

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 1 of 153

TEST REPORT

Application No.:	KSCR2404000566AT
FCC ID:	VPYLBEE5HY2FY
IC:	772C-LBEE5HY2FY
Applicant:	Murata Manufacturing Co., Ltd.
Address of Applicant:	10-1, Higashikotari 1-chome, Nagaokakyo-shi, Kyoto, 617-8555 Japan
Manufacturer:	Murata Manufacturing Co., Ltd.
Address of Manufacturer:	10-1, Higashikotari 1-chome, Nagaokakyo-shi, Kyoto, 617-8555 Japan
Equipment Under Test (EUT):	
EUT Name:	WLAN+Bluetooth Module
Model No.:	LBEE5HY2GY, LBEE5HY2FY 🔒
*	Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical.
Standard(s) :	47 CFR Part 15, Subpart C 15.247
	RSS-247 Issue 3, August 2023
	RSS-Gen Issue 5 Amendment 2 (February 2021)
Date of Receipt:	2024-04-03
Date of Test:	2024-04-15 to 2025-01-13
Date of Issue:	2025-03-12
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

-CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 2 of 153

	Revision Record					
Version	Description	Date	Remark			
00	Original	2025-03-12	/			

Authorized for issue by:		
Tested By	Tommie Tang	
	Tommie_Tang/Project Engineer	
Approved By	Verry Hon	
	Terry Hou /Reviewer	

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 3 of 153

Test Summary 2

Item	FCC Requirement	IC Requirement	Method	Result	
Item	47 CFR Part 15,	10 Requirement	Wethou	Result	
Antenna Requirement		RSS-Gen	N/A	Pass	
Antenna Requirement	15.247(c)	Clause 6.8	N/A	r a 55	
Other requirements					
Frequency Hopping	47 CFR Part 15,	RSS-247 Section		Pass	
Spread Spectrum	Subpart C	5.1(a)	N/A		
System Hopping	15.247(a)(1),(g),(h)	5. T(a)	5. I(a)		
Sequence					
N/A: Not applicable					
Radio Spectrum Matt		1	1	1	
Item	FCC Requirement	IC Requirement	Method	Resu	
Conducted Emissions	47 CFR Part 15,		ANSI C63.10		
at AC Power Line	Subpart C 15.207	RSS-Gen Section 8.8	(2013) Section 6.2	Pass	
(150kHz-30MHz)	Subpart C 15.207		(2013) Section 0.2		
Conducted Peak	47 CFR Part 15,	RSS-247 Section	ANSI C63.10		
	,		(2013) Section	Pass	
Output Power	Subpart C 15.247(b)(1)	5.4(b)	7.8.5		
			ANSI C63.10		
20dB Bandwidth	47 CFR Part 15,	RSS-247 Section	(2013) Section	Pass	
	Subpart C 15.247(a)(1)	5.1(a)	` 7́.8.7		
	47 CFR Part 15, Subpart C 15.247a(1)	RSS-247 Section	ANSI C63.10		
Carrier Frequencies			(2013) Section	Pass	
Separation		5.1(b)	7 .8.2		
	47 CFR Part 15,		ANSI C63.10		
Hopping Channel	Subpart C	RSS-247 Section	(2013) Section	Pass	
Number	15.247a(1)(iii)	5.1(d)	7.8.3		
	47 CFR Part 15,		ANSI C63.10		
Dwell Time	Subpart C	RSS-247 Section	(2013) Section	Pass	
2	15.247a(1)(iii)	5.1(d)	7.8.4		
			ANSI C63.10		
Conducted Band	47 CFR Part 15,	RSS-247 Section 5.5	(2013) Section	Pass	
Edges Measurement	Subpart C 15.247(d)		7.8.6		
Conducted Sourieure	47 CED Dart 15		ANSI C63.10		
Conducted Spurious	47 CFR Part 15,	RSS-247 Section 5.5	(2013) Section	Pass	
Emissions	Subpart C 15.247(d)		7.8.8		
Radiated Emissions	47 CFR Part 15,		ANSI C63.10		
which fall in the	Subpart C 15.205 &	RSS-247 Section 3.3 &	(2013) Section	Pass	
restricted bands	15.209	RSS-Gen Section 8.9	. 6.10.5		
	47 CFR Part 15,		ANSI C63.10	1	
Radiated Spurious	Subpart C 15.205 &	RSS-247 Section 3.3 &	(2013) Section	Pass	
Emissions	15.209	RSS-Gen Section 8.9	6.4,6.5,6.6		
			ANSI C63.10		
99% Bandwidth	-	RSS-Gen Section 6.7	Section 6.9.3	Pass	
	1	1	00000000.0.0	1	

