

TEST REPORT

Applicant Name : Address :

Report Number : FCC ID: VTech Telecommunications Ltd 23/F Tai Ping Ind Center Block 1 57 Ting Kok Rd Tai Po NT,Hong Kong RA230418-20204E-RF-00A EW780-0756-01

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type:DECT 6.0 Cordless PhoneModel No.:CL82207Multiple Model(s) No.:Refer to page 5Trade Mark:AT&TDate Received:2023/04/18Report Date:2023/05/25

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Approved By:

Andy Tu

Andy Yu EMC Engineer

Candry . Cr

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk ^{**}. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

this report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503290
 Web: www.atc-lab.com

Version 7: 2023-01-30

Page 1 of 82

FCC-BT

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SPECIAL ACCESSORIES	
Equipment Modifications Support Equipment List and Details	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
FCC §1.1307(B) & §2.1091 – RF EXPOSURE EVALUATION	12
APPLICABLE STANDARD	
Result	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure	
Transd Factor & Margin Calculation Test Data	
FCC §15.205, §15.209 & §15.247(D) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure Corrected Factor & Margin Calculation	
TEST DATA	
FCC §15.247(A) (1)-CHANNEL SEPARATION TEST	40
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	40

Version 7: 2023-01-30

FCC-BT

FCC §15.247(A) (1) – 20 DB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	41
APPLICABLE STANDARD	
TEST PROCEDURE	
ТЕЅТ DATA	42
FCC §15.247(A) (1) (III)-QUANTITY OF HOPPING CHANNEL TEST	43
APPLICABLE STANDARD	43
TEST PROCEDURE	
TEST DATA	43
FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)	44
APPLICABLE STANDARD	44
Test Procedure	
TEST DATA	44
FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT	45
APPLICABLE STANDARD	
Test Procedure	45
TEST DATA	45
FCC §15.247(D) & RSS-247 § 5.5 - BAND EDGES TESTING	46
APPLICABLE STANDARD	46
TEST PROCEDURE	
ТЕЅТ DATA	46
APPENDIX	47
APPENDIX A: 20dB Emission Bandwidth	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX D: CARRIER FREQUENCY SEPARATION	
APPENDIX E: TIME OF OCCUPANCY Appendix F: Number of hopping channels	
APPENDIX F: NUMBER OF HOPPING CHANNELS APPENDIX G: BAND EDGE MEASUREMENTS	
AFFENDIA G. DAND EDGE MEASUREMENTS	//

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RA230418-20204E-RF-00A	Original Report	2023-05-25

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	DECT 6.0 Cordless Phone
Tested model	CL82207
Multiple Model(s)	FP: CL82107, CL82167, CL82257, CL82267, CL82307, CL82357, CL82407, CL82507, CL82567, CL82XY7 (model difference see product declaration letter of similarity)
Frequency Range	Bluetooth: 2402~2480MHz
Maximum conducted Peak output power	Bluetooth: 4.5dBm
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK, 8DPSK
Antenna Specification*	0 dBi (provided by the applicant)
Voltage Range	DC 6V from adapter
Test Sample serial number	24S8_1 for Conducted and Radiated Emissions Test 24S8_9 for RF Conducted Test (Assigned by ATC)
Sample/EUT Status	Good condition
Adapter 1 Information	Model: E004-1A060040VU Input: AC 100-120V, 50/60Hz, 0.1A Output: DC 6.0V, 0.4A
Adapter 2 Information	Model: A318-060040W-US1 Input: AC 100-120V, 50-60Hz, 0.15A Output: DC 6.0V, 0.4A
Adapter 3 Information	Model: DSA-3PFM-05 BUS 060040 Input: AC 100-120V, 50/60Hz, 0.15A Output: DC 6.0V, 0.4A, 2.4W
Adapter 4 Information	Model: VT05UUS06040 Input: AC 100-120V, 60Hz, 150mA Output: DC 6V, 400mA

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Para	meter	Uncertainty	
Occupied Char	nnel Bandwidth	5%	
RF Fre	equency	$0.082*10^{-7}$	
RF output pov	wer, conducted	0.71dB	
Unwanted Emis	ssion, conducted	1.6dB	
AC Power Lines C	onducted Emissions	2.72dB	
	9kHz - 30MHz	2.06dB	
.	30MHz - 1GHz	5.08dB	
Emissions, Radiated	1GHz - 18GHz	4.96dB	
Radiated	18GHz - 26.5GHz	5.16dB	
	26.5GHz - 40GHz	4.64dB	
Temperature		1 °C	
Humidity		6%	
Supply	voltages	0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 30241.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"UniTool_4v91.exe" exercise software was used and the power level is default*. The power level was provided by the manufacturer.

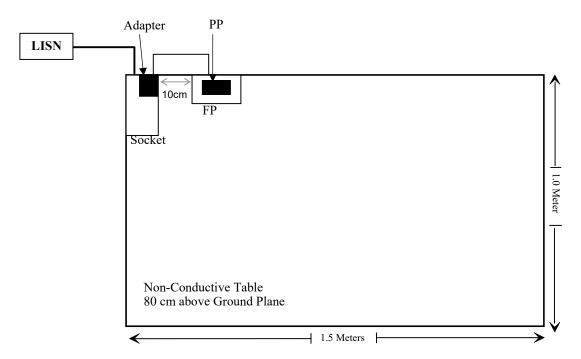
Special Accessories

No special accessory.

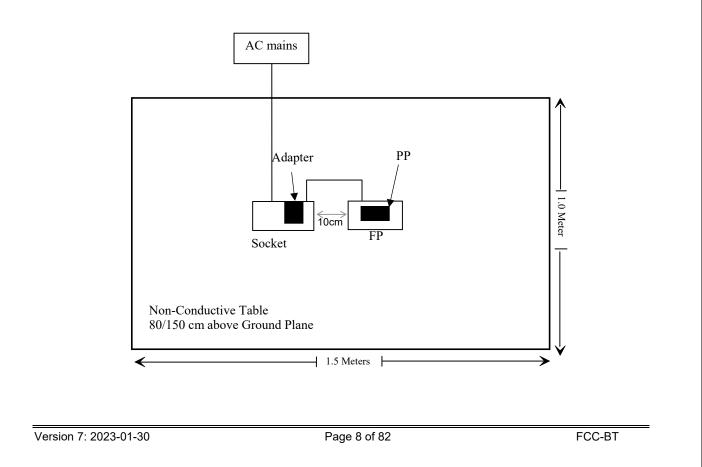
Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
VTech	DECT 6.0 Cordless Phone (PP)	CL82207	Unknown

External I/O Cable


Cable Description	Length (m)	From Port	То
Unshielded un-detachable DC cable	2.0	Adapter EUT(FP)	
Unshielded un-detachable AC cable	1.2	LISN/ AC mains	Socket

Block Diagram of Test Setup

For Conducted Emissions

For Radiated Emissions:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§ 1.1310 & §2.1091	RF Exposure Evaluation	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model Serial Number		Calibration Date	Calibration Due Date			
Conducted Emissions Test								
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2022/11/25	2023/11/24			
Rohde & Schwarz	L.I.S.N.	ESH3-Z5	100305	2022/12/01	2023/11/30			
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2022/12/07	2023/12/06			
Unknown	RF Coaxial Cable	No.17	N0350	2022/11/25	2023/11/24			
	Conducted En	nission Test Softw	vare: e3 19821b (V	79)				
	ŀ	Radiated Emissio	ons Test					
Rohde& Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24			
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07			
A.H. Systems, inc.	Preamplifier	PAM-0118P	PAM-0118P 135		2023/11/07			
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2022/11/08	2023/11/07			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05			
Schwarzbeck	Horn Antenna	BBHA9120D	837	2023/02/22	2026/02/21			
Schwarzbeck	HORN ANTENNA	BBHA9170 9170-359		2022/12/26	2025/12/25			
	Radiated Em	ission Test Softw	are: e3 19821b (V	9)				
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24			
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2022/11/25	2023/11/24			

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		RF Conducte	d Test		
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101590	2022/11/25	2023/11/24
Tonscend	RF Control Unit	JS0806-2	19G8060182	2022/10/24	2023/10/23
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.31	RF-01	Each time	

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307(b) & §2.1091 – RF EXPOSURE EVALUATION

Applicable Standard

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.4 – MPE-Based Exemption:

An alternative to the SAR-based exemption is provided in § 1.1307(b)(3)(i)(C), for a much wider frequency range, from 300 kHz to 100 GHz, applicable for separation distances greater or equal to $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. The MPE-based test exemption condition is in terms of ERP, defined as the product of the maximum antenna gain and the delivered maximum time-averaged power. For this case, a RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as detailed tabular form in Appendix B. These limits have been derived based on the basic specifications on Maximum Permissible Exposure (MPE) considered for the FCC rules in § 1.1310(e)(1).

Table to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

f = frequency in MHz;

R = minimum separation distance from the body of a nearby person (appropriate units, e.g., m);

For multiple RF sources: Multiple RF sources are exempt if:

in the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation:

$$\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \le 1$$

Result

Mode	Frequency (MHz)	Tune up conducted power*	Antenna Gain		ERP		Evaluation Distance	MPE-Based Exemption Threshold
	· · ·	(dBm)	(dBi)	(dBd)	(dBm)	(mW)	(m)	(mW)
Bluetooth	2402-2480	5.0	0	-2.15	2.85	1.93	0.2	768
DECT	1921.536- 1928.448	20.5	0	-2.15	18.35	68.39	0.2	768

Note 1: The tune-up power was declared by the applicant. Note 2: 0dBd=2.15dBi.

Note 3: The DECT function can transmit at the same time with the Bluetooth function.

Simultaneous transmitting consideration (worst case):

The ratio= ERP_{DECT} /limit+ ERP_{BT} /limit= 68.39/768+1.93/768=0.09<1.0

Result: Compliant.

