SAR TEST REPORT **APPLICANT** : JACS Solutions LLC PRODUCT NAME : Tablets **MODEL NAME** : TT800V **BRAND NAME** : JACS SOLUTION **FCC ID** : 2AGCD-JACS8OOV STANDARD(S) : 47CFR 2.1093 IEEE 1528-2013 **TEST DATE** : 2018-02-09 to 2018-02-12 **ISSUE DATE** : 2018-02-22 > Peny Funci Tested by: > > Peng Fuwei (Test engineer) Approved by: - Gan Yueming (Supervisor) NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website. Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 # **DIRECTORY** | 1. Technical Information | | |---|-----| | 1.1. Applicant and Manufacturer Information | ٠ 4 | | 1.2. Equipment Under Test (EUT) Description | ٠ 4 | | 1.3. Summary of Maximum SAR Value | • 5 | | 1.4. Photographs of the EUT······ | - 6 | | 1.5. Applied Reference Documents | . 6 | | 2. Device Category and SAR Limits | - 7 | | 3. Specific Absorption Rate (SAR) | ٠ 8 | | 3.1. Introduction | ٠ 8 | | 3.2. SAR Definition | ٠ 8 | | 4. SAR Measurement Setup | . 9 | | 4.1. The Measurement System ······ | . 9 | | 4.2. Probe | . 9 | | 4.3. Probe Calibration Process | 11 | | 4.4. Phantom | 12 | | 4.5. Device Holder ······ | 12 | | 5. Tissue Simulating Liquids | 13 | | 5.1. Uncertainty Evaluation For EUT SAR Test | 15 | | 5.2. Uncertainty For System Performance Check | 16 | | 6. SAR Measurement Evaluation | 18 | | 6.1. System Setup ····· | 18 | | 6.2. Validation Results | 19 | | 7. Operational Conditions During Test ······ | 20 | | 7.1. Information on the testing ······ | 20 | | 7.2. Body-worn Configurations | 21 | | 7.3. Measurement procedure ···································· | 21 | Tel: 86-755-36698555 Http://www.morlab.cn | 7.4 | . Description of interpolation/extrapolation scheme | 22 | |-----|---|----| | 8. | Hot-spot Mode Evaluation Procedure | 23 | | 9. | SAR Evaluation Procedures for LTE | 25 | | 10. | Measurement of Conducted output power | 29 | | 11. | Test Results List | 40 | | 12. | Repeated SAR Measurement ······ | 44 | | 13. | Multiple Transmitters Evaluation | 45 | | Change History | | | | | | |----------------|------------|-------------------|--|--|--| | Issue | Date | Reason for change | | | | | 1.0 | 2018-02-22 | First edition | | | | | | | | | | | Tel: 86-755-36698555 Http://www.morlab.cn # 1. Technical Information Note: Provide by manufacturer. # 1.1. Applicant and Manufacturer Information | Applicant: | JACS Solutions LLC | |-----------------------|---| | Applicant Address: | 8808 Centre Park Drive Suite 305, Columbia, MD 21045, USA | | Manufacturer: | Xiamen Candour Co., Ltd | | Manufacturer Address: | 19F C&D International Building 1669 Huandao East Road, | | wandacturer Address. | Xiamen, Fujian, CN | # 1.2. Equipment Under Test (EUT) Description | Model Name: | TT800V | | | | |------------------------|--|--|--|--| | Brand Name: | JACS SOLUTION | | | | | Hardware Version: | N/A | | | | | Software Version: | N/A | | | | | Frequency Bands: | LTE Band 4: 1710 MHz ~ 1755 MHz | | | | | | LTE Band 13: 777 MHz ~ 787 MHz | | | | | | WLAN 2.4GHz: 2412 MHz ~ 2462 MHz | | | | | | WLAN 5GHz Band 1: 5150 MHz ~ 5250 MHz; | | | | | | WLAN 5GHz Band 4: 5725 MHz ~ 5850 MHz; | | | | | | Bluetooth: 2402 MHz ~ 2480 MHz | | | | | | GPS:1575.42MHz | | | | | | NFC: 13.56 MHz | | | | | Modulation Mode: | LTE: QPSK / 16QAM (Uplink) | | | | | | 802.11b/g/n HT20 | | | | | | 802.11a/n HT20 | | | | | | Bluetooth 2.1 BDR (1Mbps) : GFSK | | | | | | Bluetooth 2.1 EDR (2Mbps) :π/4-DQPSK | | | | | | Bluetooth 2.1 EDR (3Mbps) : 8-DPSK | | | | | | Bluetooth 4.0 - LE (1Mbps): GFSK | | | | | | GPS | | | | | | NFC: ASK | | | | | Antenna type: | WWAN : Fixed Internal Antenna | | | | | Antenna type. | WLAN : Fixed Internal Antenna | | | | | Battery specification: | 6200mAh 3.7V | | | | | SIM cards | Single SIM card | | | | | description: | | | | | |----------------------------|-----------|-----------|-------------------------|--| | Max Scaled
SAR-1g(W/Kg) | Body-worn | 0.594W/kg | Limit(M/limit) 4 CM/lim | | | | Hotspot | 0.594W/kg | Limit(W/kg): 1.6W/kg | | **Note:** For a more detailed description, please refer to specification or user's manual supplied by the applicant and/or manufacturer. # 1.3. Summary of Maximum SAR Value | | Maximum SAR | Maximum SAR | | |-----------------------|----------------|----------------|---------------------| | Frequency | (1-g: W/kg) | (1-g: W/kg) | SAR-1g Limit (W/kg) | | Band Body-worn | | Hot-spot | | | | (Distance 0mm) | (Distance 0mm) | | | FDD-LTE Band 4 | 0.594 | 0.594 | | | FDD-LTE Band 13 0.252 | | 0.252 | 1.6 | | WLAN 2.4GHZ | 0.395 | 0.395 | | # 1.4. Photographs of the EUT Please refer to the External Photos for the Photos of the EUT ## 1.5. Applied Reference Documents Leading reference documents for testing: | No. | Identity | Document Title | | | | |-----|----------------------|---|--|--|--| | 1 | 47.05050.4000 | Radiofrequency Radiation Exposure Evaluation: Portable | | | | | ļ | 47 CFR§2.1093 | Devices | | | | | | | IEEE Recommended Practice for Determining the Peak | | | | | 2 | IEEE 1528-2013 | Spatial-Average Specific Absorption Rate (SAR) in the Human | | | | | | IEEE 1328-2013 | Head from Wireless Communications Devices: | | | | | | | Measurement Techniques | | | | | 3 | KDB 447498 D01v06 | General RF Exposure Guidance | | | | | 4 | KDB 248227 D01v02r02 | SAR Measurement Procedures for 802.11 Transmitters | | | | | 5 | KDB 865664 D01v01r04 | SAR Measurement 100 MHz to 6 GHz | | | | | 6 | KDB 865664 D02v01r02 | RF Exposure Reporting | | | | | 7 | KDB 616217 D04v01r02 | SAR for laptop and Tablets | | | | | 8 | KDB 941225 D05v02r05 | SAR Evaluation Consideration for LTE Devices | | | | # 2. Device Category and SAR Limits ### **Uncontrolled Environment** Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. ### Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | | | | |------------|--------------|--------------------------------|--|--|--| | 0.4 | 8.0 | 20.0 | | | | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | Note: This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue. # 3. Specific Absorption Rate (SAR) ### 3.1. Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled. ### 3.2. SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by, $$SAR = C\left(\frac{\delta T}{\delta t}\right)$$ Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rmselectrical field strength. However for evaluating SAR of low
power transmitter, electrical field measurement is typically applied. # 4. SAR Measurement Setup ## 4.1. The Measurement System Como SAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Como SAR system consists of the Following items: - Main computer to control all the system - 6 axis robot - Data acquisition system - Miniature E-field probe - Phone holder - Head simulating tissue The Following figure shows the system. The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass. ### 4.2. Probe For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used - Dynamic range: 0.01-100 W/kg - Tip Diameter: 6.5 mm - Distance between probe tip and sensor center: 2.5mm Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm) Probe linearity: <0.25 dBAxial Isotropy: <0.25 dBSpherical Isotropy: <0.25 dB - Calibration range: 835to 2500MHz for head & body simulating liquid. Angle between probe axis (evaluation axis) and surface normal line: less than 30° Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies. $$SAR = \frac{4 \left(P_{fw} - P_{bw} \right)}{ab\delta} \cos^2 \left(\pi \frac{y}{a} \right) e^{-(2z/\delta)}$$ Where: Pfw = Forward Power Pbw = Backward Power a and b = Waveguide dimensions i = Skin depthKeithley configuration: Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with aNPL calibrated probe, to verify it. The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are: $$CF(N)=SAR(N)/VIin(N)$$ (N=1,2,3) The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using $$Vlin(N)=V(N)^*(1+V(N)/DCP(N))$$ (N=1,2,3) Where DCP is the diode compression point in mV. ### 4.3. Probe Calibration Process #### **Dosimetric Assessment Procedure** Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system. #### **Free Space Assessment Procedure** The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm². ### **Temperature Assessment Procedure** E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. Where: $\delta t = \text{exposure time (30 seconds)},$ C = heat capacity of tissue (brainor muscle), δT = temperature increase due to RF exposure. SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component. Where: σ = simulated tissue conductivity, ρ = Tissue density (1.25 g/cm³ for brain tissue) ### 4.4. Phantom For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid. ### 4.5. Device Holder The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is Middle than 1°. #### Device holder | System Material | Permittivity | Loss Tangent | | | |-----------------|--------------|--------------|--|--| | Delrin | 3.7 | 0.005 | | | # 5. Tissue Simulating Liquids For SAR measurement of the field distribution inside the phantom, the phantom must be filled with Homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing, the liquid height from the ear reference point(ERP) of the phantom to the liquid top surface is larger than 15cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table. The following table gives the recipes for tissue simulating liquids | The following ta | The following table gives the recipes for tissue simulating liquids | | | | | | | | | |---|---|-------|-------|-------|-------|-------|------|-----------|-------| | Frequency
Band
(MHz) | 900 | | 1800 | 2000 | | 2450 | 2600 | 5200-5800 | | | Tissue Type | Head | Body | Body | Head | Body | Body | Body | Head | Body | | Ingredients(% b | y weight |) | | | | | | | | | Deionised
Water | 50.36 | 50.20 | 68.80 | 54.90 | 40.40 | 73.20 | 68.1 | 65.53 | 78.60 | | Salt(NaCl) | 1.25 | 0.90 | 0.20 | 0.18 | 0.50 | 0.10 | 0.10 | 0.00 | 0.00 | | Sugar | 0.00 | 48.50 | 0.00 | 0.00 | 58.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Tween 20 | 48.39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | HEC | 0.00 | 0.20 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Bactericide | 0.00 | 0.20 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | | Triton X-100 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 17.24 | 10.70 | | DGBE | 0.00 | 0.00 | 31.00 | 44.92 | 0.00 | 26.70 | 31.8 | 0.00 | 0.00 | | Diethylenglyco
I
monohexyleth
er | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 17.24 | 10.70 | | Target dielectric parameters | | | | | | | | | | | Dielectric
Constant | 41.50 | 56.10 | 53.40 | 39.90 | 53.30 | 52.70 | 52.5 | 35.3 | 48.7 | | Conductivity (S/m) | 0.90 | 0.95 | 1.49 | 1.42 | 1.52 | 1.95 | 2.16 | 5.07 | 5.53 | Note: Please refer to the validation results for dielectric parameters of each frequency band. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer. **Table 1: Dielectric Performance of Tissue Simulating Liquid** | Frequency
(MHz) | Tissue
Type | Liquid Temp.
(℃) | Conductivity (σ) | Conductivity Target (σ) | Delta (σ)
(%) | Limit
(%) | Date | |--------------------|----------------|---------------------|------------------|--------------------------|------------------|--------------|------------| | 750 | MSL | 21.2 | 1.001 | 0.96 | 4.27 | ±5 | 2018.02.12 | | 1800 | MSL | 22.6 | 1.515 | 1.52 | -0.33 | ±5 | 2018.02.11 | | 2450 | MSL | 21.8 | 1.966 | 1.95 | 0.82 | ±5 | 2018.02.09 | | Frequency
(MHz) | Tissue
Type | Liquid Temp.
(℃) | Permittivity (ε _r) | Permittivity Target (ε _r) | Delta (ε _r)
(%) | Limit
(%) | Date | |--------------------|----------------|---------------------|--------------------------------|---------------------------------------|--------------------------------|--------------|------------| | 750 | MSL | 21.2 | 53.520 | 55.50 | -3.57 | ±5 | 2018.02.12 | | 1800 | MSL | 22.6 | 53.295 | 53.30 | -0.01 | ±5 | 2018.02.11 | | 2450 | MSL | 21.8 | 52.884 | 52.70 | 0.35 | ±5 | 2018.02.09 | # **Uncertainty Assessment** The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa. ## **5.1. Uncertainty Evaluation For EUT SAR Test** | а | b | С | d | e=
f(d,k) | f | g | h=
c*f/e | i= c*g/e | k | |---|-------------|--------------|---------------|--------------|-----------|-------------|----------------|-----------------|-----| | Uncertainty Component | Sec. | Tol
(+- % | Prob
Dist. | Div. | Ci
(1g | Ci
(10g) | 1g Ui
(+-%) | 10g Ui
(+-%) | Vi | | Measurement System | l . | , | | | , | | | I | | | Probe calibration | E.2.1 | 5.83 | N | 1 | 1 | 1 | 5.83 | 5.83 | ∞ | | Axial Isotropy | E.2.2 | 3.5 | R | $\sqrt{3}$ | 1 | 1 | 2.02 | 2.02 | ∞ | | Hemispherical Isotropy | E.2.2 | 5.9 | R | $\sqrt{3}$ | 1 | 1 | 3.41 | 3.41 | ∞ | | Boundary effect | E.2.3 | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | E.2.4 | 4.7 | R | $\sqrt{3}$ | 1 | 1 | 2.71 | 2.71 | ∞ | | System detection limits | E.2.5 | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Readout Electronics | E.2.6 | 0.5 | N | 1 | 1 | 1 | 0.5 | 0.5 | ∞ | | Reponse Time | E.2.7 | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 3.0 | 3.0 | ∞ | | Integration Time | E.2.8 | 1.4 | R | $\sqrt{3}$ | 1 | 1
 0.81 | 0.81 | ∞ | | RF ambient Conditions | E.6.1 | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | ∞ | | Probe positioner Mechanical Tolerance | E.6.2 | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | 8 | | Probe positioning with respect to Phantom Shell | E.6.3 | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | 8 | | Extrapolation,
interpolation and
integration Algoritms for
Max. SAR Evaluation | E.5.2 | 2.3 | R | $\sqrt{3}$ | 1 | 1 | 1.33 | 1.33 | 8 | | Test sample Related | | | | | | | | | | | Test sample positioning | E.4.2.