Note: There are series models mentioned in this report, and they are identical in electrical and electronic characters. Only the model LBEE5HY2GY was tested since their differences are

Moel	RF functions
LBEE5HY2GY	WLAN 2.4GHz,5GHz+BT/BLE
LBEE5HY2FY	WLAN 2.4GHz,5GHz,6GHz+BT/BLE

-CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 4 of 153

3 Contents

			Page
1	COV	ER PAGE	1
2	Test	Summary	3
1 COVER PAGE1	4		
4	Gene	eral Information	5
			-
	4.6		
	4.7		
	4.8	Abnormalities from Standard Conditions	7
5	Equi	pment List	8
6	Radi	o Spectrum Technical Requirement	10
7	-		
-		-	
	· ·=		
	-		
	7.8		
	7.9		
	··· -		
8	Test	Setup Photo	100
9	EUT	Constructional Details (EUT Photos)	100
1	0 Арре	endix	101

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 5 of 153

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3.3V
Operation Frequency:	2402MHz to 2480MHz
Bluetooth Version:	V5.3 Dual mode
Modulation Type:	GFSK, pi/4DQPSK, 8DPSK
Number of Channels:	79
Channel Spacing:	1MHz
Spectrum Spread Technology:	Frequency Hopping Spread Spectrum(FHSS)
Antonna Caini	PCB Antenna: 2.8dBi (Provided by the manufacturer)
Antenna Gain:	Dipole Antenna: 3dBi (Provided by the manufacturer)

4.2 Power level setting using in test:

	DH	2DH	3DH
Channel	Ant 1	Ant 1	Ant 1
00	0x0	0x0	0x0
39	0x0	0x0	0x0
78	0x0	0x0	0x0

4.3 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Notebook	LENOVO	K27	/
DC Power Supply	Agilent	E3632A	/
Host	1	/	1

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 6 of 153

4.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty				
1	Radio Frequency	8.4 x 10 ⁻⁸				
2	Timeout	2s				
3	Duty Cycle	0.37%				
4	Occupied Bandwidth	3%				
5	RF Conducted Power	0.6dB				
6	RF Power Density	2.9dB				
7	Conducted Spurious Emissions	0.75dB				
0	PE Padiated Dower	5.2dB (Below 1GHz)				
0	8 RF Radiated Power	5.9dB (Above 1GHz)				
		4.2dB (Below 30MHz)				
9	Radiated Spurious Emission Test	4.5dB (30MHz-1GHz)				
9		5.1dB (1GHz-18GHz)				
		5.4dB (Above 18GHz)				
10	Temperature Test	1°C				
11	Humidity Test	3%				
12	Supply Voltages	1.5%				
13	Time	3%				
Note: approx						

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 7 of 153

4.5 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

Note:

1. SGS is not responsible for wrong test results due to incorrect information (e.g., max. internal working frequency, antenna gain, cable loss, etc) is provided by the applicant. (If applicable).

2. SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on results of the data provided by applicant. (If applicable).

3. Sample source: sent by customer.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC

Compliance Certification Services (Kunshan) Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 2324E

• VCCI

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-20134, R-11600, C-11707, T-11499, G-10216 respectively.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 8 of 153

