

SAR TEST REPORT

No. I16N01050-SAR

For

LogicMark, LLC

3G mobile phone only call 911

Model Name: 30711

Marketing Name: Guardian Alert 911 PLUS

With

Hardware Version: M8_V1.0

Software Version: M8_V1.0

FCC ID: TYD-GA30711A

Issued Date: 2016-10-08

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT

No.52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel: +86(0)10-62304633-2512, Fax: +86(0)10-62304633-2504

Email: cttl_terminals@catr.cn, website: www.chinattl.com

©Copyright. All rights reserved by CTTL.

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I16N01050-SAR	Rev.0	2016-10-08	Initial creation of test report

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 Testing Location	5
1.2 TESTING ENVIRONMENT	5
1.3 PROJECT DATA	5
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	7
3.1 Applicant Information	7
3.2 MANUFACTURER INFORMATION	7
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
4.1 About EUT	8
4.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	8
4.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	8
5 TEST METHODOLOGY	9
5.1 Applicable Limit Regulations	9
5.2 Applicable Measurement Standards	9
6 SPECIFIC ABSORPTION RATE (SAR)	10
6.1 INTRODUCTION	10
6.2 SAR DEFINITION	10
7 TISSUE SIMULATING LIQUIDS	11
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	11
7.2 DIELECTRIC PERFORMANCE	11
8 SYSTEM VERIFICATION	13
8.1 System Setup	13
8.2 System Verification	14
9 MEASUREMENT PROCEDURES	15
9.1 Tests to be performed	15
9.2 GENERAL MEASUREMENT PROCEDURE	16
9.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	17
9.4 Power Drift	18
10 AREA SCAN BASED 1-G SAR	19
10.1 REQUIREMENT OF KDB	19
10.2 FAST SAR ALGORITHMS	19
11 CONDUCTED OUTPUT POWER	20
11.1 MANUFACTURING TOLERANCE	20

©Copyright. All rights reserved by CTTL.

11.2 WCDMA MEASUREMENT RESULT	20
12 SAR TEST RESULT	21
12.1 SAR RESULTS FOR FAST SAR	22
12.2 SAR RESULTS FOR STANDARD PROCEDURE	23
13 SAR MEASUREMENT VARIABILITY	24
14 MEASUREMENT UNCERTAINTY	25
14.1 MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz)	25
14.2 MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)	27
15 MAIN TEST INSTRUMENTS	29
ANNEX A GRAPH RESULTS	30
ANNEX B SYSTEMVERIFICATION RESULTS	34
ANNEX C SAR MEASUREMENT SETUP	37
C.1 MEASUREMENT SET-UP	37
C.2 DASY5 E-FIELD PROBE SYSTEM	38
C.3 E-FIELD PROBE CALIBRATION	38
C.4 OTHER TEST EQUIPMENT	39
ANNEX D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM.	43
D.1 GENERAL CONSIDERATIONS	43
D.2 BODY-WORN DEVICE	
D.3 DESKTOP DEVICE	
D.4 DUT SETUP PHOTOS	
ANNEX E EQUIVALENT MEDIA RECIPES	46
ANNEX F SYSTEM VALIDATION	47
ANNEX G DAE CALIBRATION CERTIFICATE	48
ANNEX H PROBE CALIBRATION CERTIFICATE	51
ANNEX I DIPOLE CALIBRATION CERTIFICATE	62

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shenzhen)
Address:	TCL International E City No.1001 Zhongshanyuan Road, Nanshan
	District, Shenzhen, Guangdong Province P.R.China

1.2 Testing Environment

Temperature:	18°C~25 °C
Relative humidity:	30%~ 70%
Ground system resistance:	<4 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Cao Junfei	
Test Engineer:	Zhang Yunzhuan	
Testing Start Date:	September22, 2016	tt
Testing End Date:	September 22, 2016	

1.4 Signature

Zhang Yunzhuan (Prepared this test report)

K

Cao Junfei (Reviewed this test report)

张博钧

Zhang Bojun Deputy Director of the laboratory (Approved this test report)

©Copyright. All rights reserved by CTTL.

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for LogicMark, LLC 3G mobile phone only call 911 30711 are as follows:

Exposure Configuration	Technology Band	Highest Reported SAR 1g(W/Kg)	Equipment Class
Body-worn (Data)	WCDMA Band 5	0.99	
(Separation Distance 10mm)	WCDMA Band 2	0.87	PCE

Table 2.1: Highest Reported SAR (1g)

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of (Table 2.1), and the values are: 0.99W/kg (1g).

3 Client Information

3.1 Applicant Information

Company Name:	LogicMark, LLC
Address /Post:	10106 Bluegrass Pkwy, Louisville KY, 40299
Contact:	Jonathan Larson
Email: Jonathan@logicmark.com	
Telephone:	703-934-7934
Fax:	703-934-7935

3.2 Manufacturer Information

Company Name:	APEX Global Electronics CO. Limited	
Address /Post:	Unit M, 17/F, Block 2, Kin Ho Industrial Building, 14-24 Au Pui Wan	
Audress / Fost.	Street, Fo Tan, N.T. Hong Kong	
Contact:	Contact: Alex Yeung	
Email:	Alexyeung@vip.163.com	
Telephone:	(852) 23344535	
Fax:	(852) 23344535	

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	3G mobile phone only call 911		
Model Name:	30711		
Operating mode(s):	WCDMA 850/1900		
Tested Ty Frequency:	826.4–846.6 MHz (WCDMA850 Band V)		
Tested Tx Frequency:	1852.4–1907.6 MHz (WCDMA1900 Band II)		
Release Version:	UMTS: 5		
Test device Production information:	Production unit		
Device type:	Portable device		
Antenna type:	Integrated antenna		
Accessories/Body-worn configurations:	/		
Hotspot mode:	/		
Form factor:	65mm × 45 mm× 19 mm		

4.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	IMEI: 353144070270618	M8_V1.0	M8_V1.0
EUT2	IMEI: 353144070270625	M8_V1.0	M8_V1.0

*EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT 1, and conducted power with the EUT 2

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
	Detten	GSP552838 2016-05-19	Great Power Energy	Great Power Energy &
AE1	Dallery		Technology CO. LTD	

*AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1999:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Experimental Techniques.

KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB 865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and *E* is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0

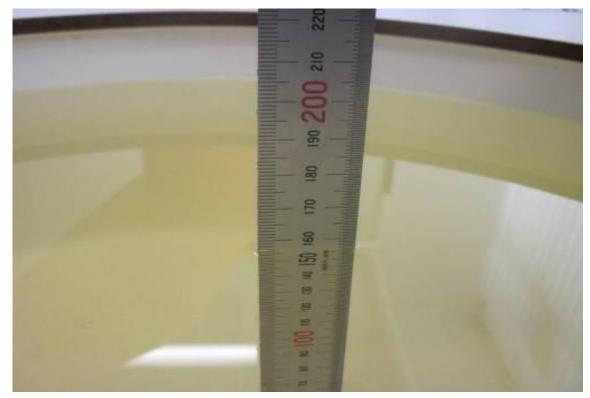
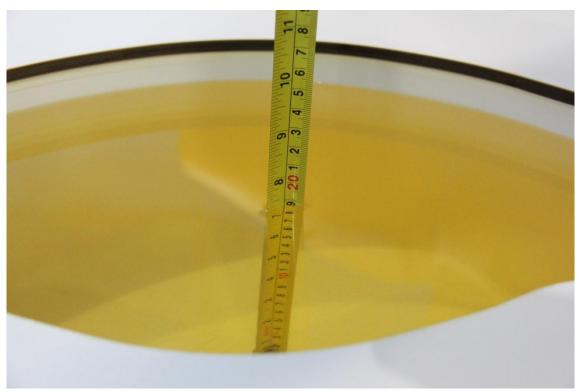
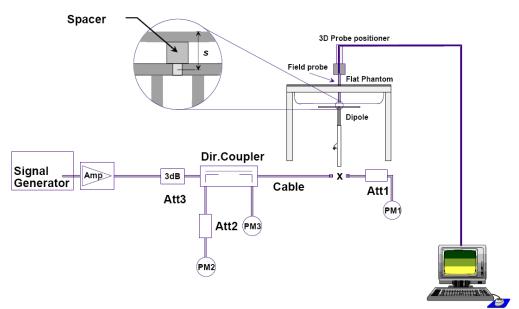

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid


Measurement Date (yyyy-mm-dd)			Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2016-09-22	Body	835	52.83	-4.29	0.984	1.44
2016-09-22	Body	1900	51.46	-3.45	1.562	2.76

Note: The liquid temperature is 22.0°C

Picture 7-1: Liquid depth in the Flat Phantom (835 MHz)


Picture 7-2: Liquid depth in the Flat Phantom (1900MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Measurement		Target value (W/kg)		Measured	value (W/kg)	Deviation				
Date	Frequency	quency 10 g 1 g 10 g		10 g	1 g	10 g	1 g			
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average			
2016-09-22	835 MHz	6.20	9.44	6.08	9.60	-1.93	1.69			
2016-09-22	1900 MHz	21.3	41.1	21.72	40.72	1.97	-0.92			

Table 8.2: System Verification of Body

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

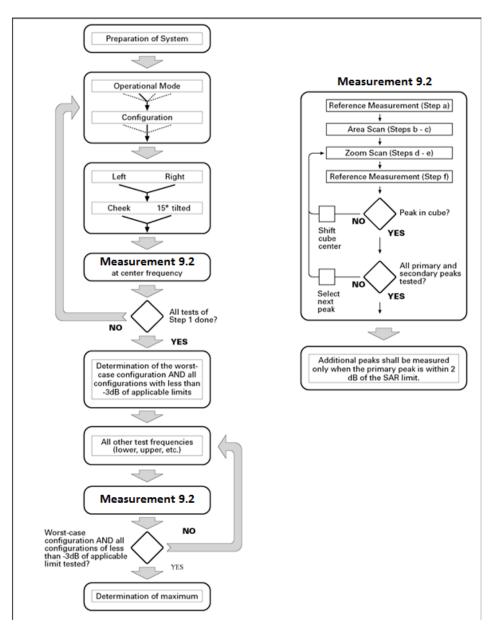
Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the center of

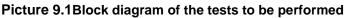
the transmit frequency band (f_c) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all


frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			\leq 3 GHz	> 3 GHz
Maximum distance from (geometric center of pro		-	$5 \pm 1 \text{ mm}$	½·δ·ln(2) ± 0.5 mm
Maximum probe angle f normal at the measurem		xis to phantom surface	30°±1°	20° ± 1°
			\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spa	tial resolutio	on: Δx _{Area} , Δy _{Area}	When the x or y dimension of t measurement plane orientation measurement resolution must b dimension of the test device with point on the test device.	, is smaller than the above, the e ≤ the corresponding x or y
Maximum zoom scan sp	oatial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz} \le 5 \text{ mm}^{*}$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^{*}$
	uniform g	rid: ∆z _{Zoom} (n)	≤ 5 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1^{st} two points closest to phantom surface	≤ 4 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 2.5 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$
	grid	∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta_2$	Zoom(n-1)
Minimum zoom scan volume	x, y, z	1	\geq 30 mm	$\begin{array}{l} 3-4 \ \text{GHz} \ge 28 \ \text{mm} \\ 4-5 \ \text{GHz} \ge 25 \ \text{mm} \\ 5-6 \ \text{GHz} \ge 22 \ \text{mm} \end{array}$
2011 for details. * When zoom scan is re	equired and $(\leq 8 \text{ mm}) \leq 10^{-10}$	the <u>reported</u> SAR from th 7 mm and ≤ 5 mm zoom	idence to the tissue medium; see te area scan based <i>1-g SAR estima</i> scan resolution may be applied, 1	ation procedures of KDB

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH &DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_{c}$	$oldsymbol{eta}_d$	$oldsymbol{eta}_d$ (SF)	eta_c / eta_d	$eta_{_{hs}}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSPA Data Devices

Sub- test	$oldsymbol{eta}_{c}$	eta_d	eta_d	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	$eta_{\scriptscriptstyle ec}$	$eta_{\scriptscriptstyle ed}$	eta_{ed}	$eta_{\it ed}$	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	2.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Section 12 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-gSAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 Manufacturing tolerance

		Table 11.1: WCDN	IA			
		Conducted Power (dBm)				
VVC	DMA Band V	Channel 4233	Channel 4182	Channel 4132		
CS	Target (dBm)	22.5	22.5	22.5		
03	Tolerance ±(dB)	±1	±1	±1		

		C	Conducted Power(dBm)				
WCDMA Band II		Channel 9538	Channel 9400	Channel 9262			
CS	Target (dBm)	20	20	20			
65	Tolerance ±(dB)	±1	±1	±1			