1 | 2.6 | N | 1 | 1 | 1 | 2.6 | 2.6 | N-1 | | Device Holder Uncertainty | E.4.1.
1 | 3.0 | N | 1 | 1 | 1 | 3.0 | 3.0 | N-1 | | Output power Power drift -
SAR drift measurement | 6.6.2 | 5.0 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.89 | 8 | | Phantom and Tissue Para | meters | | | | | | | | | |-----------------------------|------------|-----|------|------------|-----|------|----------|-------|-----| | Phantom Uncertainty | | | | | | | | | | | (Shape and thickness | E.3.1 | 4.0 | R | $\sqrt{3}$ | 1 | 1 | 2.31 | 2.31 | ∞ | | tolerances) | | | | | | | | | | | Liquid conductivity - | 500 | 0.0 | _ | <i>[</i> - | 0.6 | 0.40 | 4.00 | 4.40 | | | deviation from target value | E.3.2 | 2.0 | R | $\sqrt{3}$ | 4 | 0.43 | 1.69 | 1.13 | ∞ | | Liquid conductivity - | E.3.3 | 2.5 | N | 1 | 0.6 | 0.42 | 2.20 | 2.15 | N/I | | measurement uncertainty | E.3.3 | 2.5 | IN | 1 | 4 | 0.43 | 3.20 | 2.15 | M | | Liquid permittivity - | E.3.2 | 2.5 | R | $\sqrt{3}$ | 0.6 | 0.49 | 1.28 | 1.04 | 8 | | deviation from target value | L.3.2 | 2.5 | K | ν3 | 0.0 | 0.49 | 1.20 | 1.04 | ~ | | Liquid permittivity - | E.3.3 | 5.0 | N | 1 | 0.6 | 0.49 | 6.00 | 4.90 | М | | measurement uncertainty | L.3.3 | 3.0 | IN | ı | 0.0 | 0.49 | 0.00 | 4.90 | IVI | | Liquid | | | | | 0.7 | | | | | | conductivity-temperature | E.3.4 | | R | $\sqrt{3}$ | 8 | 0.41 | | | ∞ | | uncertainty | | | | | U | | | | | | Liquidpermittivity-tempera | E.3.4 | | R | $\sqrt{3}$ | 0.2 | 0.26 | | | ∞ | | ture uncertainty | L.J.4 | | 11 | γυ | 3 | 0.20 | | | | | Combined Standard | | | RSS | | | | 11.55 | 12.0 | | | Uncertainty | | | | | | | | 7 | | | Expanded Uncertainty | | | K=2 | | | | <u>±</u> | 土 | | | (95% Confidence interval) | | | 11-2 | | | | 23.20 | 24.17 | | # **5.2. Uncertainty For System Performance Check** | а | b | С | d | e=
f(d,k) | f | g | h=
c*f/e | i=
c*g/ | k | |------------------------|-------|------|-------|--------------|------|-------|-------------|------------|----| | | | | | I(U,K) | | | 0 1/0 | e e | | | Uncertainty Component | Sec. | Tol | Prob | Div. | Ci | Ci | 1g Ui | 10g | Vi | | | | (+- | | | (1g) | (10g) | (+-%) | Ui | | | | | %) | Dist. | | | | | (+- | | | | | | | | | | | %) | | | Measurement System | | | | | | | | | | | Probe calibration | E.2.1 | 4.76 | N | 1 | 1 | 1 | 4.76 | 4.7 | 8 | | Axial Isotropy | E.2.2 | 2.5 | R | $\sqrt{3}$ | 0.7 | 0.7 | 1.01 | 1.0 | 8 | | Hemispherical Isotropy | E.2.2 | 4.0 | R | $\sqrt{3}$ | 0.7 | 0.7 | 1.62 | 1.6 | 8 | | Boundary effect | E.2.3 | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.5 | 8 | | Linearity | E.2.4 | 5.0 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.8 | ∞ | | System detection limits | E.2.5 | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.5 | 8 | |-----------------------------|--------|------|-----|------------|------|----------|-------|-----|---| | Readout Electronics | E.2.6 | 0.02 | N | 1 | 1 | 1 | 0.02 | 0.0 | ∞ | | Reponse Time | E.2.7 | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.7 | ∞ | | Integration Time | E.2.8 | 2.0 | R | $\sqrt{3}$ | 1 | 1 | 1.15 | 1.1 | ∞ | | RF ambient Conditions | E.6.1 | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.7 | ∞ | | Probe positioner | E.6.2 | 2.0 | R | $\sqrt{3}$ | 1 | 1 | 1.15 | 1.1 | ∞ | | Mechanical Tolerance | | | | | | | | 5 | | | Probe positioning with | E.6.3 | 0.05 | R | $\sqrt{3}$ | 1 | 1 | 0.03 | 0.0 | 8 | | respect to Phantom Shell | | | | | | | | 3 | | | Extrapolation, | E.5.2 | 5.0 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.8 | ∞ | | interpolation and | | | | | | | | 9 | | | integration Algoritms for | | | | | | | | | | | Max. SAR Evaluation | | | | | | | | | | | Dipole | 1 | | | • | • | 1 | • | ı | | | Dipole axis to liquid | 8,E.4. | 1.00 | N | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.5 | ∞ | | Distance | 2 | | | | | | | 8 | | | Input power and SAR drift | 8,6.6. | 4.04 | R | $\sqrt{3}$ | 1 | 1 | 2.33 | 2.3 | ∞ | | measurement | 2 | | | | | | | 3 | | | Phantom and Tissue Para | meters | | | | | | • | | | | Phantom Uncertainty | E.3.1 | 0.05 | R | $\sqrt{3}$ | 1 | 1 | 0.03 | 0.0 | 8 | | (Shape and thickness | | | | | | | | 3 | | | tolerances) | | | | | | | | | | | Liquid conductivity - | E.3.2 | 4.57 | R | $\sqrt{3}$ | 0.64 | 0.43 | 1.69 | 1.1 | 8 | | deviation from target value | | | | | | | | 3 | | | Liquid conductivity - | E.3.3 | 5.00 | N | $\sqrt{3}$ | 0.64 | 0.43 | 1.85 | 1.2 | М | | measurement uncertainty | | | | | | | | 4 | | | Liquid permittivity - | E.3.2 | 3.69 | R | $\sqrt{3}$ | 0.6 | 0.49 | 1.28 | 1.0 | 8 | | deviation from target value | | | | | | | | 4 | | | Liquid permittivity - | E.3.3 | 10.0 | N | $\sqrt{3}$ | 0.6 | 0.49 | 3.46 | 2.8 | М | | measurement uncertainty | | 0 | | | | <u> </u> | | 3 | | | Combined Standard | | | RSS | | | | 8.83 | 8.3 | | | Uncertainty | | | | | | | | 7 | | | Expanded Uncertainty | | | K=2 | | | | 17.66 | 16. | | | (95% Confidence interval) | | | | | | | | 73 | | ## 6. SAR Measurement Evaluation ## 6.1. System Setup In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250mW is used for 700MHz to 3GHz, 100mW is used for 3.5GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter. Tel: 86-755-36698555 Http://www.morlab.cn ## 6.2. Validation Results After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %. ### <1g SAR> | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |------------|--------------------|----------------|------------------------|------------------------------|------------------------------|--------------------------------|------------------| | 2018.02.12 | 750 | MSL | 100 | 0.91 | 8.71 | 9.054 | 3.95 | | 2018.02.11 | 1800 | MSL | 100 | 3.75 | 39.60 | 37.53 | -5.23 | | 2018.02.09 | 2450 | MSL | 100 | 5.08 | 52.50 | 50.81 | -3.22 | ### <10g SAR> | | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Measured
10g SAR
(W/kg) | Targeted
10g SAR
(W/kg) | Normalized
10g SAR
(W/kg) | Deviation
(%) | |---|------------|--------------------|----------------|------------------------|-------------------------------|-------------------------------|---------------------------------|------------------| | | 2018.02.12 | 750 | MSL | 100 | 0.61 | 5.79 | 6.10 | 5.30 | | ſ | 2018.02.11 | 1800 | MSL | 100 | 2.04 | 21.00 | 20.38 | -2.95 | | Ī | 2018.02.09 | 2450 | MSL | 100 | 2.38 | 24.50 | 23.77 | -2.98 | Note: System checks the specific test data please see Annex C # 7. Operational Conditions During Test ## 7.1. Information on the testing The mobile phone antenna and battery are those specified by the manufacturer. The battery is fully charged before each measurement. The output power and frequency are controlled using a base station simulator. The mobile phone is set to transmit at its highest output peak power level. The mobile phone is test in the "cheek" and "tilted" positions on the left and right sides of the phantom. The mobile phone is placed with the vertical centre line of the body of the mobile phone and the horizontal line crossing the centre of the earpiece in a plane parallel to the sagittal plane of the phantom. **Illustration for Cheek Position** **Illustration for Tilted Position** Description of the "cheek" position: The mobile phone is well placed in the reference plane and the earpiece is in contact with the ear. Then the mobile phone is moved until any point on the front side get in contact with the cheek of the phantom or until contact with the ear is lost. Description of the "tilted" position: The mobile phone is well placed in the "cheek" position as described above. Then the mobile phone is moved outward away from the month by an angle of 15 degrees or until contact with the ear lost. Remark: Please refer to Appendix B for the test setup photos. ## 7.2. Body-worn Configurations The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration. For body-worn and other configurations a flat phantom
shall be used which is comprised of material with electrical properties similar to the corresponding tissues. **Illustration for Body-Worn Position** ## 7.3. Measurement procedure The Following steps are used for each test position - 1. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface. - 2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift. - 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. 4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated. ## 7.4. Description of interpolation/extrapolation scheme The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom. An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step. The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array. # 8. Hot-spot Mode Evaluation Procedure LTE LTE 2.4GHz 5GHz Wireless Interface Band Band BT WLAN WLAN 4 13 Calculated Exposure 1754MHz 782MHz 2480MHz 2462MHz 5825MHz Frequency Position Maximum power 25 7.5 12.5 24.5 7.5 (dBm) Maximum rated 316.0 282.0 6.0 18.0 6.0 power(mW) Separation 5.0 5.0 5.0 5.0 distance(mm) Back Face exclusion threshold 83.7 77.9 1.9 5.7 2.9 Testing required? Yes Yes No Yes No Separation 5.0 13.0 13.0 13.0 distance(mm) Top Side exclusion threshold 83.7 77.9 0.7 2.2 1.1 Testing required? Yes Yes No No No **Bottom** Separation 60.0 115.0 115.0 115.0 Side distance(mm) | | exclusion threshold | 213.0 | 209.0 | 745.0 | 746.0 | 712.0 | |-----------|-------------------------|--------|--------|--------|--------|--------| | | Testing required? | Yes | Yes | No | No | No | | Right | Separation distance(mm) | 165 | 5.0 | 5.0 | 5.0 | 5.0 | | Side | exclusion threshold | 1263.0 | 1259.0 | 1.9 | 5.7 | 2.9 | | | Testing required? | No | No | No | Yes | No | | Left Side | Separation distance(mm) | 5. | 0 | 180.0 | 180.0 | 180.0 | | Leit Side | exclusion threshold | 83.7 | 77.9 | 1395.0 | 1396.0 | 1362.0 | | | Testing required? | Yes | Yes | No | No | No | #### Note: For tablets with a display and overall diagonal dimension greater than 20cm, the SAR procedure in KDB 447498 should be used. The tablet procedures required by KDB 447498 generally do not require separate hotspot mode testing. According to KDB 447498 D01, the bottom face (back of the device) is required to be tested touching the flat phantom and the Front Face is not required according to KDB 616217 section 4.3. According to KDB 616217 Section 4.3 and KDB 447498 SAR Test Exclusion Threshold ,the Right Side are not required, For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following: [Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance – 50 mm) \cdot 10] mW, for > 1500 MHz and \leq 6 GHz The SAR evaluation procedures for Portable Devices with Wireless Router function is according to KDB 941225 D06 Hotspot SAR v02r01. - 1. Body-worn/Hotspot mode SAR assessments are required. - 2. Referring to KDB 941225 D06, when the overall device length and width are ≥ 9cm*5cm,the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge. - 3. For Main antenna, SAR measurements at Top side and Right Side are not required since the distance between DUT and flat phantom > 25mm. - 4. For WLAN&BT antenna, SAR measurements Top side and Right side are not required since the distance between DUT and flat phantom > 25mm. - 5. For the secondary antenna, it supports RX only, SAR is not required. ## 9. SAR Evaluation Procedures for LTE #### 1. QPSK with 1 RB allocation Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.6 When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel. #### 2. QPSK with 50% RB allocation The procedures required for 1 RB allocation in 1. are applied to measure the SAR for QPSK with50% RB