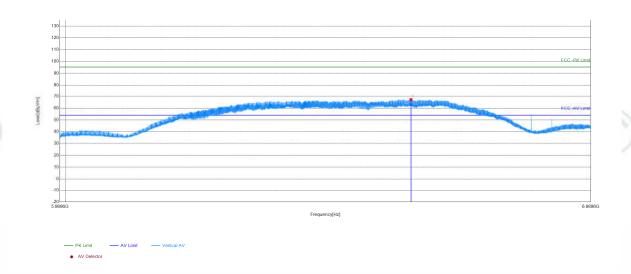
_	1 26 30 1	
	Test Requirement:	47 CFR Part 15 Subpart F Section 15.519 (c)&(e) & Section 15.521(g)
	Test Method:	ANSI C63.10: 2013 Section 10.3
1000	Test Setup:	
		Horn Antenna Tower AE EUT Ground Reference Plane Test Receiver Plane Test Receiver Controller
		Remark:
		Due to some spectrum analyzer does not support 50MHz RBW setting,
1		RBW set to the maximum value, and add a correction factor is allowed for
		Max Peak EIRP measurement. According to ANSI 63.10 Clause 10.3.9,
		the EIRP to field strength at a specified measurement distance of 3 m is below:
		E (dBuV/m) = EIRP(dBm) + 95.3
		For peak power test, the spectrum anylyzer was set to RBW=8MHz,
		VBW=10MHz, and add a conversion factor of 20*log(50MHz/8MHz)=15.92dB.
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semianechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from O degrees to 360 degrees to find the maximum
		reading. 5) The test-receiver system was set to Peak detector with Maximum Hold Mode for Max Peak EIRP measurement and AV detector for Average EIRP measurement. 6) Test the EUT in the lowest channel, the Highest channel 7) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. 8) Repeat above procedures until all frequencies measured was complete. Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

	Pag	e '	16	of	34
--	-----	-----	----	----	----

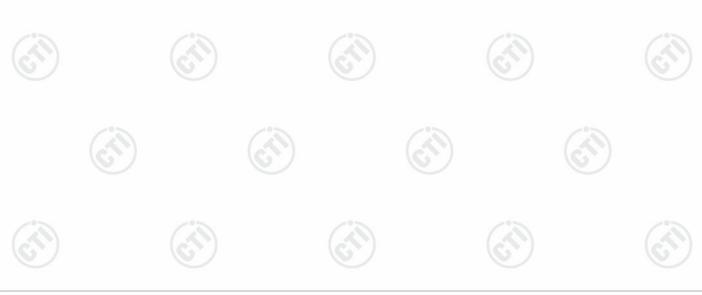

Limit:	Measurement Distanc	e: 3m					
	Frequency	Limit	Detector	Measurement distance (m)			
	960MHz-1610MHz	-75.3 dBm (EIRP, RBW=1MHz)	AV	3			
	1610MHz-1990MHz	-63.3 dBm (EIRP, RBW=1MHz)	AV	3			
	1990MHz-3100MHz	-61.3 dBm (EIRP, RBW=1MHz)	AV	3			
	3100MHz-10600MHz	3100MHz-10600MHz -41.3 dBm (EIRP, RBW=1MHz)					
	Above 10600MHz	Above 10600MHz -61.3 dBm (EIRP, RBW=1MHz)					
	Fundamental	0 dBm (EIRP, RBW=50MHz)	Peak	3			
	Thus, the field strength limit	for the test above 1GHz is below:					
	Fraguency	Limit	Detector	Measurement			
	Frequency	Field Strength (dBuV/m)	Detector	Distance			
	960MHz-1610MHz	20.00	AV	3			
	1610MHz-1990MHz	32.00	AV	3			
	1990MHz-3100MHz	34.00	AV	3			
	3100MHz-10600MHz	54.00	AV	3			
	Above 10600MHz	34.00	AV	3			
	Fundamental	95.30	Peak	3			
Test Mode:	Continuous Tx Mode, Keep the EUT Transmitting with Modulation						
Test Results:	Pass		/	10			

Test Result (1)Channel 5:

