G4B(www.g4b.go.kr)진위확인코드:d1Ya0Ffu+fw=

TEST REPORT

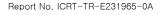
page : (1) / Total (84)

		2023-11-10		
성적서 번호 Report No.		ICRT-TR-E231965-0A		
기관명 신청자 Name		Healingsound co.,Itd		
Client	주 소 Address	217, Yeoksam-ro, Gangnam-gu, Seoul, Republic of Korea		
	상품목 t name	Healingstone		
	넬명 name	HS-01		
-	격 ings	DC 3.7 V		
	장소 of test	■ 고정시험(Inside test)		
	기간 of test	21. Jul. 2023 ~ 01. Aug. 2023		
	법/항목 hod/Item	FCC Part 15 Subpart C		
	결과 Results	Refer to 3. Test Summary		
확 인 Affirmation		작성자 Tested by 기술책임자 Technical Manager 성명 Si-Yeon, Hwang (서명) Name Si-Yeon, Hwang (서명) (Signature) Name Tae-Yang, Yoon (Signature)		
□ 위 성적서는	고객이 제공함	시료에 대한 시험결과 입니다.		
The above	test report is	certified that the above mentioned products have been tested for the sample.		
□ 위 성적서는	KS Q ISO/IE	: 17025 및 한국인정기구(KOLAS)인정과 관련이 없습니다.		
□ The above test report is not related to accreditation by KS Q ISO/IEC 17025 and Korea Laboratory Accreditation scheme.				
🗆 위 성적서는	주식회사 아이	씨알의 승인 없이는 일부 복제에 대해 금지됩니다. ㅈ티빙(66)		
The test report is prohibited for some reproduction without the approval of the ICR.				
2023. 08. 10 ODEES				
		주식회사 아이씨알 대표이사내문이지 The head of INTERNATIONAL CERTIFICATION REGISTRAR		
본 성적서의 진위 확인은 G4B 혹은 ICR 홈페이지에서 가능할				
The authenticity of the test report can be checked on the G4B or ICR webs				
		경기도 김포시 양촌읍 황금3로7번길 112 / Tel: 02-6351-9001 ~ 6		
		112, Hwanggeum3-ro 7beon-gil, Yangchon-eup, Gimpo-si, Gyeonggi-do, Korea / Tel: 02-6351-9001 ~ 6		

Report No. ICRT-TR-E231965-0A

and the set of the set

ICRT-QPA-17-03 Rev.2


Report No. 1041 - 14-2201903-0A

4 C) 4 C)

page: (2) / Total (84)

Contents

1. Applicant & Manufacturer & Test Laboratory Information	<u>4</u>
2. Equipment under Test(EUT) Information	<u>5</u>
3. Test Summary	<u>6</u>
4. Test Result (Earphone Right)	<u>8</u>
5. Test Result (Earphone Left)	<u>45</u>
6. Used equipment	<u>84</u>

page : (3) / Total (84)

Revision History

Issued Report No.	Issued Date	Revisions	Effect Section
ICRT-TR-E231965-0A	2023. 08. 10	Initial Issue	All

page : (4) / Total (84)

1. Applicant & Manufacturer & Test Laboratory Information

1.1 Applicant information

Applicant	Healingsound co.,Itd
Address	217, Yeoksam-ro, Gangnam-gu, Seoul, Republic of Korea

1.2 Manufacturer Information

Applicant	Healingsound co.,Itd	
Address	217, Yeoksam-ro, Gangnam-gu, Seoul, Republic of Korea	

1.3 Test Laboratory Information

Laboratory	ICR Co., Ltd.
Address	112, Hwanggeum 3-ro 7beon-gil, Hagun-ri, Yangchon-eup, Gimpo-si, Gyeonggi-do, Korea
Telephone No.	+82-2-6351-9002
Fax No.	+82-2-6351-9007
KOLAS No.	KT652
KC & FCC	KR0165

1.4 Measurement Uncertainty

Parameter	Uncertainty	Limit
Occupied Channel Bandwidth	2.75%	±5 %
RF output power, conducted	1.39 dB	±1.5 dB
Power Spectral Density, conducted	1.65 dB	±3 dB
Unwanted Emissions, conducted	1.82 dB	±3 dB
Supply voltages	0.06%	±3 %
Time	1.17%	±5 %
All emissions, radiated (Under the 1 GHz)	3.22 dB	±6 dB
All emissions, radiated (Above the 1 Hz)	3.67 dB	±6 dB

· 小子 小子 小子 小子

ICRT-QPA-17-03 Rev.2

page: (5) / Total (84)

2. Equipment under Test(EUT) Information

2.1 General Information

Product Name	Healingstone
Model Name	HS-01
Additional Model Name	COZYSTONE, CS-01
FCC ID	2BCI5-HW-HS-01
Power Supply	DC 3.7 V

2.2 Additional Information

Equipment Class	DSS - Direct Sequence Spread spectrum		
Device Type	Stand-alone		
Temperature Range	-20 °C ~ 55 °C		
Adaptive/Non-Adaptive	Non-Adaptive Equipment		
Operating Frequency	Bluetooth BDR, EDR	2 402 MHz ~ 2 480 MHz	
	Bluetooth BDR (Earphone Right)	4.10 dBm	
RE Output Bowor	Bluetooth EDR (Earphone Right)	6.62 dBm	
RF Output Power	Bluetooth BDR (Earphone Left)	3.34 dBm	
	Bluetooth EDR (Earphone Left)	5.52 dBm	
Number of Channel	Bluetooth BDR, EDR 79		
Modulation Type	GFSK / 8DPSK / 2DH5 modulation	1	
Antenna Type	Chip Antenna		
Antenna Gain	4.34 dBi		
Hopping mode	pseudorandom		
Note	In the case of Bluetooth EDR, it was tested in 2DH5, which is the worst case.		

2.3 Reason of Additional Model Name

NO	Family Model Name	Difference
1	COZYSTONE, CS-01	Model name change

ICRT-QPA-17-03 Rev.2

· · · · · · · ·

8.800 8.0000 8.00000 8.0000 8.00000 8.00000 8.00000 8.0000 8.00000 8.00000 8.00000

page: (6) / Total (84)

3. Test Summary

3.1 Test standards and results

FCC Part 15 Subpart C			
Clause	Test items	Applied	Results
§15.247 (a)(1)	20 dB Bandwidth		PASS
§15.247 (a)(1)	Carrier Frequency Separation		PASS
§15.247 (a)(1) (iii)	Number of Hopping Frequencies		PASS
§15.247 (a)(1) (iii)	Time of Occupancy (dwell Time)		PASS
§15.247 (b)(1)	Maximum Conducted Output Power		PASS
§15.247 (d)	Conducted Spurious Emission & Band edge		PASS
§15.247 (d) & §15.209 & §15.205	Radiated Spurious Emission & Band edge		PASS
§15.207	Power Line Conducted Emission		PASS

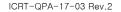
3.2 Test Methodology

- Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

3.3 Configuration of Test System

·唐尔德也 ·唐尔德之 ·唐尔德之 ·唐尔德之 ·西尔德之 ·

 5. 老 ci \$P\$ circles \$P\$ circl


第二、
 第二、

- Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

3.3.1 Radiated emission test

- Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10: 2013 to determine the worse operating conditions. Final radiated emission tests were conducted at 3 m Semi Anechoic Chamber.

The turntable was rotated through 360 degrees and the EUT was tested by positioned three orthogonal planes to obtain the highest reading on the field strength meter. Once maximum reading was determined, the search antenna was raised and lowered in both vertical and horizontal polarization.

page: (7) / Total (84)

3.4 Antenna requirement

- According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.

The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Result: Pass

The transmitter has a Chip Antenna. The directional gain of the antenna is 4.34dBi.

ICRT-QPA-17-03 Rev.2

医含化的 化合金

ቲ 6 ም ጭ ም ቴ 名导军室 会内建整 专法整字

page : (8) / Total (84)

4. Test Result (Earphone Right)

4.1. 20 dB Bandwidth

4.1.1 Test procedure

ANSI C63.10-2013 Clause 6.9.2

4.1.2 Limit

§15.247 (a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

4.1.3 Test data

Result : Pass

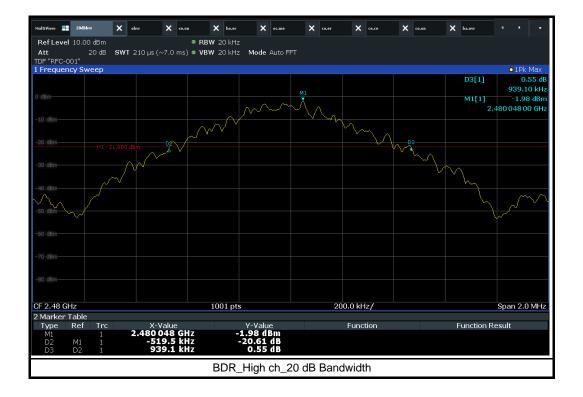
Mode	Frequency (MHz)	Measured Value (kHz)
	2 402	941.10
Bluetooth BDR	2 441	941.10
	2 480	939.10
	2 402	1324.70
Bluetooth EDR	2 441	1324.70
	2 480	1324.70

\$\$\$\$\$\$\$\$\$

化合金化

5.开始的1.

page: (9) / Total (84)


ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page : (10) / Total (84)

page: (11) / Total (84)

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page : (12) / Total (84)

page: (13) / Total (84)

4.2 Carrier Frequency Separation

4.2.1 Test procedure

ANSI C63.10-2013 Clause 7.8.2

4.2.2 Limit

§15.247 (a)(1)

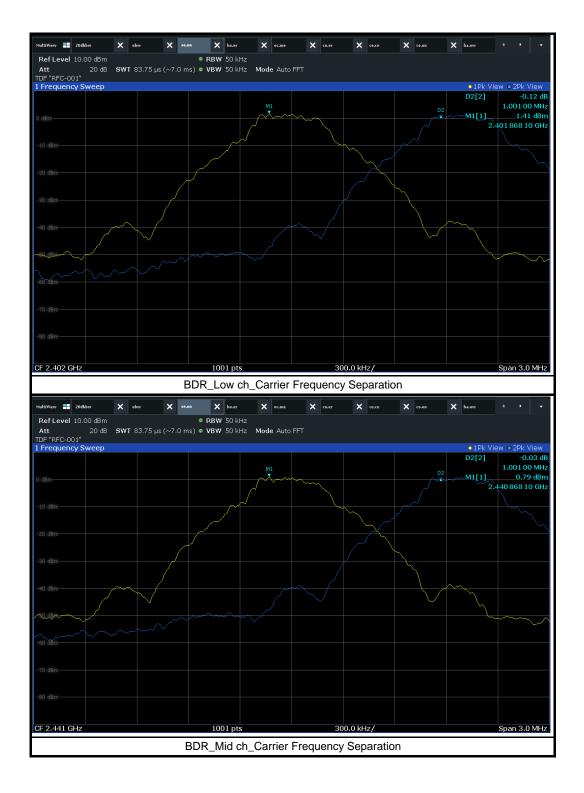
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

4.2.3 Test data

Result : Pass

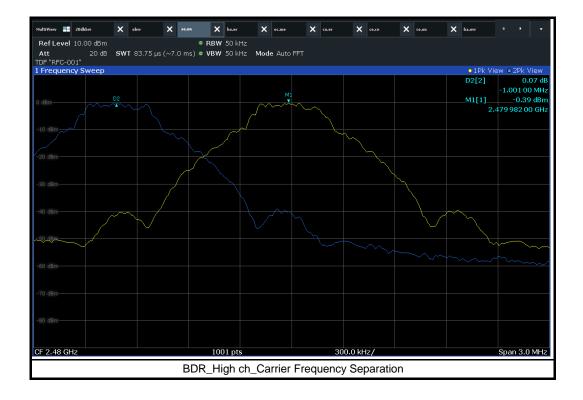
Mode	Frequency (MHz)	Measured Value (kHz)	Two-third 20 dB bandwidth of the hopping channel (kHz)	Limit
	2 402	1 001.0	627.40	
Bluetooth BDR	2 441	1 001.0	627.40	25 ktz or two-thirds
	2 480	1 001.0	626.07	of the 20 dB
	2 402	999.0	883.13	bandwidth of the hopping channel,
Bluetooth EDR	2 441	1 009.0	883.13	whichever is greater
	2 480	1 009.0	883.13	