5 Equipment List

ltem	Equipment	Manufacturer	Model	Inventory No	Cal Date	Cal. Due Date
Conducted	Emission at Mains Terminal	s				-
1	EMI Test Receive	R&S	ESCI	KS301101	01/15/2024	01/14/2025
2	LISN	R&S	ENV216	KS301197	01/15/2024	01/14/2025
3	LISN	Schwarzbeck	NNLK 8129	KS301091	01/15/2024	01/14/2025
4	Pulse Limiter	R&S	ESH3-Z2	KUS1902E001	01/15/2024	01/14/2025
5	CE test Cable	Thermax	/	CZ301102	01/15/2024	01/14/2025
6	Test Software	Farad	EZ-EMC	1	N.C.R	N.C.R
RF Conduct						
1	Spectrum Analyzer	Keysight	N9020A	KUS1911E004-2	08/24/2023	08/23/2024
	Spectrum Analyzer	Keysight	N9020A	KUS1911E004-2	08/01/2024	07/31/2025
2	Spectrum Analyzer	Keysight	N9020A	KUS2001M001-2	08/24/2023	08/23/2024
_	Spectrum Analyzer	Keysight	N9020A	KUS2001M001-2	08/01/2024	07/31/2025
3	Spectrum Analyzer	Keysight	N9030B	KSEM021-1	01/15/2024	01/13/2025
4	Signal Generator	R&S	SMBV100B	KSEM032	03/19/2024	03/18/2025
5	Signal Generator	R&S	SMW200A	KSEM020-1	08/24/2023	08/23/2024
5	Signal Generator	R&S	SMW200A	KSEM020-1	08/02/2024	08/01/2025
6	Signal Generator	Agilent	N5182A	KUS2001M001-1	08/24/2023	08/23/2024
0	Signal Generator	Agilent	N5182A	KUS2001M001-1	08/01/2024	07/31/2025
7	Signal Generator	Agilent	E8257C	KS301066	08/24/2023	08/23/2024
7	Signal Generator	Agilent	E8257C	KS301066	08/06/2024	08/05/2025
8	Radio Communication Test Station	Anritsu	MT8000A	KSEM001-1	08/24/2023	08/23/2024
0	Radio Communication Test Station	Anritsu	MT8000A	KSEM001-1	08/01/2024	07/31/2025
9	Radio Communication Analyzer	Anritsu	MT8821C	KSEM002-1	03/19/2024	03/18/2025
10	Universal Radio Communication Tester	R&S	CMW500	KUS1911E004-1	08/24/2023	08/23/2024
	Universal Radio Communication Tester	R&S	CMW500	KUS1911E004-1	08/12/2024	08/11/2025
11	Switcher	TST	FY562	KUS2001M001-4	01/15/2024	01/13/2025
12	Conducted Test Cable	Thermax	RF01-RF04	CZ301111- CZ301120	01/15/2024	01/13/2025
13	Temp. / Humidity Chamber	TERCHY	MHK-120AK	KS301190	08/27/2023	08/26/2024
	Temp. / Humidity Chamber	TERCHY	MHK-120AK	KS301190	08/26/2024	08/25/2025
14	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-5	03/19/2024	03/18/2025
15	Software	BST	TST-PASS	/	NCR	NCR
RF Radiated	d Test		1	1	r	T
1	Spectrum Analyzer	R&S	FSV40	KUS1806E003	08/24/2023	08/23/2024
1	Spectrum Analyzer	R&S	FSV40	KUS1806E003	08/06/2024	08/05/2025
2	Universal Radio Communication Tester	R&S	CMW500	KSEM009-1	03/19/2024	03/18/2025
4	Loop Antenna	COM-POWER	AL-130R	KUS1806E001	03/18/2023	03/17/2025
5	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E005	06/29/2023	06/28/2025
6	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E006	03/19/2024	03/18/2025
7	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	KS301079	03/23/2024	08/22/2026
8	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	KS301186	04/07/2023	04/06/2025
9	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	CZ301058	01/07/2024	01/06/2026
10	Amplifier(30MHz~18GHz)	PANSHAN TECHNOLOGY	LNA:1~18G	KSEM010-1	01/15/2024	01/13/2025
11	Amplifier(18~40GHz)	PANSHAN	LNA180400G40	KSEM038	08/24/2023	08/23/2024

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 9 of 153

		TECHNOLOGY				
	Amplifier(18~40GHz)	PANSHAN TECHNOLOGY	LNA180400G40	KSEM038	08/12/2024	08/11/2025
12	RE Test Cable	REBES MICROWAVE	1	CZ301097	08/24/2023	08/23/2024
12	RE Test Cable	REBES MICROWAVE	/	CZ301097	08/12/2024	08/11/2025
13	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-4	03/21/2024	03/20/2025
14	Software	Faratronic	EZ_EMC-v 3A1	/	NCR	NCR
15	Software	ESE	E3_V 6.111221a	/	NCR	NCR

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 10 of 153

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna complies with this requirement and no consideration of replacement. The best case gain of the PCB antenna is 2.8dBi, Dipole antenna is 3dBi.