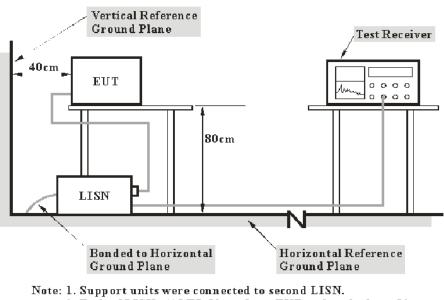
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached, the antenna gain is 0dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Transd Factor & Margin Calculation

The Transd factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

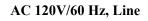
Transd Factor = LISN VDF + Cable Loss

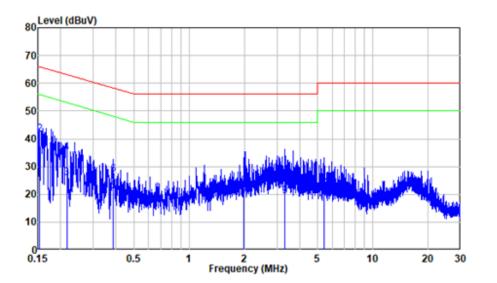
The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Over Limit = level – Limit Level= reading level+ Transd Factor

Test Data

Environmental Conditions

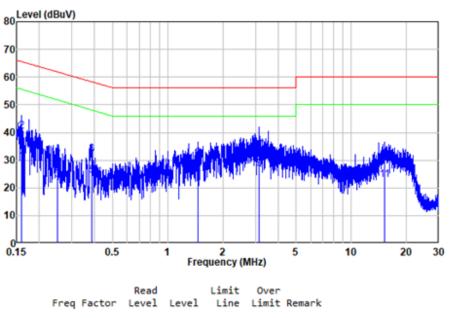

Temperature:	23 °C
Relative Humidity:	49 %
ATM Pressure:	101.2 kPa


The testing was performed by Jerry Wu on 2023-05-15.

EUT operation mode: Transmitting (the worst case is 8DPSK Mode, Low channel)

Report No.: RA230418-20204E-RF-00A

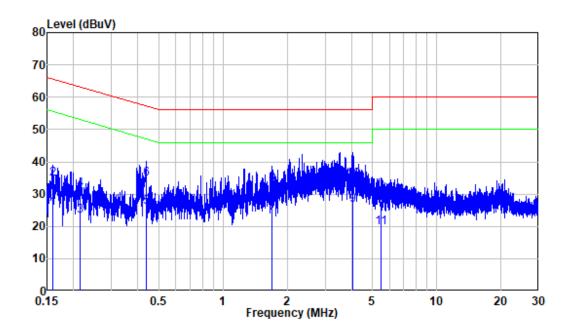
For Adapter 1



			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.153	10.36	21.00	31.36	55.85	-24.49	Average
2	0.153	10.36	31.24	41.60	65.85	-24.25	QP
3	0.215	10.31	15.57	25.88	52.99	-27.11	Average
4	0.215	10.31	24.83	35.14	62.99	-27.85	QP
5	0.386	10.48	10.61	21.09	48.14	-27.05	Average
6	0.386	10.48	16.76	27.24	58.14	-30.90	QP
7	1.979	10.39	7.76	18.15	46.00	-27.85	Average
8	1.979	10.39	12.68	23.07	56.00	-32.93	QP
9	3.304	10.50	8.92	19.42	46.00	-26.58	Average
10	3.304	10.50	16.01	26.51	56.00	-29.49	QP
11	5.411	10.56	5.95	16.51	50.00	-33.49	Average
12	5.411	10.56	11.75	22.31	60.00	-37.69	QP

Report No.: RA230418-20204E-RF-00A

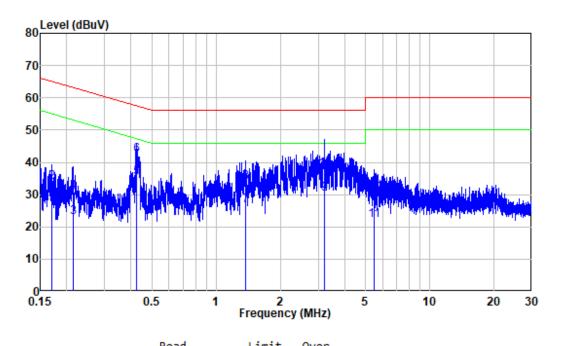
AC 120V/60 Hz, Neutral



	rreq	ractor	Level	Level	LINE	LIMIC	Reliar K
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.159	10.28	19.24	29.52	55.50	-25.98	Average
2	0.159	10.28	30.23	40.51	65.50	-24.99	QP
3	0.252	10.33	12.58	22.91	51.69	-28.78	Average
4	0.252	10.33	21.28	31.61	61.69	-30.08	QP
5	0.384	10.41	14.11	24.52	48.19	-23.67	Average
6	0.384	10.41	21.56	31.97	58.19	-26.22	QP
7	1.467	10.44	12.06	22.50	46.00	-23.50	Average
8	1.467	10.44	20.41	30.85	56.00	-25.15	QP
9	3.144	10.53	16.31	26.84	46.00	-19.16	Average
10	3.144	10.53	23.11	33.64	56.00	-22.36	QP
11	15.126	10.18	12.83	23.01	50.00	-26.99	Average
12	15.126	10.18	19.74	29.92	60.00	-30.08	QP

Report No.: RA230418-20204E-RF-00A

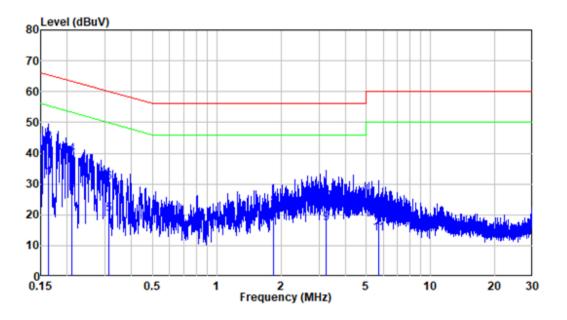
For Adapter 2



	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.160	10.36	15.19	25.55	55.46	-29.91	Average
2	0.160	10.36	24.37	34.73	65.46	-30.73	QP
3	0.215	10.31	12.91	23.22	53.02	-29.80	Average
4	0.215	10.31	21.02	31.33	63.02	-31.69	QP
5	0.436	10.52	15.55	26.07	47.14	-21.07	Average
6	0.436	10.52	24.31	34.83	57.14	-22.31	QP
7	1.687	10.40	13.74	24.14	46.00	-21.86	Average
8	1.687	10.40	22.84	33.24	56.00	-22.76	QP
9	4.035	10.54	15.93	26.47	46.00	-19.53	Average
10	4.035	10.54	23.80	34.34	56.00	-21.66	QP
11	5.480	10.57	9.18	19.75	50.00	-30.25	Average
12	5.480	10.57	17.12	27.69	60.00	-32.31	QP

Report No.: RA230418-20204E-RF-00A

AC 120V/60 Hz, Neutral



			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.170	10.28	15.50	25.78	54.94	-29.16	Average
2	0.170	10.28	23.54	33.82	64.94	-31.12	QP
3	0.213	10.30	12.58	22.88	53.07	-30.19	Average
4	0.213	10.30	20.35	30.65	63.07	-32.42	QP -
5	0.425	10.43	24.95	35.38	47.34	-11.96	Average
6	0.425	10.43	31.71	42.14	57.34	-15.20	QP
7	1.367	10.42	16.00	26.42	46.00	-19.58	Average
8	1.367	10.42	23.26	33.68	56.00	-22.32	QP
9	3.220	10.53	19.71	30.24	46.00	-15.76	Average
10	3.220	10.53	27.34	37.87	56.00	-18.13	QP
11	5.473	10.51	11.60	22.11	50.00	-27.89	Average
12	5.473	10.51	19.78	30.29	60.00	-29.71	QP

Report No.: RA230418-20204E-RF-00A

For Adapter 3

AC 120V/60 Hz, Line

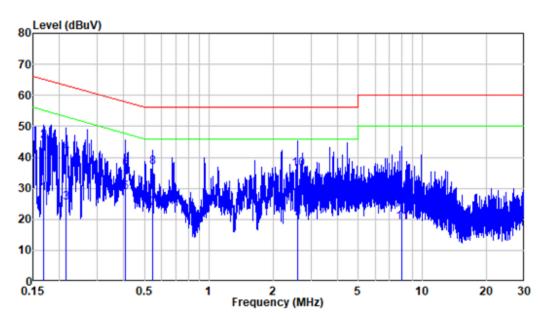
	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.163	10.35	21.74	32.09	55.32	-23.23	Average
2	0.163	10.35	33.24	43.59	65.32	-21.73	QP
3	0.210	10.30	17.41	27.71	53.20	-25.49	Average
4	0.210	10.30	29.14	39.44	63.20	-23.76	QP
5	0.313	10.42	9.88	20.30	49.89	-29.59	Average
6	0.313	10.42	20.15	30.57	59.89	-29.32	QP
7	1.832	10.40	6.84	17.24	46.00	-28.76	Average
8	1.832	10.40	12.20	22.60	56.00	-33.40	QP
9	3.248	10.50	6.81	17.31	46.00	-28.69	Average
10	3.248	10.50	13.54	24.04	56.00	-31.96	QP
11	5.721	10.57	3.20	13.77	50.00	-36.23	Average
12	5.721	10.57	11.61	22.18	60.00	-37.82	QP

Report No.: RA230418-20204E-RF-00A

80 Level (dBuV) 0.15

Frequency (MHz)

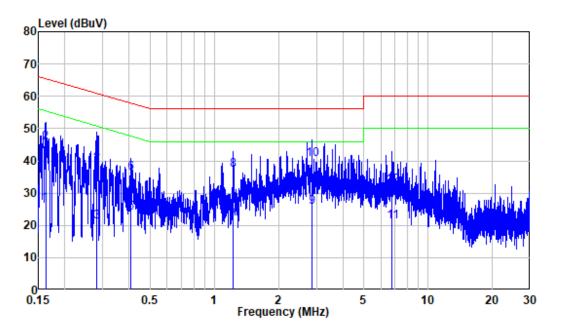
	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.157	10.28	21.63	31.91	55.61	-23.70	Average
2	0.157	10.28	32.82	43.10	65.61	-22.51	QP
3	0.217	10.30	15.94	26.24	52.91	-26.67	Average
4	0.217	10.30	28.01	38.31	62.91	-24.60	QP
5	0.320	10.37	8.95	19.32	49.70	-30.38	Average
6	0.320	10.37	18.72	29.09	59.70	-30.61	QP
7	1.642	10.45	10.50	20.95	46.00	-25.05	Average
8	1.642	10.45	17.19	27.64	56.00	-28.36	QP
9	2.112	10.50	12.89	23.39	46.00	-22.61	Average
10	2.112	10.50	20.19	30.69	56.00	-25.31	QP
11	5.170	10.51	11.98	22.49	50.00	-27.51	Average
12	5.170	10.51	19.51	30.02	60.00	-29.98	QP