(1) 4000 (1

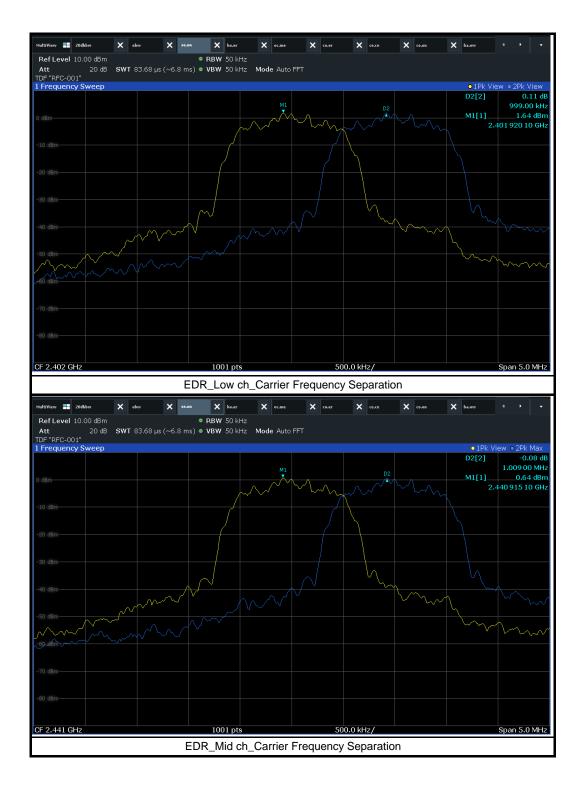

約 电相合 带带相关 带带相关 带带自动。 带带自动。 带带自动。 带带自动。 带着一个

ICRT-QPA-17-03 Rev.2

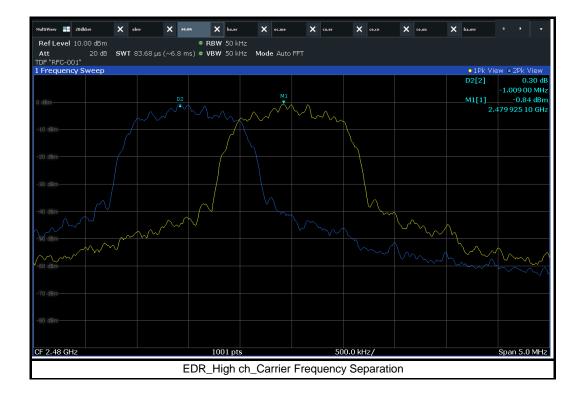
page : (14) / Total (84)


ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A


page: (15) / Total (84)

page : (16) / Total (84)


ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (17) / Total (84)

page : (18) / Total (84)

4.3 Number of Hopping Frequency

4.3.1 Test procedure

ANSI C63.10-2013 Clause 7.8.3

4.3.2 Limit

15.247 (a)(1)(iii)

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

4.3.3 Test data

Result : Pass

Mode	Hopping Channel	Limit
Bluetooth BDR	79	> 15
Bluetooth EDR	79	~ 15

999999 19999 19999 19999

ICRT-QPA-17-03 Rev.2

计计算机的复数

68 54

page : (19) / Total (84)

DF "RFC-001" Frequency Sweep									•1Pk Max
M1								M1[1]	3.86 dB 2.403 045 0 GF
pronom	mmm	mm	YYYYY	~~~~~	WWWWW	mmm	mmm	nnnnn	mm
0 dBm									
0 dBm									h
4 GHz			1001 pts			35 MHz/			2.4835 GH
			_						
			B	DR_Hopp	ing Chann	el			
10¥iew 📕 20dbbw	× obw	× se.on	× ho.er	DR_Hopp	ing Chann × •••	el × œ.œ	× co.on	X ba.ow	4 > -
xef Level 10.00 dBm .tt 20 dE		• RBW 500	kHz	X oc.me			X co.on	X ba.ow	4 →
Ref Level 10.00 dBm Att 20 dE F "RFC-001" Frequency Sweep		• RBW 500	kHz	X oc.me			X co.on		• 1Pk Ma>
kef Level 10.00 dBm ktt 20 dE F "RFC-001" Frequency Sweep M1	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
tt 20 dB F "RFC-001" F cquency Sweep	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
tef Level 10.00 dBm tt 20 dE F "RFC-001" Frequency Sweep	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
tef Level 10.00 dBm tt 20 dE #"RFC-001" Frequency Sweep M1 M1 VVVVVVVVVVV M1 VVVVVVVVVVV M1 0 dBm 0 dBm	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
tef Level 10.00 dBm tt 20 dE #"RFC-001" Frequency Sweep M1 M1 VVVVVVVVVVV M1 VVVVVVVVVVV M1 0 dBm 0 dBm	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
IO.00 dBm tt 20 dE #"FCOOI" requency Sweep M1 VVVVVVVVVVV M8m 0 dBm 0 dBm	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
ef Level 10.00 dBm tt 20 dE F "RFC-001" requency Sweep M1 M0 dBm 0 dBm 0 dBm	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
Ref Level 10.00 dBm Att 20 dE F "RFC-001" Frequency Sweep M1	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
et Level 10.00 dBm tt 20 dE F"RFC-001" requency Sweep M1 vvvvvvvvvvvvvvvvv dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB
et Level 10.00 dBm tt 20 dE F"RFC-001" requency Sweep M1 vvvvvvvvvvvvvvvvv dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	3 SWT 1.01 ms	● RBW 500 s ● VBW 500	kHz ho.er	Auto Sweep	Co.er	Ce.ce		M1[1]	• 1Pk Max 4.55 dB

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page : (20) / Total (84)

4.4 Time of Occupancy (dwell Time)

4.4.1 Test procedure

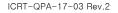
ANSI C63.10-2013 Clause 7.8.4

4.4.2 Limit

§15.247 (a)(1)(iii)

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

4.4.3 Test data


Result : Pass

Mode	number of hops on spectrum analyzer	Hops Over Occupancy Time (ms/hops)	transmit time per hop (ms)	Time of Occupancy (s)	Limit (s)
BDR	79	106.67	2.91	0.31	0.4
EDR	79	106.67	2.91	0.31	0.4

8 2 4 金字的心论的变形。 (2)在空心在的人名英格兰的人名英格兰 (2)在空心在这些的个人名英格兰 (2)在中国在这些个人名英格兰 (2)在中国在这些个人的不是是是是是是是是是是是是是是的。 (2)在中国在这些人名英格兰人名英格兰

* Hops Over Occupancy Time = (1 600 / 6 / 79) x (0.4 x 79)

* Time of Occupancy = Hops Over Occupancy Time (hops) x Package Transfer Time (ms)

● 34 40 00 80 76 30 76 30 26 10 10 10 10 26 10 10 10 26 10 10 26 10 2

外销 新销 子的

page: (21) / Total (84)

Ref Level 10.00 dBm	
TRG:VID TDF "RFC-001"	
1 Zero Span	• 1Pk Max M1[1] 2.66 dBm
	D1 3.750 50 ms D1[1] -0.27 dB
0 dBm	2.905 50 ms
-10 dBm-	
-20 d8m TRG -20 000 d8m	
-30 dBm-	
-40 dBm-	
-50 d8m-	
and the second	
	Malwhanhityotabaraka
-70 dBm-	
-80 d8m-	
FTRG CF 2.441 GHz 1001 pts	450.0 μs/
BDR_transmit time per hop	
MultiView 📰 20dibbw X obw X se.on X ho.er X oc.er X ce.e	X co.on X ba.ow 4 ·
Ref Level 10.00 dBm RBW 1 MHz Att 20 dB SWT 3.8 ms VBW 1 MHz	
TRG:VID TDF "RFC-001" 1 Zero Span	● 1Pk Max
MI a protocol start the state of the to see the Articles where existing a state state of the state	D1[1] -0.73 dB ແພນການທີ່ 2.910 10 ms
0 dBm	M1[1]3.12 dBm
	7.501 70 ms
-10 dBm-	
-20 dBm - TRG -20.000 dBm -	
-30 dBm	
-40 dBm	
-50 dBm	
Lill som warden	han and have been a second a s
-70 dBm	
-80 dBm	
HTRG	
CF 2.441 GHz 1001 pts	380.0 µs/
EDR_transmit time per hop	

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (22) / Total (84)

4.5 Maximum Conducted Output Power

4.5.1 Test procedure

ANSI C63.10-2013 Clause 7.8.5

4.5.2 Limit

§15.247 (a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

4.5.3 Test data

Result : Pass

Mode	Frequency (MHz)	Measured Value (dBm)	Limit (dBm)
	2 402	4.10	
Bluetooth BDR	2 441	2.90	
	2 480	1.52	20.97
	2 402	6.62	(0.125 Watt)
Bluetooth EDR	2 441	5.53	
	2 480	4.15	


99 BN 199 BN

ICRT-QPA-17-03 Rev.2

page : (23) / Total (84)

Multi¥iew 믐 20dbbw	× obw	× se.on	X ho.er	× oc.me	× co.er	× ce.ce	× co.on	× ba.ow	
RefLevel 10.00 dBm Att 20 dB	SWT 1.01 ms	• RBW 2 M		Auto Sween					
DF "RFC-001" Frequency Sweep	Birr Hor ins	1817 21	THE HOUSE						●1Pk Max
					M1			M1[1]	
10.48									
-30 dBm									
CF 2.402 GHz			1001 pts	3	50	10.0 kHz/			Span 5.0 MHz
		סחס							
		DDK_	Low cn_	Maximum	Conducted	d Output P	ower		
4ulti¥iew 井 20dbbw	× obw	X se.on	LOW CN_				ower	× ba.ow	4 + -
Ref Level 10.00 dBm		x se.onRBW 2 M	X ho.er	X oc.me				X ba.ow	4 2 -
Ref Level 10.00 dBm Att 20 dB DF "RFC-001"	x obw SWT 1.01 ms	x se.onRBW 2 M	X ho.er	X oc.me				X ba.ow	
Ref Level 10.00 dBm Att 20 dB DF "RFC-001"		x se.onRBW 2 M	X ho.er	X oc.me				M1[1]	• 1Pk Max 2.90 dBm
Ref Level 10.00 dBm Att 20 dB DF "RFC-001" Frequency Sweep		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBm
Ref Level 10.00 dBm Att 20 dB DF "RFC-001" Frequency Sweep		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBm
Ref Level 10.00 dBm Att 20 dB DF "RFC-001" Frequency Sweep		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBn
Ref Level 10.00 dBm Att 20 dB DF "RFC-001" Frequency Sweep		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBn
Ref Level 10.00 dBm Att 20 dB DF "RFC-001" Frequency Sweep dBm 10 dBa		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBm
Ref Level 10.00 dBm Att 20 dB DF "RFC-001" Frequency Sweep dBm 10 dBa		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBn
Ref Level 10.00 dBm Att 20 dB DF "RFC-001" Frequency Sweep dBm 10 dBm 20 dBm		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBn
Ref Level 10.00 dBm Att 20 dB DF "RFC-001" Frequency Sweep I dBm 10 dBm 20 dBm 30 dBm		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBn
DF "RFC-001" Frequency Sweep 0 dBm 10 dBm -20 dBm -30 dBm -50 dBm -50 dBm		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBm
Ref Level 10.00 dBm Att 20 dB DF "RFC-001" Frequency Sweep) dBm 10 dBm 20 dBm 30 dBm 40 dBm		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBm
Ref Level 10.00 dBm Att 20 dB DDF "RFC-001" Frequency Sweep 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBm
Ref Level 10.00 dBm Att 20 dB DP "RFC-001" Frequency Sweep 0 dBm 10 dBm 20 dBm 30 dBm -50 dBm -60 dBm 70 dBm		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBm
Ref Level 10.00 dBm Att 20 dB DF "RFC-001" Frequency Sweep J dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max
Ref Level 10.00 dBm Att 20 dB DF "RFC-001" Frequency Sweep dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm 70 dBm		x se.onRBW 2 M	X ho.er	Auto Sweep				M1[1]	• 1Pk Max 2.90 dBm

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (24) / Total (84)

Perfevel 1000 dBm • PBW 2 MHz Att • 0 BW 2 MHz Mu 0 e Auto Sweep • 0 FLR Max • 0 FLR • 0 FLR • 0 FLR Max • 0 FLR • 0 FLR Max • 0 FLR Max • 0 FLR • 0 FLR Max • 0 FLR Max • 0 FLR • 0 FLR • 0 FLR Max	Multi¥iew 📕 20di	bbw X	obw	× se.on	×	ho.er 🗙	oc.me	X co.er	× ce.ce	X co.on	× ba.ow	4 > -
IDF HERCONT IDF HAX I Frequency Sweep MI[1] L.52 dbm 0 dbm 2.479 930 10 GHz -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm			Ti∩ims			de Auto Swe	en					
M1[1] 1.52 dBm 2.47993010 GHz 2.47993010 GHz -10 8m	TDF "RFC-001"			- 1017 2		uc / uco on o	~₽					
Mil 2.4779 930 10 GHz 0 dbm -0 -10 dbm -0 -20 dbm -0 -30 dbm -0 -40 dbm -0 -50 dbm -0 -60 dbm -0 -70 dbm -0<	1 Frequency S	weep							1	1		
0 68m -10 68m -20 68m -30 68m -30 68m -30 68m -30 68m -30 68m -40 68m -50 68m -60 68m -60 68m -60 68m -70 59m 5.0 MHz							64.1					
-10 8m -20 8m -30 8m -40 8m -50 8m -60 8m -70 8m	0.40%						V				2	179 930 10 GHZ
-20 @m -30 @m -30 @m -40 @m -50 @m -60 @m -70 @m -70 @m -70 @m -70 @m -80 @m -60 @m -70 @m	U UBIII											
-20 @m -30 @m -30 @m -40 @m -50 @m -60 @m -70 @m -70 @m -70 @m -70 @m -80 @m -60 @m -70 @m												
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -70	-10 dBm											
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -70												
-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -80 dBm -80 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -70 dBm -80	-20 dBm											
-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -80 dBm -80 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -70 dBm -80												
-50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dB	-30 dBm											
-50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dB												
-50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70 dB	-40 dBm											
-60 dBm -70 dBm -80 dB												
-60 dBm -70 dBm -80 dB	50 Jan											
-70 dBm -80 dBm CF 2.48 GHz 1001 pts 500.0 kHz/ Span 5.0 MHz	-so usm-											
-70 dBm -80 dBm CF 2.48 GHz 1001 pts 500.0 kHz/ Span 5.0 MHz												
-80 48m CF 2.48 GHz 1001 pts 500.0 kHz/ Span 5.0 MHz	-60 dBm											
-80 48m CF 2.48 GHz 1001 pts 500.0 kHz/ Span 5.0 MHz												
CF 2.48 GHz 1001 pts 500.0 kHz/ Span 5.0 MHz	-70 dBm											
CF 2.48 GHz 1001 pts 500.0 kHz/ Span 5.0 MHz												
	-80 dBm											
					1001	nte		50				Spap 5.0 MHz
BDR_High ch_Maximum Conducted Output Power												Span 5.0 Minz
				BDR_	_High c	h_Maxir	num C	Conducted	d Output P	ower		

page : (25) / Total (84)