allocation. #### 3. QPSK with 100% RB allocation For QPSK with 100% RB allocation, SAR is not required when the highest maximum power for 100 % RB allocation is less than the highest maximum output power in 50% and 1_{RB} allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1. and 2. are ≤ 0.8W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. ### Higher order modulations For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in sections 1. and 2.and 3. to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power or the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg. #### 4. Other channel bandwidth standalone SAR test requirements For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section 5.2 to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > ½ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg. The equivalent channel configuration for the RB allocation, RB offset and modulation etc. Is determined for the smaller channel bandwidth according to the same number of RB allocated in The largest channel bandwidth. For example, 50 RB in 10 MHz channel bandwidth does not apply to5MHz channel bandwidth; therefore, this cannot be tested in the smaller channel bandwidth. However, 50% RB allocation in 10 MHz channel bandwidth s equivalent to 100% RB allocation in 5 MHz channel bandwidth; therefore, these are the equivalent configurations to be compared to determine the specific channel and configuration in the smaller channel bandwidth that need SAR testing." ### 5. LTE Test parameter | | Identify the operating | Band 4 | | | | | | | | |---|--|------------------------|-------------|---------------|------------|--------------|-------------|-------------|--| | | frequency range of each LTE | Tx:171 | 0-1755MH | Z | | | | | | | 1 | transmission FCC band used | Band 1 | 3 | | | | | | | | | by the device | Tx:779- | -785MHz | | | | | | | | | | Band Channel Bandwidth | | | | | | | | | | dentify the high, middle and by the device dentify the high, middle and ow (L, M, H) channel numbers and frequencies tested in each and frequency band Expecify the UE category and applink modulations used Descriptions of the LTE ransmitter and antenna mplementation & identify whether it is a standalone ransmitter operating and pendently of other wireless ransmitters in the device or sharing hardware components | 4 | 20Mhz | 15MHz | 10MHz | 5MHz | 3MHz | 1.4MHz | | | | | 1 | 20050/ | 20025/ | 20000/ | 19975/ | 19965/ | 19957/ | | | | | Low | 1720 | 1717.5 | 1715 | 1712.5 | 1711.5 | 1710.7 | | | | | Middl | 20175/ | 20175/ | 20175/ | 20175/ | 20175/ | 20175/ | | | | | е | 1732.5 | 1732.5 | 1732.5 | 1732.5 | 1732.5 | 1732.5 | | | | Identify the high, middle and | I I alb | 20300/ | 20325/ | 20350/ | 20375/ | 20384/ | 20392/ | | | 2 | low (L, M, H) channel numbers | High | 1745 | 1747.5 | 1750 | 1752.5 | 1753.5 | 1754.2 | | | | and frequencies tested in each | Band | | • | Channel I | Bandwidtl | h | | | | | LTE frequency band | 13 | 10MHz | 5MHz | / | / | / | / | | | | | | 23230/ | 23205/ | , | , | , | , | | |
 | Low | 782 | 779.5 | / | / | / | / | | | | | Middl | 23230/ | 23230/ | , | , | , | , | | | | | е | 782 | 782 | / | / | / | / | | | | | 11:1- | 23230/ | 23255/ | , | , | , | , | | | | | High | 782 | 784.5 | / | / | / | / | | | | Specify the UE category and | The UE | Category | is 4 and | the uplink | modulation | ons used a | are QPSK | | | 3 | uplink modulations used | and 160 | QAM. | | | | | | | | | Descriptions of the LTE | | | | | | | | | | | transmitter and antenna | | | | | | | | | | | implementation & identify | | | | | | | | | | | whether it is a standalone | The me | adula baa d | nrimory (| antonno fo | r all I TE b | anda a M | ′i-Fi Tx/Rx | | | 4 | transmitter operating | | | a pililialy a | antenna 10 | I all LIE D | oanus, a vv | I-LI IX/KX | | | | independently of other wireless | antenna. | | | | | | | | | | transmitters in the device or | | | | | | | | | | | sharing hardware components | s | | | | | | | | | | and/or antenna(s) with other | | | | | | | | | | | transmitters etc. | | | | | | | | | |---|----------------------------------|--|----------|-----------|-----------|------------|-----------|----------|---------| | | Identify the LTE Band | | | | | | | | | | | Voice/data requirements in | | | | | | | | | | | each operating mode and | | | | | | | | | | | exposure condition with | | | | | | | | | | 5 | respect to head and body test | Mobile Hotsp | ot Mod | e will l | oe teste | d accordi | ng to Se | ection 9 | of this | | | configurations, antenna | report. | | | | | | | | | | locations, handset flip-cover or | | | | | | | | | | | slide positions, antenna | | | | | | | | | | | diversity conditions, etc. | | | | | | | | | | | Identify if Maximum Power | | | | | | | | | | | Reduction (MPR) is optional or | A = = = = 2000 | TC 00 | 40444 | 1 0 0 (0) | 240.00\ | | | | | | mandatory, i.e. built-in by | As per 3GPP TS 36.101 v11.0.0 (2012-03) | | | | | | | | | | design: | Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3 | | | | | | | | | | only mandatory MPR may be | Class 3 | ı | | | | | | Т | | | considered during SAR testing, | | Chan | | bandwi | dth / | Transr | mission | MPR | | | when the maximum output | Modulation | | width (| · - | T | | | | | 6 | power is permanently limited | Wodulation | 1.4 | 3.0 | 5 | 10 | 15 | 20 | (dB) | | | by the MPR implemented | | MHz | MHz | MHz | MHz | MHz | MHz | | | | within the UE; and only for the | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 1 | | | applicable RB (resource block) | 16 QAM | ≤ 5 | ≤ 4 | ≤ 8 | ≤ 12 | ≤ 16 | ≤ 18 | ≤ 1 | | | configurations specified in LTE | 16 QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 2 | | | standards | | | | | | | | | | | b) A-MPR (additional MPR) | A-MPR is sup | ported | by des | ign, but | disable fo | or SAR te | esting. | | | | must be disabled. | | | | | | | | | | | Include the maximum average | | | | | | | | | | | conducted output power | | | | | | | | | | | measured on the required test | | | | | | | | | | | channels for each channel | | | | | | | | | | | bandwidth and UL modulation | | | | | | | | | | | used in each frequency band: | | | | | | | | | | 7 | a) with 1 RB allocated at the | This is include | ed in th | e sectio | on 11 of | this repor | t. | | | | | low, centred, high end of a | | | | | | | | | | | channel | | | | | | | | | | | b) using 50% RB allocation low, | | | | | | | | | | | centered, high end within a | | | | | | | | | | | channel | | | | | | | | | | | c) using 100% RB allocation | | | | | | | | | | 8 | Include the maximum average | This is include | ed in th | e section | on 13 of | this repor | t. | | | | | conducted output power | | | | | | | | |----|-----------------------------------|-----|-----------|----------|--------------------|----------|--------|--| | | measured for the other | | | | | | | | | | wireless mode and frequency | | | | | | | | | | bands | | | | | | | | | | Identify the simultaneous | | | | | | | | | | transmission conditions for the | | | | | | | | | | voice and data configurations | | | | | | | | | | supported by all wireless | | | Simulta | aneous transmissio | n condit | ions | | | Ì | modes, device configurations | | | WWAN | WLAN | | Sum of | | | 40 | and frequency bands, for the | | ш | LTE Data | 000 44 - /- /- /- | DT | WWAN& | | | 10 | head and body exposure | | # | LTE Data | 802.11a/b/g/n | ВТ | WLAN | | | | conditions and device | | 1 | × | × | | × | | | | operating configurations | | 2 | × | | × | × | | | | (handset flip or cover positions, | | | | | | | | | | antenna diversity conditions | | | | | | | | | | etc.) | | | | | | | | | | When power reduction is | | | | | | | | | | applied to certain wireless | | | | | | | | | | modes to satisfy SAR | | | | | | | | | | compliance for simultaneous | | | | | | | | | | transmission conditions, other | | | | | | | | | | equipment certification or | | | | | | | | | | operating requirements, | | | | | | | | | | include the maximum average | | | | | | | | | | conducted output power | | | | | | | | | 11 | measured in each power | NC | ot applic | cable. | | | | | | | reduction mode applicable to | | | | | | | | | | the simultaneous voice/data | | | | | | | | | | transmission configurations for | | | | | | | | | İ | such wireless configurations | S | | | | | | | | | and frequency bands; and also | | | | | | | | | | include details of the power | er | | | | | | | | | reduction implementation and | ınd | | | | | | | | | measurement setup | | | | | | | | # 10. Measurement of Conducted output power ### 1. LTE Conducted Average output power ### LTE Band 4 | | Channel Bandwidth: 1.4 MHz | | | | | | | | |------------|----------------------------|--------|-------------|---------------------|---------------|--|--|--| | Madedalian | Ohannal | RB Cor | nfiguration | Avenue Developed | Town on Brown | | | | | Modulation | Channel | Size | Offset | Average Power [dBm] | Tune-up Power | | | | | | | 1 | 0 | 24.76 | 25.0 | | | | | | | 1 | 3 | 24.66 | 25.0 | | | | | | | 1 | 5 | 24.64 | 25.0 | | | | | | LCH | 3 | 0 | 23.43 | 25.0 | | | | | | | 3 | 2 | 22.94 | 25.0 | | | | | | | 3 | 3 | 22.71 | 25.0 | | | | | | | 6 | 0 | 23.14 | 25.0 | | | | | | | 1 | 0 | 23.78 | 25.0 | | | | | | | 1 | 3 | 23.74 | 25.0 | | | | | | | 1 | 5 | 23.69 | 25.0 | | | | | QPSK | MCH | 3 | 0 | 23.70 | 25.0 | | | | | | | 3 | 2 | 23.64 | 25.0 | | | | | | | 3 | 3 | 23.64 | 25.0 | | | | | | | 6 | 0 | 22.66 | 25.0 | | | | | | | 1 | 0 | 23.46 | 25.0 | | | | | | | 1 | 3 | 23.38 | 25.0 | | | | | | | 1 | 5 | 23.41 | 25.0 | | | | | | HCH | 3 | 0 | 23.55 | 25.0 | | | | | | | 3 | 2 | 23.54 | 25.0 | | | | | | | 3 | 3 | 23.56 | 25.0 | | | | | | | 6 | 0 | 22.43 | 25.0 | | | | | | | 1 | 0 | 23.89 | 25.0 | | | | | | | 1 | 3 | 23.86 | 25.0 | | | | | | | 1 | 5 | 23.84 | 25.0 | | | | | | LCH | 3 | 0 | 23.75 | 25.0 | | | | | | | 3 | 2 | 23.70 | 25.0 | | | | | | | 3 | 3 | 23.69 | 25.0 | | | | | 16QAM | | 6 | 0 | 22.52 | 25.0 | | | | | | | 1 | 0 | 23.09 | 25.0 | | | | | | | 1 | 3 | 23.03 | 25.0 | | | | | | | 1 | 5 | 23.04 | 25.0 | | | | | | MCH | 3 | 0 | 22.68 | 25.0 | | | | | | HCH | 3 | 2 | 22.64 | 25.0 | | | | | | | 3 | 3 | 22.62 | 25.0 | | | | | | | 6 | 0 | 21.57 | 25.0 | |--|-----|---|-------|-------|------| | | | 1 | 0 | 22.74 | 25.0 | | | | 1 | 3 | 22.73 | 25.0 | | | | 1 | 5 | 22.74 | 25.0 | | | HCH | 3 | 0 | 22.45 | 25.0 | | | | 3 | 2 | 22.44 | 25.0 | | | 3 | 3 | 22.45 | 25.0 | | | | | 6 | 0 | 21.54 | 25.0 | | | | Chann | el Bandwidth: 3 N | VHZ | | |------------|---------|--------|-------------------|---------------------------|---------------| | Madulakan | Channel | RB Con | figuration | Australia Davida (dDm) | Tues un Deurs | | Modulation | Channel | Size | Offset | Average Power [dbm] | Tune-up Power | | | | 1 | 0 | 24.53 | 25.0 | | | | 1 | 7 | 24.49 | 25.0 | | | | 1 | 14 | Average Power [dBm] 24.53 | 25.0 | | | LCH | 8 | 0 | | 25.0 | | | | 8 | 4 | | 25.0 | | | | 8 | 7 | 23.45 | 25.0 | | | | 15 | 0 | 23.50 | 25.0 | | | | 1 | 0 | 23.62 | 25.0 | | | | 1 | 7 | 23.47 | 25.0 | | | | 1 | 14 | 23.43 | 25.0 | | QPSK | MCH | 8 | 0 | 22.55 | 25.0 | | | | 8 | 4 | 4 22.53 | 25.0 | | | | 8 | 7 | 22.51 | 25.0 | | | | 15 | 0 | 22.56 | 25.0 | | | | 1 | 0 | 23.57 | 25.0 | | | | 1 | 7 | 23.51 | 25.0 | | | | 1 | 14 | 23.47 | 25.0 | | | HCH | 8 | 0 | 22.47 | 25.0 | | | | 8 | 4 | 22.45 | 25.0 | | | | 8 | 7 | 22.48 | 25.0 | | | | 15 | 0 | 22.40 | 25.0 | | | | 1 | 0 | 23.86 | 25.0 | | | | 1 | 7 | 23.74 | 25.0 | | | | 1 | 14 | 23.63 | 25.0 | | | LCH | 8 | 0 | 22.60 | 25.0 | | 16QAM | | 8 | 4 | 22.53 | 25.0 | | IOGAWI | | 8 | 7 | 22.50 | 25.0 | | | | 15 | 0 | 22.48 | 25.0 | | | | 1 | 0 | 22.83 | 25.0 | | | MCH | 1 | 7 | 22.78 | 25.0 | | | | 1 | 14 | 22.68 | 25.0 | | | | 8 | 0 | 21.64 | 25.0 | |--|-----|----|----|-------|------| | | | 8 | 4 | 21.60 | 25.0 | | | | 8 | 7 | 21.59 | 25.0 | | | | 15 | 0 | 21.56 | 25.0 | | | | 1 | 0 | 22.82 | 25.0 | | | | 1 | 7 | 22.80 | 25.0 | | | | 1 | 14 | 22.74 | 25.0 | | | HCH | 8 | 0 | 21.41 | 25.0 | | | | 8 | 4 | 21.34 | 25.0 | | | | 8 | 7 | 21.35 | 25.0 | | | | 15 | 0 | 21.39 | 25.0 | | Channel Bandwidth: 5 MHz | | | | | | | | |--------------------------|---------|----------|---|-----------------------|---------------|--|--| | Madulation | Channel | RB Con | fguration | Augenes Deutschaften) | Tunn un Dauen | | | | Modulation | Channel | Size | Offset | Average Power [dbm] | Tune-up Power | | | | | | 1 | 0 | 24.66 | 25.0 | | | | | | 1 | 12 | 24.50 | 25.0 | | | | | | 1 | 24 | 24.31 | 25.0 | | | | | LCH | 12 | 0 | 23.54 | 25.0 | | | | | | 12 | RB Configuration Average Power | 23.46 | 25.0 | | | | | | 12 | 13 | 23.41 | 25.0 | | | | | | 25 | 0 | 23.41 | 25.0 | | | | | | 1 | 0 | 23.80 | 25.0 | | | | | | 1 | 12 | 23.65 | 25.0 | | | | | | 1 | 24 | 23.60 | 25.0 |