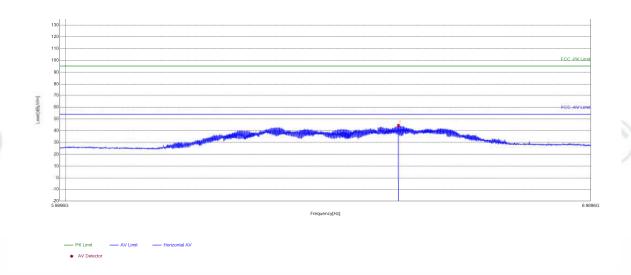
Peak Field Strength for fundamental @ RBW=8MHz								
	Freq.[MHz]	Factor[dB]	Reading[dBµV]	Level [dBµV/m]	Polarity	Remark		
	6594.4403	-8.98	66.38	57.40	Horizontal	PK		


	Calculated Peak Field Strength of fundamental @ RBW=50MHz										
Measured Field Calculated Field											
Freq.	Strength of	Strength of	Limit	Margin	D 14	Delevite					
[MHz]	fundamental	fundamental (FSc)	(dBuV/m)	[dB]	Result	Polarity					
	(FSM) (dBuV/m)	(dBuV/m)									
6594.44	57.40	73.32	95.30	21.98	pass	Horizontal					

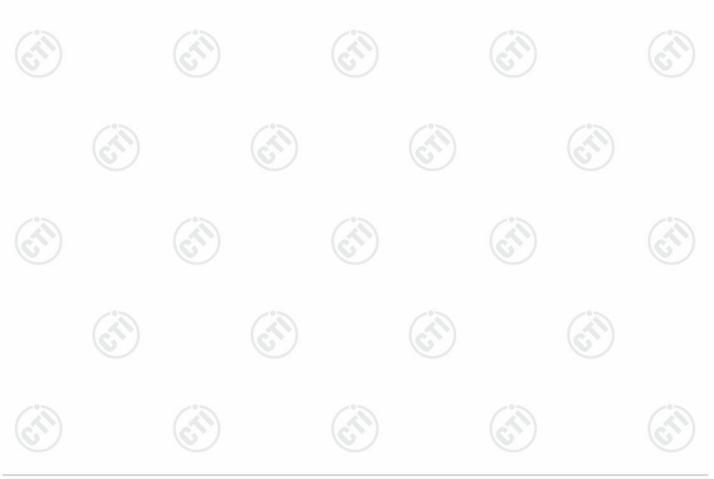
Note: FSc = FSM + 20log(50MHz/8MHz) = FSM + 15.92

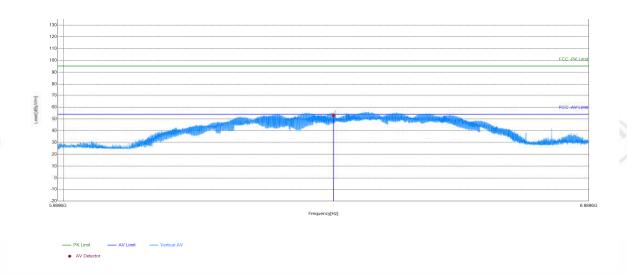


Peak Field Strength for fundamental @ RBW=8MHz										
Freq.[MHz] Factor[dB] Reading[dBµV] Level [dBµV/m] Polarity Rem										
6633.5763	-8.60	75.89	67.29	Vertical	PK					

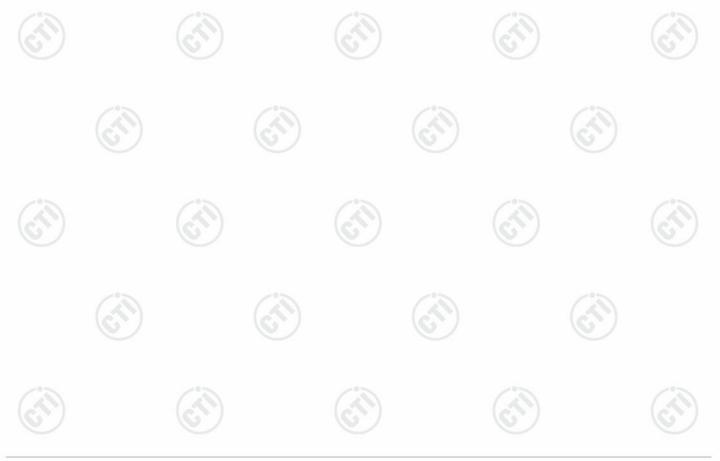

	Calculated Peak Field Strength of fundamental @ RBW=50MHz										
Measured Field Calculated Field											
Freq.	Strength of	Strength of	Limit	Margin	D#	Dalanik.					
[MHz]	fundamental	fundamental (FSc)	(dBuV/m)	[dB]	Result	Polarity					
	(FSM) (dBuV/m)	(dBuV/m)									
6633.57	67.29	83.21	95.30	12.09	Pass	Vertical					