Att 30 dB SWT 1.01 m DF "RFC-001" Frequency Sweep							●1Pk Max
Frequency Sweep						M1[1]	6.62 dBi 02 069 90 GH
			M1			2.7	02 009 90 01
dBm							
0 dBm							
2.402 GHz	10	001 pts	50	00.0 kHz/			Span 5.0 MH
							•
			um Conducte	d Output P	ower		
	EDR_Low	ch_Maxim				× ba.ow	4 2 4
teview 📰 284biw 🗙 obw Ref Level 20.00 dBm	EDR_Low	ch_Maxim	oc.me 🗙 co.er	d Output P	OWEr × co.on	X ba.ow	a > .
toview ■ 20dbwv X obvo Kef Level 20.00 dBm stt 30 dB SWT 1.01 n F*RCC-001"	EDR_Low	ch_Maxim	oc.me 🗙 co.er			X ba.ow	
toview ■ 20dbwv X obvo Kef Level 20.00 dBm stt 30 dB SWT 1.01 n F*RCC-001"	EDR_Low	ch_Maxim	oc.me 🗙 co.er			M1[1]	● 1Pk Ma) 5.53 dB
toview ■ Ztddbw X obw Kef Level 20.00 dBm stt 30 dB SWT 1.01 m F"RC-001" Frequency Sweep	EDR_Low	ch_Maxim	oc.me 🗙 co.er			M1[1]	● 1Pk Ma) 5.53 dB
Noview	EDR_Low	ch_Maxim	oc.me X co.er			M1[1]	● 1Pk Ma) 5.53 dB
Noview ■ 2005bw X obw Att 30 dB SWT 1.01 m F"RFC-001" Frequency Sweep dBm	EDR_Low	ch_Maxim	oc.me X co.er			M1[1]	● 1Pk Max 5.53 dB
toriev	EDR_Low	ch_Maxim	oc.me X co.er			M1[1]	● 1Pk Ma) 5.53 dB
toriev III Ztdbiv X obv kef Level 20.00 dBm stt 30 dB SWT 1.01 m F*RFC-001" Prequency Sweep dBm 0 dBm	EDR_Low	ch_Maxim	oc.me X co.er			M1[1]	● 1Pk Ma) 5.53 dB
Itariew Image: 20dbw X obv kef Level 20.00 dBm 30 dB SWT 1.01 m htt 30 dB SWT 1.01 m Frequency Sweep	EDR_Low	ch_Maxim	oc.me X co.er			M1[1]	● 1Pk Max 5.53 dB
Itatiew Itatiew <t< td=""><td>EDR_Low</td><td>ch_Maxim</td><td>oc.me X co.er</td><td></td><td></td><td>M1[1]</td><td>● 1Pk Max 5.53 dB</td></t<>	EDR_Low	ch_Maxim	oc.me X co.er			M1[1]	● 1Pk Max 5.53 dB
Itatiew Itatiew <t< td=""><td>EDR_Low</td><td>ch_Maxim</td><td>oc.me X co.er</td><td></td><td></td><td>M1[1]</td><td>● 1Pk Max 5.53 dB</td></t<>	EDR_Low	ch_Maxim	oc.me X co.er			M1[1]	● 1Pk Max 5.53 dB
Attiview Image: 20dbbw X obw Ref Level 20.00 dBm Attivity 30 dB SWT 1.01 m Attivity 30 dB SWT 1.01 m Frequency Sweep Image: 20dbbw Imag	EDR_Low	ch_Maxim	oc.me X co.er			M1[1]	● 1Pk Max 5.53 dB
Itsview Itsview <t< td=""><td>EDR_Low</td><td>ch_Maxim</td><td>oc.me X co.er</td><td></td><td></td><td>M1[1]</td><td>● 1Pk Max 5.53 dB</td></t<>	EDR_Low	ch_Maxim	oc.me X co.er			M1[1]	● 1Pk Max 5.53 dB
Iterie 2040bw X obw Ref Level 20.00 dBm 30 dB SWT 1.01 m Att 30 dB SWT 1.01 m Frequency Sweep	EDR_Low	ch_Maxim	oc.me X co.er			M1[1]	• 1Pk Max 5.53 dB 40 890 10 G
Itsview Itsview <t< td=""><td>EDR_Low</td><td>ch_Maxim</td><td>oc.me X co.er</td><td></td><td></td><td>M1[1]</td><td>● 1Pk Max 5.53 dB</td></t<>	EDR_Low	ch_Maxim	oc.me X co.er			M1[1]	● 1Pk Max 5.53 dB

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (26) / Total (84)

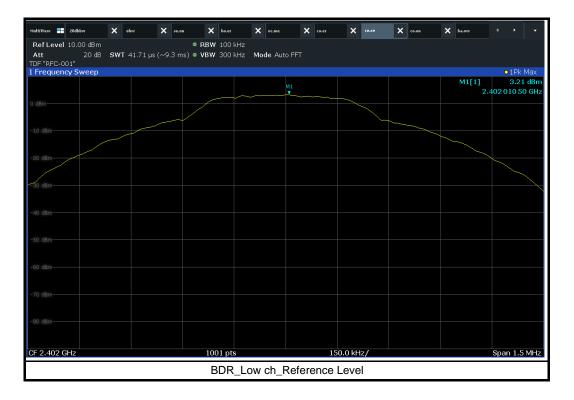
Multi¥iew 믐 20	odbbw X	obw	× se.or	×	ho.er	×	oc.me	×	co.er	X ce.ce	×	co.on	×	ba.ow		-
Ref Level 20 Att	0.00 dBm 30 dB S ₩	/T 1.01 m:	● RBW s ● VBW		lode Auto	o Sweep										
TDF "RFC-001"															010	k Max
1 Frequency	Sweep													M1[1]		t5 dBm
															479 850	
10 dBm-																
							M1 ▼		_							
0 dBm		_														
													-			
-18-18m																
-20 dBm																
-20 UBM																
-30 dBm																
-40 dBm																
-50 dBm																
-60 dBm																
-70 dBm																
CF 2.48 GHz				10	01 pts				50	0.0 kHz/					Span 5	0 MHz
			EDR	L_High	ch_M	axim	um C	Condu	uctec	I Output P	owe	r				
				-												

page: (27) / Total (84)

4.6 Conducted Spurious Emission

4.6.1 Test procedure

ANSI C63.10-2013 Clause 7.8.8, 6.10.4


4.6.2 Limit

§15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

4.6.3 Test data

Result : Pass

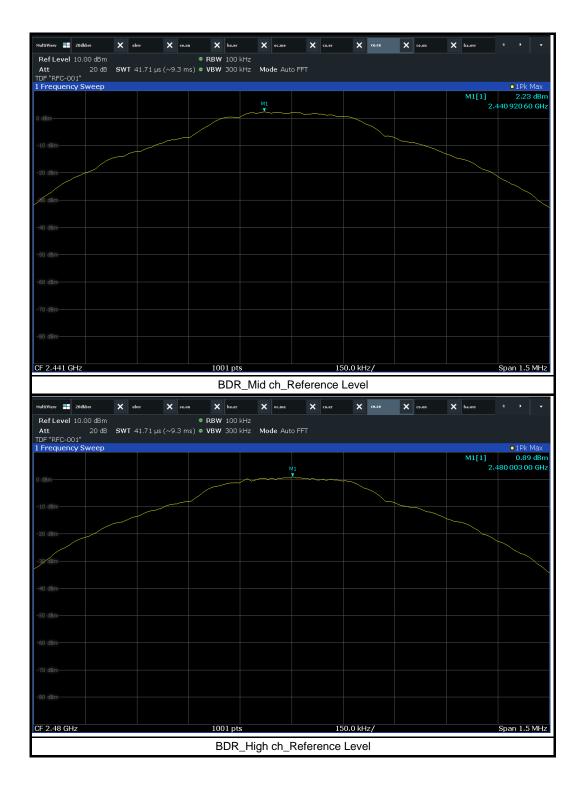
ICRT-QPA-17-03 Rev.2

小学的现在分词

的词

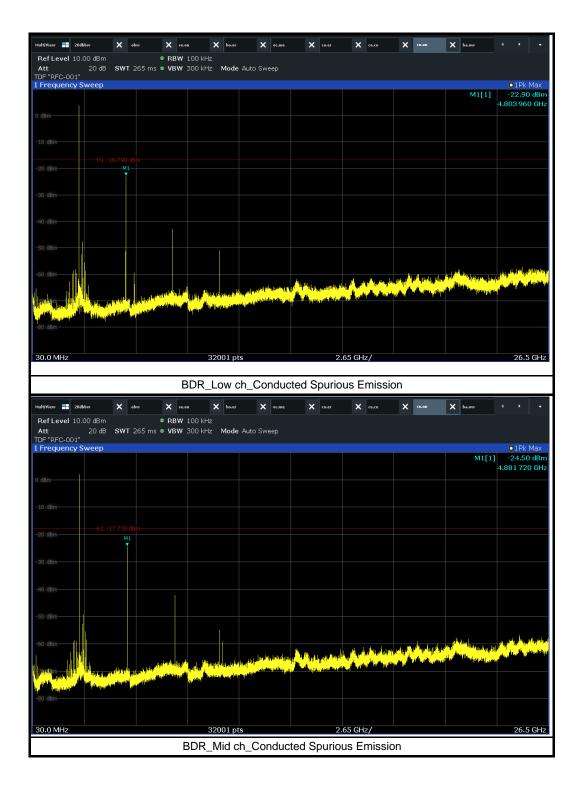
·金融的基金的。 ·金融的是我们的一个,我们是我们的一个,我们是我们的一个,我们还是我们的一个,我们还是我们的,我们就是我们的,我们就是我们的,我们还是我们的,我们还是我们的,你们是我们的,你们们不是

Report No. ICRT-TR-E231965-0A


12.19.19.19 化容别的 化容别的 化容别的

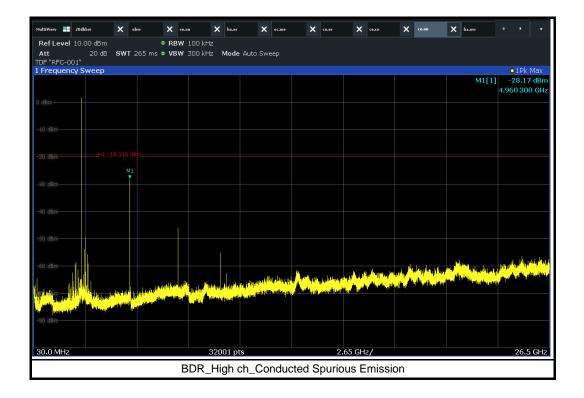
金金 等

page : (28) / Total (84)

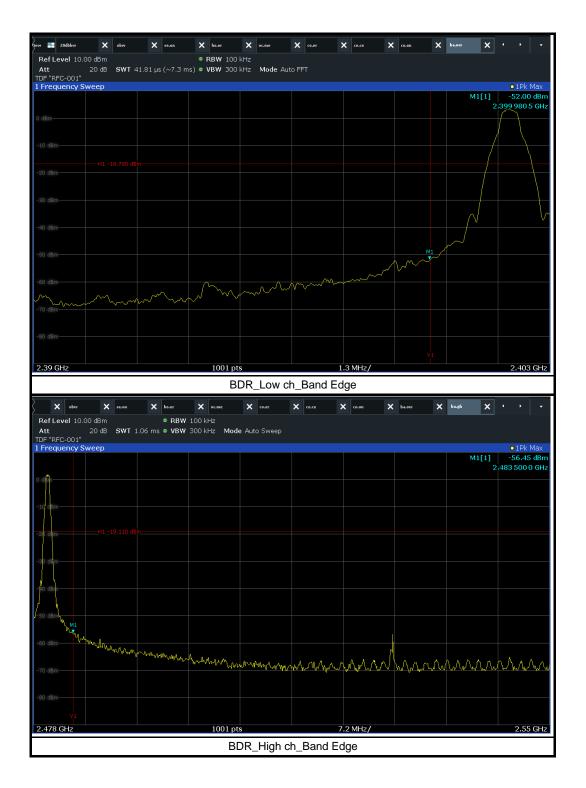

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

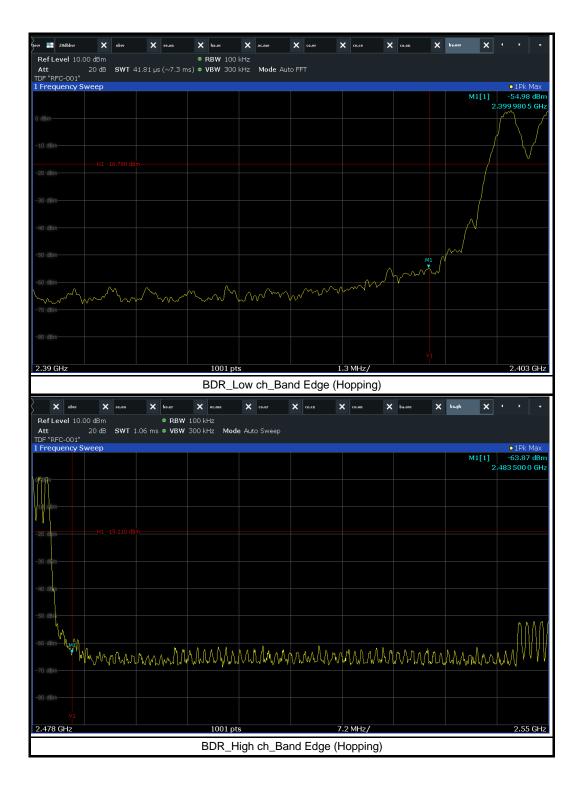
page: (29) / Total (84)


ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

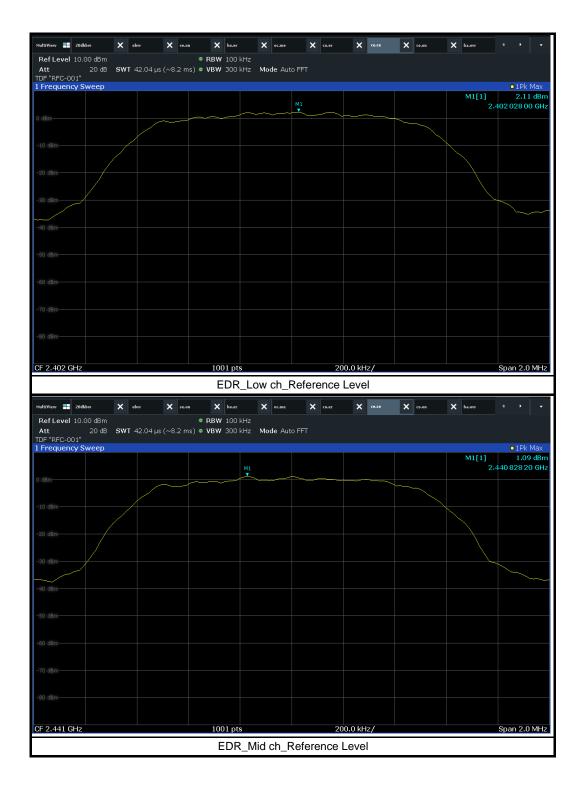

page : (30) / Total (84)

page: (31) / Total (84)


ICRT-QPA-17-03 Rev.2

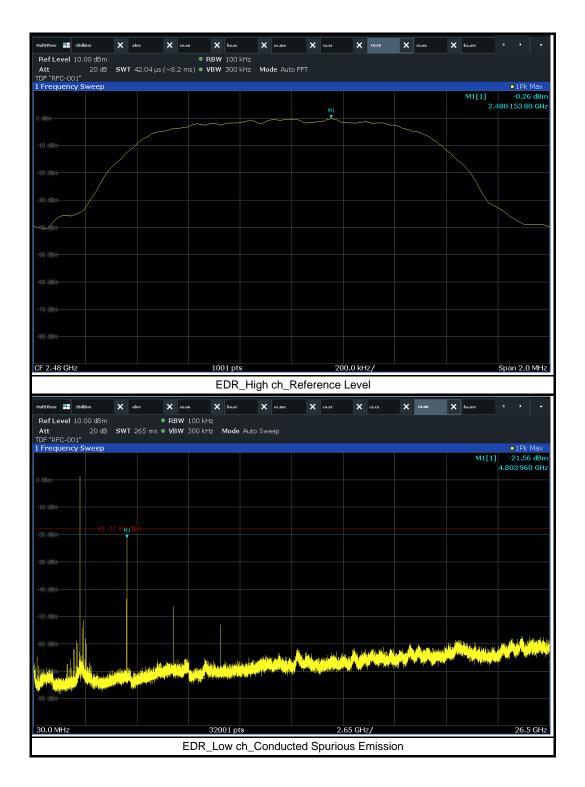
Report No. ICRT-TR-E231965-0A

page : (32) / Total (84)


ICRT-QPA-17-03 Rev.2

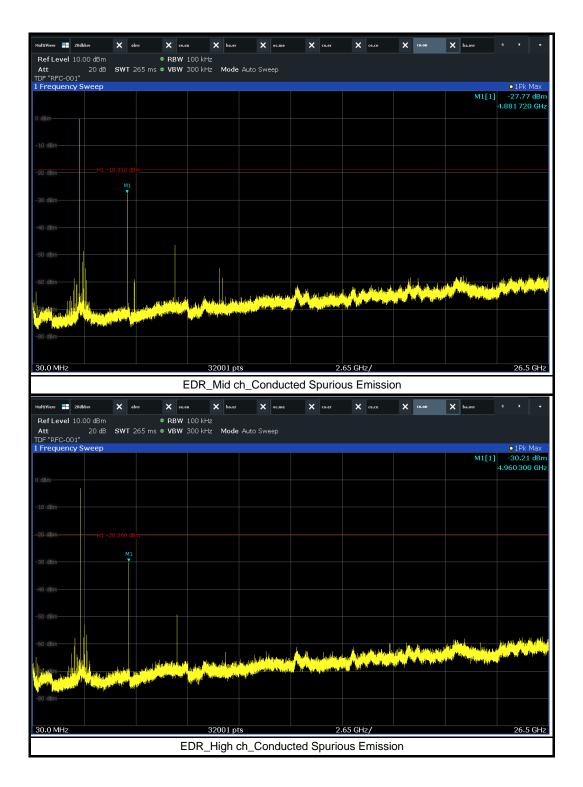
Report No. ICRT-TR-E231965-0A

page : (33) / Total (84)


ICRT-QPA-17-03 Rev.2

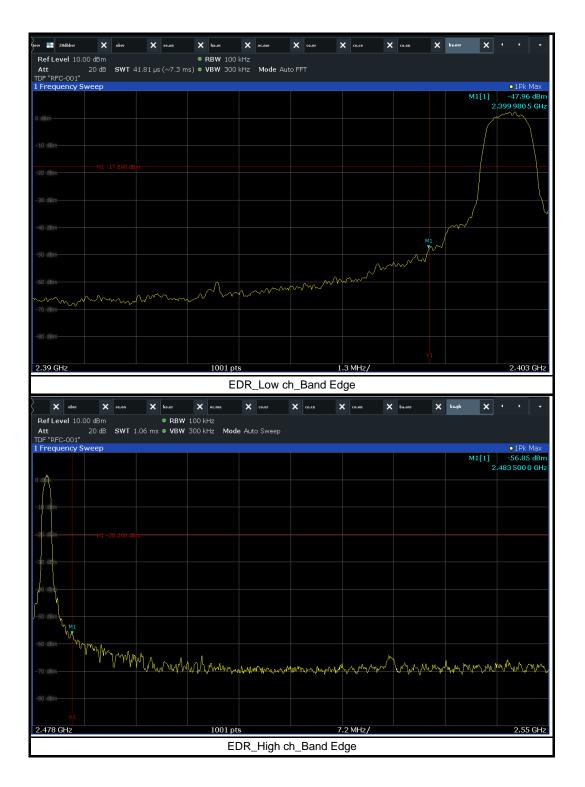
Report No. ICRT-TR-E231965-0A

page : (34) / Total (84)


ICRT-QPA-17-03 Rev.2

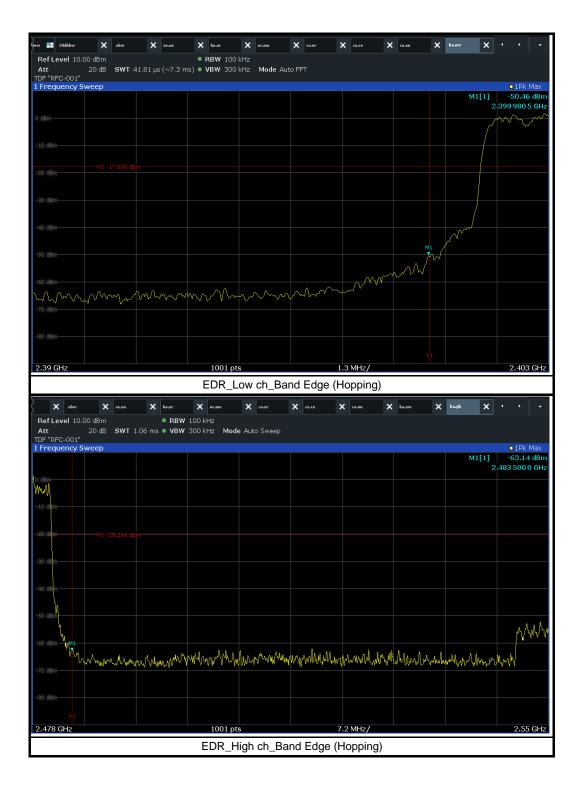
Report No. ICRT-TR-E231965-0A

page : (35) / Total (84)


ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (36) / Total (84)


ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (37) / Total (84)

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (38) / Total (84)

4.7 Radiated Spurious Emission

4.7.1 Test procedure

ANSI C63.10-2013 Clause 6.4, 6.5, 6.6

4.7.2 Limit

§15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

§15.209 Radiated emission limits; general requirements.(a)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

8-24 No 44

ICRT-QPA-17-03 Rev.2

page: (39) / Total (84)

§15.205 Restricted bands of operation.(a),(b)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

² Above 38.6

Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

经公共委 经在指达 化电信法 网络索勒

ICRT-QPA-17-03 Rev.2

化化合合合金

page : (40) / Total (84)

4.7.3 Test data

Result : Pass

- Below 30 MHz_Low ch BDR, EDR

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
	lt	was not fou	nd any	emissions p	beaks found	from the EU ⁻	Г.	
- Below 30 M	/Hz_Mid ch	BDR, EDR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
	lt	was not fou	nd any	v emissions p	beaks found	from the EU⁻	Г.	
- Below 30 M	/Hz_High ch	BDR, EDR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
	lt	was not fou	nd any	v emissions p	beaks found	from the EU ⁻	Г.	

ICRT-QPA-17-03 Rev.2

※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 ※
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %
 %

page: (41) / Total (84)

- 30 MHz ~ 1 GHz_Low ch BDR

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
252.033	57.92	QP	Н	-22.6	35.32	46.0	10.68	
372.022	58.21	QP	Н	-19.5	38.71	46.0	7.29	
396.078	55.25	QP	Н	-18.6	36.65	46.0	9.35	
420.037	55.71	QP	Н	-18.1	37.61	46.0	8.39	
- 30 MHz ~	1 GHz_Mid o	h BDR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
372.022	58.87	QP	Н	-19.5	39.37	46.0	6.63	
396.078	56.06	QP	Н	-18.6	37.46	46.0	8.54	
420.037	56.14	QP	Н	-18.1	38.04	46.0	7.96	
443.996	52.73	QP	Н	-17.9	34.83	46.0	11.17	
- 30 MHz ~	1 GHz_High	ch BDR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
41.058	55.45	QP	V	-23.9	31.55	40.0	8.45	
372.022	58.30	QP	Н	-19.5	38.80	46.0	7.20	
396.078	56.05	QP	Н	-18.6	37.45	46.0	8.55	

ICRT-QPA-17-03 Rev.2

1999 1910 1910

さんむ **冷**時

11.000.000.000 11.0000 11.00000 11.0000 11.00000 11.00000 11.00000 11.0000000

420.037

56.20

1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1

QP

Н

-18.1

38.10

46.0

7.90

20 4

page : (42) / Total (84)

- 30 MHz ~ 1 GHz_Low ch EDR

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
372.02	56.95	QP	Н	-19.5	37.45	46.0	8.55	
396.08	55.57	QP	Н	-18.6	36.97	46.0	9.03	
408.01	55.97	QP	Н	-18.4	37.57	46.0	8.43	
420.04	56.26	QP	Н	-18.1	38.16	46.0	7.84	
- 30 MHz ~	1 GHz_Mid o	h EDR			•			
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
120.02	62.47	QP	V	-26.6	35.87	43.5	7.63	
372.02	57.71	QP	Н	-19.5	38.21	46.0	7.79	
396.08	54.94	QP	Н	-18.6	36.34	46.0	9.66	
408.01	54.92	QP	Н	-18.4	36.52	46.0	9.48	
- 30 MHz ~	1 GHz_High	ch EDR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
372.02	57.64	QP	Н	-19.5	38.14	46.0	7.86	
396.08	54.98	QP	Н	-18.6	36.38	46.0	9.62	
408.01	54.92	QP	Н	-18.4	36.52	46.0	9.48	

ICRT-QPA-17-03 Rev.2

420.04

55.93

QP

Н

-18.1

37.83

46.0

8.17

财保的营业部

page : (43) / Total (84)