11.2 WCDMA Measurement result

Table 11.2: The conducted Power for WCDMA850/1900

ltem	band		FDD V result	
nem	ARFCN	4233 (846.6MHz)	4182(836.4MHz)	4132 (826.4MHz)
WCDMA	١	22.39	23.06	22.31
ltom	band		FDD II result	
ltem	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)
WCDMA	١	20.88	20.86	20.68

12 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or >1.2W/kg. The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Table 12.1: Duty Cycle

Mode	Duty Cycle
WCDMA850/1900	1:1

12.1 SAR results for Fast SAR

Ambient Temperature: 22.4°C Liquid Temperature: 21.9°C Reported Conducted Measured Measured Reported Power Frequency Test Figure Max. tune-up Power SAR(10g) SAR(10g) SAR(1g) SAR(1g)(Drift Power (dBm) Position No. (dBm) (W/kg) (W/kg) (W/kg) W/kg) (dB) MHz Ch. 836.4 4182 Front / 23.06 23.5 0.313 0.35 0.472 0.52 0.10 836.4 4182 Rear 1 23.06 23.5 0.457 0.51 0.687 0.76 0.12 836.4 4182 Left 1 23.06 23.5 0.181 0.20 0.286 0.32 0.07 / 4182 0.215 0.24 0.328 836.4 Right 23.06 23.5 0.36 0.08 1 23.5 836.4 4182 Тор 23.06 0.018 0.02 0.025 0.03 -0.13 4182 / 23.06 23.5 0.13 836.4 Bottom 0.118 0.194 0.21 0.16 4233 1 22.39 23.5 0.359 0.540 0.70 846.6 Rear 0.46 -0.17 826.4 4132 Rear Fig.1 22.31 23.5 0.500 0.66 0.755 0.99 -0.04

Table 12.2: SAR Values (WCDMA 850 MHz Band-Body)

Note1: The distance between the EUT and the phantom bottom is 10mm.

	Ambient Temperature: 22.4°C Liquid Temperature: 21.9°C											
Frequency		Test Position	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)(Power Drift		
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)		
1880	9400	Front	/	20.86	21	0.209	0.22	0.352	0.36	-0.18		
1880	9400	Rear	/	20.86	21	0.392	0.40	0.676	0.70	0.01		
1880	9400	Left	/	20.86	21	0.186	0.19	0.317	0.33	-0.13		
1880	9400	Right	/	20.86	21	0.084	0.09	0.139	0.14	-0.17		
1880	9400	Тор	/	20.86	21	0.063	0.07	0.010	0.01	0.16		
1880	9400	Bottom	/	20.86	21	0.165	0.17	0.292	0.30	0.04		
1907.6	9538	Rear	Fig.2	20.88	21	0.507	0.52	0.846	0.87	0.16		
1852.4	9262	Rear	/	20.68	21	0.211	0.23	0.389	0.42	0.06		

Table 12.3: SAR Values (WCDMA1900 MHz Band-Body)

Note1: The distance between the EUT and the phantom bottom is 10mm.

12.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

	Table 12.4: SAR values (WCDMA 850 MHZ Band-Body)											
	Ambient Temperature: 22.4°C Liquid Temperature: 21.9°C											
Frequency		Test Figur		Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)(Power Drift		
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)		
826.4	4132	Rear	Fig.1	22.31	23.5	0.500	0.66	0.755	0.99	-0.04		

Table 12.4: SAR Values (WCDMA 850 MHz Band-Body)

Note1: The distance between the EUT and the phantom bottom is 10mm

	Ambient Temperature: 22.4°C Liquid Temperature: 21.9°C											
Frequency		Test	Figure	Conducted Power	Max. tune-up Power (dBm)	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)(Power Drift		
MHz	Ch.	Position	sition No. (dBm) Po	Fower (dbill)	(W/kg)	(W/kg)	(W/kg)		(dB)			
1907.6	9538	Rear	Fig.2	20.88	21	0.507	0.52	0.846	0.87	0.16		

Note1: The distance between the EUT and the phantom bottom is 10mm

13 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency		Test	Spacing	Original	First	The	Second	
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)	
1907.6	9538	Rear	10	0.846	0.840	1.01	/	

Table 13.1: SAR Measurement Variability for Body WCDMA1900 (1g)

14 Measurement Uncertainty

14.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

No.	Error Description	Туре	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc.	Std. Unc.	Degree of
			Maagum	montaustom		U	U	(1g)	(10g)	freedom
1	Probe calibration	В	6	ement system	1	1	1	6	6	∞
2		B	4.7	R	$\sqrt{3}$	1	1	1.6	1.6	∞
3	Isotropy Boundary effect	B	1.0	R	$\sqrt{3}$	1	1	6.4	6.4	∞
4	Linearity	B	4.7	R	$\sqrt{3}$	1	1	0.4	0.4	∞
5	Detection limit	B	1.0	N	1	1	1	1	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6	Readout electronics	B	0.3	R	$\sqrt{3}$	1	1	0.6	0.6	∞
7	Response time	B	0.8	R	$\sqrt{3}$	1	1	0.0	0.0	∞
8	Integration time	B	2.6	R	$\sqrt{3}$	1	1	1.0	1.0	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	1.7	1.7	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	1.7	1.7	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	~
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
14	Probe modulation response	В	2.3	R	$\sqrt{3}$	1	1	1.21	1.21	8
	1	1	Test sa	mple related	r	r		I	1	
15	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	5
16	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
17	Power scaling	В	2.4	R	$\sqrt{3}$	1	1	2.4	2.4	∞
18	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phanton	n and set-up						
19	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
20	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	œ
21	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1	0.28	9
22	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	~
23	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	0.31	0.25	9
24	Algorithm for correcting SAR for deviations in permittivity and conductivity	В	1.9	Ν	1	1	1	1.9	1.9	8

©Copyright. All rights reserved by CTTL.

No.I16N01050-SAR Page 26 of 77

Combined standard uncertainty	$u_{c}^{'} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$			11.9	11.8	323
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$			23.8	23.7	

No.I16N01050-SAR Page 27 of 77

14.2 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

								/		
N	Error Description	Т	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.	Degree of
0.	Enor Description	у pe	value	Distribution	DIV.	1g	10g	(1g)	(10g)	freedom
		pe	Meas	urement syste	m			(15)	(105)	needom
1	Probe calibration	В	6	N	1	1	1	6	6	∞
2	Isotropy	B	4.7	R	$\sqrt{3}$	1	1	1.6	1.6	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	6.4	6.4	œ
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	0.5	0.5	∞
5	Detection limit	В	1.0	R	1	1	1	1	1	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.6	0.6	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.0	0.0	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.0	1.0	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	1.7	1.7	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	1.7	1.7	œ
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
14	Probe modulation response	В	2.3	R	$\sqrt{3}$	1	1	1.21	1.21	∞
15	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	4.0	4.0	1	∞
Test	t sample related									
16	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
17	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
18	Power scaling	В	2.2	R	$\sqrt{3}$	1	1	2.2	2.2	œ
19	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	œ
Pha	ntom and set-up		·	·		·				·
20	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
21	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
22	Liquid conductivity (meas.)	Α	2.06	N	1	0.64	0.43	1.32	0.89	43
23	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
24	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521
25	Algorithm for	В	1.9	Ν	1	1	0.84	1.9	1.6	∞

©Copyright. All rights reserved by CTTL.