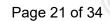
Note: FSc = FSM + 20log(50MHz/8MHz) = FSM + 15.92

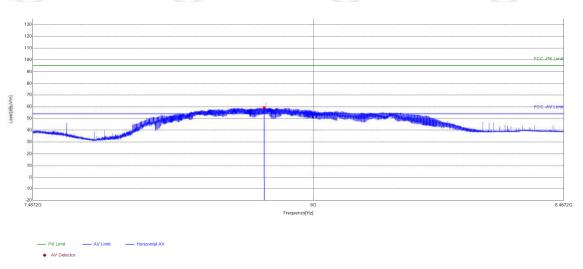




0)			Avera	age Field S	trength for	fundamental	@ RBW=	=1 MHz		
9	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]			
	1	6609.52	-8.83	53.38	44.55	54.00	9.45	PASS	Horizontal	AV

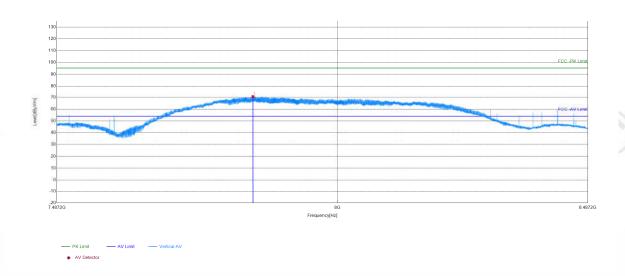





P.)			Avera	age Field S	trength for	fundamental	@ RBW=	=1 MHz		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	6489.5	-9.82	63.00	53.18	54.00	0.82	PASS	Vertical	AV

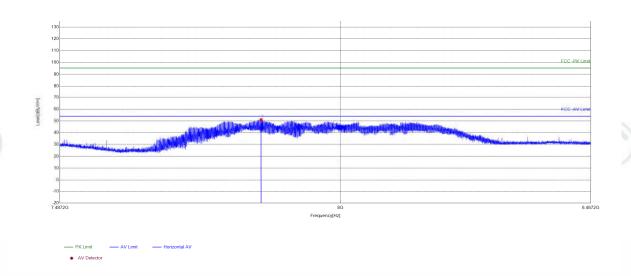
Test Result (2)Channel 9:

Peak Field Strength for fundamental @ RBW=8MHz									
Freq.[MHz]	Factor[dB]	Reading[dBµV]	Level [dBµV/m]	Polarity	Remark				
7907.5614	-4.30	63.36	59.06	Horizontal	PK				

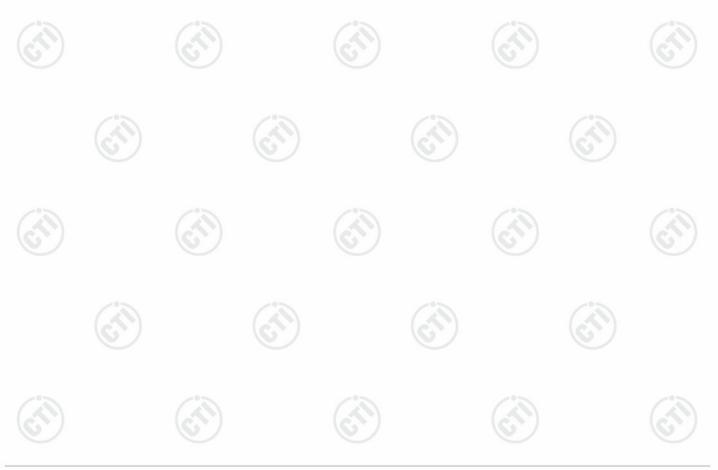

	Calculated Pe	eak Field Strength of fur	ndamental @	RBW=50	OMHz					
	Measured Field Calculated Field									
Freq.	Strength of	Strength of	Limit	Margin	D 14	Delevite				
[MHz]	fundamental	fundamental (FSc)	(dBuV/m)	[dB]	Result	Polarity				
	(FSM) (dBuV/m)	(dBuV/m)								
7907.56	59.06 74.98 95.30 20.32 pass Horizontal									