0.5

AC 120V/60 Hz, Neutral

Report No.: RA230418-20204E-RF-00A

For Adapter 4

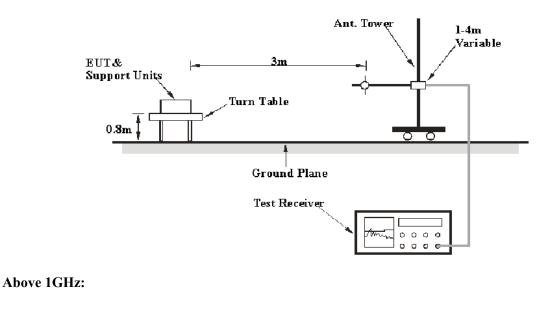


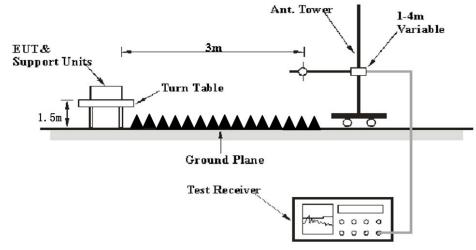
			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.169	10.34	17.99	28.33	55.01	-26.68	Average
2	0.169	10.34	35.03	45.37	65.01	-19.64	QP
3	0.215	10.31	15.03	25.34	53.01	-27.67	Average
4	0.215	10.31	31.05	41.36	63.01	-21.65	QP
5	0.405	10.49	18.08	28.57	47.75	-19.18	Average
6	0.405	10.49	25.75	36.24	57.75	-21.51	QP
7	0.544	10.60	12.99	23.59	46.00	-22.41	Average
8	0.544	10.60	26.38	36.98	56.00	-19.02	QP
9	2.593	10.46	9.86	20.32	46.00	-25.68	Average
10	2.593	10.46	25.81	36.27	56.00	-19.73	QP
11	7.993	10.61	8.39	19.00	50.00	-31.00	Average
12	7.993	10.61	18.03	28.64	60.00	-31.36	QP

Report No.: RA230418-20204E-RF-00A

AC 120V/60 Hz, Neutral

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.162	10.28	16.23	26.51	55.35	-28.84	Average
2	0.162	10.28	35.19	45.47	65.35	-19.88	QP
3	0.281	10.35	10.85	21.20	50.79	-29.59	Average
4	0.281	10.35	29.77	40.12	60.79	-20.67	QP
5	0.406	10.42	13.40	23.82	47.73	-23.91	Average
6	0.406	10.42	25.68	36.10	57.73	-21.63	QP
7	1.228	10.40	10.89	21.29	46.00	-24.71	Average
8	1.228	10.40	26.64	37.04	56.00	-18.96	QP
9	2.854	10.52	15.09	25.61	46.00	-20.39	Average
10	2.854	10.52	29.92	40.44	56.00	-15.56	QP
11	6.787	10.52	10.63	21.15	50.00	-28.85	Average
12	6.787	10.52	21.77	32.29	60.00	-27.71	QP


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS


Applicable Standard

FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК

For average measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc. Average Emission Level=Peak Emission Level+20*log(Duty cycle)

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Factor & Margin Calculation

The Corrected Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

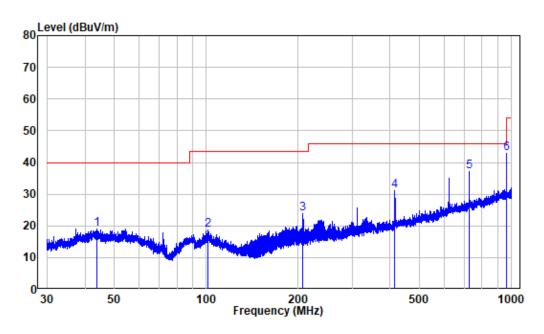
The "**Over Limit or Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a overlimit/margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin/Over Limit = Corrected Amplitude (Absolute Level)/Level-Limit Corrected Amplitude/Level = Reading + Corrected Factor

Test Data

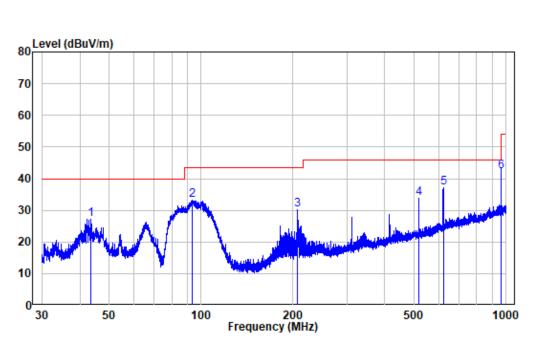
Environmental Conditions

Temperature:	24~25.2 ℃
Relative Humidity:	52~55 %
ATM Pressure:	101 kPa


The testing was performed by Jason Liu on 2023-05-16 for below 1GHz Zeki Ma on 2023-05-11 for above 1GHz.

Test mode: Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case X-axes of orientation was recorded)

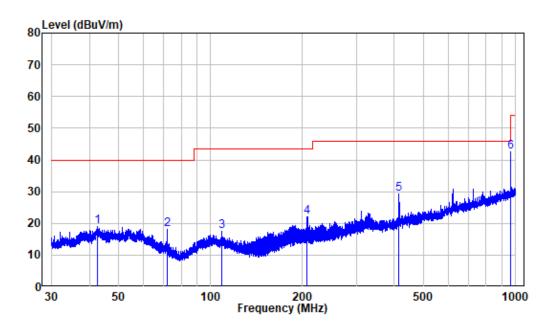
30MHz-1GHz: (the worst case is 8DPSK Mode, Low channel)


Note: When the test result of Peak was more than 6dB below the limit of QP, just the Peak value was recorded. **For Adapter 1**

Horizontal:

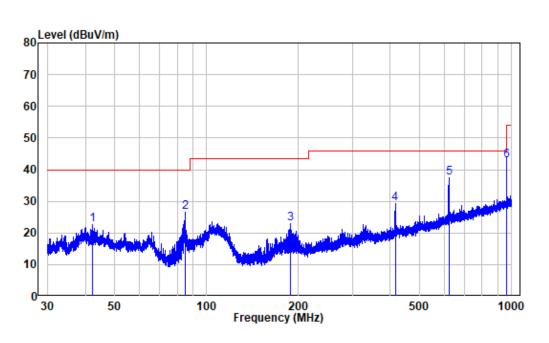
Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	20204
Test Mode:	BT Transmitting
Note :	E004-1A060040VU

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	43.850	-9.91	29.01	19.10	40.00	-20.90	Peak
2	101.111	-11.67	30.45	18.78	43.50	-24.72	Peak
3	207.304	-11.85	35.67	23.82	43.50	-19.68	Peak
4	414.904	-6.23	37.19	30.96	46.00	-15.04	Peak
5	725.850	-1.22	38.47	37.25	46.00	-8.75	Peak
6	960.000	2.36	40.36	42.72	46.00	-3.28	QP


Vertical

Site :	chamber
Condition:	3m VERTICAL
Job No. :	20204
Test Mode:	BT Transmitting
Note :	E004-1A060040VU

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	43.506	-9.92	37.06	27.14	40.00	-12.86	Peak
2	93.358	-12.89	46.25	33.36	43.50	-10.14	Peak
3	207.395	-11.85	41.90	30.05	43.50	-13.45	Peak
4	518.383	-4.29	38.14	33.85	46.00	-12.15	Peak
5	622.072	-2.46	39.58	37.12	46.00	-8.88	Peak
6	960.000	2.36	39.91	42.27	46.00	-3.73	QP

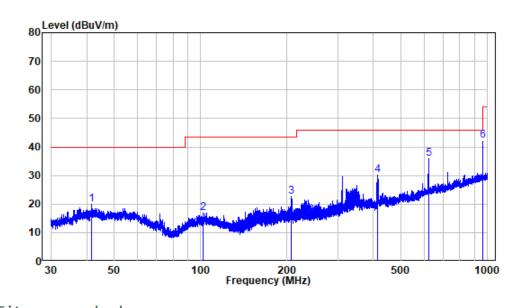

For Adapter 2

Horizontal:

Site :	chamber			
Condition:	3m HORIZONTAL			
Job No. :	20204			
Test Mode:	BT Transmitting			
Note :	A318-060040W-US1			

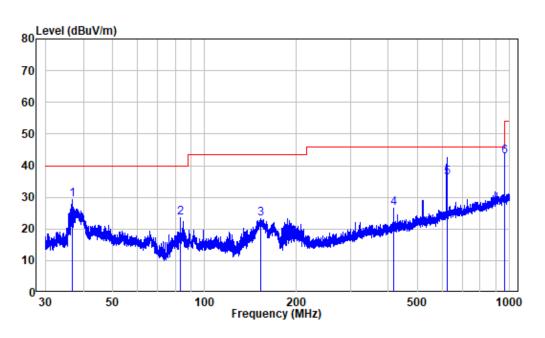
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	42.507	-9.98	28.95	18.97	40.00	-21.03	Peak
2	71.927	-15.59	33.66	18.07	40.00	-21.93	Peak
3	108.552	-11.99	29.47	17.48	43.50	-26.02	Peak
4	207.395	-11.85	33.98	22.13	43.50	-21.37	Peak
5	414.904	-6.23	35.37	29.14	46.00	-16.86	Peak
6	960.000	2.36	40.22	42.58	46.00	-3.42	QP

Vertical


Site :	chamber
Condition:	3m VERTICAL
Job No. :	20204
Test Mode:	BT Transmitting
Note :	A318-060040W-US1

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	42.117	-10.01	32.59	22.58	40.00	-17.42	Peak
2	84.962	-15.65	42.08	26.43	40.00	-13.57	Peak
3	188.495	-11.76	34.60	22.84	43.50	-20.66	Peak
4	415.086	-6.23	35.45	29.22	46.00	-16.78	Peak
5	622.072	-2.46	39.84	37.38	46.00	-8.62	Peak
6	960.000	2.36	40.50	42.86	46.00	-3.14	QP

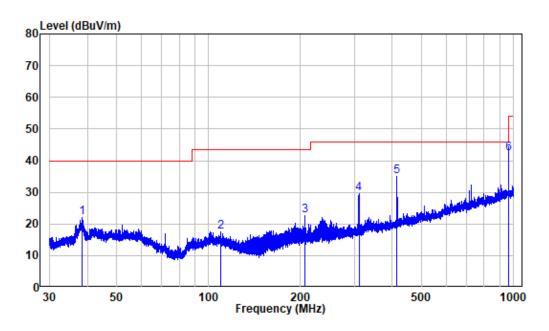
Report No.: RA230418-20204E-RF-00A


For Adapter 3

Horizontal:

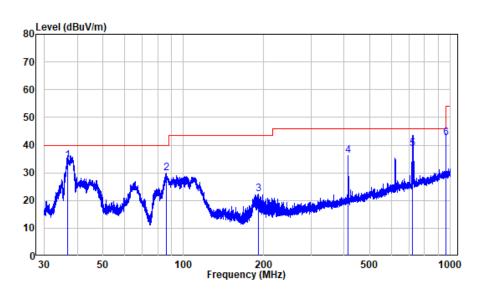
Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	20204
Test Mode:	BT Transmitting
Note :	DSA-3PFM-05 BUS 060040