- 1 GHz Above_Low ch BDR

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
0 000 40	43.42	PK	V	40.0	33.12	74.0	40.88	Restricted
2 382.19	29.91	AVG	V	-10.3	19.61	54.0	34.39	band
4 00 4 50	44.10	PK	Н	4.0	42.90	74.0	31.10	2nd
4 804.50	31.92	AVG	Н	-1.2	30.72	54.0	23.28	Harmonic
7 000 00	42.60	PK	Н	2.4	46.00	74.0	28.00	3nd
7 206.00	32.16	AVG	Н	3.4	35.56	54.0	18.44	Harmonic
0.000.40	38.28	PK	V	F 7	43.98	74.0	30.02	4nd
9 608.40	25.11	AVG	V	5.7	30.81	54.0	23.19	Harmonic
12,000,60	45.43	PK	V	0.1	53.53	74.0	20.47	5nd
12 009.60	34.71	AVG	V	8.1	42.81	54.0	11.19	Harmonic
- 1 GHz Abc	ove_Mid ch E	BDR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
4 000 50	44.11	PK	Н		43.01	74.0	30.99	2nd
4 882.50	32.77	AVG	Н	-1.1	31.67	54.0	22.33	Harmonic
7 222 60	38.26	PK	V	2.0	41.26	74.0	32.74	3nd
7 323.60	25.07	AVG	V	3.0	28.07	54.0	25.93	Harmonic
0.705.00	36.86	PK	Н	0.7	43.56	74.0	30.44	4nd
9 765.60	23.36	AVG	Н	6.7	30.06	54.0	23.94	Harmonic
- 1 GHz Abc	ve_High ch	BDR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
0 400 40	44.76	PK	V	0.0	34.96	74.0	39.04	Restricted
2 498.48	31.38	AVG	V	-9.8	21.58	54.0	32.42	band
4 000 50	40.79	PK	Н	1.0	39.79	74.0	34.21	2nd
4 960.50	26.65	AVG	Н	-1.0	25.65	54.0	28.35	Harmonic
7 444 00	38.83	PK	Н	2.0	41.63	74.0	32.37	3nd
7 441.20	25.37	AVG	Н	2.8	28.17	54.0	25.83	Harmonic
0.000.00	36.41	PK	Н	6.0	42.61	74.0	31.39	4nd
9 922.80	23.14	AVG	Н	6.2	29.34	54.0	24.66	Harmonic

ICRT-QPA-17-03 Rev.2

page: (44) / Total (84)

- 1 GHz Above_Low ch EDR

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2 359.68	43.47	PK	V	-10.4	33.07	74.0	40.93	Restricted
2 339.00	29.98	AVG	V	-10.4	19.58	54.0	34.42	band
4 804.50	45.46	PK	Н	-1.2	44.26	74.0	29.74	2nd
4 004.50	34.54	AVG	Н	-1.2	33.34	54.0	20.66	Harmonic
7 206.00	48.26	PK	Н	3.4	51.66	74.0	22.34	3nd
7 200.00	36.94	AVG	Н	3.4	40.34	54.0	13.66	Harmonic
9 608.40	37.79	PK	V	5.7	43.49	74.0	30.51	4nd
9 000.40	23.89	AVG	V	5.7	29.59	54.0	24.41	Harmonic
- 1 GHz Abo	ve_Mid ch E	DR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
4 000 00	44.95	PK	Н	4.4	43.85	74.0	30.15	2nd
4 882.00	34.93	AVG	Н	-1.1	33.83	54.0	20.17	Harmonic
7 323.60	39.71	PK	Н	3.0	42.71	74.0	31.29	3nd
7 323.00	25.49	AVG	Н	3.0	28.49	54.0	25.51	Harmonic
9 764.40	40.08	PK	V	6.7	46.78	74.0	27.22	4nd
9704.40	25.24	AVG	V	0.7	31.94	54.0	22.06	Harmonic
- 1 GHz Abo	ve_High ch	EDR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
0 407 07	45.02	PK	Н	0.0	35.22	74.0	38.78	Restricted
2 487.97	31.19	AVG	Н	-9.8	21.39	54.0	32.61	band
4 000 50	39.34	PK	V	1.0	38.34	74.0	35.66	2nd
4 960.50	25.94	AVG	V	-1.0	24.94	54.0	29.06	Harmonic
7 440 00	38.73	PK	Н	2.0	41.53	74.0	32.47	3nd
7 440.00	25.41	AVG	Н	2.8	28.21	54.0	25.79	Harmonic
0.004.00	37.14	PK	н	6.0	43.34	74.0	30.66	4nd
9 921.60	23.16	AVG	Н	6.2	29.36	54.0	24.64	Harmonic

ICRT-QPA-17-03 Rev.2

- 新建金属

page: (45) / Total (84)

5. Test Result (Earphone Left)

5.1. 20 dB Bandwidth

5.1.1 Test procedure

ANSI C63.10-2013 Clause 6.9.2

5.1.2 Limit

§15.247 (a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

5.1.3 Test data

Mode	Frequency (MHz)	Measured Value (kHz)
	2 402	939.1
Bluetooth BDR	2 441	941.1
	2 480	941.1
	2 402	1 324.7
Bluetooth EDR	2 441	1 321.7
	2 480	1 321.7

- 外方的的现在分词

ICRT-QPA-17-03 Rev.2

· · · · · · ·

page : (46) / Total (84)

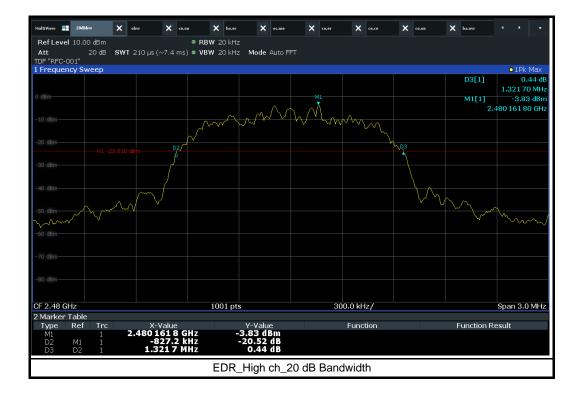
ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (47) / Total (84)

ICRT-QPA-17-03 Rev.2

page: (48) / Total (84)


ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (49) / Total (84)

ICRT-QPA-17-03 Rev.2

page: (50) / Total (84)

5.2 Carrier Frequency Separation

5.2.1 Test procedure

ANSI C63.10-2013 Clause 7.8.2

5.2.2 Limit

§15.247 (a)(1)

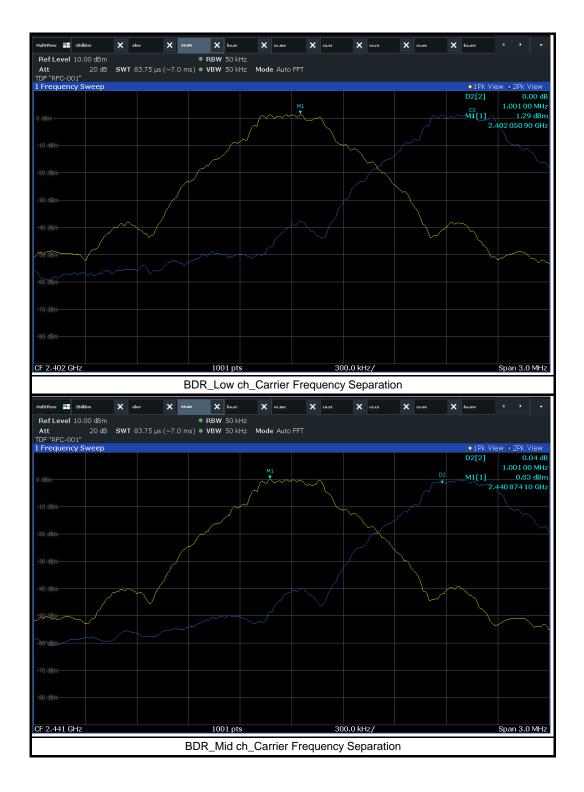
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

5.2.3 Test data

Result : Pass

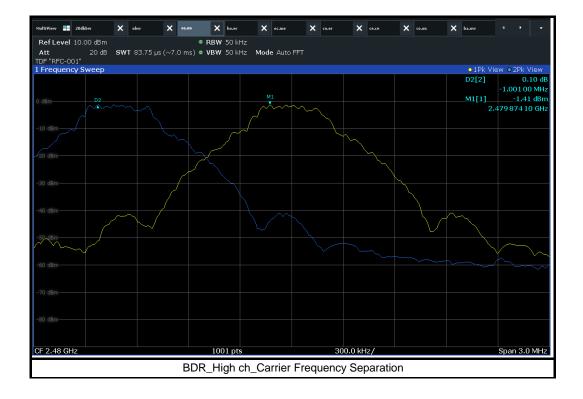
Mode	Frequency (MHz)	Measured Value (kHz)	Two-third 20 dB bandwidth of the hopping channel (kHz)	Limit
	2 402	1 001.0	626.07	
Bluetooth BDR	2 441	1 001.0	627.40	25 ktz or two-thirds
	2 480	1 001.0	627.40	of the 20 dB
	2 402	999.0	883.13	bandwidth of the hopping channel,
Bluetooth EDR	2 441	994.0	881.13	whichever is greater
	2 480	999.0	881.13	

ICRT-QPA-17-03 Rev.2


·2011日,一部等于 小学校会,一部分子 "你就是一个的小学生"。 "你就是一个的小学生"。 "你就是一个的小学生"。 "你就是一个的小学生"。 "你们是一个个人。" "你们是一个个人。" "你们是一个人。" "你们是一个人。"

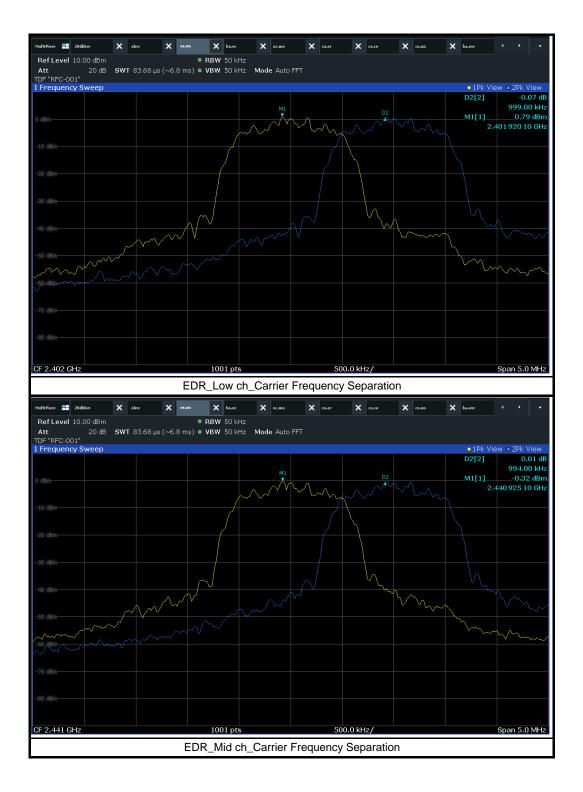
そうふき

page: (51) / Total (84)


ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

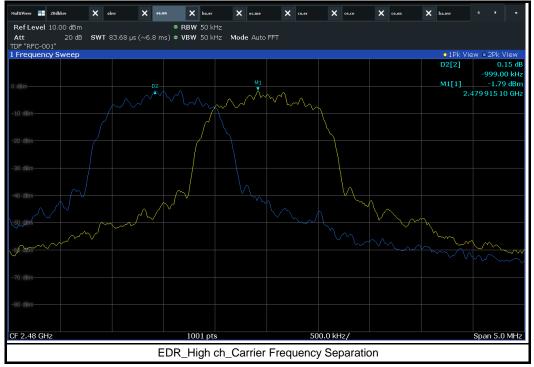
page: (52) / Total (84)



ICRT-QPA-17-03 Rev.2

page : (53) / Total (84)

ICRT-QPA-17-03 Rev.2


Report No. ICRT-TR-E231965-0A

page: (54) / Total (84)

ICRT-QPA-17-03 Rev.2

page : (55) / Total (84)

5.3 Number of Hopping Frequency

5.3.1 Test procedure

ANSI C63.10-2013 Clause 7.8.3

5.3.2 Limit

15.247 (a)(1)(iii)

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.3.3 Test data

Result : Pass

Mode	Hopping Channel	Limit
Bluetooth BDR	79	> 15
Bluetooth EDR	79	~ 15

古たい

ICRT-QPA-17-03 Rev.2

*

Chi Qra 17 05 nev.2

i Ni D の語 今天 第1

page : (56) / Total (84)