Note: FSc = FSM + 20log(50MHz/8MHz) = FSM + 15.92

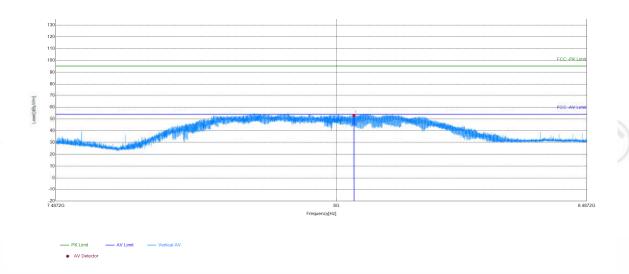
Peak Field Strength for fundamental @ RBW=8MHz										
Freq.[MHz] Factor[dB] Reading[dBµV] Level [dBµV/m] Polarity Remark										
7842.0903	-4.21	74.83	70.62	Vertical	PK					


	Calculated Pe	eak Field Strength of fur	ndamental @	RBW=50	OMHz	
	Measured Field					
Freq.	Strength of	Strength of	Limit	Margin	D !!	D. L. St.
[MHz]	fundamental	fundamental (FSc)	(dBuV/m)	[dB]	Result	Polarity
	(FSM) (dBuV/m)	(dBuV/m)				
7842.09	70.62	86.54	95.30	8.76	Pass	Vertical

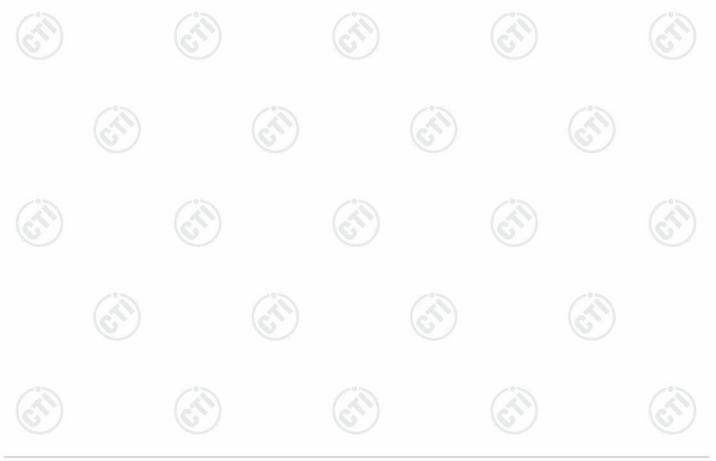
Note: FSc = FSM + 20log(50MHz/8MHz) = FSM + 15.92







e)	Average Field Strength for fundamental @ RBW=1 MHz											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
	1	7851.62	-4.21	55.34	51.13	54.00	2.87	PASS	Horizontal	AV		

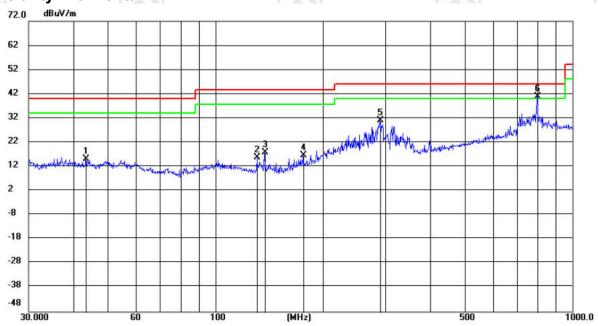


21	Average Field Strength for fundamental @ RBW=1 MHz												
NO)	Freq.	Factor	Reading	Level	Limit	Margin	Result					
		[MHz]	[ub]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]						
1		8033.36	-4.06	56.96	52.90	54.00	1.10	PASS	Vertical	AV			