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	41.549	-10.10	29.98	19.88	40.00	-20.12	Peak
2	102.136	-11.58	28.47	16.89	43.50	-26.61	Peak
3	207.395	-11.85	34.34	22.49	43.50	-21.01	Peak
4	414.722	-6.24	36.34	30.10	46.00	-15.90	Peak
5	622.344	-2.44	38.35	35.91	46.00	-10.09	Peak
6	960.000	2.36	39.95	42.31	46.00	-3.69	QP


Vertical

Site :	chamber					
Condition:	3m VERTICAL					
Job No. :	20204					
Test Mode:	BT Transmitting					
Note :	DSA-3PFM-05 BUS 060040					

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	36.831	-11.05	40.30	29.25	40.00	-10.75	Peak
2	83.376	-16.24	39.83	23.59	40.00	-16.41	Peak
3	152.597	-15.11	38.45	23.34	43.50	-20.16	Peak
4	415.997	-6.21	32.80	26.59	46.00	-19.41	Peak
5	622.344	-2.44	38.69	36.25	46.00	-9.75	QP
6	960.000	2.36	40.46	42.82	46.00	-3.18	QP


For Adapter 4

Horizontal:

Site :	chamber				
Condition:	3m HORIZONTAL				
Job No. :	20204				
Test Mode:	BT Transmitting				
Note :	VT05UUS06040				

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	38.363	-10.74	32.82	22.08	40.00	-17.92	Peak
2	109.844	-11.97	29.56	17.59	43.50	-25.91	Peak
3	207.395	-11.85	34.34	22.49	43.50	-21.01	Peak
4	310.950	-8.86	38.40	29.54	46.00	-16.46	Peak
5	414.722	-6.24	41.17	34.93	46.00	-11.07	Peak
6	960.000	2.36	39.81	42.17	46.00	-3.83	QP

Site : chamber Condition: 3m VERTICAL Job No. : 20204 Test Mode: BT Transmitting Note : VT05UUS06040

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	36.702	-11.06	45.38	34.32	40.00	-5.68	QP
2	86.276	-15.12	45.03	29.91	40.00	-10.09	Peak
3	190.489	-11.50	33.93	22.43	43.50	-21.07	Peak
4	414.722	-6.24	42.35	36.11	46.00	-9.89	Peak
5	723.627	-1.30	39.80	38.50	46.00	-7.50	QP
6	960.000	2.36	40.31	42.67	46.00	-3.33	QP

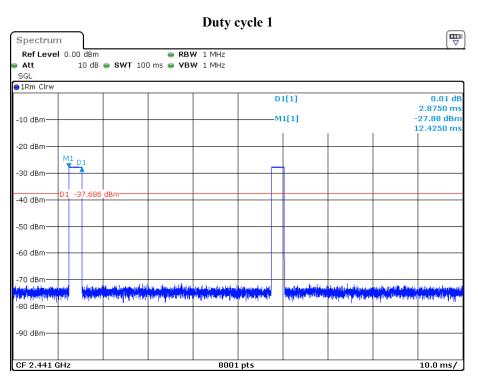
Vertical

Report No.: RA230418-20204E-RF-00A

Above 1GHz: (worst case is 8DPSK Mode)

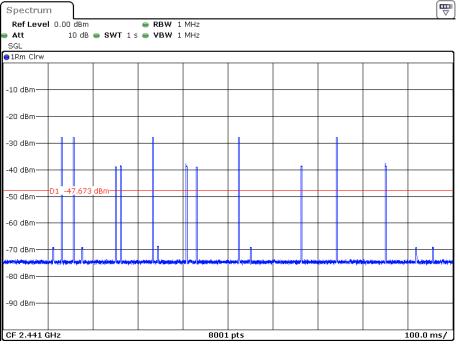
Frequency (MHz)	Receiver		T	Rx Antenna		Esstar	Corrected	T ::4	Manaia	
	Reading (dBµV)	PK/Ave	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel 2402MHz										
2362.05	69.26	РК	168	1.3	Н	-10.76	58.50	74	-15.50	
2312.14	68.97	РК	96	2	V	-10.39	58.58	74	-15.42	
2390	68.78	РК	268	1.9	Н	-10.70	58.08	74	-15.92	
2390	69.01	РК	226	2.4	V	-10.70	58.31	74	-15.69	
4804	60.10	РК	154	1.9	Н	-6.11	53.99	74	-20.01	
4804	59.56	РК	196	1.9	V	-6.11	53.45	74	-20.55	
			Mide	dle Channel	2441MHz					
4882	60.03	РК	302	1.8	Н	-5.90	54.13	74	-19.87	
4882	59.48	РК	145	1.8	V	-5.90	53.58	74	-20.42	
			Hig	h Channel 2	480MHz					
2483.5	66.72	РК	228	1.4	Н	-10.55	56.17	74	-17.83	
2483.5	66.54	РК	146	2.4	V	-10.55	55.99	74	-18.01	
2489.05	67.11	РК	104	1.4	Н	-10.51	56.60	74	-17.40	
2489.93	66.88	РК	186	1.6	V	-10.50	56.38	74	-17.62	
4960	59.58	РК	191	1.8	Н	-5.47	54.11	74	-19.89	
4960	58.97	РК	297	1.8	V	-5.47	53.50	74	-20.50	

Report No.: RA230418-20204E-RF-00A


Field Strength of Average									
Frequency	Peak Measurement	Polar	Duty Cycle Correction	Corrected	FCC Part 15.247				
(MHz)	@3m (dBμV/m)	(H/V)	Factor (dB)	Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment		
Low Channel(2402MHz)									
2362.05	58.50	Н	-24.81	33.69	54	-20.31	Bandedge		
2312.14	58.58	V	-24.81	33.77	54	-20.23	Bandedge		
2390	58.08	Н	-24.81	33.27	54	-20.73	Bandedge		
2390	58.31	V	-24.81	33.50	54	-20.50	Bandedge		
4804	53.99	Н	-24.81	29.18	54	-24.82	Harmonic		
4804	53.45	V	-24.81	28.64	54	-25.36	Harmonic		
			Middle Channe	el(2441MHz)					
4882	54.13	Н	-24.81	29.32	54	-24.68	Harmonic		
4882	53.58	V	-24.81	28.77	54	-25.23	Harmonic		
High Channel(2480MHz)									
2483.5	56.17	Н	-24.81	31.36	54	-22.64	Bandedge		
2483.5	55.99	V	-24.81	31.18	54	-22.82	Bandedge		
2489.05	56.60	Н	-24.81	31.79	54	-22.21	Bandedge		
2489.93	56.38	V	-24.81	31.57	54	-22.43	Bandedge		
4960	54.11	Н	-24.81	29.30	54	-24.70	Harmonic		
4960	53.50	V	-24.81	28.69	54	-25.31	Harmonic		

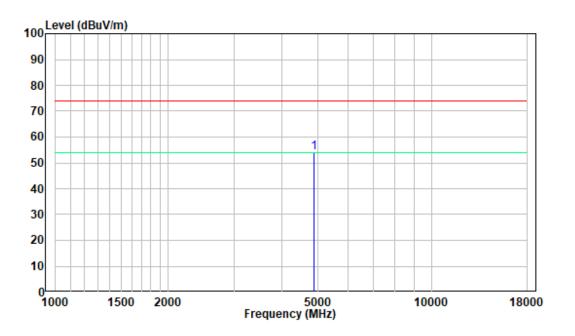
Note:

Absolute Level = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit Average level= Peak level+ Duty Cycle Corrected Factor For fundamental, the peak value compliance with the limit of Average.

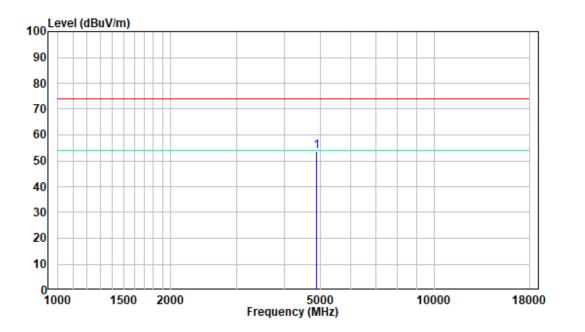

Duty cycle = Ton/100ms = 2.8750*2/100=0.0575 Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.0575 = -24.81

Report No.: RA230418-20204E-RF-00A

Date: 11.MAY.2023 18:01:33

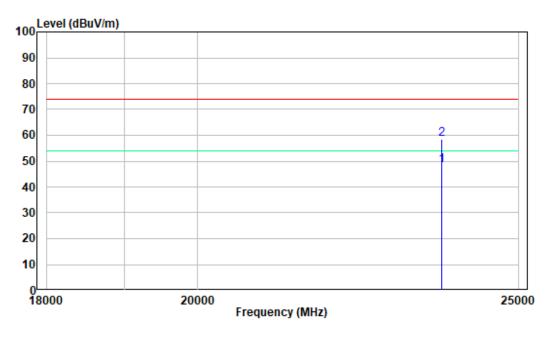


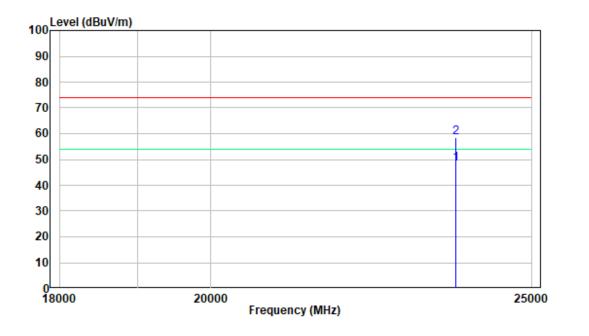
Date: 11.MAY.2023 19:01:17


1-18GHz

Pre-scan, Middle Channel (worst case)

Horizontal:



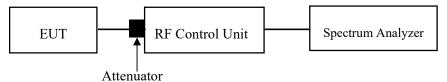

18-25GHz

Pre-scan, Middle Channel (worst case)

Horizontal:

Vertical:

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST


Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.2

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	22.5 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-05-11.

EUT operation mode: Transmitting

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

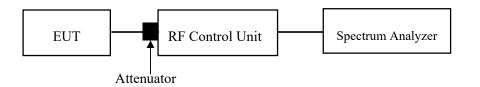
Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

Temperature:	22.5 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-05-11.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.3

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Attenuator

Test Data

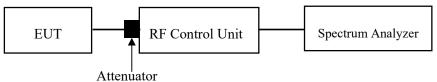
Environmental Conditions

Temperature:	22.5 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-05-11.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)


Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.4

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

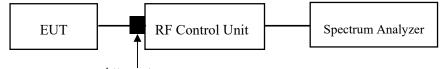
Environmental Conditions

Temperature:	22.5 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-05-11.