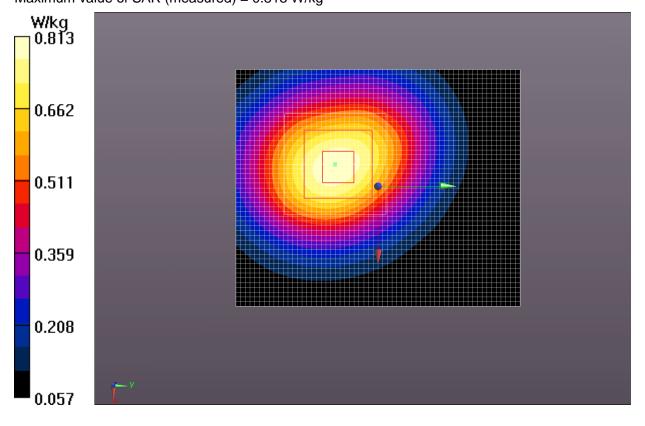
	correcting SAR for						
	deviations in						
	permittivity and						
	conductivity						
Combined standard uncertainty		$u_{c}' = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$			12.6	12.5	257
	anded uncertainty afidence interval of 95 %)	$u_e = 2u_c$			25.1	25.0	

15 MAIN TEST INSTRUMENTS

Table 15.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	Agilent E5071C	MY46103759	November20,2015	One year	
02	Dielectric probe	85070E	MY44300317	No Calibration Requeste	ed	
03	Power meter	NRP	102603	loguar/10 2016		
04	Power sensor	NRP-Z51	102211	January10,2016	One year	
05	Signal Generator	E8257D	MY47461211	Jule15, 2016	One year	
06	Amplifier	VTL5400	0404	No Calibration Requested		
07	BTS	E5515C	GB47460389	January 12, 2016	One year	
08	E-field Probe	SPEAG ES3DV3	3151	October30, 2015	One year	
09	DAE	SPEAG DAE4	786	November 16, 2015	One year	
10	Dipole Validation Kit	SPEAG D835V2	4d057	October22, 2015	Three year	
11	Dipole Validation Kit	SPEAG D1900V2	5d088	November 4, 2015	Three year	

END OF REPORT BODY


ANNEX A Graph Results

WCDMA 850 Body

Date/Time: 2016-9-22 Electronics: DAE4 Sn786 Medium: Body 835 MHz Medium parameters used (interpolated): f = 826.4 MHz; σ = 0.975 S/m; ϵ_r = 52.919; ρ = 1000 kg/m³ Ambient Temperature: 22.4°C Liquid Temperature: 21.9°C Communication System: 3G_WCDMA (0) Frequency: 826.4 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF (6.13, 6.13, 6.13);

Rear side Low /Area Scan (51x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.802 W/kg

Rear side Low /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.888 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.755 W/kg; SAR(10 g) = 0.500 W/kg Maximum value of SAR (measured) = 0.813 W/kg

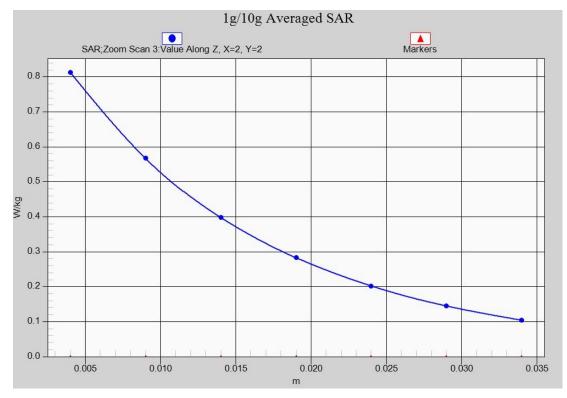
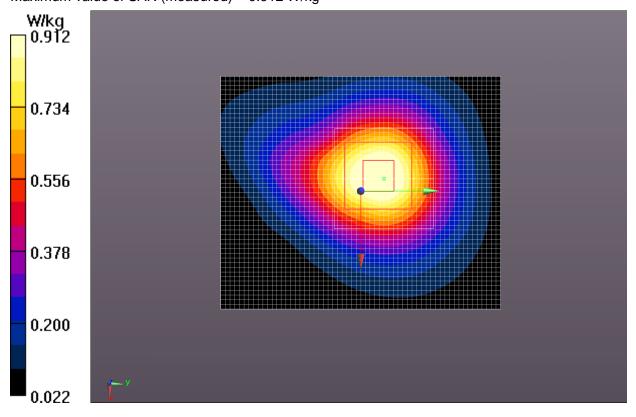


Fig.1-1 Z-Scan at power reference point (WCDMA850 CH4132)



WCDMA 1900 Body

Date/Time: 2016-9-22 Electronics: DAE4 Sn786 Medium: Body 1900 MHz Medium parameters used: f = 1907.6 MHz; σ = 1.571 S/m; ϵ_r = 51.434; ρ = 1000 kg/m³ Ambient Temperature: 22.4°C Liquid Temperature: 21.9°C Communication System: 3G_WCDMA (0) Frequency: 1907.6 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF (4.5, 4.5, 4.5);

Rear side High/Area Scan (51x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.995 W/kg

Rear side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.225 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 1.34 W/kg SAR(1 g) = 0.846 W/kg; SAR(10 g) = 0.507 W/kg Maximum value of SAR (measured) = 0.912 W/kg