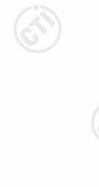
Page 25 of 34

5.5 Spurious Emissions Below 1GHz

Test Method: ANSI C63.10: 2013 Section 15.519(c) & Section 15.209 & Section 15.209 & Section 15.521(c)&(d)&(h)(h) Test Method: ANSI C63.10: 2013 Section 10.2 Test Setup: 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) The EUT was set 3 meters away from the Interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3) The antenna height is varied from one meter to four meters above the ground to determine the positions of the highest radiation. 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5) The test-receiver system was set to Peak detector with Maximum Hold Mode. And use Quasi-Peak to measure the six highest frequencies. 6) Test the EUT in the lowest channel, the Highest channel and only recorded worst channel-Lowest channel, the set report. 7) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. 8) Repeat above procedures until all frequencies measured was completeRemark 1: Level= Read Level+ Cable Loss+ Antenna Factor-Preamp Factor 2. According to FCC Part 15.521(h), test was performed from SMxtz to 4061-tz of the EUT. Emission below 30MHz was very low, so it's not recorded in the test report. Limit: Frequency Frequency Fred strength Limit (dBu/vin Remark Measurement Measurement Frequency Fred strength Limit (dBu/vin Remark Measure							
Test Setup: 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) The EUT was set 3 meters semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the filed strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5) The test-receiver system was set to Peak detector with Maximum Hold Mode. And use Quasi-Peak to measure the isk highest frequencies. 6) Test the EUT in the lowest channel, the Highest channel and only recorded worst channel-Lowest channel in the test report. 7) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. 8) Repeat above procedures until all frequencies measured was completeRemark 1: Level= Read Level+ Cable Loss+ Antenna Factor-Preamp Factor 2. According to FCC Part 15.52(1h), test was performed from 9kHz to 40GHz for the EUT. Emission below 30MHz was very low, so it's not recorded in the test report. Elimit: Fine performance Pine performance Pin		Test Requirement:			.519(c) & S	Section 15.2	09
Test Procedure: 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5) The test-receiver system was set to Peak detector with Maximum Hold Mode. And use Quasi-Peak to measure the six highest frequencies. 6) Test the EUT in the lowest channel, the Highest channel and only recorded worst channel-Lowest channel in the test report. 7) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. 8) Repeat above procedures until all frequencies measured was completeRemark 1: Level=Read Level+ Cable Loss+ Antenna Factor-Preamp Factor 2. According to FCC Part 15.521(h), test was performed from 9kHz to 40GHz for the EUT. Emission below 30MHz was very low, so it's not recorded in the test report. Limit: Frequency Frequen		Test Method:					
Test Procedure: 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength.Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5) The test-receiver system was set to Peak detector with Maximum Hold Mode. And use Quasi-Peak to measure the six highest frequencies. 6) Test the EUT in the lowest channel, the Highest channel and only recorded worst channel-Lowest channel in the test report. 7) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. 8) Repeat above procedures until all frequencies measured was completeRemark 1: Level= Read Level+ Cable Loss+ Antenna Factor-Preamp Factor 2. According to FCC Part 15.521(h), test was performed from 9kHz to 40GHz for the EUT. Emission below 30MHz was very low, so it's not recorded in the test report. Limit: Frequency Frield strength Limit (dBuV/m Remark Measurement distance (m) 0.090MHz-0.490MHz 20400F(dHz) - 30 30 30 30 30 30 30	- (C)	Test Setup:	E	301	Antenna Tower		(cti)
the ground at a 3 meters semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength.Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5) The test-receiver system was set to Peak detector with Maximum Hold Mode. And use Quasi-Peak to measure the six highest frequencies. 6) Test the EUT in the lowest channel, the Highest channel and only recorded worst channel—Lowest channel in the test report. 7) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. 8) Repeat above procedures until all frequencies measured was completeRemark 1: Level= Read Level+ Cable Loss+ Antenna Factor-Preamp Factor 2. According to FCC Part 15.521(h), test was performed from 9kHz to 40GHz for the EUT. Emission below 30MHz was very low, so it's not recorded in the test report. Limit:	3		Test Re	Pre- Col	ntrolles		(cti)