Antenna location: Refer to internal photo.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 11 of 153

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)

6.2.2 Conclusion

Standard Requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1):

According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

> Number of shift register stages: 9

- > Length of pseudo-random sequence: 29 -1 = 511 bits
- > Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g):

According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h):

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

The system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 12 of 153

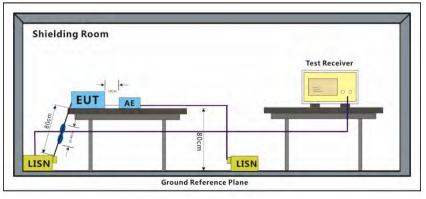
7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement47 CFR Part 15, Subpart C 15.207Test Method:ANSI C63.10 (2013) Section 6.2

Limit:

Frequency of	Conducted limit(dBµV)			
emission(MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
*Decreases with the logarithm of the frequency.				
Detector: Peak for pre-scan (9kHz resolution bandwidth) 0.15M to 30MHz				


7.1.1 E.U.T. Operation

Operating Enviror	nment:					
Temperature:	24.5 °C	Humidity:	51.2 % RH	Atmospheric Pressure:	1010	mbar

7.1.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.1.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 13 of 153

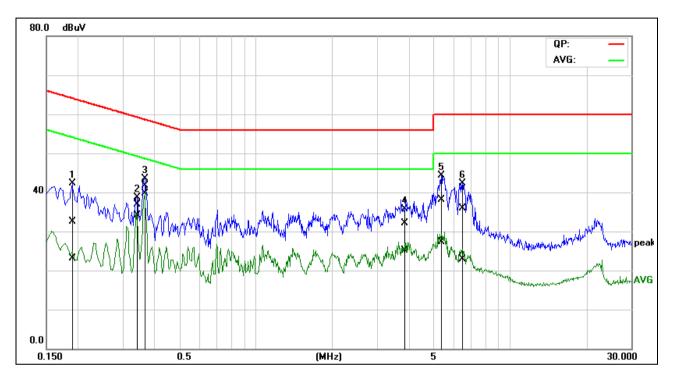
7.1.4 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50 μ H + 50hm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane.

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

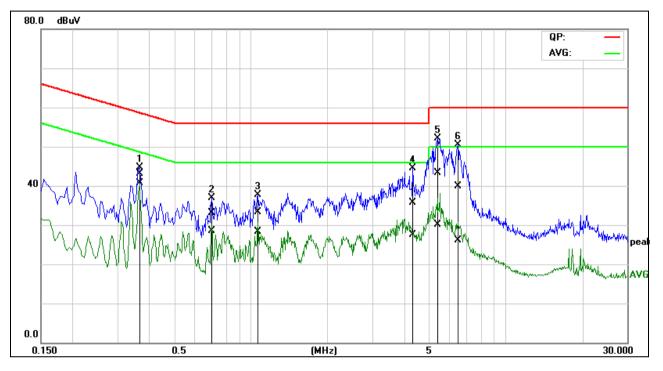

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: Level=Read Level+ Cable Loss+ LISN Factor

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 14 of 153

Test Mode: 05; Line: Live line; Modulation:GFSK; Antenna: Dipole; Channel:middle


No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1903	12.41	3.09	20.09	32.50	23.18	64.02	54.02	-31.52	-30.84	Pass
2	0.3401	16.91	14.08	20.07	36.98	34.15	59.20	49.20	-22.22	-15.05	Pass
3*	0.3654	21.63	19.67	20.07	41.70	39.74	58.60	48.60	-16.90	-8.86	Pass
4	3.7914	12.14	5.26	19.88	32.02	25.14	56.00	46.00	-23.98	-20.86	Pass
5	5.3562	18.20	7.30	19.91	38.11	27.21	60.00	50.00	-21.89	-22.79	Pass
6	6.4989	15.96	3.09	19.89	35.85	22.98	60.00	50.00	-24.15	-27.02	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 15 of 153