Att 20 df DF "RFC-001" Frequency Sweep									o 1Pk Max
M1								M1[1]	3.11 dBr 2.402 127 0 GH
, inn m	e a a a a a a a a a a a a a a a a a a a	www	mmm	mmm	mmm	www.	mmm	nnnn	mm
0 dBm									
									K
4 GHz			1001 pts		o	.35 MHz/			2.483 5 GH
						100 MILIZY			2,4033 00
				3DR_Hopp					
19¥iew 📑 20dbbw	× obw	× se.on	× ho.er				× co.on	X ba.ow	4 > -
tu¥iew <mark>≢</mark> 204bbw kefLevel 10.00 dBm ⊾tt 20 dB		● RBW 5	× ho.er	BDR_Hopp	ing Chann	el	X co.on	ba.ow	
taview 20dbbw Ref Level 10.00 dBm Att 20 df F "RFC-001" Frequency Sweep	n 3 SWT 1.01 n	● RBW 5	No.er	BDR_Hopp	ing Chann	el	X co.on	X ba.ovv M1[1]	• 1Pk Max
teview and 20dbbw tef Level 10.00 dBm tt 20 df "RFC-001" Frequency Sweep M1	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max
tevrew ■ 200bbw Ref Level 10.00 dBm stt 20 df F"RFC-001" Frequency Sweep M1	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max
Noview = 2000 dBm tt 20 db F"RFC-001" Frequency Sweep M1 M1 M1 M2 M1	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max
Noview Image: 20dbbw kef Level 10.00 dBm tt 20 db F "RFC-001" Prequency Sweep M1 M1 M1 M1 M0 dBm	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max
Noview Image: 20dbbw kef Level 10.00 dBm tt 20 db F"RFC-001" Prequency Sweep Image: Sweep M1 M1	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max
Noview Image: 20dbbw kef Level 10.00 dBm tt 20 db F"RFC-001" Prequency Sweep Image: Sweep M1 M1	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max
Noview Image: 20dbbw kef Level 10.00 dBm tt 20 dB F"RFC-001" Prequency Sweep Image: Sweep M1 0 dBm 0 dBm 0 dBm 0 dBm	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max
Noview Image: 20dbbw kef Level 10.00 dBm tt 20 dB F"RFC-001" Frequency Sweep M1 00 dBm 0 dBm 0 dBm 0 dBm 0 dBm	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max
Ibview Image: 28456w kef Level 10.00 dBm tt 20 dB F"RFC-001" Sweep M1 Ward of the second seco	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max 3.44 dBi
Iteriew Image: Second Sec	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max
Iteriew Image: Second Sec	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max
Iteriew Image: second sec	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max
ttsview ■ 204bbw Ref Level 10.00 dBm Att 20 df F"RFC-001" Frequency Sweep M1	3 SWT 1.01 1	● RBW 5 ms ● VBW 5	ko.er 500 kHz 500 kHz Mode	BDR_Hopp	ing Chann × œr	el X œ.œ		M1[1]	• 1Pk Max

ICRT-QPA-17-03 Rev.2

page: (57) / Total (84)

5.4 Time of Occupancy (dwell Time)

5.4.1 Test procedure

ANSI C63.10-2013 Clause 7.8.4

5.4.2 Limit

§15.247 (a)(1)(iii)

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.4.3 Test data

Result : Pass

Mode	number of hops on spectrum analyzer	Hops Over Occupancy Time (ms/hops)	transmit time per hop (ms)	Time of Occupancy (s)	Limit (s)
BDR	79	106.67	2.91	0.31	0.4
EDR	79	106.67	2.91	0.31	0.4

***** *****

* Hops Over Occupancy Time = (1 600 / 6 / 79) x (0.4 x 79)

化化化化化

20 10 10

* Time of Occupancy = Hops Over Occupancy Time (hops) x Package Transfer Time (ms)

化物学

page : (58) / Total (84)

ID TDF "RFC-00 D Span										• 1Pk Ma 1[1] -1.58
	M1									2,906 20
										11[1] 1.89 d 3.750 80
Umanyhana	bulant								w	Numunaway
m										
					100	<u> </u>				100.0
H41 GHz				BDE		1 pts	hon			420.0
141 GHz w 📑 20dbbw	× 00	W7 X 54	-on X	BDR (ho.er		1 pts it time per X 10.er	hop × œœ	× co.on	× ba.ow	420.0 μ
w ■ 20dbbw _ evel 10.00 dB _20 d	m iB ●SWT ∶	● RBW 3.8 ms ● VBW	1 MHz		R_transm	it time per		X 60.00	X ba.ow	420.0 µ
w ■ 20dbbw _evel 10.00 dB	m iB ●SWT ∶	● RBW 3.8 ms ● VBW	1 MHz		R_transm	it time per		X co.on		• • 1Pk Ma
w ■ 204bbw _evel 10.00 dB 20 d /ID TDF "RFC-00	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma • 1Pk Ma • 1[1] - 0.92
w ■ 200bbw _evel 10.00 dB 20 c 'ID TDF "RFC-00 o Span	m HB ● SWT ()1"	● RBW 3.8 ms ● VBW	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma 1[1] -0.92 01 2.910 40 11[1] 2.13 d
w ➡ 20dbbw Level 10.00 dB 20 d 10 TDF "RFC-00 o Span	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma 1[1] -0.92 01 2.910 40 11[1] 2.13 d
w ■ 2edbbw _evel 10.00 dB 20 c //D TDF "RE-00 o Span M1 **********************************	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma •1[1] -0.92 p1 2.910 40 11[1] 2.13 d
	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma •1[1] -0.92 p1 2.910 40 11[1] 2.13 d
w ■ 2edbbw _evel 10.00 dB 20 c //D TDF "RE-00 o Span M1 **********************************	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma 1[1] -0.92 01 2.910 40 11[1] 2.13 d
w ■ 2edbbw evel 10.00 dB 20 c vlD TDF "RE-cool o Span M1 m m m m	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma •1[1] -0.92
w state 2000 v evel 10.00 dB 20 c vlD TDF "RE-cool o Span M1 m m m	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma 1[1] -0.92 01 2.910 40 11[1] 2.13 d
w ■ 2edbbw evel 10.00 dB 20 c vlD TDF "RE-cool o Span M1 m m m m	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma 1[1] -0.92 01 2.910 40 11[1] 2.13 d
2000bwv 2000 dB 200 200 dB 200 0 Span M1 M1 M1 M M M M M M M M M M M M M M M	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma 1[1] -0.92 01 2.910 40 11[1] 2.13 d
w ■ 2edbbw evel 10.00 dB 20 c 20 rdb The "RE-cool" M1 m M1 M1 m M1 M1	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma 1[1] -0.92 01 2.910 40 11[1] 2.13 d
2000bwv 2000 dB 200 200 dB 200 0 Span M1 M1 M1 M M M M M M M M M M M M M M M	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma 1[1] -0.92 01 2.910 40 11[1] -2.13 d 7.502 60
2000 UN 200 UN 2	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma 1[1] -0.92 01 2.910 40 11[1] -2.13 d 7.502 60
2000 UN 200 UN 2	m HB ● SWT ()1"	● RB₩ 3.8 ms ● VB₩	/ 1 MHz / 1 MHz	k ho.er	R_transm × oc.me	it time per	X (6.00			• 1Pk Ma 1[1] -0.92 p1 2.910 40 11[1] -2.13 d 7.502 60

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (59) / Total (84)

5.5 Maximum Conducted Output Power

5.5.1 Test procedure

ANSI C63.10-2013 Clause 7.8.5

5.5.2 Limit

§15.247 (a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

5.5.3 Test data

Result : Pass

Mode	Frequency (MHz)	Measured Value (dBm)	Limit (dBm)
Bluetooth BDR	2 402	3.34	
	2 441	2.03	
	2 480	0.61	20.97
	2 402	5.52	(0.125 Watt)
Bluetooth EDR	2 441	4.50	
	2 480	3.00	

ICRT-QPA-17-03 Rev.2

医白色的变色

page : (60) / Total (84)

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (61) / Total (84)

Multi¥iew 📕 2	Odbbw	×	obw	× se.or		×	ho.er	×	oc.me	×	co.er	×	ce.ce	×	co.on	×	ba.ow			•
RefLevel 1 Att		OWT	1.01 ms	● RBW		Ма	ا مدر ۵													
TDF "RFC-001		301	1.01 ms	• • • • • •	2 14112	MIU	ue Auto (swee												
1 Frequency	Sweep																141513		1Pk M	
									M1								M1[1] 2.		95 10	
0 dBm																				
-10 dBm																		-		
-20 dBm																				
-30 dBm																				
-40 dBm																				
-50 dBm																				
-80 dBm																				
CF 2.48 GHz						1001	l pts				50	00.0 kH	lz/					Spar	n 5.0 N	ИНz
				BDR	L_Hig	gh c	h_Ma	xin	num (Conc	lucted	d Ou	tput P	owe	er					

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (62) / Total (84)

RefLevel 20.00 dBm Att 30 dB SW		VI2 MHz VI2 MHz Mode A	auto Sween					
DF "RFC-001" Frequency Sweep	1 1.01 m3 0 0 0 1	P 2 DITE MODE P	ato oncep					●1Pk Max
							M1[1]	
				M1				.402 004 90 00
				· •				
dBm								
10 dBm								
- 2.402 GHz		1001 pts	;	50	00.0 kHz/			Span 5.0 M⊦
	ED	R_Low ch_	Maximum	Conductor		ower		
			Maximum	COnducted	a Output P	ower		
Iti¥iew 2 0dbbw X							X ba.ow	4)
Ref Level 20.00 dBm	obw X see	e.on X ho.er	X oc.me	× co.er		× co.on	X ba.ow	4 🔸 🤸
Ref Level 20.00 dBm Att 30 dB SW DF "RFC-001"	obw X see	e.on X ho.er	X oc.me				X ba.ow	
Ref Level 20.00 dBm Att 30 dB SW DF "RFC-001"	obw X see	e.on X ho.er	X oc.me				M1[1]	● 1Pk Ma) 4.50 dB
RefLevel 20.00 dBm Att 30 dB SW FF"RFC-001" Frequency Sweep	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Ma) 4.50 dB
RefLevel 20.00 dBm Att 30 dB SW FF"RFC-001" Frequency Sweep	obw X see	e.on X ho.er	X oc.me				M1[1]	● 1Pk Ma) 4.50 dB
Ref Level 20.00 dBm Att 30 dB SW F "FFC-001" Frequency Sweep	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Ma) 4.50 dB
Ref Level 20.00 dBm Att 30 dB SW F "FFC-001" Frequency Sweep dBm	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Ma) 4.50 dB
kef Level 20.00 dBm Ktt 30 dB SW F"RFC-001" Frequency Sweep dBm dBm	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Ma) 4.50 dB
Ref Level 20.00 dBm Att 30 dB SW F "FFC-001" Frequency Sweep dBm dBm	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Ma) 4.50 dB
kef Level 20.00 dBm htt 30 dB SW F"RFC-001" Frequency Sweep dBm ertBm 0 dBm	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Ma) 4.50 dB
At Level 20.00 dBm Att 30 dB SW F "FC-001" Frequency Sweep dBm dBm 0 dBm	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Ma) 4.50 dB
Ref Level 20.00 dBm Att 30 dB SW F"FC-001" Frequency Sweep dBm dBm 0 dBm 0 dBm	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Ma) 4.50 dB
Ref Level 20.00 dBm Att 30 dB SW F"RFC-001" Frequency Sweep I dBm dBm I dBm III dBm	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	• 1Pk May 4.50 dB .441 154 80 Gl
Ref Level 20.00 dBm Att 30 dB SW F"RFC-001" Frequency Sweep I dBm dBm I dBm III dBm	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Ma) 4.50 dB
Ref Level 20.00 dBm Att 30 dB SW F"RFC-001" Frequency Sweep dBm	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Ma) 4.50 dB
Ref Level 20.00 dBm Att 30 dB Still 30 dB Frequency Sweep I dBm dBm	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Max 4.50 dB
Ref Level 20.00 dBm Att 30 dB SW F"FFC-001" Frequency Sweep I dBm dBm dBm dBm i0 dBm i0 dBm	obw X see	e.on X ho.er	X oc.me	X co.er			M1[1]	● 1Pk Max 4.50 dB
Ref Level 20.00 dBm Stat 30 dB Swep Swep dBm 48m 0 dBm 48m 0 dBm 48m	obw X see	e.on X ho.er	Auto Sweep	К сонт М1 К сонт			M1[1]	● 1Pk Max 4.50 dB

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (63) / Total (84)

Multi¥iew 름 20	odbbw X	obw	× se.or	×	ho.er	×	oc.me	×	co.er	× ce.ce	×	co.on	×	ba.ow		•
Ref Level 20 Att	0.00 dBm 30 dB S ₩	T 1.01 ms	● RBW		lode Aut	o Sweej	p									
TDF "RFC-001" 1 Frequency																k Max
Triequency	змеер													M1[1]		00 dBm
														2.	479 935	10 GHz
10 dBm																
				_			M1 ▼									
0 dBm																
-10 dBm																
-20 dBm																
-50 dBm-																
-70 dBm																
CF 2.48 GHz				10	01 pts				50	0.0 kHz/					Span 5	.0 MHz
			EDR	L_High	ch_N	laxim	num (Cond	ucted	d Output	Powe	er				
				-						-						

ICRT-QPA-17-03 Rev.2

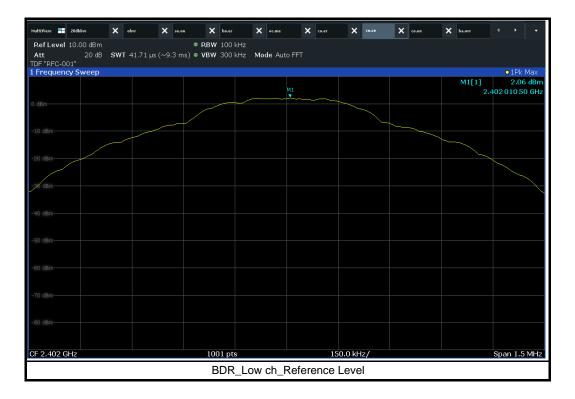
まちかな からなない からない

page: (64) / Total (84)