| | | QPSK | MCH | 12 | 0 | 22.62 | 25.0 | | | | QPSK. | | 12 | 6 | 22.54 | 25.0 | | | | | | 12 | 13 | 22.51 | 25.0 | | | | | | 12
25 | 0 | 22.58 | 25.0 | | | | | | 1 | 0 | 23.49 | 25.0 | | | | | | 1 | 12 | 23.43 | 25.0 | | | | | | 1 | 24 | 23.29 | 25.0 | | | | | HCH | 12 | 0 | 22.49 | 25.0 | | | | | | 12 | 6 | 22.48 | 25.0 | | | | | | 12 | 13 | 22.49 | 25.0 | | | | | | 25 | 0 | 22.45 | 25.0 | | | | | | 1 | 0 | 24.02 | 25.0 | | | | | | 1 | 12 | 23.85 | 25.0 | | | | | | 1 | Offset 24.66 12 24.50 24 24.31 0 23.54 6 23.46 13 23.41 0 23.80 12 23.65 24 23.60 0 22.62 6 22.54 13 22.51 0 23.49 12 23.43 24 23.29 0 22.49 6 22.48 13 22.49 0 24.02 12 23.85 24 23.66 0 22.65 6 22.55 | 25.0 | | | | | 16QAM | LCH | 12 | 0 | 22.65 | 25.0 | | | | | | 12 | 6 | 22.52 | 25.0 | | | | | | 12 | 13 | 22.41 | 25.0 | | | | | | 25 | 0 | 22.47 | 25.0 | | | | | 1 | 0 | 23.08 | 25.0 | |-----|----|----|-------|------| | | 1 | 12 | 22.90 | 25.0 | | | 1 | 24 | 22.85 | 25.0 | | MCH | 12 | 0 | 21.75 | 25.0 | | | 12 | 6 | 21.68 | 25.0 | | | 12 | 13 | 21.65 | 25.0 | | | 25 | 0 | 21.59 | 25.0 | | | 1 | 0 | 22.56 | 25.0 | | | 1 | 12 | 22.53 | 25.0 | | | 1 | 24 | 22.52 | 25.0 | | HCH | 12 | 0 | 21.46 | 25.0 | | | 12 | 6 | 21.40 | 25.0 | | | 12 | 13 | 21.40 | 25.0 | | | 25 | 0 | 21.42 | 25.0 | | Channel Bandwidth: 10 MHz | | | | | | | | | |---------------------------|---------|--------|------------|---------------------|---------------|--|--|--| | Modulation | Channel | RB Con | figuration | Average Power [dBm] | Tune-up Power | | | | | Modulation | Ghannei | Size | Offset | Average Power [ubm] | Tune-up Power | | | | | | | 1 | 0 | 24.65 | 25.0 | | | | | | | 1 | 24 | 24.24 | 25.0 | | | | | | | 1 | 49 | 23.96 | 25.0 | | | | | | LCH | 25 | 0 | 23.49 | 25.0 | | | | | | | 25 | 12 | 23.27 | 25.0 | | | | | | | 25 | 25 | 23.09 | 25.0 | | | | | | | 50 | 0 | 23.35 | 25.0 | | | | | | | 1 | 0 | 24.07 | 25.0 | | | | | | | 1 | 24 | 23.54 | 25.0 | | | | | | | 1 | 49 | 23.42 | 25.0 | | | | | QPSK | MCH | 25 | 0 | 22.87 | 25.0 | | | | | | | 25 | 12 | 22.67 | 25.0 | | | | | | | 25 | 25 | 22.63 | 25.0 | | | | | | | 50 | 0 | 22.66 | 25.0 | | | | | | | 1 | 0 | 23.73 | 25.0 | | | | | | | 1 | 24 | 23.50 | 25.0 | | | | | | | 1 | 49 | 23.39 | 25.0 | | | | | | HCH | 25 | 0 | 22.48 | 25.0 | | | | | | | 25 | 12 | 22.42 | 25.0 | | | | | | | 25 | 25 | 22.38 | 25.0 | | | | | | | 50 | 0 | 22.59 | 25.0 | | | | | | | 1 | 0 | 23.99 | 25.0 | | | | | 15044 | LCH | 1 | 24 | 23.58 | 25.0 | | | | | 16QAM | LCH | 1 | 49 | 23.24 | 25.0 | | | | | | | 25 | 0 | 22.47 | 25.0 | | | | | | 25 | 12 | 22.26 | 25.0 | |-----|----|----|-------|------| | | 25 | 25 | 22.12 | 25.0 | | | 50 | 0 | 22.27 | 25.0 | | | 1 | 0 | 23.35 | 25.0 | | | 1 | 24 | 22.84 | 25.0 | | | 1 | 49 | 22.80 | 25.0 | | MCH | 25 | 0 | 21.78 | 25.0 | | | 25 | 12 | 21.60 | 25.0 | | | 25 | 25 | 21.55 | 25.0 | | | 50 | 0 | 21.68 | 25.0 | | | 1 | 0 | 23.06 | 25.0 | | | 1 | 24 | 22.80 | 25.0 | | | 1 | 49 | 22.69 | 25.0 | | HCH | 25 | 0 | 21.57 | 25.0 | | | 25 | 12 | 21.47 | 25.0 | | | 25 | 25 | 21.45 | 25.0 | | | 50 | 0 | 21.48 | 25.0 | | Channel Bandwidth: 15 MHz | | | | | | | | | |---------------------------|---------|--------|------------|-----------------------|----------------|--|--|--| | Modulation | Channel | RB Con | figuration | Average Power [dBm] | Tune-up Power | | | | | Modulatori | Glarife | Size | Offset | Average Power [ubilij | Tulle-up Power | | | | | | | 1 | 0 | 24.82 | 25.0 | | | | | | | 1 | 37 | 24.13 | 25.0 | | | | | | | 1 | 74 | 23.69 | 25.0 | | | | | | LCH | 37 | 0 | 23.58 | 25.0 | | | | | | | 37 | 18 | 23.23 | 25.0 | | | | | | | 37 | 38 | 22.96 | 25.0 | | | | | | | 75 | 0 | 23.27 | 25.0 | | | | | | | 1 | 0 | 24.34 | 25.0 | | | | | | | 1 | 37 | 23.50 | 25.0 | | | | | | | 1 | 74 | 23.49 | 25.0 | | | | | QPSK | MCH | 37 | 0 | 23.01 | 25.0 | | | | | | | 37 | 18 | 22.66 | 25.0 | | | | | | | 37 | 38 | 22.61 | 25.0 | | | | | | | 75 | 0 | 22.71 | 25.0 | | | | | | | 1 | 0 | 24.03 | 25.0 | | | | | | | 1 | 37 | 23.35 | 25.0 | | | | | | | 1 | 74 | 23.40 | 25.0 | | | | | | HCH | 37 | 0 | 22.75 | 25.0 | | | | | | | 37 | 18 | 22.54 | 25.0 | | | | | | | 37 | 38 | 22.59 | 25.0 | | | | | | | 75 | 0 | 22.62 | 25.0 | | | | | 16QAM | LCH | 1 | 0 | 24.19 | 25.0 | | | | | | | 1 | 37 | 23.51 | 25.0 | |---|-----|----|----|-------|------| | | | 1 | 74 | 23.06 | 25.0 | | | | 37 | 0 | 22.51 | 25.0 | | | | 37 | 18 | 22.13 | 25.0 | | | | 37 | 38 | 21.87 | 25.0 | | | | 75 | 0 | 22.21 | 25.0 | |] | | 1 | 0 | 23.74 | 25.0 | | | | 1 | 37 | 22.87 | 25.0 | | | | 1 | 74 | 23.00 | 25.0 | | | MCH | 37 | 0 | 21.97 | 25.0 | | | | 37 | 18 | 21.64 | 25.0 | | | | 37 | 38 | 21.59 | 25.0 | | | | 75 | 0 | 21.72 | 25.0 | | | | 1 | 0 | 23.37 | 25.0 | | | | 1 | 37 | 22.65 | 25.0 | | | | 1 | 74 | 22.71 | 25.0 | | | нсн | 37 | 0 | 21.74 | 25.0 | | | | 37 | 18 | 21.48 | 25.0 | | | | 37 | 38 | 21.45 | 25.0 | | | | 75 | 0 | 21.57 | 25.0 | | | | Chann | el Bandwidth: 2 | 0 MHz | | |------------|---------|---------|-----------------|-----------------------|----------------| | Modulation | Channel | RB Conf | figuration | Average Power [dBm] | Tune-up Power | | Wodulason | Oridine | Size | Offset | Avelage Power Jubilij | Tulle-up Power | | | | 1 | 0 | 24.89 | 25.0 | | | | 1 | 49 | 24.01 | 25.0 | | | | 1 | 99 | 23.45 | 25.0 | | | LCH | 50 | 0 | 24.66 | 25.0 | | | | 50 | 25 | 24.67 | 25.0 | | | | 50 | 50 | 24.68 | 25.0 | | | | 100 | 0 | 23.65 | 25.0 | | | | 1 | 0 | 24.44 | 25.0 | | | | 1 | 49 | 23.49 | 25.0 | | QPSK | | 1 | 99 | 23.26 | 25.0 | | | MCH | 50 | 0 | 22.94 | 25.0 | | | | 50 | 25 | 22.49 | 25.0 | | | | 50 | 50 | 22.40 | 25.0 | | | | 100 | 0 | 22.70 | 25.0 | | | | 1 | 0 | 23.94 | 25.0 | | | | 1 | 49 | 23.27 | 25.0 | | | HCH | 1 | 99 | 23.21 | 25.0 | | | | 50 | 0 | 22.63 | 25.0 | | | | 50 | 25 | 22.38 | 25.0 | | | | 50 | 50 | 22.40 | 25.0 | |-------|-----|-----|----|-------|------| | | | 100 | 0 | 22.60 | 25.0 | | | | 1 | 0 | 24.08 | 25.0 | | | | 1 | 49 | 23.24 | 25.0 | | | | 1 | 99 | 22.66 | 25.0 | | | LCH | 50 | 0 | 22.43 | 25.0 | | | | 50 | 25 | 21.92 | 25.0 | | | | 50 | 50 | 21.62 | 25.0 | | | | 100 | 0 | 22.06 | 25.0 | | | | 1 | 0 | 23.55 | 25.0 | | | | 1 | 49 | 22.67 | 25.0 | | | | 1 | 99 | 22.58 | 25.0 | | 16QAM | MCH | 50 | 0 | 21.88 | 25.0 | | | | 50 | 25 | 21.43 | 25.0 | | | | 50 | 50 | 21.36 | 25.0 | | | | 100 | 0 | 21.58 | 25.0 | | | | 1 | 0 | 23.30 | 25.0 | | | | 1 | 49 | 22.76 | 25.0 | | | | 1 | 99 | 22.49 | 25.0 | | | HCH | 50 | 0 | 21.71 | 25.0 | | | | 50 | 25 | 21.37 | 25.0 | | | | 50 | 50 | 21.31 | 25.0 | | | | 100 | 0 | 21.50 | 25.0 | ### LTE Band 13 | Channel Bandwidth: 5 MHz | | | | | | |--------------------------|---------|------------------|--------|---------------------|---------------| | Modulation | Channel | RB Configuration | | Avenue Deves Miller | Tune un Douer | | Modulation | | Size | Offset | Average Power [dBm] | Tune-up Power | | QPSK | LCH | 1 | 0 | 23.45 | 24.5 | | | | 1 | 12 | 23.63 | 24.5 | | | | 1 | 24 | 23.05 | 24.5 | | | | 12 | 0 | 22.98 | 24.5 | | | | 12 | 6 | 22.98 | 24.5 | | | | 12 | 13 | 22.95 | 24.5 | | | | 25 | 0 | 22.97 | 24.5 | | | мсн | 1 | 0 | 23.90 | 24.5 | | | | 1 | 12 | 23.91 | 24.5 | | | | 1 | 24 | 23.71 | 24.5 | | | | 12 | 0 | 22.94 | 24.5 | | | | 12 | 6 | 22.88 | 24.5 | | | | 12 | 13 | 22.82 | 24.5 | | | | 25 | 0 | 22.84 | 24.5 | | | нсн | 1 | 0 | 23.78 | 24.5 | | | | 1 | 12 | 23.68 | 24.5 | | | | 1 | 24 | 23.44 | 24.5 | | | | 12 | 0 | 22.83 | 24.5 | | | | 12 | 6 | 22.74 | 24.5 | | | | 12 | 13 | 22.68 | 24.5 | | | | 25 | 0 | 22.82 | 24.5 | | 16QAM | LCH | 1 | 0 | 23.31 | 24.5 | | | | 1 | 12 | 23.35 | 24.5 | | | | 1 | 24 | 23.28 | 24.5 | | | | 12 | 0 | 22.11 | 24.5 | | | | 12 | 6 | 22.06 | 24.5 | | | | 12 | 13 | 21.99 | 24.5 | | | | 25 | 0 | 21.94 | 24.5 | | | мсн | 1 | 0 | 23.07 | 24.5 | | | | 1 | 12 | 23.00 | 24.5 | | | | 1 | 24 | 22.80 | 24.5 | | | | 12 | 0 | 21.91 | 24.5 | | | | 12 | 6 | 21.83 | 24.5 | | | | 12 | 13 | 21.75 | 24.5 | | | | 25 | 0 | 21.90 | 24.5 | | | HCH | 1 | 0 | 22.97 | 24.5 | | | | 1 | 12 | 22.86 | 24.5 | | | 1 | 24 | 22.68 | 24.5 | |-----|----|----|-------|------| | 1 1 | 12 | 0 | 21.90 | 24.5 | | 1 1 | 12 | 6 | 21.80 | 24.5 | | 1 1 | 12 | 13 | 21.76 | 24.5 | | | 25 | 0 | 21.78 | 24.5 | | | | Chann | nel Bandwidth: 10 | 0 MHz | | |------------|---------|--------|-------------------|---------------------|---------------| | Madulation | Channel | RB Con | figuration | Augman Dawer (dDm) | Tune up Deure | | Modulation | Channel | Size | Offset | Average Power [dBm] | Tune-up Power | | | | 1 | 0 | 24.02 | 24.5 | | | | 1 | 24 | 23.99 | 24.5 | | | | 1 | 49 | 23.88 | 24.5 | | | LCH | 25 | 0 | 23.06 | 24.5 | | | | 25 | 12 | 22.84 | 24.5 | | | | 25 | 25 | 22.84 | 24.5 | | | | 50 | 0 | 23.00 | 24.5 | | | | 1 | 0 | 23.44 | 24.5 | | | | 1 | 24 | 23.66 | 24.5 | | | | 1 | 49 | 23.14 | 24.5 | | QPSK | MCH | 25 | 0 | 23.05 | 24.5 | | | | 25 | 12 | 22.85 | 24.5 | | | | 25 | 25 | 22.84 | 24.5 | | | | 50 | 0 | 23.01 | 24.5 | | | | 1 | 0 | 23.44 | 24.5 | | | | 1 | 24 | 23.66 | 24.5 | | | | 1 | 49 | 23.03 | 24.5 | | | HCH | 25 | 0 | 23.05 | 24.5 | | | | 25 | 12 | 22.84 | 24.5 | | | | 25 | 25 | 22.83 | 24.5 | | | | 50 | 0 | 22.99 | 24.5 | | | | 1 | 0 | 22.97 | 24.5 | | | | 1 | 24 | 22.95 | 24.5 | | | | 1 | 49 | 22.31 | 24.5 | | | LCH | 25 | 0 | 22.12 | 24.5 | | | | 25 | 12 | 21.92 | 24.5 | | | | 25 | 25 | 21.79 | 24.5 | | 16QAM | | 50 | 0 | 21.90 | 24.5 | | | | 1 | 0 | 22.97 | 24.5 | | | | 1 | 24 | 22.93 | 24.5 | | | мсн | 1 | 49 | 22.39 | 24.5 | | | MCH | 25 | 0 | 22.12 | 24.5 | | | | 25 | 12 | 21.93 | 24.5 | | | | 25 | 25 | 21.78 | 24.5 | | | 50 | 0 | 21.88 | 24.5 | |-----|----|----|-------|------| | | 1 | 0 | 22.95 | 24.5 | | | 1 | 24 | 22.94 | 24.5 | | | 1 | 49 | 22.27 | 24.5 | | HCH | 25 | 0 | 22.12 | 24.5 | | | 25 | 12 | 21.93 | 24.5 | | | 25 | 25 | 21.77 | 24.5 | | | 50 | 0 | 21.89 | 24.5 | ### 2. 2.4GHz Wi-Fi Average output power | | - The first of the second t | | | | | | | | | |--------
--|---------|--------------------|---------------------------|------------------|--|--|--|--| | | Mode | Channel | Frequency
(MHz) | Average
power
(dBm) | Tune-Up
Limit | | | | | | | 902 11b | CH 1 | 2412 | 11.64 | 12.50 | | | | | | | 802.11b