EUT operation mode: Transmitting

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT


Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.5

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Attenuator

Test Data

Environmental Conditions

Temperature:	22.5 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-05-11.

EUT operation mode: Transmitting

FCC §15.247(d) & RSS-247 § 5.5 - BAND EDGES TESTING


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

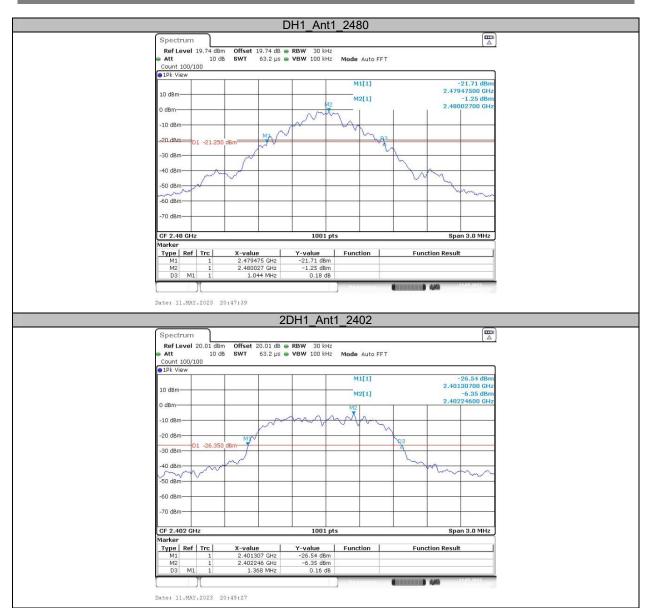
Environmental Conditions

Temperature:	22.5 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

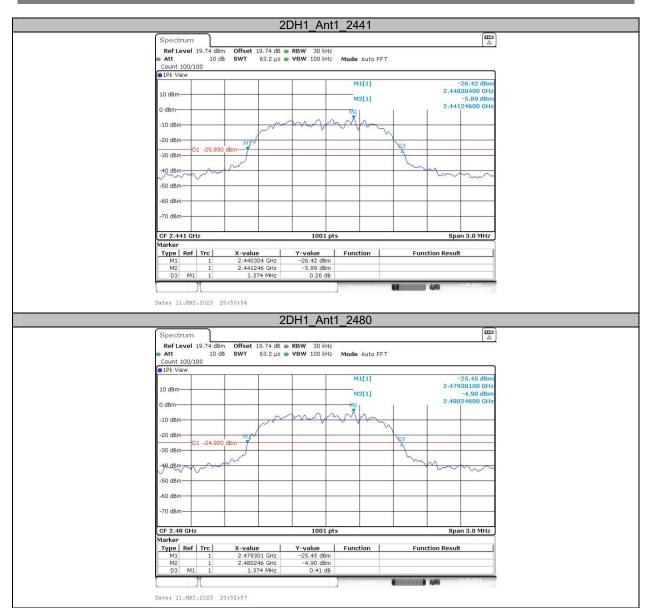
The testing was performed by Jacob Huang on 2023-05-11.


EUT operation mode: Transmitting

APPENDIX


Appendix A: 20dB Emission Bandwidth Test Result

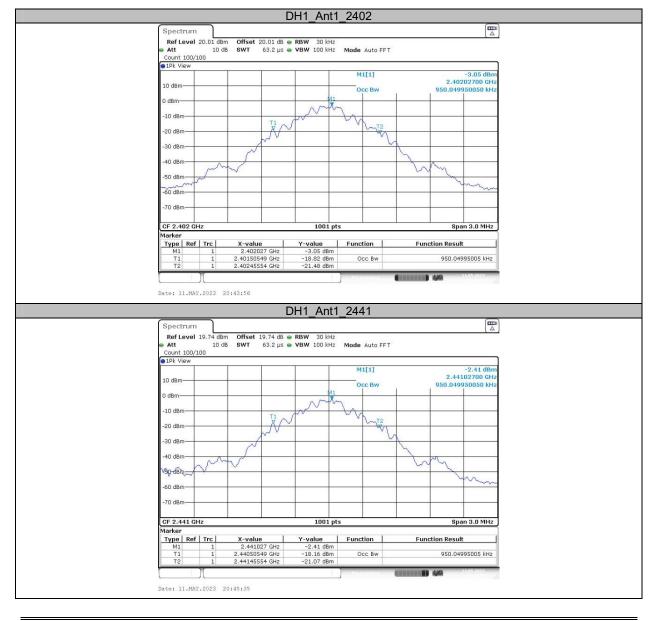
Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.04	2401.48	2402.52		
DH1	Ant1	2441	1.05	2440.48	2441.52		
		2480	1.04	2479.48	2480.52		
		2402	1.37	2401.31	2402.68		
2DH1	Ant1	2441	1.37	2440.30	2441.68		
		2480	1.37	2479.30	2480.68		
		2402	1.33	2401.31	2402.64		
3DH1	Ant1	2441	1.31	2440.33	2441.63		
		2480	1.31	2479.33	2480.64		


Test Graphs

Report No.: RA230418-20204E-RF-00A

Report No.: RA230418-20204E-RF-00A

Report No.: RA230418-20204E-RF-00A


Report No.: RA230418-20204E-RF-00A

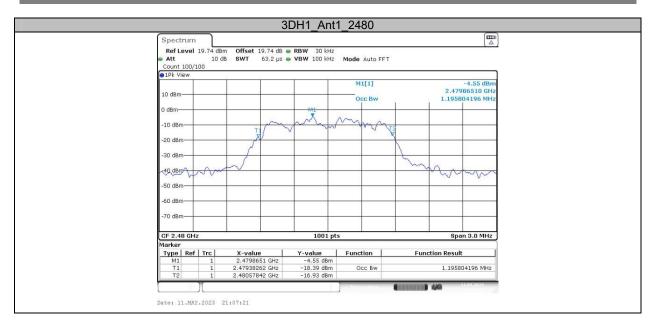
Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.950	2401.505	2402.456		
DH1	Ant1	2441	0.950	2440.505	2441.456		
		2480	0.944	2479.508	2480.453		
		2402	1.211	2401.383	2402.593		
2DH1	Ant1	2441	1.208	2440.383	2441.590		
		2480	1.208	2479.383	2480.590		
		2402	1.193	2401.386	2402.578		
3DH1	Ant1	2441	1.196	2440.383	2441.578		
		2480	1.196	2479.383	2480.578		

Test Graphs

Version 7: 2023-01-30

Report No.: RA230418-20204E-RF-00A


Report No.: RA230418-20204E-RF-00A

Report No.: RA230418-20204E-RF-00A

Report No.: RA230418-20204E-RF-00A

Appendix C: Maximum conducted output power Test Result Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Conducted Limit [dBm]	Verdict
		2402	1.57	≤20.97	PASS
DH1	Ant1	2441	2.19	≤20.97	PASS
		2480	3.32	≤20.97	PASS
		2402	3.04	≤20.97	PASS
2DH1	Ant1	2441	3.46	≤20.97	PASS
		2480	4.48	≤20.97	PASS
		2402	2.99	≤20.97	PASS
3DH1	Ant1	2441	3.43	≤20.97	PASS
		2480	4.5	≤20.97	PASS

Test Graphs

Version 7: 2023-01-30

Report No.: RA230418-20204E-RF-00A

					DH1_An	t1_2480				
Spe	trum									
		19.74 dBn	Offset		RBW 3 MH					
Att Cour	t 100/:	10 dē 100	SWT	1.3 µs (VBW 10 MH	z Mode Aut	O FFT			
●1Pk				×	Q					
						M1[1	1		3. 2.479808	32 dBm
10 dB	m			-	M1				2.17 5000	20 0112
0 dBn										
		-								
-10 d	Sm									
-20 di	m-									1
-30 di	sm—									
-40 di	sm-			+	+ +					
-50 d										
-60 di	m—			-	+ +					
-70 di	sm-			-						
1996										
	48 GH	z			1001	pts			Span 8	0 MHz
Marke		Tec	v		V-u-lus	Function		Function	Bocult	
	Ref	1	2.47980	DB2 GHz	Y-value 3.32 dBi			Function	Result	
M	1									
M)[11.05	2023
<u></u> М)(0:48:17			- Merakur		annan) 498	11.05	2023
<u></u> М)(20232	0:48:17) - Measur			11.05	2023
<u></u> М)(0:48:17	2	DH1_Ar	nt1_2402	2	(11111) (11111)	11.05	2022
Date:)[0:48:17	2	DH1_Ar	nt1_2402	2 2	149 1	11.05	
Date:	11.MA)	20.01 dBn	n Offset	20.01 dB (RBW 3 MH	z		1999 (Januar)	11.05	
Date:	11.MA)	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH			1000000) 446	11.03	
Date:	11.MA) trum Level t 100/:	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut	O FFT		11.05	
Date: Date: Ref Att Cour IPk	11.MA) strum Level t 100/: View	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z	O FFT		3. 2.402201	04 dBm
Date:	11.MA) strum Level t 100/: View	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3.2.402207	04 dBm
Date: Date: Ref Att Cour IPk	11.MA) trum Level t 100/: View	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut	O FFT		3. 2.402207	04 dBm
M Date: Ref Att Cour 0 1Pk 10 dB	t 100/: view	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3.3.2.402207	04 dBm
Date: Date: Ref • Att Cour • 1Pk 10 dB	t 100/: view	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3, 2.402207	04 dBm
M Date: Ref Att Cour 0 1Pk 10 dB	trum Level t 100/: View	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3.2.402207	04 dBm
Date: Date: Reft Aft Cour 10 dB -20 dl	111.MA1 111.MA1 Level t 100/:: yiew m m m	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3.2.402207	04 dBm
Date: Date: Ref Aft Cour Date: Ref -10 dB	111.MA1 111.MA1 Level t 100/:: yiew m m m	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3. 2.402207	04 dBm
Date: Date: Reft Aft Cour 10 dB -20 dl	t 100/jiw	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3. 2.402207	04 dBm
Date: Date: Ref Att Cour ID dB 0 dBn -10 dl -20 dl -30 dl -40 dl	t 100/: view	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3.2.402207	04 dBm
M Date: Date: Ref • Att Cour • 1Pk 10 dB 0 dBn -10 dl -20 dl -30 dl	t 100/: view	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3.2.402207	04 dBm
Date: Date: Ref Att Cour ID dB 0 dBn -10 dl -20 dl -30 dl -40 dl	t 100/jj	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3.3.2.402207	04 dBm
M Date: Ref • Att Cour • IPk 10 dB 0 dBn -10 dl -20 dl -30 dl -50 dl	t 100/: m m m m m m m m m m m	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3.3.2.402201	04 dBm
Date: Date: Ref Att Cour Date: 10 dB -10 dI -20 dI -30 dI -40 dI -50 dI	t 100/: m m m m m m m m m m m	20.01 dBn 10 dE	n Offset	20.01 dB (RBW 3 MH	z z Mode Aut M1[1	O FFT		3.2.402207	04 dBm
M Date: Ref • Att Cour • 1Pk 10 dB 0 dBn -20 dl -30 dl -30 dl -30 dl -50 dl -50 dl	t 100/: m m m m m m m m m m m	20.01 dBm 10 dt	n Offset	20.01 dB (RBW 3 MH	Z Mode Aut	O FFT		3. 2.402207	04 dBm /80 GHz
M Date: Reft Cour ● 1Pk 10 dB 0 dBn -10 dI -20 dI -30 dI -30 dI -50 dI -50 dI -70 dI -70 dI -70 dI	111. MA)	12	n Offset 3 SWT	20.01 dB (1.3 µs (RBW 3 MH VBW 10 MH VBW 10 MH 10 MH	Z Mode Aut	0 FFT		2.402207	04 dBm /80 GHz
M Date: Reft Cour ● 1Pk 10 dB 0 dBn -10 dI -20 dI -30 dI -30 dI -50 dI -50 dI -70 dI -70 dI -70 dI	trum Level t 100/: View m m m m m m m m m m m m m m m m m m m	20.01 dBm 10 dt	Offset Swr	20.01 dB (1.3 µs (RBW 3 MH	Z Mode Aut	0 FFT	Function	2.402207	04 dBm /80 GHz