5.6 Conducted Spurious Emission

5.6.1 Test procedure

ANSI C63.10-2013 Clause 7.8.8, 6.10.4

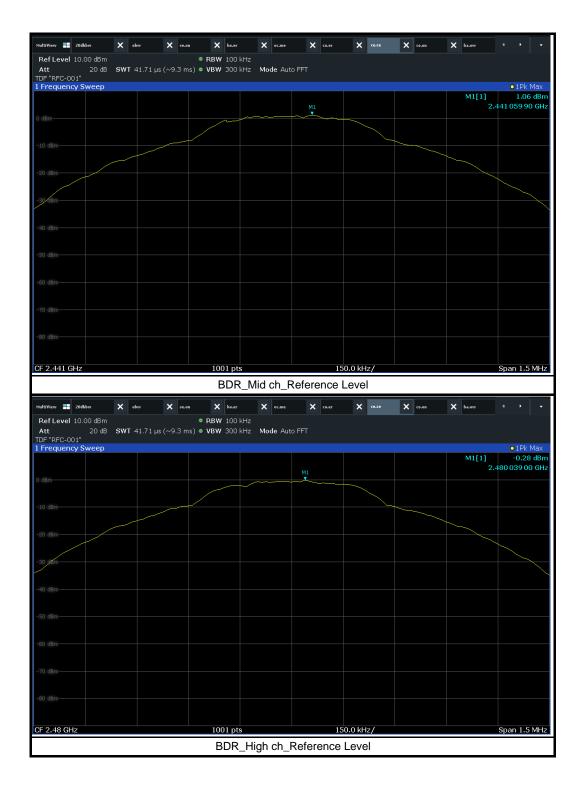

5.6.2 Limit

§15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

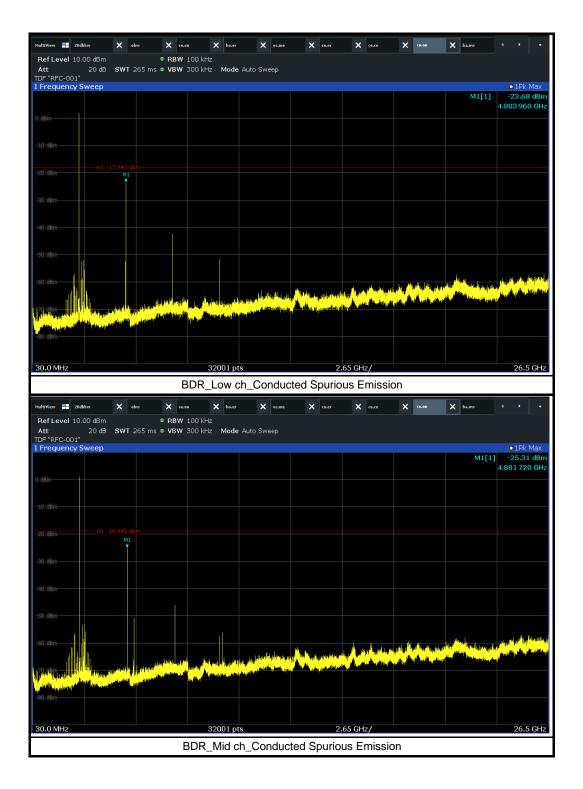
5.6.3 Test data

Result : Pass


ICRT-QPA-17-03 Rev.2

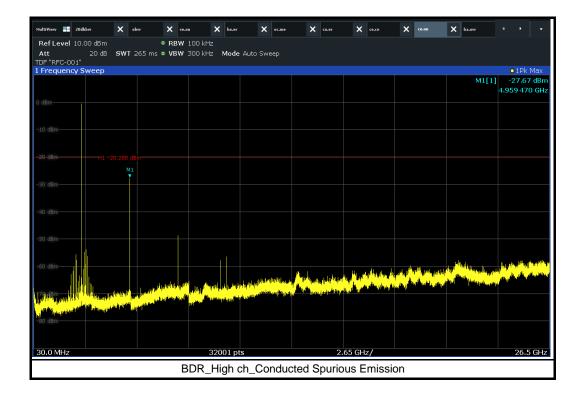
Report No. ICRT-TR-E231965-0A

page : (65) / Total (84)


ICRT-QPA-17-03 Rev.2

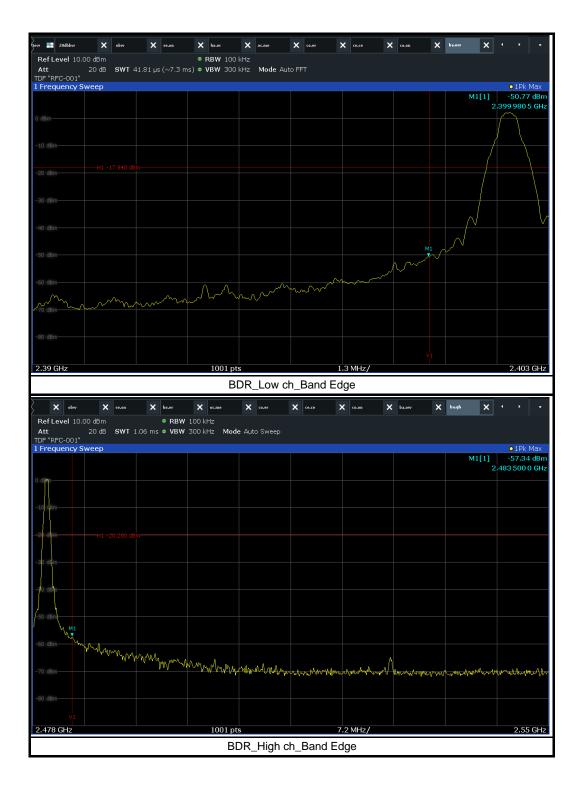
Report No. ICRT-TR-E231965-0A

page : (66) / Total (84)


ICRT-QPA-17-03 Rev.2

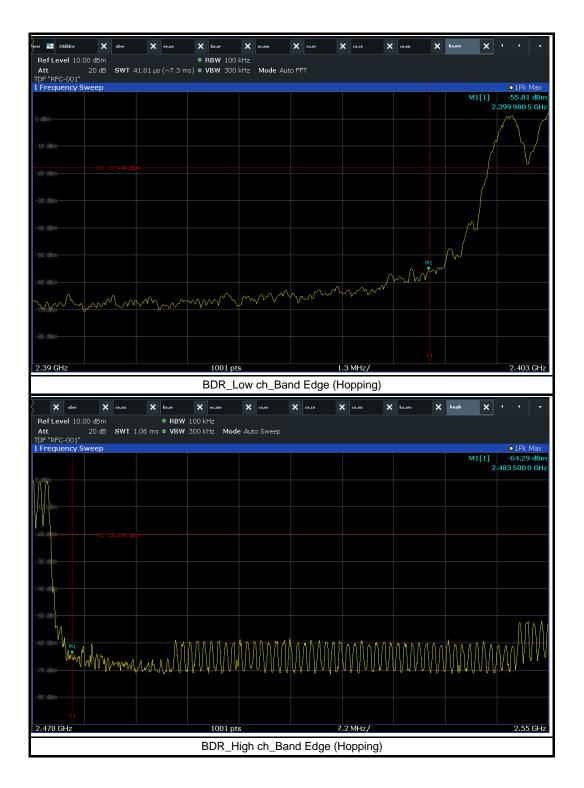
Report No. ICRT-TR-E231965-0A

page: (67) / Total (84)



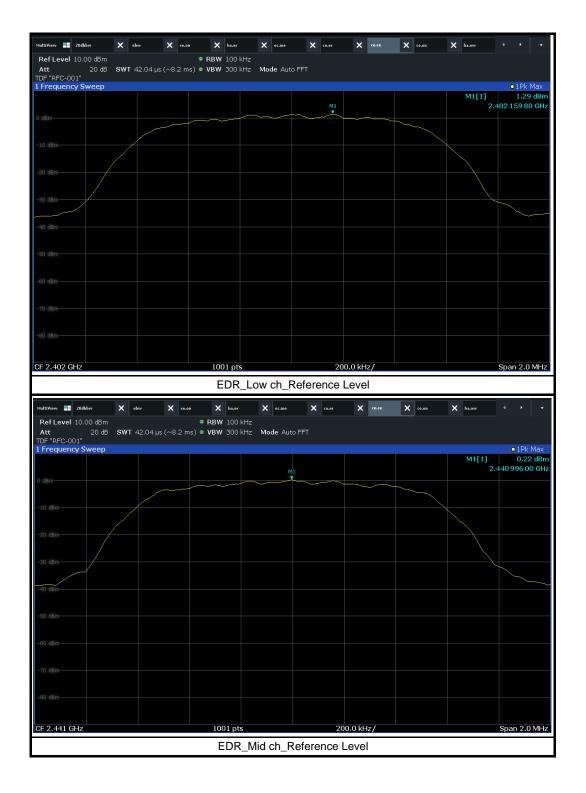
ICRT-QPA-17-03 Rev.2

page : (68) / Total (84)


ICRT-QPA-17-03 Rev.2

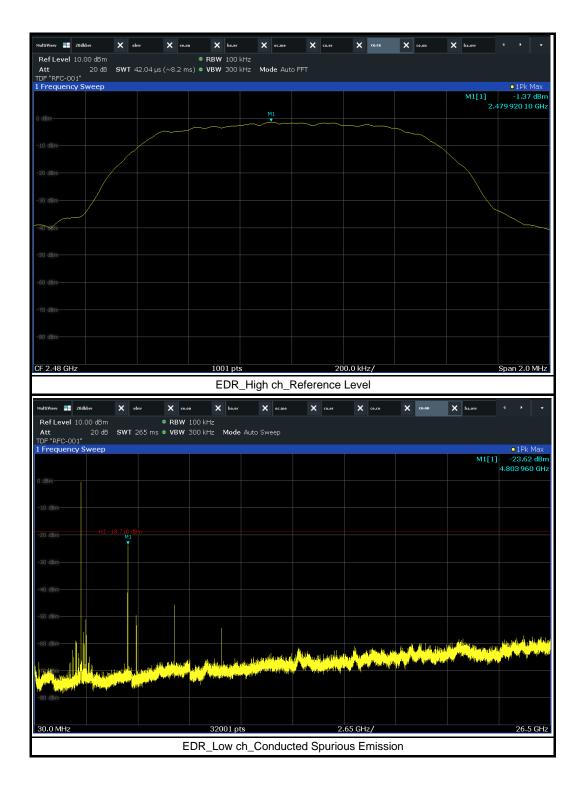
Report No. ICRT-TR-E231965-0A

page: (69) / Total (84)


ICRT-QPA-17-03 Rev.2

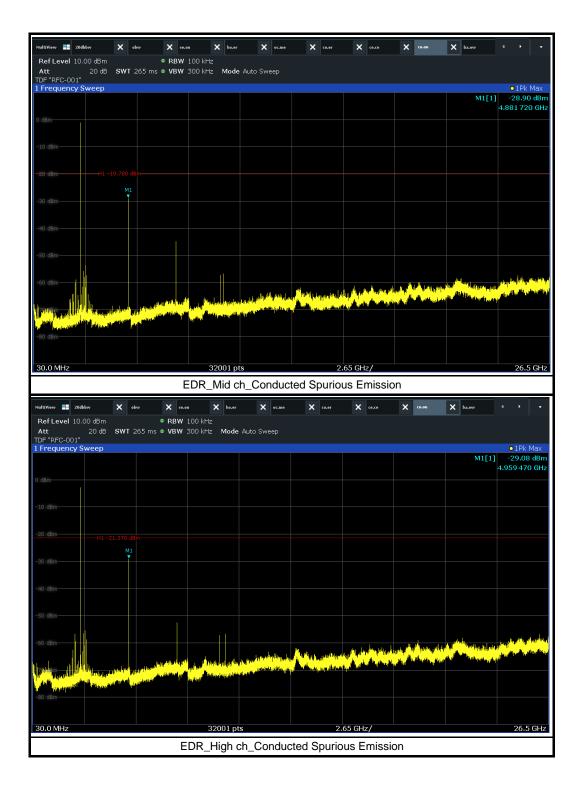
Report No. ICRT-TR-E231965-0A

page: (70) / Total (84)


ICRT-QPA-17-03 Rev.2

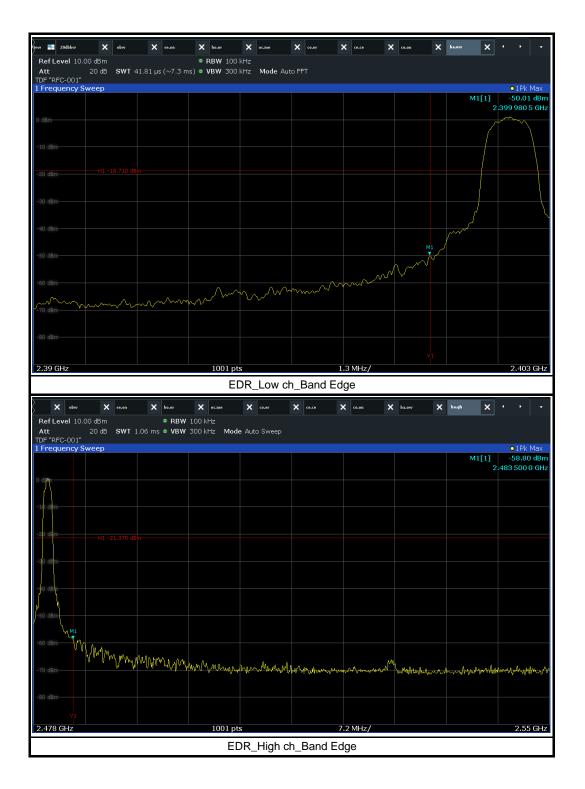
Report No. ICRT-TR-E231965-0A

page: (71) / Total (84)