ground to determine the maximum value of the field strength.Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5) The test-receiver system was set to Peak detector with Maximum Hold Mode. And use Quasi-Peak to measure the six highest frequencies. 6) Test the EUT in the lowest channel, the Highest channel and only recorded worst channelLowest channel in the test report. 7) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. 8) Repeat above procedures until all frequencies measured was completeRemark 1: Level= Read Level+ Cable Loss+ Antenna Factor-Preamp Factor 2. According to FCC Part 15.521(h), test was performed from 9kHz to 40GHz for the EUT. Emission below 30MHz was very low, so it's not recorded in the test report. Limit: Frequency Field strength Limit (dBuV/m Remark Measurement Measureme		Test Procedure:	the ground at a 3 met 360 degrees to determ 2) The EUT was set 3 antenna, which was r tower.	ters semi-anechor mine the position of meters away from mounted on the t	oic camber of the high om the inte op of a var	. The table valentest radiation in the table tender the table in the table the table the table the table the table in the table in the table table in the table table in the table table in the table value in table	was rotated on. ceiving antenna
and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5) The test-receiver system was set to Peak detector with Maximum Hold Mode. And use Quasi-Peak to measure the six highest frequencies. 6) Test the EUT in the lowest channel, the Highest channel and only recorded worst channelLowest channel in the test report. 7) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. 8) Repeat above procedures until all frequencies measured was completeRemark 1: Level= Read Level+ Cable Loss+ Antenna Factor-Preamp Factor 2. According to FCC Part 15.521(h), test was performed from 9kHz to 40GHz for the EUT. Emission below 30MHz was very low, so it's not recorded in the test report. Limit: Frequency Field strength Limit (dBuV/m Remark Measurement distance (m) 0.099MHz-0.499MHz 24000F(kHz) - 300 0.490MHz-1.705MHz 24000F(kHz) - 30 1.705MHz-30MHz 24000F(kHz) - 30 30 30 30 30 30 30			ground to determine the horizontal and vertical	the maximum va	lue of the f	ield strength	n.Both
Mode. And use Quasi-Peak to measure the six highest frequencies. 6) Test the EUT in the lowest channel, the Highest channel and only recorded worst channelLowest channel in the test report. 7) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. 8) Repeat above procedures until all frequencies measured was completeRemark 1: Level= Read Level+ Cable Loss+ Antenna Factor-Preamp Factor 2. According to FCC Part 15.521(h), test was performed from 9kHz to 40GHz for the EUT. Emission below 30MHz was very low, so it's not recorded in the test report. Limit: Frequency Field strength Limit (dBuV/m Remark Measurement distance (m)	2		and then the antenna the test frequency of meter) and the rotata to find the maximum	was tuned to he below 30MHz, th ble table was tur reading.	eights from ne antenna ned from 0	1 meter to 4 was tuned to degrees to	1 meters (for to heights 1 360 degrees
for Transmitting mode, and found the X axis positioning which it is worse case. 8) Repeat above procedures until all frequencies measured was completeRemark 1: Level= Read Level+ Cable Loss+ Antenna Factor-Preamp Factor 2. According to FCC Part 15.521(h), test was performed from 9kHz to 40GHz for the EUT. Emission below 30MHz was very low, so it's not recorded in the test report. Limit: Frequency Field strength Limit (dBuV/m Remark Measurement distance (m)			Mode. And use Quas 6) Test the EUT in the	i-Peak to measu e lowest channel	re the six h , the Highe	nighest frequest channel	uencies.
CompleteRemark 1: Level= Read Level+ Cable Loss+ Antenna Factor-Preamp Factor 2. According to FCC Part 15.521(h), test was performed from 9kHz to 40GHz for the EUT. Emission below 30MHz was very low, so it's not recorded in the test report. Frequency Field strength (microvolt/meter) Limit (dBuV/m) Remark Measurement distance (m)			for Transmitting mode				
(microvolt/meter) distance (m) 0.009MHz-0.490MHz 2400/F(kHz) - - 300 0.490MHz-1.705MHz 24000/F(kHz) - - 30 1.705MHz-30MHz 30 - - 30 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3			completeRemark 1: L Preamp Factor 2. Acc from 9kHz to 40GHz	evel= Read Leve cording to FCC F for the EUT. Emi	el+ Cable L Part 15.521	oss+ Anten (h), test was	na Factor- s performed
0.009MHz-0.490MHz 2400/F(kHz) - - 300 0.490MHz-1.705MHz 24000/F(kHz) - - 30 1.705MHz-30MHz 30 - - 30 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3		Limit:	Frequency		Limit (dBuV/m)	Remark	
0.490MHz-1.705MHz 24000/F(kHz) - - 30 1.705MHz-30MHz 30 - - 30 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3			0.009MHz-0.490MHz	· · · · · · · · · · · · · · · · · · ·	-	-	, ,
1.705MHz-30MHz 30 - - 30 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3					-	-	
30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3						-	
216MHz-960MHz 200 46.0 Quasi-peak 3	3				40.0	Quasi-peak	
			88MHz-216MHz	150		Quasi-peak	
960MHz-1000MHz - 20 AV 3	9						
			960MHz-1000MHz	-	20	AV	3