Report No.: RA230418-20204E-RF-00A

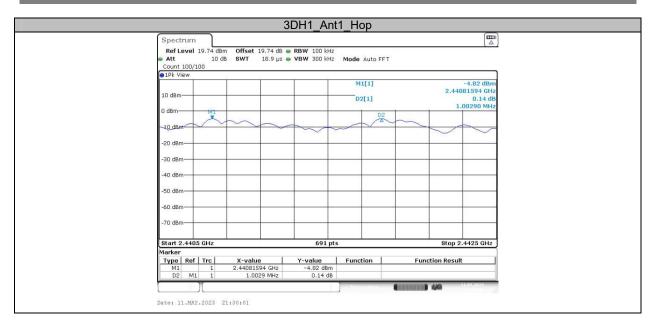
				2	DH1_AN	t1_2441			
255	ctrum								
Rei Att		19.74 dBr 10 di	n Offset 8 SWT		RBW 3 MHz	Mode Auto I	CT.		
Cou	t 100/	10 0	5 3111	1.5 µз ч	• • B • 10 MHz	Mode Autor	r I		
●1Pk	View			<u> </u>					
						M1[1]		2.440	3.46 dBm 62440 GHz
10 di	m				M1				
0 dBr	n								
10									-
-10 0	500								/
-20 d	Bm				++				
-30 d	Bm-								
					1 T				
-40 d	Bm-			+	+ +	-	-	-	
-50 d	Bm-			-			_		
-60 d	Bm-								
-70 d	Bm-			-					
	.441 G	Ηz	<i>0</i>	1	1001	pts		Spa	n 8.0 MHz
Mark	er e Ref	Trc	X-valu	e l	Y-value	Function	Euro	tion Result	- 1
Tun	1 1.01		0.44000	244 GHz	3.46 dBm		ran		
Тур	1	1	2.44062	- TT GITZ	and the second second second second		- here		
Typ	1		2.4406.	en une		The ostantion		4/6	11.05.2023
	1	X		in dhe j		Me a suring		449	11.05.2023
	1	1						44	11 05 2023
	1	X			DH1_An			449	1.0550525
Date:	1)[496	11052055 ///
Date:	1 11.MA ctrum Level	2,2023 2	0:51:22 n Offset	2 19.74 dB	DH1_An	t1_2480		449	
Date:	1 II.MA ctrum Level	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An	t1_2480	FT.	49	
Date:	1 II.MA ctrum Level	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An	t1_2480	FT.	499	
Date: Spe Ref • Att Cour • IPk	1 11.MA ctrum Level it 100/ View	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	(FT	-	4.48 dBm
Date:	1 11.MA ctrum Level it 100/ View	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	(F 111111)	-	
Date: Spe Ref • Att Cour • IPk	1 II.MA III.MA ctrum Level it 100/ View m	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An	t1_2480	FT	-	4.48 dBm
Date: Date: Ref Att Cour I D di 0 dBr	1 .MAT	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	(FT)	-	4.48 dBm
Date: Date: Ret • Att Couu • 1Pk 10 dt	1 .MAT	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	(FT)	-	4.48 dBm
Date: Date: Ref Att Cour I D di 0 dBr	1 II.MA	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	FT	-	4.48 dBm
Date: Date: Ref In di OdBr -20 d	1	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	FT	-	4.48 dBm
Date: Date: Rei Att Cour Date: 10 di 0 dBa -10 d	1	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	FT	-	4.48 dBm
Date: Date: Ref In di OdBr -20 d	1 II.MA	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	FFT	-	4.48 dBm
Date: Date: Ref Att Cou 10 d -20 d -30 d -40 d	1 II.MAI	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	FT	-	4.48 dBm
Date: Rei Att Cour Date: Rei Att Cour Date: Rei Att Cour Date: Rei Att Cour Cour Date: Att Cour	1 II.MAI	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	FT	-	4.48 dBm
Date: Date: Ref Att Cou 10 d -20 d -30 d -40 d	1 II.MAT	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	FT	-	4.48 dBm
Date: Date: Ret Attached Pate: Date: Date: Pate: Date: Pate: Date: P	1 1 11.MA ^T Ctrum Level t 100// View m BBB BBB BBB BBB BBB BBB	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	FT	-	4.48 dBm
Date: Date: Pate: Pate: Date: Pate: Date: Pate: Date: Date: Pate: Date: Date: Pate: Date: Date: Pate: Date:	1 1 11.MA ^T Ctrum Level t 100// View m BBB BBB BBB BBB BBB BBB	2 (,2023 2 (,2023 2 19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	FT	-	4.48 dBm
Date: Date: Ref Att Cou 10 d 10 d -20 d -30 d -40 d -50 d -70 d	1 11.MA ctrum Level t 100/ View m	19.74 dBn 10 dl	0:51:22 n Offset	2 19.74 dB	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480	FT	2.479	4.48 dBm 666430 GHz
Date: Date:	1 11.MA ctrum tevel t100/ View m b BBm BBm BBm BBm BBm BBm BBm BBm BBm	z	0:51:22	2	DH1_An RBW 3 MH2 VBW 10 MH2 M1 M1 1001	t1_2480		2.479	4,48 dBm 66430 GHz
Date: Date:	1 1 11. MA ctrum tevel t100/ View m BB B	z	n Offset 3 SWT	2	DH1_An RBW 3 MH2 VBW 10 MH2	t1_2480		2.479	4,48 dBm 66430 GHz

Report No.: RA230418-20204E-RF-00A

_		_		-		nt1_2402				6
	ctrum									
Ref Att		20.01 dBr 10 d	n Offset B SWT		RBW 3 MH	lz Iz Mode Au				
	t 100/	100	5 3001	1.5 µs	ADMA TO WE	12 MODE AU	IO FF I			
●1Pk										
						M1[1	1		2 401	2.99 dBn 64040 GH:
10 dB	m				M1		-		2.401	01010 012
0 dBr					M1 ▼					
U UBI	6.	-						1	_	
-10 d	Bm		-		2					
-20 d	Brown									
-20 0	5m									
-30 d	Bm-				-					
-40 d										
10.0										
-50 d	Bm-									
-60 d										
-00 0	SIT									
-70 d	Bm-									
	402 G	Hz			1001	pts		11.0	Spa	n 8.0 MHz
Marke		1	X-valı	a	Y-value	Function	n	Eunctio	in Result	
Тури	e Ref 1	1	2.4016	404 GHz	2.99 dB					
Тур	e Ref	1	2.4016	404 GHz	2.99 dB					1.05.2023
М	1		2,4016	404 GHz	2.99 dB					11.05.2023
М	1	1 1 1 2.2023 2	2,4016	404 GHz	2.99 dB					11.05(2053)
М	1		2,4016	404 GHz	2.99 dB	m				11052023
Date:	1 11.MA	1) (2.2023 2	2,4016	404 GHz	2.99 dB	m				
Date:	1 11.MA	1][Y.2023 2	2.4016 0:56:52	404 GHz	2.99 dB	nt1_244				11.052023) //
Date:	1 .MA 11.MA ctrum Level	1 1 1 1 19.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	nt1_244	1			11.05-022 (
Date:	1 11.MA ctrum Level	1 1 1 1 19.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	nt1_244	1			(
Date:	1 11.MA ctrum Level	1 1 1 1 19.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			
Type M Date: Date: Spe Ref Att Cour IPk	1 11.MA ctrum Level it 100/ View	1 1 1 1 19.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	nt1_244	to FFT			3.43 dBn 64840 GH2
Date:	1 11.MA ctrum Level it 100/ View	1 1 1 1 1 1 1 9.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Spe Ref Att Cour IPk	1 .MA 11.MA ctrum Level t 100/ View m	1 1 1 1 1 1 1 9.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Ref Att Cour 1Pk 10 dB	1 II.MA	1 1 1 1 1 1 1 9.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Spe Ref Att Cour 1Pk 10 dB	1 II.MA	1 1 1 1 1 1 1 9.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Ref • Att Cour • IPk 10 dB 0 dBn -10 d	1 II.MA ctrum Level at 100/ View	1 1 1 1 1 1 1 9.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Ref Att Cour @1Pk 10 dB 0 dBn -10 d -20 d	1 II.MA III.MA Level III.MA Level Bm Bm	1 1 1 1 1 1 1 9.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Ref • Att Cour • IPk 10 dB 0 dBn -10 d	1 II.MA III.MA Level III.MA Level Bm Bm	1 1 1 1 1 1 1 9.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Pate: ■ Att Cour ■ 1Pk 10 dB 0 dBn -10 d -20 d	1 II.MA	1 1 1 1 1 1 1 9.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Ref Att Cour @1Pk 10 dB 0 dBn -10 d -20 d	1 II.MA	1 1 1 1 1 1 1 9.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Pate: ■ Att Cour ■ 1Pk 10 dB 0 dBn -10 d -20 d	1 1 11.MA cctrum Level xt 100/ View m BBm BBm BBm BBm BBm	1 1 1 1 1 1 1 9.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Ref Att Course 10 dB 0 dBn -10 d -20 d -30 d -40 d	1 II.MA Ctrumm Ctrumm m M BBm BBm BBm BBm BBm BBm BBm BBm B	1 1 1 1 19.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Cour • 1Pk 10 dB 0 dBn -10 d -20 d -30 d	1 II.MA Ctrumm Ctrumm m M BBm BBm BBm BBm BBm BBm BBm BBm B	1 1 1 1 19.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Date: Ref Att Course 10 dB 0 dBn -10 d -20 d -30 d -40 d	1 11.MA ctrum Level t 100/ View m BBm BBm BBm BBm BBm BBm	1 1 1 1 19.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Spe Refer Attraction Course ID db 0 db -10 db 0 db -20 db -30 db -50 db -60 db	1 11.MA ctrum Level t 100/ View m BBm BBm BBm BBm BBm BBm	1 1 1 1 19.74 dBr 10 d	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m ht1_244 ^{iz} Mode Au	to FFT			3.43 dBn
Type M Date: Spec Ref Att Counce 0 IPR 10 dB -20 d -30 d -30 d -40 d -50 d -60 d -77 d	1 11.MA ctrum Level t 100/ View m BBm BBm BBm BBm BBm - H441 G	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.4016 20:56:52 n Offset	404 GHz 19.74 dB	2.99 dB	m	to FFT		2.440	3.43 dBn
Typp M Date: Date: Refer Refer 0 dBn -10 dd -20 d -30 d -40 d -50 d -60 d -70 d -70 d CE2 Market	1 11.MA ctrum Level t100/ View m BBm BBm BBm BBm BBm A441 G sr	1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.4016	3 19.74 dB « 1.3 µs «	2.99 db	m			2.440	3.43 dBn 64840 GHz
Typp M Date: Date: Refer Refer 0 dBn -10 dd -20 d -30 d -40 d -50 d -60 d -70 d -70 d CE2 Market	1 11.MA ctrum tLevel t100/ View m BBm BBm BBm BBm BBm BBm BBm BBm BBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.4016	3 19.74 dB « 1.3 µs «	2.99 db	m htt_244			2.440	3.43 dBn 64840 GHz