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.3646	23.08	20.66	20.10	43.18	40.76	58.62	48.62	-15.44	-7.86	Pass
2	0.6995	13.33	8.68	19.83	33.16	28.51	56.00	46.00	-22.84	-17.49	Pass
3	1.0705	13.41	8.46	19.90	33.31	28.36	56.00	46.00	-22.69	-17.64	Pass
4	4.3337	15.73	7.59	19.90	35.63	27.49	56.00	46.00	-20.37	-18.51	Pass
5	5.4515	23.38	10.32	19.88	43.26	30.20	60.00	50.00	-16.74	-19.80	Pass
6	6.5019	20.05	6.15	19.90	39.95	26.05	60.00	50.00	-20.05	-23.95	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

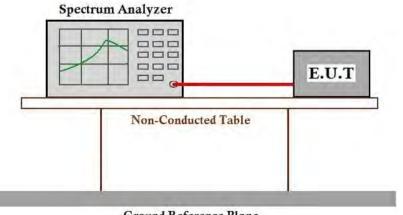
Report No.: KSCR240400056602 Page: 16 of 153

7.2 Conducted Peak Output Power

Test Requirement	47 CFR Part 15, Subpart C 15.247(b)(1)
Test Method:	ANSI C63.10 (2013) Section 7.8.5

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation


7.2.1 E.U.T. Operation

Operating Enviro	nment:					
Temperature:	25.4 °C	Humidity:	48.2 % RH	Atmospheric Pressure:	1010	mbar

7.2.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.2.3 Test Setup Diagram

Ground Reference Plane

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 17 of 153

7.2.4 Measurement Procedure and Data

Note: Since the verify power the same operating range bandwidth and smaller power can be covered by the higher power.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

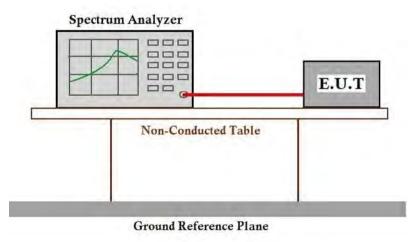
Report No.: KSCR240400056602 Page: 18 of 153

7.3 20dB Bandwidth

Test Requirement	47 CFR Part 15, Subpart C 15.247(a)(1)
Test Method:	ANSI C63.10 (2013) Section 7.8.7

7.3.1 E.U.T. Operation

Operating Environment: Temperature: 25.4 °C Humidity:


Humidity: 48.2 % RH

Atmospheric Pressure: 1010 mbar

7.3.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.3.3 Test Setup Diagram

7.3.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

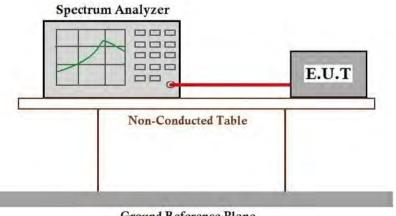
Report No.: KSCR240400056602 Page: 19 of 153

7.4 Carrier Frequencies Separation

Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)
Test Method:	ANSI C63.10 (2013) Section 7.8.2

Limit:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


7.4.1 E.U.T. Operation

Operating Enviror	nment:					
Temperature:	25.4 °C	Humidity:	48.2 % RH	Atmospheric Pressure:	1010	mbar

7.4.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	06	TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.4.3 Test Setup Diagram

Ground Reference Plane

7.4.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

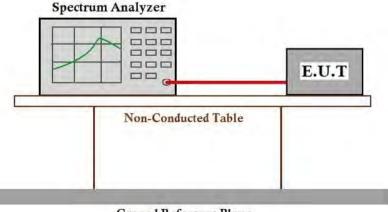
Report No.: KSCR240400056602 Page: 20 of 153

7.5 Hopping Channel Number

Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)(iii)
Test Method:	ANSI C63.10 (2013) Section 7.8.3

Limit:

Frequency range(MHz)	Number of hopping channels (minimum)
902-928	50 for 20dB bandwidth <250kHz
902-928	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75


7.5.1 E.U.T. Operation

Operating Enviror	nment:					
Temperature:	25.4 °C	Humidity:	48.2 % RH	Atmospheric Pressure:	1010	mbar

7.5.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	06	TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.5.3 Test Setup Diagram