Page 26 of 34

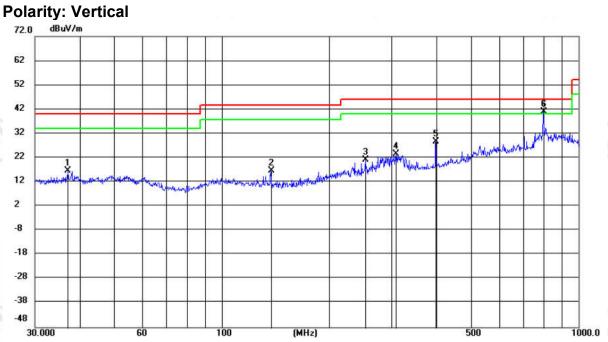
Test Mode:	Continuous Tx Mode, Keep the EUT Transmitting with Modulation
Test Results:	Pass


Test Result

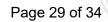
Remark: Only the worst case data of channel 5 was recorded in the report.

Polarity: Horizontal

No. N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		43.4371	1.17	14.05	15.22	40.00	-24.78	QP	100	53	
2	1	131.2504	5.69	10.02	15.71	43.50	-27.79	QP	100	218	
3	Į.	137.4924	8.21	9.71	17.92	43.50	-25.58	QP	100	63	
4	1	176.7947	4.84	11.81	16.65	43.50	-26.85	QP	100	208	
5		289.3569	14.71	16.25	30.96	46.00	-15.04	QP	100	311	
6 *	k	798.2796	15.18	25.79	40.97	46.00	-5.03	QP	100	208	



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	37.1418	3.16	13.61	16.77	40.00	-23.23	QP	200	321	
2	137.4924	7.07	9.71	16.78	43.50	-26.72	QP	200	238	
3	253.0812	6.33	14.81	21.14	46.00	-24.86	QP	200	238	
4	308.6419	6.73	16.85	23.58	46.00	-22.42	QP	200	197	
5	398.6806	10.06	18.64	28.70	46.00	-17.30	QP	200	146	
6 *	797.1607	15.17	25.78	40.95	46.00	-5.05	QP	100	7	



Report No. : EED32Q80655102 Page 28 of 34

5.6 Spurious Emissions Above 1GHz

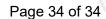
T 15	47 OFD D 14 45 O 1	E 0 11 45	- F40 () 0 (I) 0 (2. (145	504/ I\0/L\
Test Requirement:	47 CFR Part 15 Subpart		5.519 (c)&(d) & \$	Section 15.	521(d)&(h)
Test Method:	ANSI C63.10: 2013 Sec	tion 10.3			
Test Setup:	TEMPERATURE CABNET Table	Attenuator	RF test System Instrument		
	Remark: Offset=Cable lo	oss+ attenuat	ion factor.		
Test Procedure:	1) The EUT was placed ground at a 3 meters se degrees to determine the 2) The EUT was set 3 m which was mounted on to 3) The antenna height is ground to determine the and vertical polarizations 4) For each suspected eand then the antenna war rotatable table was turned maximum reading. 5) The test-receiver system Mode. 6) Test the EUT in the left of the Transmitting mode, and 8) Repeat above proceed Remark 1: Level= Read Factor 2; As the EUT operate at 6.	mi-anechoic of the position of the ters away from the top of a varied from maximum varies of the anteremission, the east uned to help the maximum of the term was set to the term of the X and the X	camber. The table the highest radial rom the interfere ariable-height arone meter to foo alue of the field so are set to make arrange eights from 1 means to 360 degrees to	ole was rotal ation. ence-receive tenna tower meters a strength. Both the meter to 4 meters to find with Maximannel (7, Z axis powhich it is stated was a Factor- Paccording to a strength to the maximannel (8).	ring antenna, er. bove the oth horizontal easurement. rorst case eters and the d the mum Hold esitioning for worse case. Is complete reamp
	15.521(h), test was perfe				
	For frequency above 18 the test report.	GHz, emissio	on was very low,	so it's not	recorded in
Limit:	Frequency	Limit (dBuV/m) RBW	Detector	Measurement distance (m)
	1000MHz-1610MHz	20.0	1MHz	AV	3
	1610MHz-1990MHz	32.0	1MHz	AV	3
	1990MHz-3100MHz	34.0	1MHz	AV	3
	3100MHz-10600MHz	54.0	1MHz	AV	3
	Above 10600MHz	34.0	1MHz	AV	3
	1164MHz-1240MHz 1559MHz-1610MHz	10.0	1KHz 1KHz	AV	3
Test Mode:	Continuous Tx Mode, Ke				
			Transmitting with	i iviodulati	J11
Test Results:	Pass				