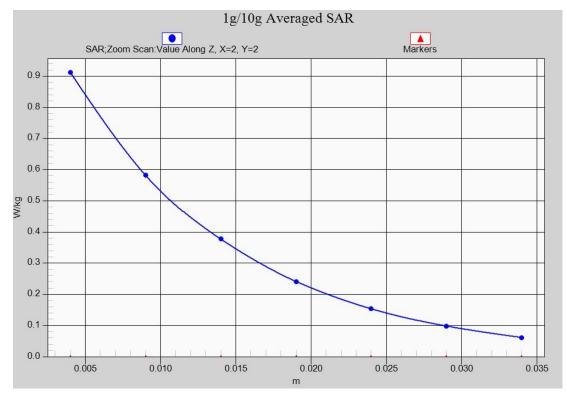
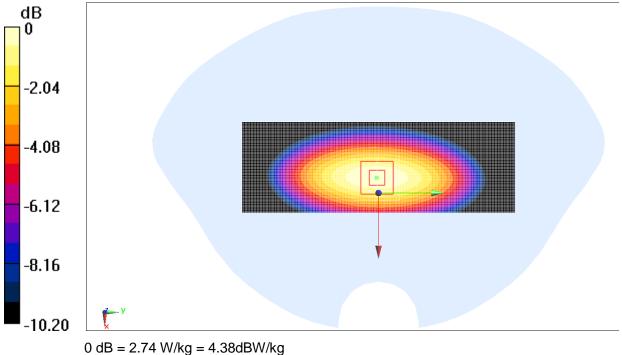


Fig.2-1 Z-Scan at power reference point (WCDMA1900 CH9538)

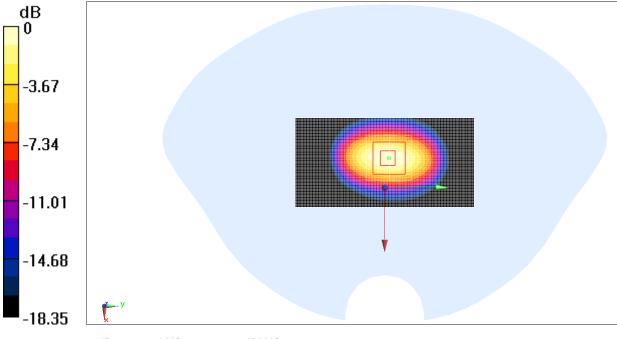

ANNEX B SystemVerification Results

835MHz

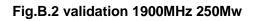
Date: 2016-9-22 Electronics: DAE4 Sn786 Medium: Body 835 MHz Medium parameters used (interpolated): f = 835 MHz; σ = 0.984 S/m; ϵ_r = 52.832; ρ = 1000 kg/m³ Ambient Temperature:22.6°C Liquid Temperature:22.1°C Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151ConvF(6.13, 6.13, 6.13)

System Validation /Area Scan (61x181x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 52.226 V/m; Power Drift = -0.05 dB Fast SAR:SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (interpolated) = 2.69 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.226 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.40 W/kg; SAR(10 g) = 1.52 W/kg Maximum value of SAR (measured) = 2.74 W/kg



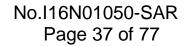
1900MHz


Date: 2016-9-22 Electronics: DAE4 Sn786 Medium: Body 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.562 S/m; ϵ_r = 51.463; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.5, 4.5, 4.5);

System Validation /Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 84.757 V/m; Power Drift = 0.03dB Fast SAR:SAR(1 g) = 10.22 W/kg; SAR(10 g) = 5.46 W/kg Maximum value of SAR (interpolated) = 12.6 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.757 V/m; Power Drift = 0.03dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 10.18 W/kg; SAR(10 g) = 5.43 W/kg Maximum value of SAR (measured) = 12.8 W/kg

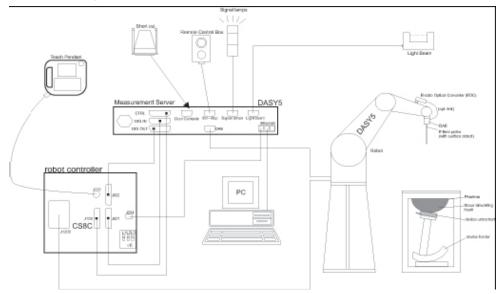
0 dB = 12.8 W/kg = 11.07dBW/kg



The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
2016-09-22	835	Body	2.44	2.40	-1.64
2016-09-22	1900	Body	10.22	10.18	-0.39

Table B.1 Comparison between area scan and zoom scan for system verification



ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

No.I16N01050-SAR Page 38 of 77

C.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3
Dynamic Range:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application: SAF	R Dosimetry Testing
	Compliance tests of mobile phones
Dosimetry in stro	ong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed ©Copyright. All rights reserved by CTTL.

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm^2 .

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

No.I16N01050-SAR Page 40 of 77

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- > Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

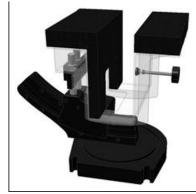
Picture C.6 Server for DASY 5

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss


POM material having the following dielectric

parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.7-1: Device Holder

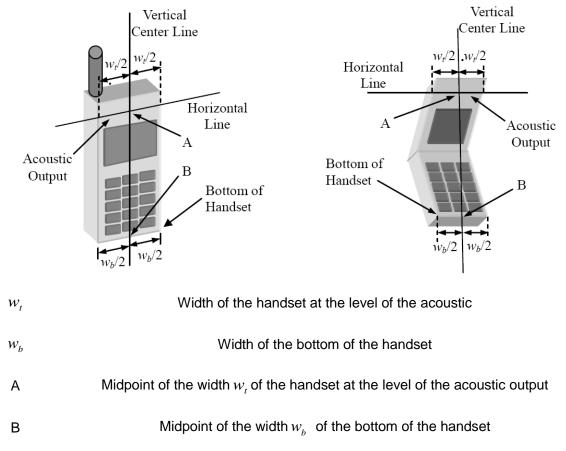
Picture C.7-2: Laptop Extension Kit

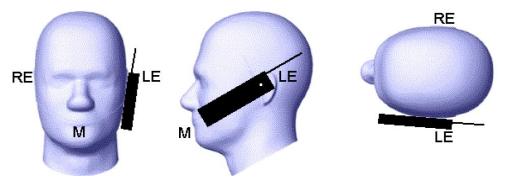
C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6

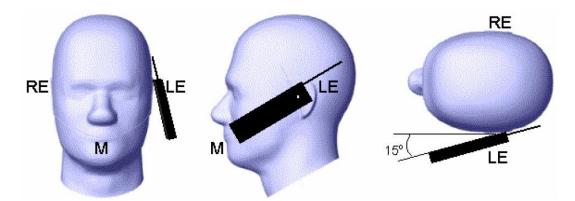
mm). Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters Dimensions: 810 x 1000 x 500 mm (H x L x W) Available: Special


Picture C.8: SAM Twin Phantom


ANNEX D Position of the wireless device in relation to the phantom

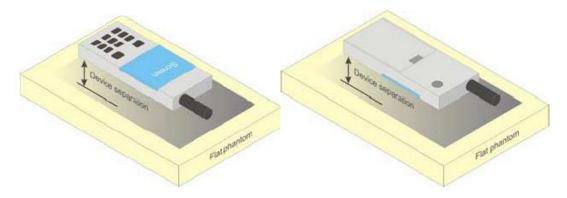
D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.



Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

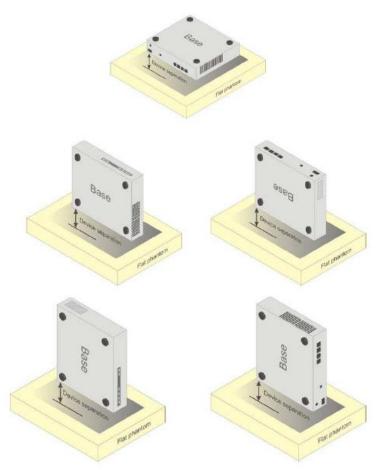
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

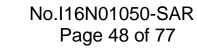
D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 700-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Frequency	835	835	1900	1900	2450	2450	5800	5800		
(MHz)	Head	Body	Head	Body	Head	Body	Head	Body		
Ingredients (% by	v weight)									
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53		
Sugar	56.0	45.0	١	١	١	١	١	\		
Salt	1.45	1.4	0.306	0.13	0.06	0.18	١	\		
Preventol	0.1	0.1	١	١	١	١	١	\		
Cellulose	1.0	1.0	١	١	١	١	١	\		
Glycol	1	1	44 450	20.06	A1 15	27.22				
Monobutyl	λ	Λ	44.452	29.96	41.15	27.22	١	١		
Diethylenglycol	``	``	\ \	λ.	N	1				
monohexylether	λ	Λ	١	١	١	١	17.24	17.24		
Triton X-100	\	١	١	١	١	١	17.24	17.24		
Dielectric	ε=41.5	ε=55.2	ε=40.0	c=E2 2	ε=39.2	c=50.7				
Parameters				ε=53.3		ε=52.7 σ=1.05	ε=35.3	ε=48.2		
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00		
Nata-Tharas real										


Note: Therearealittleadjustmentrespectively for 750, 1800, 2600, based on the recipeof closest frequency intable E.1

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

		Table F.1: System	Validation	
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
3151	Head 750MHz	Nov.7,2015	750 MHz	OK
3151	Head 900MHz	Nov.7,2015	850 MHz	OK
3151	Head 1750MHz	Nov.8,2015	1750 MHz	OK
3151	Head 1900MHz	Nov.8,2015	1900 MHz	OK
3151	Head 2450MHz	Nov.10,2015	2450 MHz	OK
3151	Body750MHz	Nov.7,2015	750 MHz	OK
3151	Body900MHz	Nov.7,2015	850 MHz	OK
3151	Body 1750MHz	Nov.8,2015	1750 MHz	OK
3151	Body 1900MHz	Nov.8,2015	1900 MHz	OK
3151	Body 2450MHz	Nov.10,2015	2450 MHz	OK

ANNEX G DAE Calibration Certificate

DAE4 SN:786 Calibration Certificate

Add: No.51 Xu Tel: +86-10-623		BRATIO
E-mail: cttl@ch	hinattl.com Http://www.chinattl.cn	b. L0570
	TL(South Branch) Certificate No: Z15-97191	
CALIBRATION	CERTIFICATE	
Object	DAE4 - SN: 786	
Calibration Procedure(s)	ED 744 2 002 04	
	FD-Z11-2-002-01 Calibration Procedure for the Data Acquisition Electronics	
	(DAEx)	
Calibration date:	November 16, 2015	
measurements(SI). The n pages and are part of the All calibrations have be	te documents the traceability to national standards, which realize the physical measurements and the uncertainties with confidence probability are given on the te certificate.	follow
measurements(SI). The n pages and are part of the All calibrations have be humidity<70%.	measurements and the uncertainties with confidence probability are given on the te certificate.	follow
measurements(SI). The n pages and are part of the All calibrations have be humidity<70%.	measurements and the uncertainties with confidence probability are given on the tecertificate.	e follow ±3)℃ a
measurements(SI). The m pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us	measurements and the uncertainties with confidence probability are given on the teacertificate. The conducted in the closed laboratory facility: environment temperature(22±3) and (M&TE critical for calibration)	e follow ±3)℃ a
measurements(SI). The n pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	measurements and the uncertainties with confidence probability are given on the feature. ecertificate. een conducted in the closed laboratory facility: environment temperature(22±: eed (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibrated by, Certificate No.) July-16	e follow ±3)℃ a
measurements(SI). The r pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	measurements and the uncertainties with confidence probability are given on the factor of certificate. een conducted in the closed laboratory facility: environment temperature(22±) eed (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 1971018 06-July-15 (CTTL, No:J15X04257)	e follow ±3)℃ a
measurements(SI). The n pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	measurements and the uncertainties with confidence probability are given on the fe certificate. een conducted in the closed laboratory facility: environment temperature(22±3 eed (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 1971018 06-July-15 (CTTL, No:J15X04257) July-16 Name Function	e follow ±3)℃ a

Certificate No: Z15-97191

Page 1 of 3

No.I16N01050-SAR Page 49 of 77

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z15-97191

Page 2 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Re	solution nomin	nal		
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measuremen	t parameters:	Auto Zero	Time: 3 sec; Meas	suring time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.093 ± 0.15% (k=2)	$404.316 \pm 0.15\%$ (k=2)	403.963 ± 0.15% (k=2)
Low Range	3.97218 ± 0.7% (k=2)	3.97265 ± 0.7% (k=2)	3.96261 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	318°±1°
---	---------