1Mbps | CH 6 | 2437 | 11.86 | 12.50 | | | | | | 2.4GHz | Пиюрь | CH 11 | 2462 | 12.02 | 12.50 | | | | | | WLAN | 902.44.4 | CH 1 | 2412 | 10.34 | 11.00 | | | | | | | 802.11g
6Mbps | CH 6 | 2437 | 10.38 | 11.00 | | | | | | | ONIDPS | CH 11 | 2462 | 10.71 | 11.00 | | | | | | | 802.11n-HT20 | CH 1 | 2412 | 9.54 | 10.00 | | | | | | | MCS0 | CH 6 | 2437 | 9.64 | 10.00 | | | | | | | IVIOO | CH 11 | 2462 | 9.42 | 10.00 | | | | | ## 3. 5GHz Wi-Fi Average output power | | Mode | Channel | Frequency
(MHz) | Average
power
(dBm) | Tune-Up
Limit | |--------|--------------|---------|--------------------|---------------------------|------------------| | 5.2GHz | 802.11a | CH 36 | 5180 | 7.40 | 7.50 | | WLAN | 6Mbps | CH 40 | 5200 | 7.18 | 7.50 | | VVLAIN | Olvibps | CH 48 | 5240 | 7.15 | 7.50 | | | 802.11n-HT20 | CH 36 | 5180 | 6.75 | 7.00 | | | MCS0 | CH 40 | 5200 | 5.96 | 7.00 | | | IVICOU | CH 48 | 5240 | 5.34 | 7.00 | | | Mode | Channel | Frequency
(MHz) | Average
power
(dBm) | Tune-Up
Limit | |----------------|----------------------|---------|--------------------|---------------------------|------------------| | E OCH- | 902.116 | CH 149 | 5745 | 6.13 | 6.50 | | 5.8GHz
WLAN | 802.11a | CH 157 | 5785 | 6.08 | 6.50 | | VVLAIN | MCS0 | CH 165 | 5825 | 6.22 | 6.50 | | | 902 115 UT20 | CH 149 | 5745 | 5.25 | 6.00 | | | 802.11n-HT20
MCS0 | CH 157 | 5785 | 5.19 | 6.00 | | | | CH 165 | 5825 | 5.85 | 6.00 | # 4. BT average output power | | Ave | Average power (dBm) | | | | | | | |-----------|----------|---------------------|-------|--|--|--|--|--| | Mode | BR / EDR | | | | | | | | | | 1Mbps | 1Mbps 2Mbps 3Mbps | | | | | | | | Bluetooth | 7.186 | 7.253 | 6.936 | | | | | | | Mode | Channel | Frequency
(MHz) | Average power
(dBm)
1Mbps | |------|---------|--------------------|---------------------------------| | | CH 00 | 2402 | 3.383 | | BLE | CH 19 | 2440 | 3.755 | | | CH 39 | 2480 | 3.572 | 11. Test Results List REPORT No.: SZ17120109S01 #### Summary of Measurement Results (LTE Band 4/13) | Plot | Band | BW | Modulati | RB | RB | Test | Gap | Ch. | Freq. | Tune-up
Scaling | Measured
1g SAR | Reported
1g SAR | |------|-------------|-------|----------|------|--------|-------------|------|-------|-------|--------------------|--------------------|--------------------| | No. | | (MHz) | on | Size | offset | Position | (mm) | | (MHz) | Factor | (W/kg) | (W/kg) | | | LTE Band 4 | 20Mhz | QPSK | 1 | 0 | Back Side | 0mm | 20050 | 1720 | 1.026 | 0.450 | 0.462 | | | LTE Band 4 | 20Mhz | QPSK | 1 | 0 | Bottom Side | 0mm | 20050 | 1720 | 1.026 | 0.342 | 0.351 | | 1# | LTE Band 4 | 20Mhz | QPSK | 1 | 0 | Top Side | 0mm | 20050 | 1720 | 1.026 | 0.579 | 0.594 | | | LTE Band 4 | 20Mhz | QPSK | 1 | 0 | Left Side | 0mm | 20050 | 1720 | 1.026 | 0.294 | 0.302 | | | LTE Band 4 | 20Mhz | QPSK | 50 | 0 | Back Side | 0mm | 20050 | 1720 | 1.076 | 0.351 | 0.378 | | | LTE Band 4 | 20Mhz | QPSK | 50 | 0 | Bottom Side | 0mm | 20050 | 1720 | 1.076 | 0.261 | 0.281 | | | LTE Band 4 | 20Mhz | QPSK | 50 | 0 | Top Side | 0mm | 20050 | 1720 | 1.076 | 0.479 | 0.516 | | | LTE Band 4 | 20Mhz | QPSK | 50 | 0 | Left Side | 0mm | 20050 | 1720 | 1.076 | 0.227 | 0.244 | | | | | | | | | | | | | | | | | LTE Band 13 | 10Mhz | QPSK | 1 | 0 | Back Side | 0mm | 23230 | 782 | 1.117 | 0.172 | 0.192 | | | LTE Band 13 | 10Mhz | QPSK | 1 | 0 | Bottom Side | 0mm | 23230 | 782 | 1.117 | 0.021 | 0.023 | | | LTE Band 13 | 10Mhz | QPSK | 1 | 0 | Top Side | 0mm | 23230 | 782 | 1.117 | 0.063 | 0.070 | | 2# | LTE Band 13 | 10Mhz | QPSK | 1 | 0 | Left Side | 0mm | 23230 | 782 | 1.117 | 0.226 | 0.252 | | | LTE Band 13 | 10Mhz | QPSK | 25 | 0 | Back Side | 0mm | 23230 | 782 | 1.107 | 0.143 | 0.158 | | | LTE Band 13 | 10Mhz | QPSK | 25 | 0 | Bottom Side | 0mm | 23230 | 782 | 1.107 | 0.016 | 0.018 | | | LTE Band 13 | 10Mhz | QPSK | 25 | 0 | Top Side | 0mm | 23230 | 782 | 1.107 | 0.046 | 0.051 | | | LTE Band 13 | 10Mhz | QPSK | 25 | 0 | Left Side | 0mm | 23230 | 782 | 1.107 | 0.202 | 0.224 | #### Note: - 1. IEEE Std 1528-2013 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used. - 2. Per KDB 447498, when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg and peak SAR is less than 1.6W/kg, where the transmission band corresponding to all channels is ≤ 100 MHz, testing for the other channels is not required. - 3. The WCDMA mode is test with 12.2kbps RMC and TPC set to all "1", if maximum SAR for SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, 12.2kbps RMC is ≤ 75% of the SAR limit (i.e. 1.2W/Kg 1g) and maximum average output of each RF channel with HSDPA/HSUPA active is less than 1/4 dB higher than that measured without HSDPA/HSUPA using 12.2kbps RMC, according to KDB 941225D01v03r01, SAR is not required for this handset with HSPA capabilities. This module supports 3GPP release R7 HSPA+ using QPSK only without 16QAM in the uplink. So PBA is not required for HSPA+ - 4. R&S CMW500 base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing. - Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required. - 2. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 3. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 4. Per KDB 941225 D05v02r05, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 5. Per KDB 941225 D05v02r05, 16QAM/64QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM/64QAM SAR testing is not required. - 5. Per KDB 941225 D05v02r05, smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth ★ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. #### **Summary of Measurement Results (WLAN 2.4GHz Band)** | Plot | | | Test | Gap | | Freg. | Average | Tune-Up | Tune-up | Measured | Reported | |------|------------|---------
------------|---------|-----|-------|---------|---------|---------|----------|----------| | No. | Band | Mode | Position | (mm) | Ch. | (MHz) | Power | Limit | Scaling | 1g SAR | 1g SAR | | 140. | | | 1 03111011 | (11111) | | (WHZ) | (dBm) | (dBm) | Factor | (W/kg) | (W/kg) | | | WLAN2.4GHz | 802.11b | Back Side | 0mm | 11 | 2462 | 12.02 | 12.50 | 1.117 | 0.191 | 0.213 | | 3# | WLAN2.4GHz | 802.11b | Right Side | 0mm | 11 | 2462 | 12.02 | 12.50 | 1.117 | 0.354 | 0.395 | #### Notes: - 1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions. - 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s). - 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band. - 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following: - a. When the reported SAR of the initial test position is 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR i≤ 0.8 W/kg or all required test position are tested. - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. #### **Scaling Factor calculation** | Band | Tune-up power tolerance(dBm) | SAR test channel | |-------------|-------------------------------------|------------------| | Danu | Tune-up power tolerance(ubin) | Power (dBm) | | LTE Band 4 | Max output power =24.50+-0.50(1RB) | 24.89 | | (QPSK) | Max output power =24.50+-0.50(50RB) | 24.68 | | LTE Band 13 | Max output power =24.00+-0.50(1RB) | 24.02 | | (QPSK) | Max output power =23.00+-0.50(25RB) | 23.06 | | WLAN2.4GHz | Max output power =12.00+-0.50 | 12.02 | | (802.11b) | Wax output power = 12.00+-0.50 | 12.02 | # 12. Repeated SAR Measurement In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. # 13. Multiple Transmitters Evaluation #### Stand-alone SAR | Test distance: 1 | 0mm | | | |------------------|-------------------------------------|---|----------------| | Band | Highest
power(mW)
per tune up | 1-g SAR test threshold | Test required? | | Wi-Fi (2.4G) | 18.00 | [(max. power of channel, including tune-up tolerance, | Yes | | Wi-Fi (5GHz) | 6.00 | mW)/(min. test separation distance, mm)] • [√f(GHz)] | No | | ВТ | 6.00 | ≤ 3.0 for 1-g SAR | No | The SAR test for BT is not required. The BT stand-alone SAR is not required, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. (Max power=6.00 mW; *min. test separation distance*= 5mm for Body; *f*=2.4GHz) BT estimated Body SAR =0.252W/Kg (1g) (Max power=6.00 mW; *min. test separation distance*= 5mm for Body; *f*=5GHz) 5G Wi-Fi estimated Body SAR =0.368W/Kg (1g) #### Simultaneous SAR | | Simultaneous transmission conditions | | | | |---|--------------------------------------|---------------|----|------------| | | WWAN | WLAN Sum of | | Sum of | | # | LTE Data | 802.11a/b/g/n | BT | WWAN& WLAN | | 1 | × | × | | × | | 2 | × | | × | × | #### Note: - 1. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the Wi-Fi transmitter and another WWAN transmitter. Both transmitter often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal. - The hotspot SAR result may overlap with the body-worn accessory SAR requirements, per KDB 941225 D06, the more conservative configurations can be considered, thus excluding some unnecessary body-worn accessory SAR tests. - 3. Simultaneous Transmission SAR evaluation is not required for BT and Wi-Fi, because the software mechanism have been incorporated to guarantee that the WLAN and Bluetooth transmitters would not simultaneously operate. - 4. Per KDB 447498D01v06, Simultaneous Transmission SAR Evaluation procedures is as followed: - Step 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required. - Step 2: If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated. - Step 3: If the ratio of SAR to peak separation distance is ≤ 0.04, Simultaneous SAR measurement is not required. - Step 4: If the ratio of SAR to peak separation distance is > 0.04, Simultaneous SAR measurement is required and simultaneous transmission SAR value is calculated. (The ratio is determined by: $(SAR1 + SAR2) \land 1.5/Ri \le 0.04$, Ri is the separation distance between the peak SAR locations for the antenna pair in mm) ### 6. Applicable Multiple Scenario Evaluation | Test | Main Ant. | Bluetooth | Wi-Fi Main Ant. | ∑1-g SA | ARMax(W/Kg) | |-----------|----------------------------|-----------|-----------------------------|------------|---------------| | Position | SAR _{Max} (W/Kg) | | BT&Main | Wi-Fi Main | | | 1 OSITION | OAIN _{Max} (W/Ng) | | SAIN _{Max} (VV/Ng) | Ant | Ant.&Main Ant | | Body SAR | 0.594 | 0.252 | 0.368 | 0.846 | 0.962 | Simultaneous Transmission SAR evaluation is not required for Wi-Fi and LTE, because the sum of $1g SAR_{Max}$ is **0.962** W/Kg < 1.6W/Kg for Wi-Fi and LTE. Simultaneous Transmission SAR evaluation is not required for BT and LTE, because the sum of 1g SAR_{Max} is **0.846** W/Kg < 1.6W/Kg for BT and LTE. (According to KDB 447498D01v06, the sum of the Highest reported SAR of each antenna does not exceed thelimit, simultaneous transmission
SAR evaluation is not required.) | END OF REPORT | | |------------------|--| | EIND OF INEL ORG | | # **Annex A General Information** #### 1. Identification of the Responsible Testing Laboratory | Company Name: | Shenzhen Morlab Communications Technology Co., Ltd. | |---|---| | Department: | Morlab Laboratory | | Address: FL.3, Building A, FeiYang Science Park, No.8 LongChang | | | | Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. | | | China | | ResponsibleTest Lab Mr. Su Feng | | | Manager: | IVII. Su Felig | | Telephone: | +86 755 36698555 | | Facsimile: | +86 755 36698525 | ## 2. Identification of the Responsible Testing Location | Name: | Shenzhen Morlab Communications Technology Co., Ltd. Morlab | | |----------|---|--| | | Laboratory | | | Address: | FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, | | | | Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. | | | | China | | ### 3. List of Test Equipments | No. | Instrument | Туре | Cal. Date | Cal.