ICRT-QPA-17-03 Rev.2

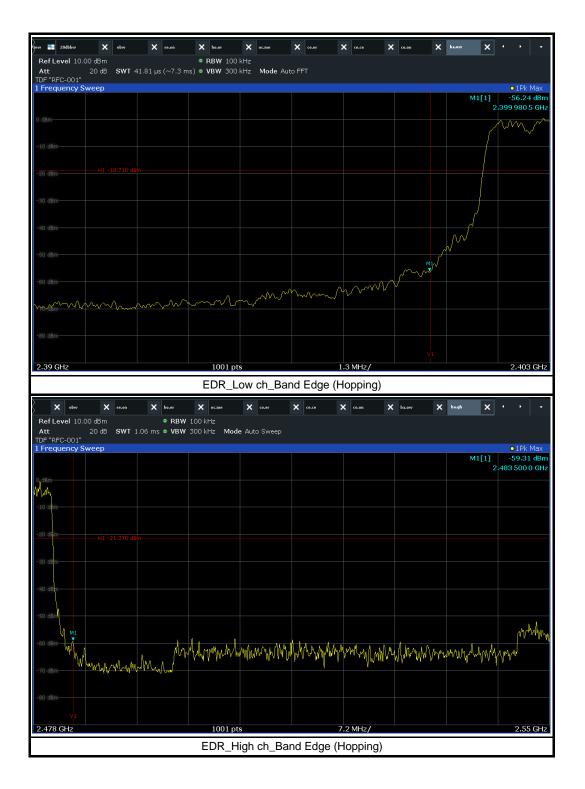
Report No. ICRT-TR-E231965-0A

page : (72) / Total (84)


ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (73) / Total (84)


ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (74) / Total (84)

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (75) / Total (84)

5.7 Radiated Spurious Emission

5.7.1 Test procedure

ANSI C63.10-2013 Clause 6.4, 6.5, 6.6

5.7.2 Limit

§15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

§15.209 Radiated emission limits; general requirements.(a)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

page: (76) / Total (84)

§15.205 Restricted bands of operation.(a),(b)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

² Above 38.6

Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

page: (77) / Total (84)

5.7.3 Test data

Result : Pass

- Below 30 MHz_Low ch BDR, EDR

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
It was not found any emissions peaks found from the EUT.										
- Below 30 N	/Hz_Mid ch	BDR, EDR								
Frequency (MHz)Reading (dBuV/m)DetectorPol.Factor (dB)Result (dB)Limit (dBuV/m)Margin (dBuV/m)note										
It was not found any emissions peaks found from the EUT.										
- Below 30 MHz_High ch BDR, EDR										
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
It was not found any emissions peaks found from the EUT.										

经保证书

经财富资格

а÷ Ré

64 52 45

かびぶい

Se Standard Standard

ICRT-QPA-17-03 Rev.2

(黄白眼前)

page: (78) / Total (84)

- 30 MHz ~ 1 GHz_Low ch BDR

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
252.03	58.97	QP	Н	-22.6	36.37	46.0	9.63			
384.05	58.02	QP	Н	-18.9	39.12	46.0	6.88			
408.01	58.47	QP	Н	-18.4	40.07	46.0	5.93			
432.07	53.50	QP	Н	-18.0	35.50	46.0	10.50			
- 30 MHz ~	- 30 MHz ~ 1 GHz_Mid ch BDR									
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
242.03	59.10	QP	Н	-22.6	36.50	46.0	9.50			
348.06	54.59	QP	Н	-19.8	34.79	46.0	11.21			
384.05	57.39	QP	Н	-18.9	38.49	46.0	7.51			
408.01	56.68	QP	Н	-18.4	38.28	46.0	7.72			
- 30 MHz ~ 1 GHz_High ch BDR										
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
252.03	58.86	QP	Н	-22.6	36.26	46.0	9.74			
384.05	57.45	QP	Н	-18.9	38.55	46.0	7.45			
408.01	57.97	QP	Н	-18.4	39.57	46.0	6.43			

ICRT-QPA-17-03 Rev.2

444.00

53.59

QP

Н

-17.9

35.69

46.0

10.31

page: (79) / Total (84)

- 30 MHz ~ 1 GHz_Low ch EDR

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
348.06	54.18	QP	Н	-19.8	34.38	46.0	11.62			
384.05	58.57	QP	Н	-18.9	39.67	46.0	6.33			
408.01	54.15	QP	Н	-18.4	35.75	46.0	10.25			
432.07	54.73	QP	Н	-18.0	36.73	46.0	9.27			
- 30 MHz ~	- 30 MHz ~ 1 GHz_Mid ch EDR									
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
252.03	59.15	QP	Н	-22.6	36.55	46.0	9.45			
384.05	58.76	QP	Н	-18.9	39.86	46.0	6.14			
408.01	57.48	QP	Н	-18.4	39.08	46.0	6.92			
444.00	50.90	QP	Н	-17.9	33.00	46.0	13.00			
- 30 MHz ~ 1 GHz_High ch EDR										
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
252.03	59.15	QP	Н	-22.6	36.55	46	9.45			
275.99	56.01	QP	Н	-22.3	33.71	46	12.29			
384.05	57.83	QP	Н	-18.9	38.93	46	7.07			

ICRT-QPA-17-03 Rev.2

408.01

57.83

QP

Н

-18.4

39.43

46

6.57

○ 10 年代 10

page : (80) / Total (84)

- 1 GHz Above_Low ch BDR

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2 329.91	42.99	PK	V	-10.5	32.49	74.0	41.51	Restricted
2 329.91	29.53	AVG	V	-10.5	19.03	54.0	34.97	band
4 803.50	45.90	PK	Н	-1.2	44.70	74.0	29.30	2nd
4 003.50	34.59	AVG	Н	-1.2	33.39	54.0	20.61	Harmonic
7 204.80	43.17	PK	V	3.4	46.57	74.0	27.43	3nd
7 204.00	28.18	AVG	V	3.4	31.58	54.0	22.42	Harmonic
9 609.60	37.54	PK	Н	5.7	43.24	74.0	30.76	4nd
9 009.00	23.86	AVG	Н	5.7	29.56	54.0	24.44	Harmonic
- 1 GHz Abc	ve_Mid ch B	BDR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
4 992 00	44.85	PK	Н	1 1	43.75	74.0	30.25	2nd
4 882.00	36.57	AVG	Н	1.1	35.47	54.0	18.53	Harmonic
7 322.40	39.29	PK	V	2.0	42.29	74.0	31.71	3nd
7 322.40	25.65	AVG	V	3.0	28.65	54.0	25.35	Harmonic
9 765.60	36.72	PK	Н	6.7	43.42	74.0	30.58	4nd
9705.00	23.30	AVG	Н	0.7	30.00	54.0	24.00	Harmonic
- 1 GHz Abc	ve_High ch	BDR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2 486.78	44.69	PK	Н	-9.8	34.89	74.0	39.11	Restricted
2 400.70	31.12	AVG	Н	-9.0	21.32	54.0	32.68	band
4 961.00	40.53	PK	Н	-1.0	39.53	74.0	34.47	2nd
4 901.00	27.08	AVG	Н	-1.0	26.08	54.0	27.92	Harmonic
7 441.20	39.06	PK	V	2.8	41.86	74.0	32.14	3nd
/ 441.20	25.34	AVG	V	2.0	28.14	54.0	25.86	Harmonic
9 919.20	37.35	PK	V	6.2	43.55	74.0	30.45	4nd
9 919.20	23.12	AVG	V	0.2	29.32	54.0	24.68	Harmonic

page: (81) / Total (84)

	-	1	GHz	Above_	Low	ch	EDR
--	---	---	-----	--------	-----	----	-----

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
0.045.04	43.34	PK	V	40.4	32.94	74.0	41.06	Restricted
2 345.34	29.74	AVG	V	-10.4	19.34	54.0	34.66	band
4 00 4 50	45.44	PK	Н	4.0	44.24	74.0	29.76	2nd
4 804.50	33.58	AVG	Н	-1.2	32.38	54.0	21.62	Harmonic
7 00 4 00	46.63	PK	V	0.4	50.03	74.0	23.97	3nd
7 204.80	32.19	AVG	V	3.4	35.59	54.0	18.41	Harmonic
0.000.00	37.40	PK	V	E C	43.00	74.0	31.00	4nd
9 606.00	24.03	AVG	V	5.6	29.63	54.0	24.37	Harmonic
12 010 90	48.93	PK	V	0.1	57.03	74.0	16.97	5nd
12 010.80	36.75	AVG	V	8.1	44.85	54.0	9.15	Harmonic
- 1 GHz Abc	ve_Mid ch E	DR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
4 882.50	43.45	PK	Н		42.35	74.0	31.65	2nd
	31.87	AVG	Н	-1.1	30.77	54.0	23.23	Harmonic
7 222 00	41.80	PK	Н	2	44.80	74.0	29.20	3nd
7 323.60	26.94	AVG	Н	3	29.94	54.0	24.06	Harmonic
0.704.40	37.40	PK	V	0.7	44.10	74.0	29.90	4nd
9 764.40	23.98	AVG	V	6.7	30.68	54.0	23.32	Harmonic
- 1 GHz Abc	ve_High ch	EDR						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
0 407 00	45.25	PK	V	0.0	35.45	74.0	38.55	Restricted
2 497.69	31.33	AVG	V	-9.8	21.53	54.0	32.47	band
4 000 50	43.40	PK	Н	1.0	42.40	74.0	31.60	2nd
4 960.50	31.07	AVG	Н	-1.0	30.07	54.0	23.93	Harmonic
7 440 00	38.93	PK	V	2.0	41.73	74.0	32.27	3nd
7 440.00	25.41	AVG	V	2.8	28.21	54.0	25.79	Harmonic
0.021.60	36.89	PK	н	6.2	43.09	74.0	30.91	4nd
9 921.60	23.17	AVG	Н	0.2	29.37	54.0	24.63	Harmonic

page: (82) / Total (84)

4.8 Power Line Conducted Emission

4.8.1 Test procedure

ANSI C63.10-2013 Clause 6.2

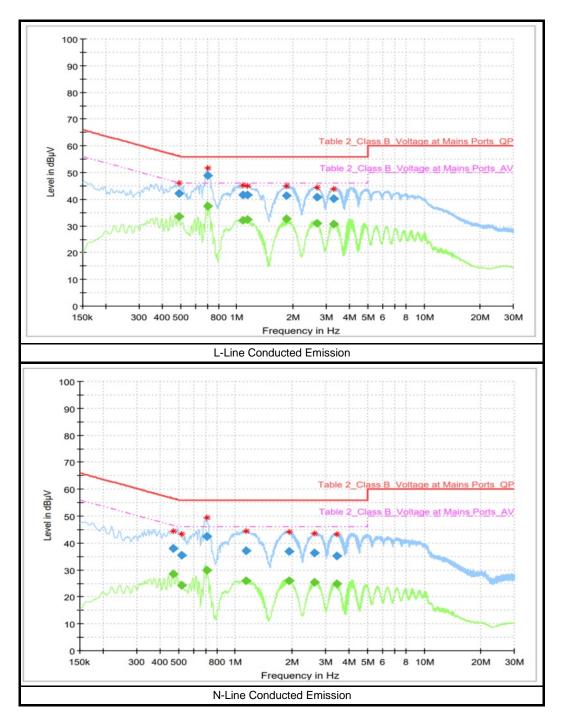
4.8.2 Limit

§15.207 (a)

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dBµV)			
riequency of emission (Miriz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.



TEST REPORT

page: (83) / Total (84)

4.8.3 Test data

Result : Pass

ICRT-QPA-17-03 Rev.2

Report No. ICRT-TR-E231965-0A

page: (84) / Total (84)

6. Used equipment

Description	Model Name	Manufacturer	Serial Number	Calibration	Next Cal
SIGNAL GENERATOR	SMB100A	R&S	180607	2023-03-02	2024-03-02
SIGNAL & SPECTRUM ANALYZER	FSW85	R&S	101306	2023-03-03	2024-03-03
ATTENUATOR	PFA40K2-10	PSATEK	-	2023-03-07	2024-03-07
DC BLOCK	PDCB-00012650 -SMSF-3	PSATEK INC.	-	2023-05-02	2024-05-02
DC POWER SUPPLY	E3632A	AGILANT	MY51300069	2023-03-03	2024-03-03
LOOP ANTENNA	HFH2-Z2	R&S	100271	2023-03-08	2025-03-08
BI-Log ANTENNA	VULB 9162	SCHWARZBECK	120	2022-12-26	2024-12-26
SIGNAL CONDITIONING UNIT	SCU 08	R&S	100746	2023-04-03	2024-04-03
EMI TEST RECEIVER	ESR26	R&S	101462	2023-04-04	2024-04-04
DOUBLE RIDGED HORN ANTENNA	HF907	R&S	102556	2023-08-04	2024-08-04
SIGNAL CONDITIONING UNIT	SCU18	R&S	102342	2023-04-03	2024-04-03
EMI TEST RECEIVER	ESR26	R&S	101461	2023-04-04	2024-04-04
HORN ANTENNA	LB-42-10-C-KF	A-INFOMW	J202024625	2023-03-07	2024-03-07
PREAMPLIFIER	AMF-4F-18265- 35-8P-1	MITEQ	-	2023-03-07	2024-03-07

- END OF REPORT.

ICRT-QPA-17-03 Rev.2