Certificate No: Z15-97191

Page 3 of 3

ANNEX H Probe Calibration Certificate

Probe ES3DV3-SN:3151 Calibration Certificate

		e a a 🦾	CNAS
	CALIBRAT	ON LABORATORY	C-MRA
Add: No.51 Xueyı Tel: +86-10-62304 E-mail: cttl@china	633-2218 Fax: +	rict, Beijing, 100191, China 86-10-62304633-2209 www.chinattl.cn	CALIBRATION No. L0570
Client CT	TL(South Bran	ch) Certificate No: Z15	-97160
CALIBRATION C	ERTIFICAT	E	A NOW
Object	ES3DV:	3 - SN:3151	
Calibration Procedure(s)			
		-2-004-01	
	Calibrat	ion Procedures for Dosimetric E-field Probes	
Calibration date:	October	30, 2015	
1991 / J.		raceability to national standards, which rea	
pages and are part of the contract of the cont	ertificate.	he closed laboratory facility: environment	temperature(22±3)°C and
humidity<70%. Calibration Equipment used	ertificate.		temperature(22±3)°C and
pages and are part of the contract of the cont	ertificate. conducted in t (M&TE critical fo ID #		temperature(22±3)°C and Scheduled Calibration
pages and are part of the constraints have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	ertificate. 1 conducted in t 1 (M&TE critical fo ID # 101919	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16
pages and are part of the constraints have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ertificate. 1 conducted in t 1 (M&TE critical fo ID # 101919 101547	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16
pages and are part of the constraints have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	ertificate. 1 conducted in t 1 (M&TE critical fo ID # 101919 101547 101548	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16 Jun-16
pages and are part of the constraints have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	ertificate. 1 conducted in t 1 (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16
pages and are part of the constraints have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	ertificate. a conducted in t I (M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16
pages and are part of the control of	ertificate. 1 conducted in t 1 (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16
pages and are part of the cr All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4	ertificate. a conducted in t (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16
pages and are part of the cr All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	ertificate. a conducted in t (M&TE critical fo ID# 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771 ID #	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16 Scheduled Calibration
pages and are part of the constraints have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	ertificate. a conducted in t (M&TE critical fo ID# 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771 ID# 6201052605	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04255)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16 Scheduled Calibration Jun-16
pages and are part of the constraints have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	ertificate. a conducted in t (M&TE critical fo ID# 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771 ID # 6201052605 MY46110673	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04255) 03-Feb-15 (CTTL, No.J15X00728)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16 Scheduled Calibration Jun-16 Feb-16
pages and are part of the control of	ertificate. a conducted in t (M&TE critical fo ID# 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771 ID# 6201052605 MY46110673 Name	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04255) 03-Feb-15 (CTTL, No.J15X00728) Function	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16 Scheduled Calibration Jun-16
pages and are part of the control of	ertificate. a conducted in t (M&TE critical fo ID# 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771 ID # 6201052605 MY46110673	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04255) 03-Feb-15 (CTTL, No.J15X00728)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16 Scheduled Calibration Jun-16 Feb-16
pages and are part of the constraints have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	ertificate. a conducted in t (M&TE critical fo ID# 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771 ID# 6201052605 MY46110673 Name	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04255) 03-Feb-15 (CTTL, No.J15X00728) Function	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16 Scheduled Calibration Jun-16 Feb-16

Certificate No: Z15-97160

Page 1 of 11

No.I16N01050-SAR Page 52 of 77

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
 phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z15-97160

Page 2 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn
 E-mail: cttl@chinattl.com

Probe ES3DV3

SN: 3151

Calibrated: October 30, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z15-97160

Page 3 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3151

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2) A	1.19	1.27	1.20	±10.8%
DCP(mV)B	102.8	103.1	103.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	260.1	±2.2%
		Y	0.0	0.0	1.0		269.1	
		Z	0.0	0.0	1.0		261.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z15-97160

Page 4 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3151

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.00	6.00	6.00	0.55	1.15	±12%
900	41.5	0.97	6.05	6.05	6.05	0.31	1.63	±12%
1450	40.5	1.20	5.23	5.23	5.23	0.27	1.70	±12%
1750	40.1	1.37	5.06	5.06	5.06	0.52	1.32	±12%
1900	40.0	1.40	4.96	4.96	4.96	0.56	1.32	±12%
2000	40.0	1.40	4.83	4.83	4.83	0.40	1.61	±12%
2300	39.5	1.67	4.68	4.68	4.68	0.90	1.00	±12%
2450	39.2	1.80	4.55	4.55	4.55	0.68	1.21	±12%
2600	39.0	1.96	4.39	4.39	4.39	0.56	1.41	±12%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z15-97160

Page 5 of 11

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3151

Relative Conductivity Depth^G Unct. f [MHz]^C ConvF X ConvF Y Alpha^G ConvF Z Permittivity F (S/m) F (mm) (k=2) 750 55.5 0.96 6.13 6.13 6.13 0.45 1.33 ±12% 900 55.0 1.05 5.91 5.91 5.91 0.38 1.55 ±12% 1450 54.0 1.30 5.15 5.15 5.15 0.38 1.61 ±12% 1750 53.4 1.49 4.75 4.75 4.75 0.53 1.37 ±12% 1900 53.3 1.52 4.50 4.50 4.50 0.52 1.42 ±12% 2000 53.3 1.52 4.50 4.50 4.50 0.56 1.39 $\pm 12\%$ 2300 52.9 1.81 4.32 4.32 4.32 0.90 1.10 ±12% 2450 52.7 1.95 4.26 4.26 4.26 0.71 1.24 ±12% 2600 52.5 2.16 4.00 4.00 4.00 0.55 1.49 ±12%

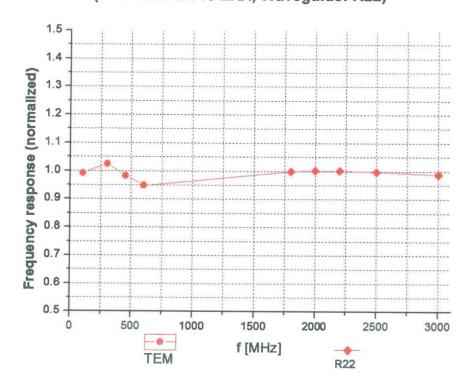
Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation

formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z15-97160

Page 6 of 11

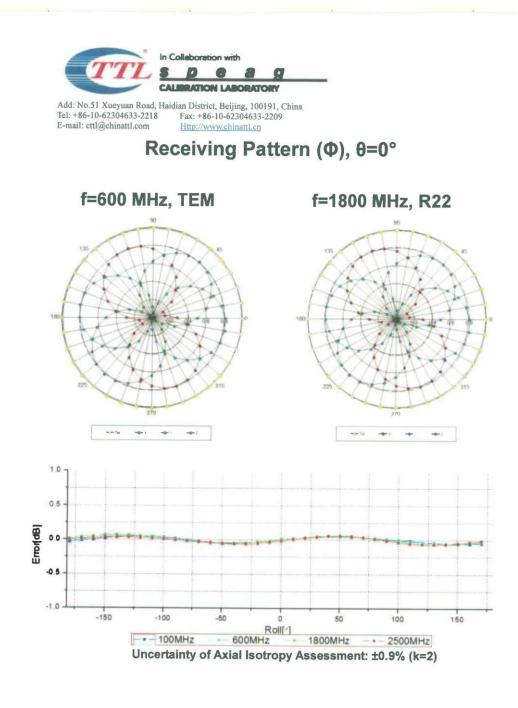


 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

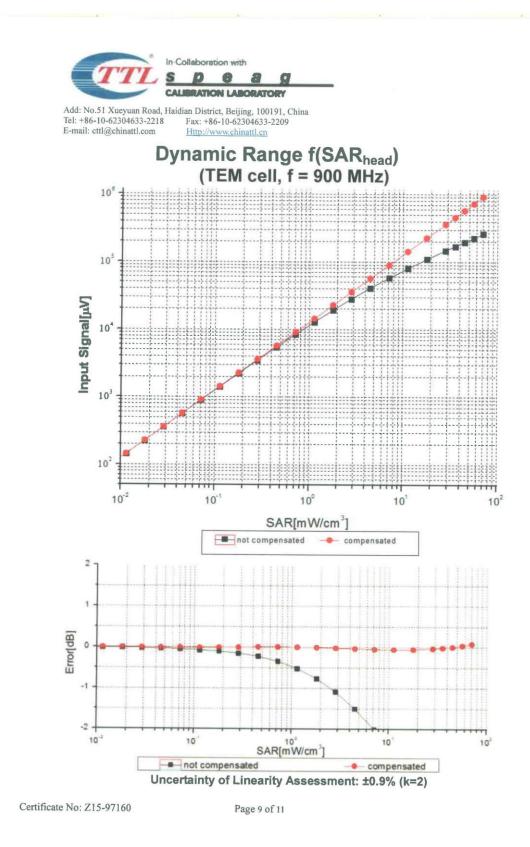
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: Z15-97160

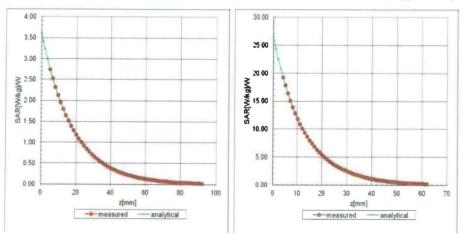
Page 7 of 11



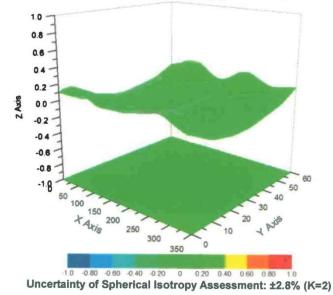
Certificate No: Z15-97160

Page 8 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China


 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>


Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z15-97160

Page 10 of 11

 Add: No.51
 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3151

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	85.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z15-97160

Page 11 of 11

ANNEX I DIPOLE CALIBRATION CERTIFICATE

835 MHz Dipole Calibration Certificate

Add: No.51 Xueyu Tel: +86-10-62304 E-mail: cttl@china	633-2079 Fax: +	rrict, Beijing, 100191, China 86-10-62304633-2504 /www.chinattl.cn	"handahalah	CALIBRATIC No. L0570	
	L(South Branch		Z15-97173		
CALIBRATION C	ERTIFICAT	E			
Object D		0835V2 - SN: 4d057			
Calibration Procedure(s)		FD-Z11-2-003-01 Calibration Procedures for dipole validation kits			
Calibration date:	Octobe	22, 2015			
All calibrations have been	ertificate.	the uncertainties with confidence probabili he closed laboratory facility: environme		re(22±3)℃ ar	
All calibrations have been numidity<70%.	ertificate.	he closed laboratory facility: environme or calibration)		re(22±3)"C ar	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards	ertificate.	he closed laboratory facility: environme or calibration) Cal Date(Calibrated by, Certificate No.)	nt temperatu		
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	ertificate. conducted in t (M&TE critical fo ID # 101919	he closed laboratory facility: environme or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	nt temperatu Schedule Ji	d Calibration	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ertificate. 1 conducted in t 1 (M&TE critical for ID # 101919 101547	he closed laboratory facility: environme or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	nt temperatu Schedule Ji Ji	d Calibration un-16 un-16	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	ertificate. conducted in t (M&TE critical for ID # 101919 101547 SN 3617	he closed laboratory facility: environme or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 26-Aug-15(SPEAG,No.EX3-3617_Aug1	nt temperatu Schedule Ji Ji 5) A	d Calibration un-16 un-16 ug -16	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	ertificate. 1 conducted in t 1 (M&TE critical for ID # 101919 101547	he closed laboratory facility: environme or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	nt temperatu Schedule Ji Ji 5) A	d Calibratior un-16 un-16	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	ertificate. conducted in t (M&TE critical for ID # 101919 101547 SN 3617 SN 777 ID #	he closed laboratory facility: environme or calibration)	Schedule Ji 5) A 5) A	d Calibration un-16 un-16 ug -16 ug -16	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. conducted in t (M&TE critical for ID # 101919 101547 SN 3617 SN 777 ID # ID # MY49071430	he closed laboratory facility: environme or calibration)	Schedule Ji 5) A Schedule F	d Calibration un-16 un-16 ug -16 ug -16 d Calibration eb-16	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	ertificate. conducted in t (M&TE critical for ID # 101919 101547 SN 3617 SN 777 ID # ID # MY49071430	he closed laboratory facility: environme or calibration)	Schedule Ji 5) A Schedule F	d Calibration un-16 un-16 ug -16 ug -16 ug -16	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. conducted in t (M&TE critical for ID # 101919 101547 SN 3617 SN 777 ID # ID # MY49071430	he closed laboratory facility: environme or calibration)	nt temperatu Schedule 5) A 5) A Schedule F F	d Calibration un-16 un-16 ug -16 ug -16 d Calibration eb-16	
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ertificate. a conducted in t (M&TE critical for ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673	he closed laboratory facility: environme or calibration)	nt temperatu Schedule 5) A 5) A Schedule F F	d Calibration un-16 un-16 ug -16 ug -16 d Calibration eb-16 eb-16	
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. a conducted in t (M&TE critical for ID # 101919 101547 SN 3617 SN 777 ID # MY49071430 MY46110673 Name	he closed laboratory facility: environme or calibration)	nt temperatu Schedule 5) A 5) A Schedule F F	d Calibration un-16 un-16 ug -16 ug -16 d Calibration eb-16 eb-16	

Certificate No: Z15-97173

Page 1 of 8