Test Result

_	100	2000		_ [a' \ ']		100			1001	
				Transmittin	g with modul	ation Mode a	at 6489.6N	ИНz		
			116	64MHz ≤ f	≤1240MHz	& 1559MHz	≤ f ≤ 16	10MHz		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1176.02	-25.69	28.26	2.57	10.00	7.43	PASS	Horizontal	AV
	2	1592.94	-25.31	28.51	3.20	10.00	6.80	PASS	Horizontal	AV
	3	1164.00	-25.69	28.03	2.34	10.00	7.66	PASS	Vertical	AV
	4	1570.79	-25.30	27.73	2.43	10.00	7.57	PASS	Vertical	AV
		freque	ency out o	f 1164MHz	≤ f ≤ 1240	MHz & 1559	MHz≪ f	≤1610MH	Iz band	
	1	1215.54	-25.67	44.37	18.70	20.00	1.30	PASS	Horizontal	AV
í	2	1806.27	-24.73	50.22	25.49	32.00	6.51	PASS	Horizontal	AV
-	3	2174.44	-22.72	43.78	21.06	34.00	12.94	PASS	Horizontal	AV
	4	4215.36	-15.75	40.02	24.27	54.00	29.73	PASS	Horizontal	AV
	5	8991.08	-2.75	35.34	32.59	54.00	21.41	PASS	Horizontal	AV
	6	11268.2	-1.32	34.87	33.55	34.00	0.45	PASS	Horizontal	AV
	7	1187.45	-25.70	42.58	16.88	20.00	3.12	PASS	Vertical	AV
	8	1816.92	-24.67	45.35	20.68	32.00	11.32	PASS	Vertical	AV
	9	2173.33	-22.72	43.82	21.10	34.00	12.90	PASS	Vertical	AV
	10	4609.90	-14.55	40.13	25.58	54.00	28.42	PASS	Vertical	AV
	11	9634.65	-2.12	34.97	32.85	54.00	21.15	PASS	Vertical	AV
	12	11269.7	-1.32	31.94	30.62	34.00	3.38	PASS	Vertical	AV

					100			(20)		
			Transmittin	g with modu	lation Mode a	at 7987.2N	ИНz			
		116	64MHz ≤ f	≤1240MHz	& 1559MHz	≤ f ≤ 16	10MHz			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1214.21	-25.67	27.83	2.16	10.00	7.84	PASS	Horizontal	AV	
2	1579.21	-25.30	28.23	2.93	10.00	7.07	PASS	Horizontal	AV	
3	1187.58	-25.70	28.73	3.03	10.00	6.97	PASS	Vertical	AV	
4	1601.67	-25.31	27.86	2.55	10.00	7.45	PASS	Vertical	AV	
	freque	ency out o	f 1164MHz	≤ f ≤ 1240	MHz & 1559	MHz≤ f	≤1610MH	Hz band		
1	1216.15	-25.66	42.29	20.63	20.00	3.37	PASS	Horizontal	AV	
2	1807.03	-24.73	50.56	25.83	32.00	6.17	PASS	Horizontal	AV	
3	2830	-20.15	42.61	22.46	34.00	11.54	PASS	Horizontal	AV	
4	4117.10	-16.04	40.34	24.30	54.00	29.70	PASS	Horizontal	AV	
5	9667.65	-2.69	35.00	32.31	54.00	21.69	PASS	Horizontal	AV	
6	11967.6	-0.73	31.72	31.99	34.00	3.01	PASS	Horizontal	AV	
7	1187.45	-25.70	42.50	16.80	20.00	3.20	PASS	Vertical	AV	
8	1808.17	-24.72	45.53	20.81	32.00	11.19	PASS	Vertical	AV	
9	2815.55	-20.18	42.77	22.59	34.00	11.41	PASS	Vertical	AV	
10	4803.42	-13.55	39.37	25.82	54.00	28.18	PASS	Vertical	AV	
11	10041.9	-0.93	33.42	32.49	54.00	21.51	PASS	Vertical	AV	
12	11734.5	-0.79	31.26	30.47	34.00	3.53	PASS	Vertical	AV	
	/ 23/		7 23		/ /	1		/ / / / /		

Remark:



¹⁾ Scan from 9kHz to 40GHz, disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

7 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32Q80655101 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