Ground Reference Plane

7.5.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

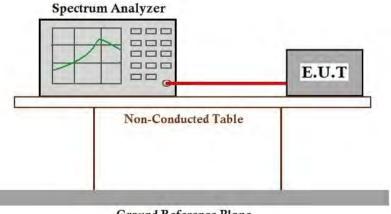
Report No.: KSCR240400056602 Page: 21 of 153

7.6 Dwell Time

Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)(iii)
Test Method:	ANSI C63.10 (2013) Section 7.8.4

Limit:

Frequency(MHz)	Limit
902-928	0.4S within a 20S period(20dB bandwidth<250kHz)
902-920	0.4S within a 10S period(20dB bandwidth≥250kHz)
0400 0400 5	0.4S within a period of 0.4S multiplied by the number
2400-2483.5	of hopping channels
5725-5850	0.4S within a 30S period


7.6.1 E.U.T. Operation

Operating Enviro	onment:				
Temperature:	25.4 °C	Humidity:	48.2 % RH	Atmospheric Pressure: 1010 mbar	

7.6.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	06	TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.6.3 Test Setup Diagram

Ground Reference Plane

7.6.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 22 of 153

7.7 Conducted Band Edges Measurement

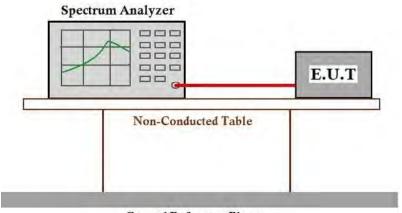
Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 7.8.6

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

7.7.1 E.U.T. Operation

Operating Environment: Temperature: 25.4 °C


Humidity: 48.2 % RH

Atmospheric Pressure: 1010 mbar

7.7.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.
Final test	06	TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.7.3 Test Setup Diagram

Ground Reference Plane

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 23 of 153

7.7.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 24 of 153

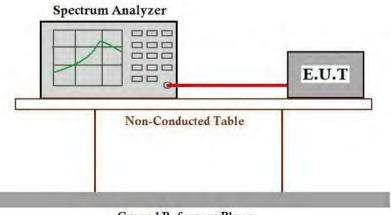
7.8 Conducted Spurious Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 7.8.8

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

7.8.1 E.U.T. Operation


Operating Environment: Temperature: 25.4 °C Humidity: 48.2 % RH Atmo

Atmospheric Pressure: 1010 mbar

7.8.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.8.3 Test Setup Diagram

Ground Reference Plane

7.8.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 25 of 153

7.9 Radiated Emissions which fall in the restricted bands

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.10.5

Limit:

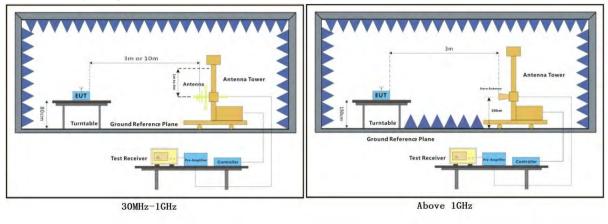
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.9.1 E.U.T. Operation

Operating Environment:Temperature:20.5 °CHumidity:50.5 % RHAtmospheric Pressure:1010mbar

7.9.2 Test Mode Description


Pre-scan / Final test	Mode Code	Description
Final test	05	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 26 of 153

7.9.3 Test Setup Diagram

7.9.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

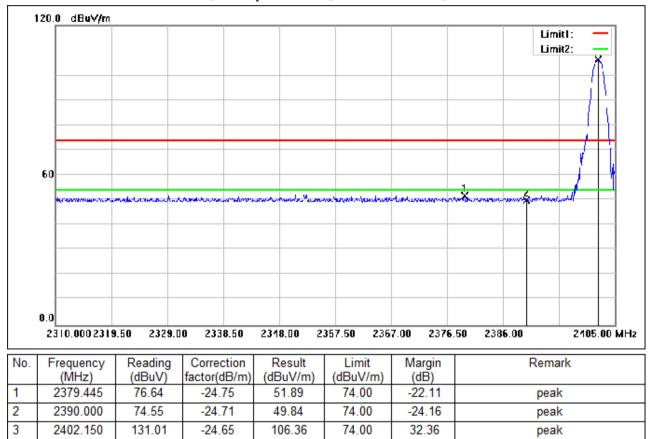
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