Report No.: RA230418-20204E-RF-00A

Ref	trum						
	Level 19.74 dBm	Offset 19.74 dB	B BW 3 MHz				
👄 Att				Mode Auto FFT			
	: 100/100						
1Pk	/iew		0 18	10000			
				M1[1]		4.50 dBm	
10 dB	n				2	.47963240 GHz	
			MI				
0 dBm							
-10 de	m						
-20 de	m				+ + +		
-30 dE	m						
-40 de	m						
10 00							
-50 de	m						
10.05%,000	201						
-60 dB	m						
-70 de	m						
CF 2.	18 GHz		1001 p	ts		Span 8.0 MHz	
Marke							
	Ref Trc	X-value	Y-value	Function	Function Re	esult	
M		2.4796324 GHz	4.50 dBm				
	1			Mar Andrews	E	11.05.2023	


Appendix D: Carrier frequency separation Test Result

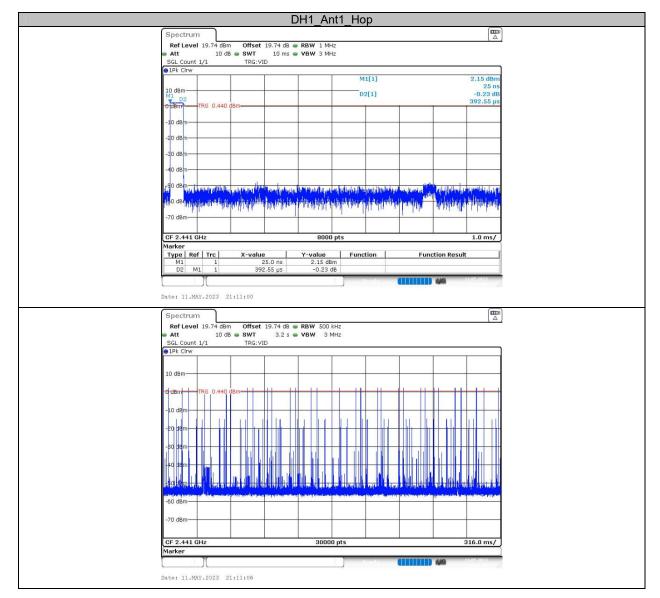
Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.003	≥0.700	PASS
2DH1	Ant1	Нор	1.000	≥0.913	PASS
3DH1	Ant1	Нор	1.003	≥0.887	PASS

Test Graphs

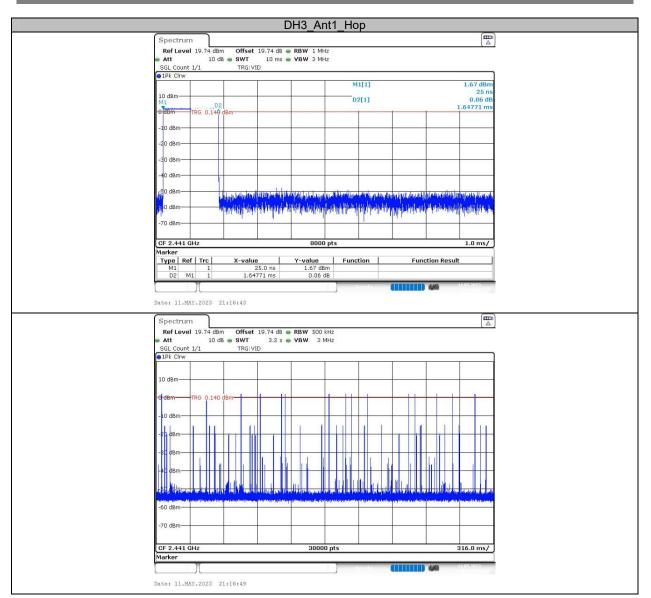
Report No.: RA230418-20204E-RF-00A

Report No.: RA230418-20204E-RF-00A

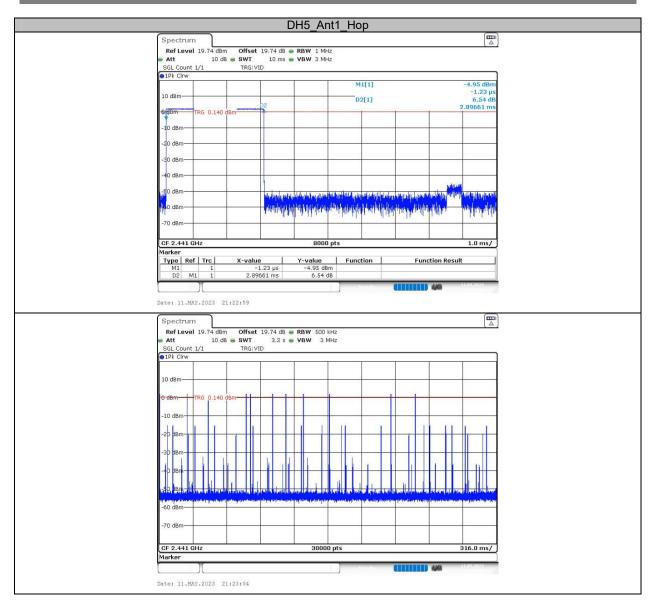
Appendix E: Time of occupancy Test Result

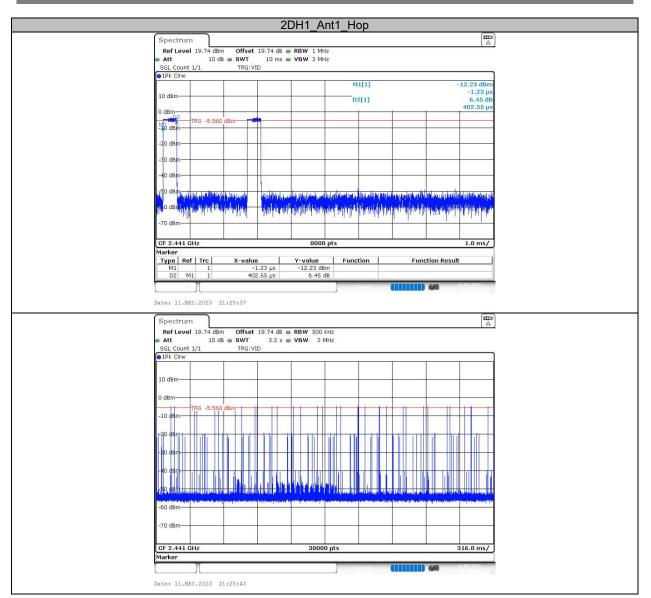

Test Mode	Antenna	Frequency[MHz]	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.39	330	0.129	≤0.4	PASS
DH3	Ant1	Нор	1.65	170	0.281	≤0.4	PASS
DH5	Ant1	Нор	2.90	110	0.319	≤0.4	PASS
2DH1	Ant1	Нор	0.40	320	0.128	≤0.4	PASS
2DH3	Ant1	Нор	1.66	170	0.282	≤0.4	PASS
2DH5	Ant1	Нор	2.90	130	0.377	≤0.4	PASS
3DH1	Ant1	Нор	0.40	330	0.132	≤0.4	PASS
3DH3	Ant1	Нор	1.65	160	0.264	≤0.4	PASS
3DH5	Ant1	Нор	2.91	110	0.320	≤0.4	PASS

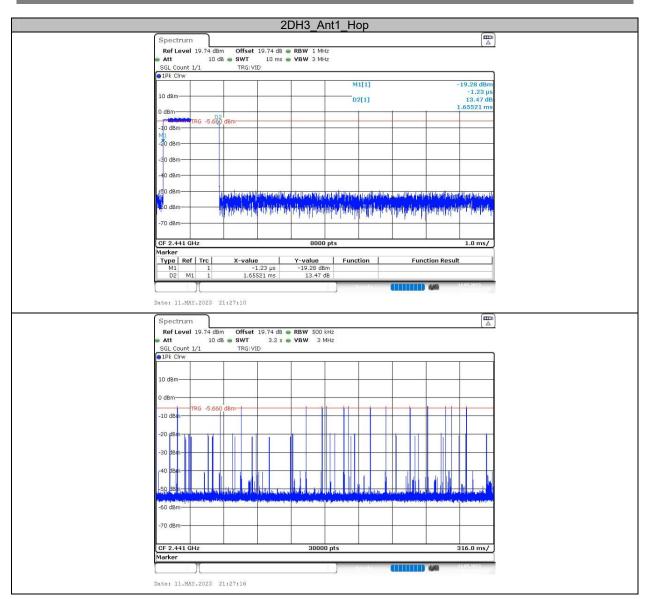
Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