Due | |-----|----------------------|--|-----------|-------------| | 1 | PC | Dell (Pentium IV 2.4GHz,
SN:X10-23533) | (n.a) | (n.a) | | 2 | Network Emulator | Aglient (8960, SN:10752) | 2017-5-24 | 1year | | 3 | Network Emulator | Rohde&Schwarz
(CMW500,SN:124534) | 2017-5-25 | 1year | | 4 | Network Analyzer | Agilent(E5071B ,SN:MY42404762) | 2017-5-25 | 1year | | 5 | Voltmeter | Keithley (2000, SN:1000572) | 2017-7-8 | 1year | | 6 | Synthetizer | Rohde&Schwarz (SML_03,
SN:101868) | 2017-8-24 | 1year | | 7 | Signal Generator | Rohde&Schwarz (SMP_02) | 2017-7-8 | 1year | | 8 | Power Amplifier | PRANA (Ap32 SV125AZ) | 2017-7-8 | 1year | | 9 | Power Meter | Agilent (E4416A, SN:MY45102093) | 2017-7-8 | 1year | | 10 | Power Sensor | Agilent (N8482A, SN:MY41091706) | 2017-7-8 | 1year | | 11 | Power Meter | Rohde&Schwarz (NRVD, SN:101066) | 2017-7-8 | 1year | | 12 | Power Sensor | MA2411B | 2017-7-8 | 1year | | 13 | Directional coupler | Giga-tronics(SN:1829112) | 2017-7-24 | 1year | | 14 | Probe | Satimo (SN:SN 37/08 EP80) | 2017-7-5 | 1year | | 15 | Dielectric Probe Kit | Agilent (85033E) | 2017-7-5 | 1year | | 16 | Phantom | Satimo (SN:SN_36_08_SAM62) | N/A | N/A | | 17 | Liquid | Satimo(Last Calibration: 2018-02-09 to 2018-02-12) | N/A | N/A | | 18 | Dipole 750MHz | Satimo (SN30/13 DIP0G750) | 2017-7-5 | 1year | | 19 | Dipole 1800MHz | Satimo (SN 36/08 DIPF101) | 2017-7-5 | 1year | | 20 | Dipole 2450MHz | Satimo (SN 30/13 DIP2G450-263) | 2017-7-5 | 1year | | 21 | Thermo meter | KTJ(mode-01) | 2017-5-10 | 1year | # **Annex B Test Setup Photos** ## 1. Back Side ### 2. Left Side # 3. Right Side # 4. Top Side ### 5. Bottom Side # **Annex C Plots of System Performance Check** ## System Performance Check Data (750MHz Body) Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018.02.12 Measurement duration: 13 minutes 36 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | |-----------------|-------------------|--| | Phantom | Flat | | | Device Position | | | | Band | 750MHz | | | Channels | | | | Signal | CW | | ### **B. SAR Measurement Results** ### **Band SAR** | Frequency (MHz) | 750.000000 | |-----------------------------------|------------| | Relative permittivity (real part) | 53.517799 | | Conductivity (S/m) | 1.001025 | | Power drift (%) | 0.320000 | | Ambient Temperature: | 22.6°C | | Liquid Temperature: | 21.2°C | | ConvF: | 6.68 | | Crest factor: | 1:1 | | SURFACE SAR | VOLUME SAR | |-------------|------------| | | | ### Maximum location: X=2.00, Y=0.00 | SAR 10g (W/Kg) | 0.609663 | |----------------|----------| | SAR 1g (W/Kg) | 0.905411 | ### **Z Axis Scan** | 3D sceen shot | Hot spot position | |-----------------|--------------------| | 3D 300011 3110t | riot spot position | Http://www.morlab.cn ### System Performance Check Data(1800MHz Body) Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018.02.11 Measurement duration: 13 minutes 27 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | |-----------------|-------------------|--| | Phantom | Flat | | | Device Position | | | | Band | 1800MHz | | | Channels | | | | Signal | CW | | ### **B. SAR Measurement Results** ## **Band SAR** | Frequency (MHz) | 1800.000000 | | | |-----------------------------------|-------------|--|--| | Relative permittivity (real part) | 53.295167 | | | | Conductivity (S/m) | 1.515073 | | | | Power drift (%) | 0.310000 | | | | Ambient Temperature: | 22.3°C | | | | Liquid Temperature: | 22.6°C | | | | ConvF: | 5.38 | | | Maximum location: X=3.00, Y=1.00 | SAR 10g (W/Kg) | 2.038386 | | | |----------------|----------|--|--| | SAR 1g (W/Kg) | 3.753454 | | | #### **Z Axis Scan** | 3D sceen shot | Hot spot position | |---------------|-------------------| |---------------|-------------------| ## System Performance Check Data(2450MHz Body) Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018.02.09 Measurement duration: 13 minutes 31 seconds ## A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | | |-----------------|-------------------|--|--|--| | Phantom | Flat | | | | | Device Position | | | | | | Band | 2450MHz | | | | | Channels | | | | | | Signal | CW | | | | # **B. SAR Measurement Results** ## **Band SAR** | Frequency (MHz) | 2450.000000 | | | |-----------------------------------|-------------|--|--| | Relative permittivity (real part) | 52.884446 | | | | Conductivity (S/m) | 1.966143 | | | | Power Drift (%) | 1.080000 | | | | Ambient Temperature: | 22.0°C | | | | Liquid Temperature: | 21.8°C | | | | ConvF: | 4.96 | | | Maximum location: X=6.00, Y=1.00 | SAR 10g (W/Kg) | 2.377250 | | | |----------------|----------|--|--| | SAR 1g (W/Kg) | 5.081074 | | | ### **Z Axis Scan** | 3D sceen shot | Hot spot position | |---------------|-------------------| |---------------|-------------------| # **Annex D Plots of Maximum SAR Test Results** #### **MEASUREMENT 1** Type: Phone measurement (Complete) Area scan resolution: dx=15mm,dy=15mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018.02.09 Measurement duration: 16 minutes 46 seconds #### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | |-----------------|-------------------------| | <u>Phantom</u> | <u>Flat</u> | | Device Position | <u>Body</u> | | <u>Band</u> | <u>IEEE 802.11b ISM</u> | | <u>Channels</u> | <u>High</u> | | <u>Signal</u> | <u>DSSS</u> | #### **B. SAR Measurement Results** Higher Band SAR (Channel 11): | Frequency (MHz) | 2462.000000 | | | | |-----------------------------------|-------------|--|--|--| | Relative permittivity (real part) | 52.783627 | | | | | Conductivity (S/m) | 1.989143 | | | | | Power Drift (%) | -0.21000 | | | | | Ambient Temperature: | 22.0°C | | | | | Liquid Temperature: | 21.8°C | | | | | ConvF: | 4.96 | | | | | Crest factor: | 1:1 | | | | Maximum location: X=6.00, Y=8.00 SAR Peak: 0.70 W/kg | SAR 10g (W/Kg) | 0.144659 | | |----------------|----------|--| | SAR 1g (W/Kg) | 0.354007 | | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--|------------|----------|--------------------|-----------|--------|--------| | SAR | 0.6924 | 0.3920 | 0.1696 | 0.0670 | 0.0188 | 0.0068 | 0.0024 | | (W/Kg) | | | | | | | | | | 0.7-
0.6-
0.5-
0.4-
0.3-
0.1-
0.0- | 02.55.07.5 | 12.5 17. | 5 22.5 2
Z (nm) | 27.5 32.5 | 40.0 | | #### **MEASUREMENT 2** Type: Phone measurement (Complete) Area scan resolution: dx=15mm,dy=15mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018.02.11 Measurement duration: 16 minutes 51 seconds #### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | |-----------------|-------------------|--|--| | <u>Phantom</u> | <u>Flat</u> | | | | Device Position | <u>Body</u> | | | | <u>Band</u> | LTE band 4 | | | | <u>Channels</u> | Low | | | | <u>Signal</u> | <u>LTE</u> | | | #### **B. SAR Measurement Results** Lower Band SAR (Channel 20050): | Frequency (MHz) | 1719.500000 | |-----------------------------------|-------------| | Relative permittivity (real part) | 53.511841 | | Conductivity (S/m) | 1.460235 | | Power drift (%) | -2.550000 | | Ambient Temperature: | 22.3°C | | Liquid Temperature: | 22.6°C | | ConvF: | 5.38 | | Crest factor: | 1:1 | **Maximum location: X=-2.00, Y=-22.00** SAR Peak: 0.91 W/kg | SAR 10g (W/Kg) | 0.309911 | |----------------|----------| | SAR 1g (W/Kg) | 0.578724 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--|------------|----------|--------------------|-----------|--------|--------| | SAR | 0.8900 | 0.6131 | 0.3732 | 0.2167 | 0.1236 | 0.0681 | 0.0346 | | (W/Kg) | | | | | | | | | | 0.9-
0.8-
0.6-
0.4-
0.2-
0.0- | 02.55.07.5 | 12.5 17. | 5 22.5 2
Z (mm) | 27.5 32.5 | 40.0 | | #### **MEASUREMENT 3** Type: Phone measurement (Complete) Area scan resolution: dx=15mm,dy=15mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2018.02.12 Measurement duration: 16 minutes 48 seconds #### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | |-----------------|-------------------| | <u>Phantom</u> | <u>Flat</u> | | Device Position | <u>Body</u> | | <u>Band</u> | LTE band 13 | | <u>Channels</u> | <u>Middle</u> | | <u>Signal</u> | <u>LTE</u> | #### **B. SAR Measurement Results** Middle Band SAR (Channel 23230): | Frequency (MHz) | 781.500000 | |-----------------------------------|------------| | Relative
permittivity (real part) | 52.408443 | | Conductivity (S/m) | 1.003537 | | Power drift (%) | 1.620000 | | Ambient Temperature: | 22.6°C | | Liquid Temperature: | 21.2°C | | ConvF: | 6.68 | | Crest factor: | 1:1 | Maximum location: X=8.00, Y=-12.00 SAR Peak: 0.36 W/kg | SAR 10g (W/Kg) | 0.121984 | |----------------|----------| | SAR 1g (W/Kg) | 0.226221 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|---------------------------|-------------------|---------------------|--------|-----------|--------|--------| | SAR | 0.3512 | 0.2370 | 0.1477 | 0.0980 | 0.0658 | 0.0433 | 0.0279 | | (W/Kg) | | | | | | | | | | 0.35- | | | | | | | | | 0.30- | \longrightarrow | $\perp \perp \perp$ | | | | | | | 0.25- | \square | | | | | | | | (%)
1, 20 -
1, 20 - | + | | | | | | | | 왕 0.15- | ++ | ++ | | | | | | | 0.10- | | | | | | | | | 0.05 -
0.02 - | | | | +++ | + | | | | | .02.55.07.5 | 12.5 17 | | 27.5 32.5 | 40.0 | | | | | | | Z (mm) | | | | # **Annex E SATIMO Calibration Certificate** # **SAR Reference Dipole Calibration Report** Ref: ACR.189.6.16.SATU.A # SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY CO., LTD FL3, BUILDING A, FEIYANG SCIENCE PARK, NO.8 LONGCHANG ROAD, BLOCK 67, BAOAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA # MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 1800 MHZ **SERIAL NO.: SN 36/08 DIPF101** # Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 07/05/2017 ## Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. #### SAR REFERENCE DIPOLE CALIBRATION REPORT | | Name | Function | Date | Signature | |---------------|---------------|-----------------|----------|-----------------| | Prepared by : | Jérôme LUC | Product Manager | 7/7/2017 | Jes | | Checked by: | Jérôme LUC | Product Manager | 7/7/2017 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 7/7/2017 | thim Putthowski | | | Customer Name | |---------------|---| | Distribution: | Shenzhen Morlab
Communications
Technology Co.,
Ltd | | Issue | Date | Modifications | |-------|----------|-----------------| | A | 7/7/2017 | Initial release | | | | | | | | | | | | | ## TABLE OF CONTENTS | 1 | Intro | Introduction | | | | | |---|-------|--|----|--|--|--| | 2 | Dev | ice Under Test4 | | | | | | 3 | Proc | duct Description4 | | | | | | | 3.1 | General Information | 4 | | | | | 4 | Mea | surement Method5 | | | | | | | 4.1 | Return Loss Requirements | 5 | | | | | | 4.2 | Mechanical Requirements | 5 | | | | | 5 | Mea | surement Uncertainty5 | | | | | | | 5.1 | Return Loss | 5 | | | | | | 5.2 | Dimension Measurement | 5 | | | | | | 5.3 | Validation Measurement_ | 5 | | | | | 6 | Cali | bration Measurement Results6 | | | | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | | | | 6.3 | Mechanical Dimensions | 6 | | | | | 7 | Vali | dation measurement | | | | | | | 7.1 | Head Liquid Measurement | 7 | | | | | | 7.2 | SAR Measurement Result With Head Liquid | | | | | | | 7.3 | Body Liquid Measurement | 9 | | | | | | 7.4 | SAR Measurement Result With Body Liquid | 10 | | | | | 8 | List | of Equipment | | | | | #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|-----------------------------------|--| | Device Type | COMOSAR 1800 MHz REFERENCE DIPOLE | | | Manufacturer | MVG | | | Model | SID1800 | | | Serial Number | SN 36/08 DIPF101 | | | Product Condition (new / used) | Used | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION ### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. **Figure 1** – *MVG COMOSAR Validation Dipole* #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 <u>MECHANICAL REQUIREMENTS</u> The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | | |----------------|-------------------------------------|--|--| | 400-6000MHz | 0.1 dB | | | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | | |-------------|---------------------------------------|--|--| | 3 - 300 | 0.05 mm | | | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | | | |-------------|-----------------------------|--|--| | 1 g | 20.3 % | | | Page: 5/11 | 10 g | 20.1 % | |------|--------| | | | #### 6 CALIBRATION MEASUREMENT RESULTS ### 6.1 <u>RETURN LOSS AND IMPEDANCE IN HEAD LIQUID</u> | Frequency (MHz) | Frequency (MHz) Return Loss (dB) | | Impedance | | |-----------------|----------------------------------|-----|-----------------|--| | 1800 | -27.56 | -20 | 51.1 Ω - 4.0 jΩ | | ### 6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u> | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | | |-----------------|------------------|------------------|-----------------------------|--| | 1800 | -22.87 | -20 | $57.3 \Omega - 2.5 j\Omega$ | | ### 6.3 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|-------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11 | | | | | | 1 | | |------|-------------|------|-------------|------|------------|------| | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | PASS | 41.7 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ### 7.1 <u>HEAD LIQUID MEASUREMENT</u> | Frequency