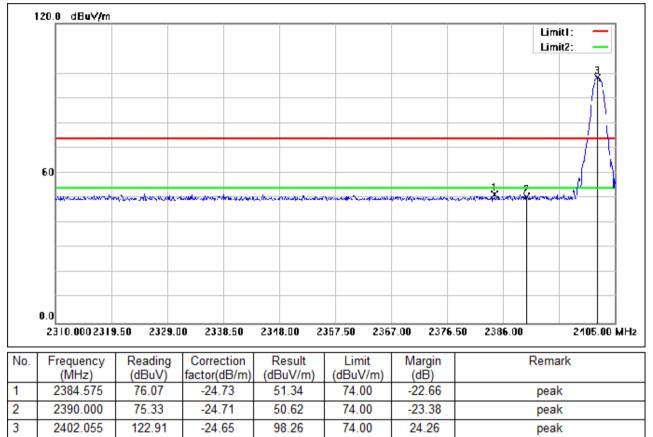
Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

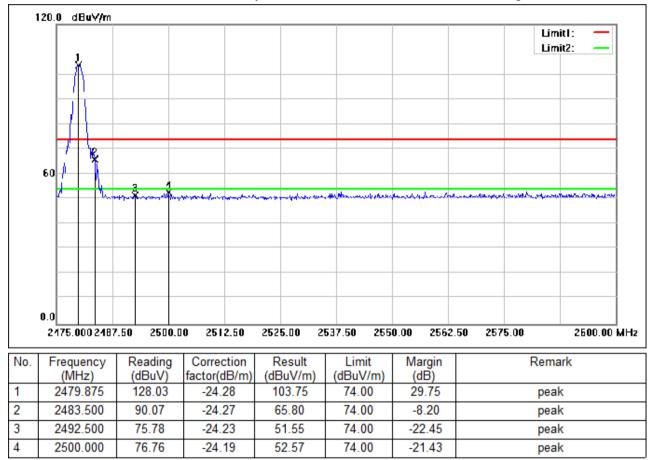
Report No.: KSCR240400056602 Page: 27 of 153

Dipole Antenna


Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

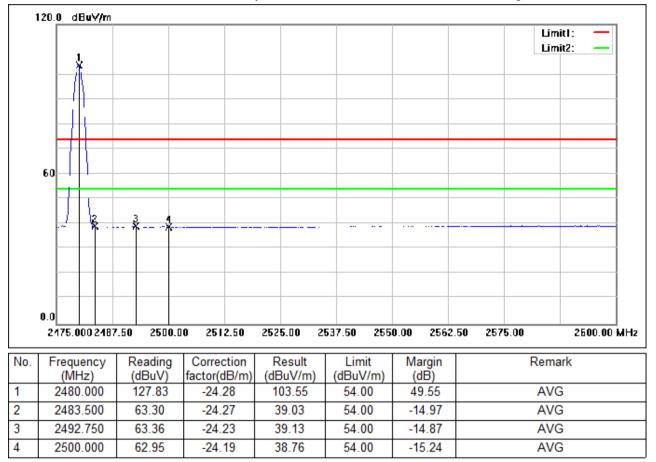
Report No.: KSCR240400056602 Page: 28 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

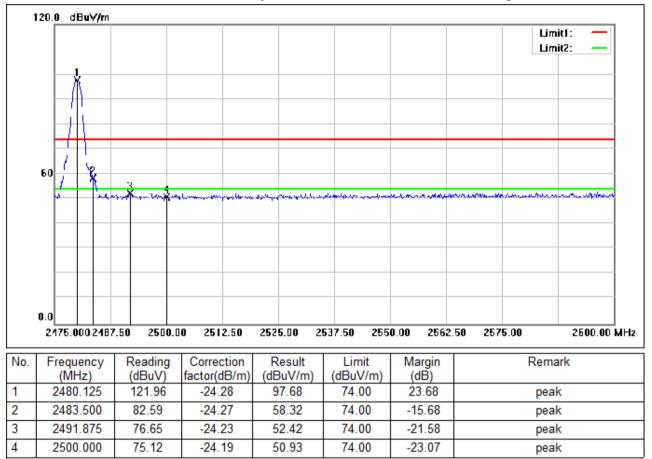
Report No.: KSCR240400056602 Page: 29 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