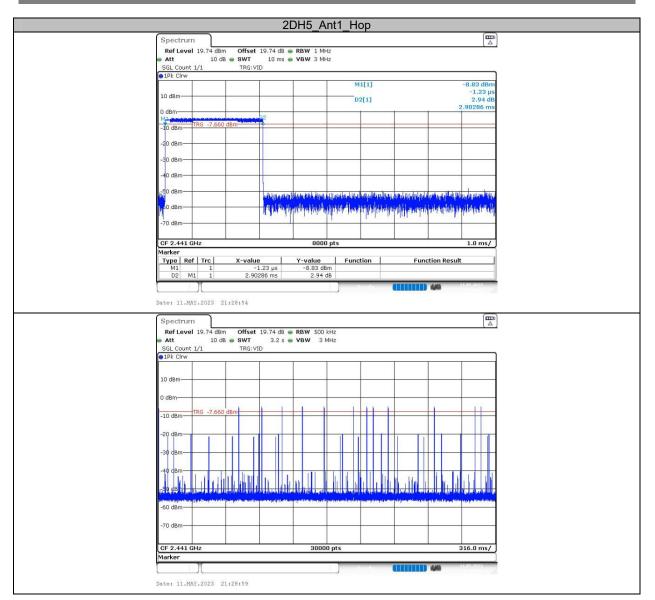

Note 2: Totalhops=Hopping Number in 3.16s*10

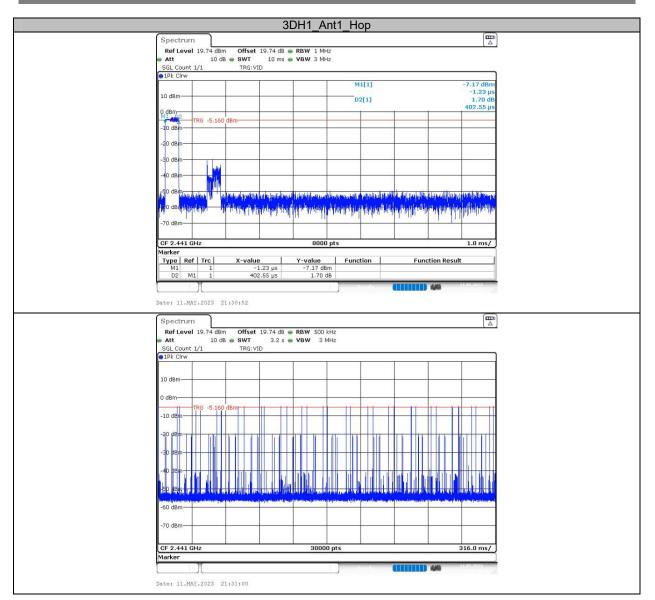
Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

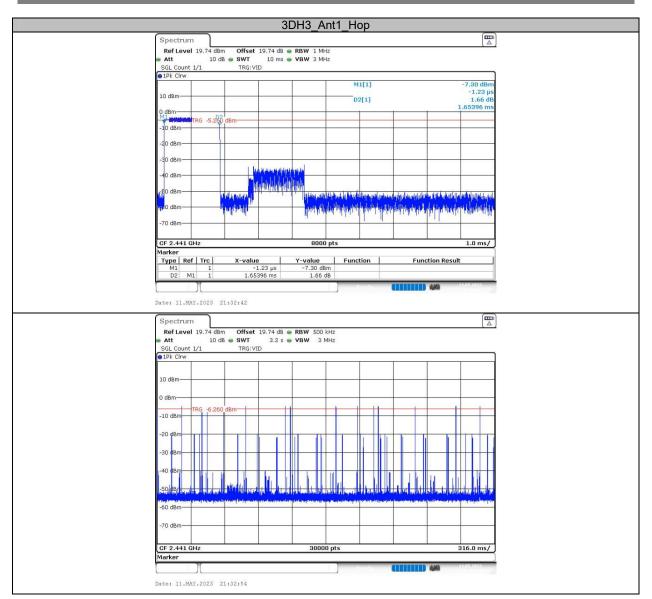

Test Graphs

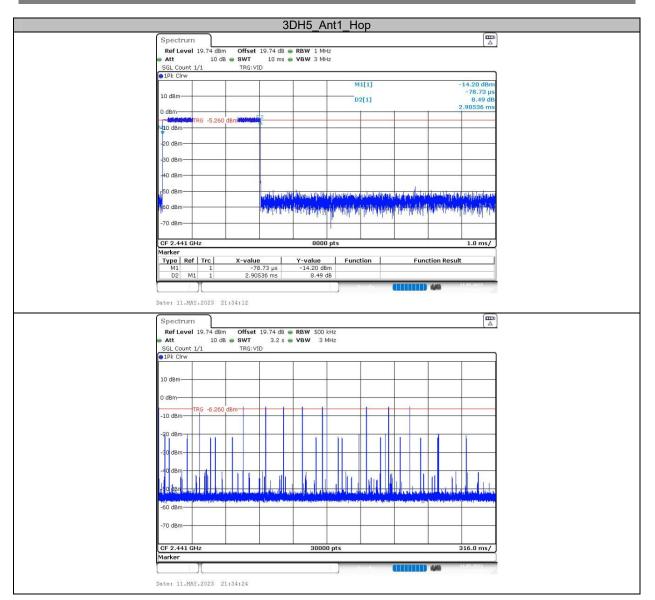

Report No.: RA230418-20204E-RF-00A


Report No.: RA230418-20204E-RF-00A

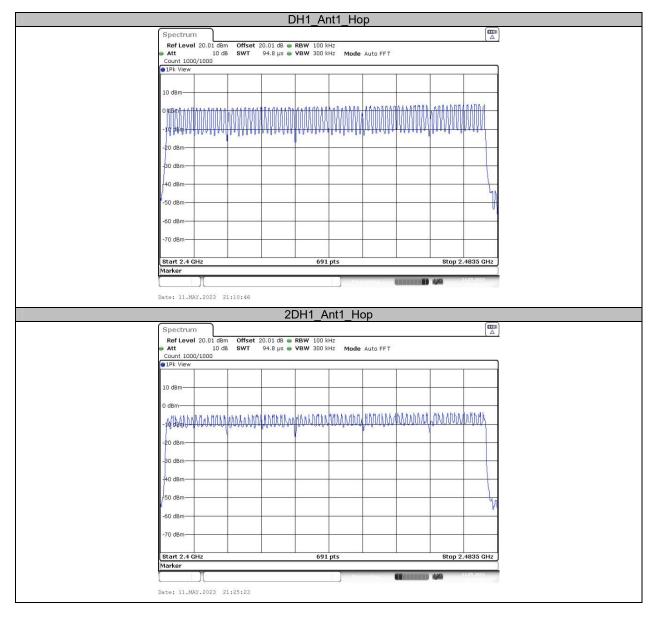

Report No.: RA230418-20204E-RF-00A


Report No.: RA230418-20204E-RF-00A


Report No.: RA230418-20204E-RF-00A


Report No.: RA230418-20204E-RF-00A

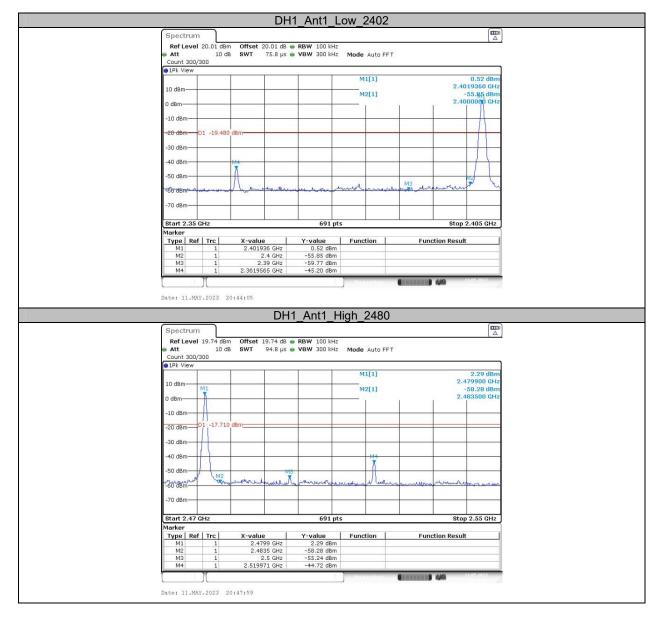
Report No.: RA230418-20204E-RF-00A


Report No.: RA230418-20204E-RF-00A

Appendix F: Number of hopping channels Test Result

Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS

Test Graphs

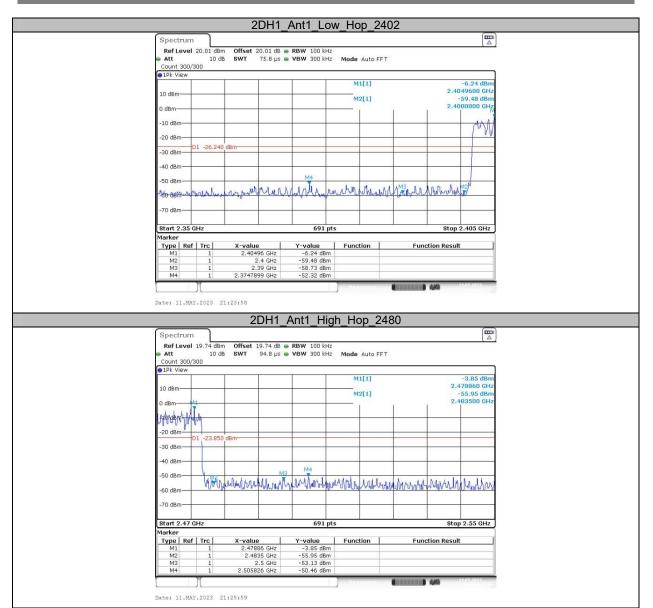


Report No.: RA230418-20204E-RF-00A

	3DH1_Ant1_Hop	
Spectrum		
Ref Level 20.01 dBm Offset	20.01 dB 🖷 RBW 100 kHz	(=)
	94.8 µs 💩 VBW 300 kHz 🛛 Mode Auto FFT	
Count 1000/1000		
TEK VIEW		
10 dBm		
0 dBm		
	A CREATE THE CONTRACTOR CONTRACTOR	COLLARD COLLARD AND
-10 MARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AND	Mana Mananana Manana
-20 dBm		
-30 dBm		
-40 dBm		
,50 dBm		0.0
and the second se		ι (Ν
-60 dBm		
70 10-		
-70 dBm		
Start 2.4 GHz	691 pts	Stop 2.4835 GHz
Marker		a b 400 11.05.2022
	the osturing	
Date: 11.MAY.2023 21:30:38		

Appendix G: Band edge measurements


Test Graphs


Report No.: RA230418-20204E-RF-00A

Report No.: RA230418-20204E-RF-00A

Report No.: RA230418-20204E-RF-00A

Report No.: RA230418-20204E-RF-00A

Report No.: RA230418-20204E-RF-00A

***** END OF REPORT *****