MHz | Relative permittivity (ϵ_{r}') | | Conductiv | ity (σ) S/m | |------------------|---|----------|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | Page: 7/11 | 1800 | 40.0 ±5 % | PASS | 1.40 ±5 % | PASS | |------|-----------|------|-----------|------| | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | |
| 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | ### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 41.7 sigma: 1.46 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 1800 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (| (W/kg/W) | |------------------|------------------|--------------|------------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | 37.05 (3.71) | 20.1 | 19.85 (1.98) | Page: 8/11 | 1900 | 39.7 | 20.5 | | |------|------|------|--| | 1950 | 40.5 | 20.9 | | | 2000 | 41.1 | 21.1 | | | 2100 | 43.6 | 21.9 | | | 2300 | 48.7 | 23.3 | | | 2450 | 52.4 | 24 | | | 2600 | 55.3 | 24.6 | | | 3000 | 63.8 | 25.7 | | | 3500 | 67.1 | 25 | | # 7.3 <u>BODY LIQUID MEASUREMENT</u> | Frequency
MHz | Relative per | Relative permittivity (ϵ_{r} ') | | ity (σ) S/m | |------------------|--------------|---|-----------|-------------| | | required | measured | required | measured | | 150 | 61.9 ±5 % | | 0.80 ±5 % | | | 300 | 58.2 ±5 % | | 0.92 ±5 % | | | 450 | 56.7 ±5 % | | 0.94 ±5 % | | | 750 | 55.5 ±5 % | | 0.96 ±5 % | | | 835 | 55.2 ±5 % | | 0.97 ±5 % | | | 900 | 55.0 ±5 % | | 1.05 ±5 % | | | 915 | 55.0 ±5 % | | 1.06 ±5 % | | | 1450 | 54.0 ±5 % | | 1.30 ±5 % | | | 1610 | 53.8 ±5 % | | 1.40 ±5 % | | | 1800 | 53.3 ±5 % | PASS | 1.52 ±5 % | PASS | | 1900 | 53.3 ±5 % | | 1.52 ±5 % | | | 2000 | 53.3 ±5 % | | 1.52 ±5 % | | | 2100 | 53.2 ±5 % | | 1.62 ±5 % | | | 2450 | 52.7 ±5 % | | 1.95 ±5 % | | Page: 9/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. | 2600 | 52.5 ±5 % | 2.16 ±5 % | | |------|------------|------------|--| | 3000 | 52.0 ±5 % | 2.73 ±5 % | | | 3500 | 51.3 ±5 % | 3.31 ±5 % | | | 5200 | 49.0 ±10 % | 5.30 ±10 % | | | 5300 | 48.9 ±10 % | 5.42 ±10 % | | | 5400 | 48.7 ±10 % | 5.53 ±10 % | | | 5500 | 48.6 ±10 % | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | 5.77 ±10 % | | | 5800 | 48.2 ±10 % | 6.00 ±10 % | | #### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 53.9 sigma: 1.46 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 1800 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | | |------------------|------------------|-------------------|--| | | measured | measured | | | 1800 | 37.78 (3.78) | 20.15 (2.02) | | Page: 10/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------|-------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | SAM Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2016 | 02/2019 | | | Calipers | Carrera | CALIPER-01 | 12/2016 | 12/2019 | | | Reference Probe | MVG | EPG122 SN 18/11 | 10/2016 | 10/2017 | | | Multimeter | Keithley 2000 | 1188656 | 12/2016 | 12/2019 | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2016 | 12/2019 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | HP E4418A | US38261498 | 12/2016 | 12/2019 | | | Power Sensor | HP ECP-E26A | US37181460 | 12/2016 | 12/2019 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature and Humidity Sensor | Control Company | 150798832 | 10/2015 | 10/2017 | | # **SAR Reference Dipole Calibration Report** Ref: ACR.189.8.16.SATU.A # SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY CO., LTD FL3, BUILDING A, FEIYANG SCIENCE PARK, NO.8 LONGCHANG ROAD, BLOCK 67, BAOAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA # MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 750 MHZ SERIAL NO.: SN 30/13 DIP0G750-259 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 07/05/2017 #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. | | Name | Function | Date | Signature | |---------------|---------------|-----------------|----------|-----------------| | Prepared by : | Jérôme LUC | Product Manager | 7/7/2017 | Jes | | Checked by: | Jérôme LUC | Product Manager | 7/7/2017 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 7/7/2017 | thim Putthowski | | | Customer Name | |---------------|---| | Distribution: | Shenzhen Morlab
Communications
Technology Co.,
Ltd | | Date | Modifications | |----------|-----------------| | 7/7/2017 | Initial release | | | | | | | | | | | | | # TABLE OF CONTENTS | I | Intro | oduction4 | | |---|-------|--|---| | 2 | Dev | ice Under Test4 | | | 3 | Proc | luct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement7 | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | | | | 7.3 | Body Liquid Measurement | 9 | | | 7.4 | SAR Measurement Result With Body Liquid | | | 8 | List | of Equipment11 | | #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | |--------------------------------|----------------------------------|--|--|--| | Device Type | COMOSAR 750 MHz REFERENCE DIPOLE | | | | | Manufacturer MVG | | | | | | Model | SID750 | | | | | Serial Number | SN 30/13 DIP0G750-259 | | | | | Product Condition (new / used) | Used | | | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. **Figure 1** – MVG COMOSAR Validation Dipole #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 <u>MECHANICAL REQUIREMENTS</u> The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell
thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | | |----------------|--|--|--| | 400-6000MHz | 0.1 dB | | | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | | |-------------|---------------------------------------|--|--| | 3 - 300 | 0.05 mm | | | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | | | |-------------|-----------------------------|--|--| | 1 g | 20.3 % | | | Page: 5/11 | 10 g | 20.1 % | |------|--------| | | | #### 6 CALIBRATION MEASUREMENT RESULTS ### 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) Return Loss (dB) | | Requirement (dB) | Impedance | | |----------------------------------|--------|------------------|-----------------|--| | 750 | -32.36 | -20 | 52.4 Ω - 0.1 jΩ | | ## 6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u> | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 750 | -31.73 | -20 | $49.6 \Omega + 2.5 j\Omega$ | # 6.3 <u>MECHANICAL DIMENSIONS</u> | Frequency MHz | L mm | | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|-------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11 | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | |------|-------------|------|-------------|------|------------|------| | 750 | 176.0 ±1 %. | PASS | 100.0 ±1 %. | PASS | 6.35 ±1 %. | PASS | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ### 7.1 <u>HEAD LIQUID MEASUREMENT</u> | Frequency
MHz | Relative per | Relative permittivity (ϵ_{r}') | | ity (σ) S/m | |------------------|--------------|---|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | PASS | 0.89 ±5 % | PASS | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | Page: 7/11 | 1800 | 40.0 ±5 % | 1.40 ±5 % | |------|-----------|-----------| | 1900 | 40.0 ±5 % | 1.40 ±5 % | | 1950 | 40.0 ±5 % | 1.40 ±5 % | | 2000 | 40.0 ±5 % | 1.40 ±5 % | | 2100 | 39.8 ±5 % | 1.49 ±5 % | | 2300 | 39.5 ±5 % | 1.67 ±5 % | | 2450 | 39.2 ±5 % | 1.80 ±5 % | | 2600 | 39.0 ±5 % | 1.96 ±5 % | | 3000 | 38.5 ±5 % | 2.40 ±5 % | | 3500 | 37.9 ±5 % | 2.91 ±5 % | ### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 40.0 sigma: 0.93 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 750 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (| W/kg/W) | 10 g SAR (| (W/kg/W) | |------------------|-----------|-------------|------------|-------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | 8.41 (0.84) | 5.55 | 5.52 (0.55) | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | Page: 8/11 | 1900 | 39.7 | 20.5 | | |------|------|------|--| | 1950 | 40.5 | 20.9 | | | 2000 | 41.1 | 21.1 | | | 2100 | 43.6 | 21.9 | | | 2300 | 48.7 | 23.3 | | | 2450 | 52.4 | 24 | | | 2600 | 55.3 | 24.6 | | | 3000 | 63.8 | 25.7 | | | 3500 | 67.1 | 25 | | # 7.3 <u>BODY LIQUID MEASUREMENT</u> | Frequency
MHz | Relative per | mittivity (ε _r ') | Conductiv | ity (σ) S/m | |------------------|--------------|------------------------------|-----------|-------------| | | required | measured | required | measured | | 150 | 61.9 ±5 % | | 0.80 ±5 % | | | 300 | 58.2 ±5 % | | 0.92 ±5 % | | | 450 | 56.7 ±5 % | | 0.94 ±5 % | | | 750 | 55.5 ±5 % | PASS | 0.96 ±5 % | PASS | | 835 | 55.2 ±5 % | | 0.97 ±5 % | | | 900 | 55.0 ±5 % | | 1.05 ±5 % | | | 915 | 55.0 ±5 % | | 1.06 ±5 % | | | 1450 | 54.0 ±5 % | | 1.30 ±5 % | | | 1610 | 53.8 ±5 % | | 1.40 ±5 % | | | 1800 | 53.3 ±5 % | | 1.52 ±5 % | | | 1900 | 53.3 ±5 % | | 1.52 ±5 % | | | 2000 | 53.3 ±5 % | | 1.52 ±5 % | | | 2100 | 53.2 ±5 % | | 1.62 ±5 % | | | 2450 | 52.7 ±5 % | | 1.95 ±5 % | | Page: 9/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. | 2600 | 52.5 ±5 % | 2.16 ±5 % | | |------|------------|------------|--| | 3000 | 52.0 ±5 % | 2.73 ±5 % | | | 3500 | 51.3 ±5 % | 3.31 ±5 % | | | 5200 | 49.0 ±10 % | 5.30 ±10 % | | | 5300 | 48.9 ±10 % | 5.42 ±10 % | | | 5400 | 48.7 ±10 % | 5.53 ±10 % | | | 5500 | 48.6 ±10 % | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | 5.77 ±10 % | | | 5800 | 48.2 ±10 % | 6.00 ±10 % | | #### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 56.8 sigma: 1.00 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 750 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 750 | 8.69 (0.87) | 5.78 (0.58) | Page: 10/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |---------------------------------|-------------------------|--------------------|---|---| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | SAM Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2016 | 02/2019 | | Calipers | Carrera | CALIPER-01 | 12/2016 | 12/2019 | | Reference Probe | MVG | EPG122 SN 18/11 | 10/2016 | 10/2017 | | Multimeter | Keithley 2000 | 1188656 | 12/2016 | 12/2019 | | Signal Generator | Agilent E4438C | MY49070581 | 12/2016 | 12/2019 | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | HP E4418A | US38261498 | 12/2016 | 12/2019 | | Power Sensor | HP
ECP-E26A | US37181460 | 12/2016 | 12/2019 | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature and Humidity Sensor | Control Company | 150798832 | 10/2015 | 10/2017 | # **SAR Reference Dipole Calibration Report** Ref: ACR.189.9.16.SATU.A # SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY CO., LTD FL3, BUILDING A, FEIYANG SCIENCE PARK, NO.8 LONGCHANG ROAD, BLOCK 67, BAOAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA # MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 30/13 DIP2G450-263 # Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 07/05/2017 #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. | | Name | Function | Date | Signature | |---------------|---------------|-----------------|----------|-----------------| | Prepared by : | Jérôme LUC | Product Manager | 7/7/2017 | Jes | | Checked by: | Jérôme LUC | Product Manager | 7/7/2017 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 7/7/2017 | thim Putthowski | | | Customer Name | |---------------|---| | Distribution: | Shenzhen Morlab
Communications
Technology Co.,
Ltd | | Issue | Date | Modifications | | | | |-------|----------|-----------------|--|--|--| | A | 7/7/2017 | Initial release | # TABLE OF CONTENTS | 1 | Intro | duction4 | | |---|-------|--|---| | 2 | Devi | ce Under Test4 | | | 3 | Prod | uct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | | | 6 | Calil | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement7 | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 9 | | | 7.4 | SAR Measurement Result With Body Liquid | | | 8 | List | of Equipment11 | | #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | | |--------------------------------|-----------------------------------|--|--|--|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | | | | Manufacturer | MVG | | | | | | Model | SID2450 | | | | | | Serial Number | SN 30/13 DIP2G450-263 | | | | | | Product Condition (new / used) | Used | | | | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. **Figure 1** – *MVG COMOSAR Validation Dipole* #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 <u>MECHANICAL REQUIREMENTS</u> The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | | |----------------|--|--|--| | 400-6000MHz | 0.1 dB | | | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | | |-------------|--------------------------------|--|--| | 3 - 300 | 0.05 mm | | | ### 5.3 <u>VALIDATION MEASUREMENT</u> The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | | |-------------|----------------------|--| | 1 g | 20.3 % | | Page: 5/11 | 10 g | 20.1 % | |------|--------| | | | #### 6 CALIBRATION MEASUREMENT RESULTS #### 6.1 <u>RETURN LOSS AND IMPEDANCE IN HEAD LIQUID</u> | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-------------------------------| | 2450 | -23.23 | -20 | 47.7Ω - $6.4 j\Omega$ | # 6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u> | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 2450 | -21.16 | -20 | $53.7 \Omega - 8.3 j\Omega$ | ### 6.3 <u>MECHANICAL DIMENSIONS</u> | Frequency MHz | L mm | | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|-------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11 | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | |------|-------------|------|-------------|------|------------|------| | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | PASS | 30.4 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ### 7.1 <u>HEAD LIQUID MEASUREMENT</u> | Frequency
MHz | Relative permittivity (ϵ_{r}') | | Conductivity (σ) S/m | | |------------------|---|-------------------|----------------------|----------| | | required | required measured | | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | Page: 7/11 | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | |------|-----------|------|-----------|------| | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | PASS | 1.80 ±5 % | PASS | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | ### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid
Values: eps': 37.5 sigma: 1.80 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 2450 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|----------|-------------------|----------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | Page: 8/11 | 1900 | 39.7 | | 20.5 | | |------|------|--------------|------|--------------| | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | 53.34 (5.33) | 24 | 24.22 (2.42) | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | # 7.3 <u>BODY LIQUID MEASUREMENT</u> | Frequency
MHz | Relative per | Relative permittivity (ϵ_{r}') | | ity (σ) S/m | |------------------|--------------|---|-----------|-------------| | | required | measured | required | measured | | 150 | 61.9 ±5 % | | 0.80 ±5 % | | | 300 | 58.2 ±5 % | | 0.92 ±5 % | | | 450 | 56.7 ±5 % | | 0.94 ±5 % | | | 750 | 55.5 ±5 % | | 0.96 ±5 % | | | 835 | 55.2 ±5 % | | 0.97 ±5 % | | | 900 | 55.0 ±5 % | | 1.05 ±5 % | | | 915 | 55.0 ±5 % | | 1.06 ±5 % | | | 1450 | 54.0 ±5 % | | 1.30 ±5 % | | | 1610 | 53.8 ±5 % | | 1.40 ±5 % | | | 1800 | 53.3 ±5 % | | 1.52 ±5 % | | | 1900 | 53.3 ±5 % | | 1.52 ±5 % | | | 2000 | 53.3 ±5 % | | 1.52 ±5 % | | | 2100 | 53.2 ±5 % | | 1.62 ±5 % | | | 2450 | 52.7 ±5 % | PASS | 1.95 ±5 % | PASS | Page: 9/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. | 2600 | 52.5 ±5 % | 2.16 ±5 % | | |------|------------|------------|--| | 3000 | 52.0 ±5 % | 2.73 ±5 % | | | 3500 | 51.3 ±5 % | 3.31 ±5 % | | | 5200 | 49.0 ±10 % | 5.30 ±10 % | | | 5300 | 48.9 ±10 % | 5.42 ±10 % | | | 5400 | 48.7 ±10 % | 5.53 ±10 % | | | 5500 | 48.6 ±10 % | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | 5.77 ±10 % | | | 5800 | 48.2 ±10 % | 6.00 ±10 % | | #### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 53.2 sigma: 1.89 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 2450 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 2450 | 50.93 (5.09) | 23.26 (2.33) | Page: 10/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |---------------------------------|-------------------------|--------------------|---|---| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | SAM Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2016 | 02/2019 | | Calipers | Carrera | CALIPER-01 | 12/2016 | 12/2019 | | Reference Probe | MVG | EPG122 SN 18/11 | 10/2016 | 10/2017 | | Multimeter | Keithley 2000 | 1188656 | 12/2016 | 12/2019 | | Signal Generator | Agilent E4438C | MY49070581 | 12/2016 | 12/2019 | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | HP E4418A | US38261498 | 12/2016 | 12/2019 | | Power Sensor | HP ECP-E26A | US37181460 | 12/2016 | 12/2019 | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature and Humidity Sensor | Control Company | 150798832 | 10/2015 | 10/2017 | # **COMOSAR E-Field Probe Calibration Report** Ref: ACR.189.1.16.SATU.A # SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY CO., LTD FL3, BUILDING A, FEIYANG SCIENCE PARK, NO.8 LONGCHANG ROAD, BLOCK 67, BAOAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA # **MVG COMOSAR DOSIMETRIC E-FIELD PROBE** **SERIAL NO.: SN 37/08 EP80** Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 07/05/2017 #### Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions. | | Name | Function | Date | Signature | |--------------|---------------|-----------------|----------|----------------| | Prepared by: | Jérôme LUC | Product Manager | 7/7/2017 | Jez | | Checked by: | Jérôme LUC | Product Manager | 7/7/2017 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 7/7/2017 | thim Puthowshi | | | Customer Name | |---------------|---| | Distribution: | Shenzhen Morlab
Communications
Technology Co.,
Ltd | | Issue | Date | Modifications | |-------|----------|-----------------| | A | 7/7/2017 | Initial release | | | | | | | | | | | | | ### TABLE OF CONTENTS | 1 | Devi | ce Under Test4 | | |---|-------|-----------------------------|---| | 2 | Prod | uct Description4 | | | | 2.1 | General Information | | | 3 | Meas | surement Method4 | | | | 3.1 | Linearity | | | | 3.2 | Sensitivity | | | | 3.3 | Lower Detection Limit | | | | 3.4 | Isotropy | | | | 3.5 | Boundary Effect | | | 4 | Meas | surement Uncertainty | | | 5 | Calib | oration Measurement Results | | | | 5.1 | Sensitivity in air | 6 | | | 5.2 | Linearity | 7 | | | 5.3 | Sensitivity in liquid | | | | 5.4 | Isotropy | 8 | | 6 | List | of Equipment9 | | #### 1 DEVICE UNDER TEST | Device Under Test | | | | | | |--|----------------------------------|--|--|--|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | | | | Manufacturer | MVG | | | | | | Model | SSE5 | | | | | | Serial Number | SN 37/08 EP80 | | | | | | Product Condition (new / used) | Used | | | | | | Frequency Range of Probe | 0.7 GHz-3GHz | | | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=1.445 MΩ | | | | | | | Dipole 2: R2=1.467 MΩ | | | | | | | Dipole 3: R3=1.477 MΩ | | | | | A yearly calibration interval is recommended. #### 2 PRODUCT DESCRIPTION #### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. Figure 1 – MVG COMOSAR Dosimetric E field Dipole | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 4.5 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 5 mm | | Distance between dipoles / probe extremity | 2.7 mm | #### 3 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. #### 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. #### 3.2 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. #### 3.3 LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. #### 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$. #### 3.5 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical
value at the surface. #### 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | ERROR SOURCES | Uncertainty value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | |---------------------------|-----------------------|-----------------------------|-------------|----|-----------------------------| | Incident or forward power | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | Reflected power | 3.00% | Rectangular | $-\sqrt{3}$ | 1 | 1.732% | | Liquid conductivity | 5.00% | Rectangular | $-\sqrt{3}$ | 1 | 2.887% | | Liquid permittivity | 4.00% | Rectangular | $-\sqrt{3}$ | 1 | 2.309% | | Field homogeneity | 3.00% | Rectangular | $-\sqrt{3}$ | 1 | 1.732% | | Field probe positioning | 5.00% | Rectangular | $\sqrt{3}$ | 1 | 2.887% | | Field probe linearity | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | |--|-------|-------------|------------|---|--------| | Combined standard uncertainty | | | | | 5.831% | | Expanded uncertainty 95 % confidence level k = 2 | | | | | 12.0% | #### 5 CALIBRATION MEASUREMENT RESULTS | Calibration Parameters | | | | | |------------------------|-------|--|--|--| | Liquid Temperature | 21 °C | | | | | Lab Temperature | 21 °C | | | | | Lab Humidity | 45 % | | | | ### 5.1 <u>SENSITIVITY IN AIR</u> | Normx dipole | Normy dipole | Normz dipole | |----------------------------------|---------------------|---------------------| | $1 \left(\mu V/(V/m)^2 \right)$ | $2 (\mu V/(V/m)^2)$ | $3 (\mu V/(V/m)^2)$ | | 5.13 | 5.62 | 5.15 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 129 | 109 | 123 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula: $$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$ Page: 6/9 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. ### 5.2 **LINEARITY** Linearity: I+/-1.11% (+/-0.05dB) # 5.3 <u>SENSITIVITY IN LIQUID</u> | <u>Liquid</u> | Frequency | <u>Permittivity</u> | Epsilon (S/m) | <u>ConvF</u> | |---------------|----------------|---------------------|---------------|--------------| | | (MHz +/- | | | | | | <u>100MHz)</u> | | | | | HL450 | 450 | 42.17 | 0.86 | 7.55 | | BL450 | 450 | 57.65 | 0.95 | 7.77 | | HL750 | 750 | 40.03 | 0.93 | 6.44 | | BL750 | 750 | 56.83 | 1.00 | 6.68 | | HL900 | 900 | 42.08 | 1.01 | 6.13 | | BL900 | 900 | 55.25 | 1.08 | 6.37 | | HL1800 | 1800 | 41.68 | 1.46 | 5.21 | | BL1800 | 1800 | 53.86 | 1.46 | 5.38 | | HL1900 | 1900 | 38.45 | 1.45 | 5.61 | | BL1900 | 1900 | 53.32 | 1.56 | 5.71 | | HL2450 | 2450 | 37.50 | 1.80 | 4.82 | | BL2450 | 2450 | 53.22 | 1.89 | 4.96 | | HL2600 | 2600 | 39.80 | 1.99 | 4.74 | | BL2600 | 2600 | 52.52 | 2.23 | 4.93 | LOWER DETECTION LIMIT: 8mW/kg #### 5.4 **ISOTROPY** HL900 MHz - Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.05 dB # **HL1800 MHz** - Axial isotropy: 0.04 dB- Hemispherical isotropy: 0.07 dB # 6 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | | |----------------------------------|-------------------------|--------------------|---|---|--|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | | Flat Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal
required. | | | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2016 | 02/2019 | | | | | | Reference Probe | MVG | EP 94 SN 37/08 | 10/2016 | 10/2017 | | | | | | Multimeter | Keithley 2000 | 1188656 | 12/2016 | 12/2019 | | | | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2016 | 12/2019 | | | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | | Power Meter | HP E4418A | US38261498 | 12/2016 | 12/2019 | | | | | | Power Sensor | HP ECP-E26A | US37181460 | 12/2016 | 12/2019 | | | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | | Waveguide | Mega Industries | 069Y7-158-13-712 | Validated. No cal required. | Validated. No cal required. | | | | | | Waveguide Transition | Mega Industries | 069Y7-158-13-701 | Validated. No cal required. | Validated. No cal required. | | | | | | Waveguide Termination | Mega Industries | 069Y7-158-13-701 | Validated. No cal required. | Validated. No cal required. | | | | | | Temperature / Humidity
Sensor | Control Company | 150798832 | 10/2015 | 10/2017 | | | | |