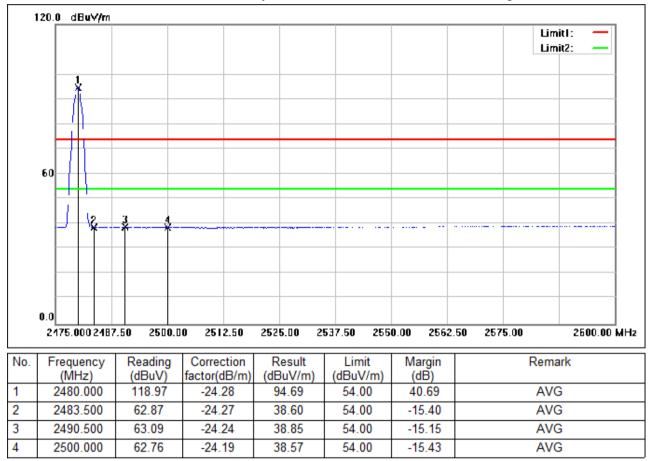
Report No.: KSCR240400056602 Page: 30 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

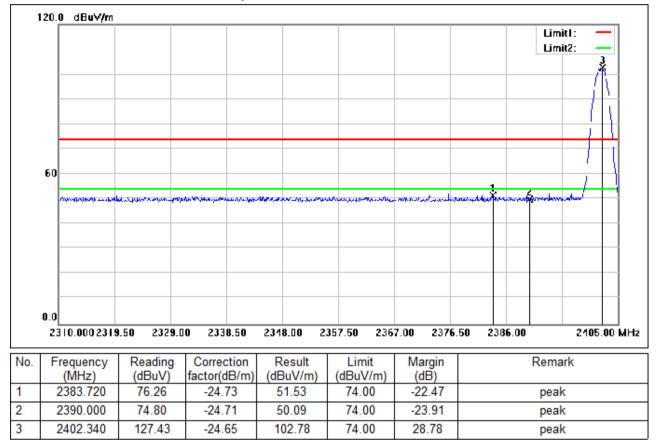
Report No.: KSCR240400056602 Page: 31 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

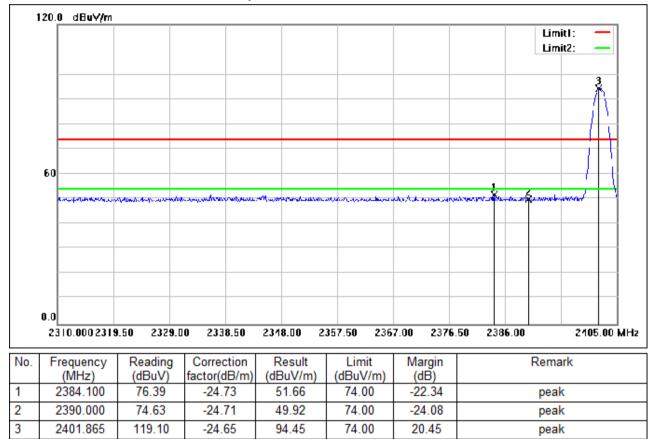
Report No.: KSCR240400056602 Page: 32 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

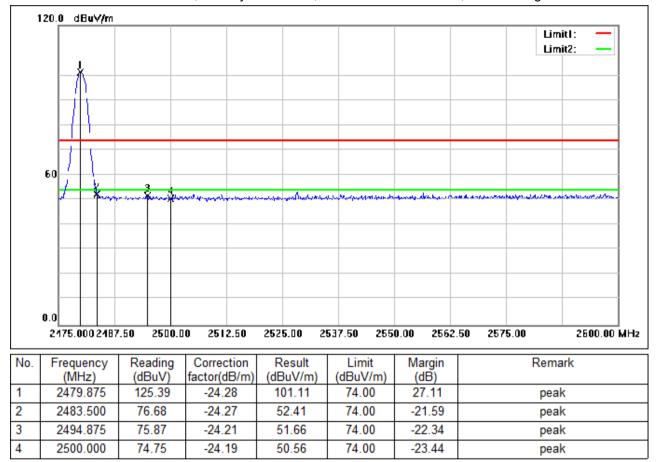
Report No.: KSCR240400056602 Page: 33 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

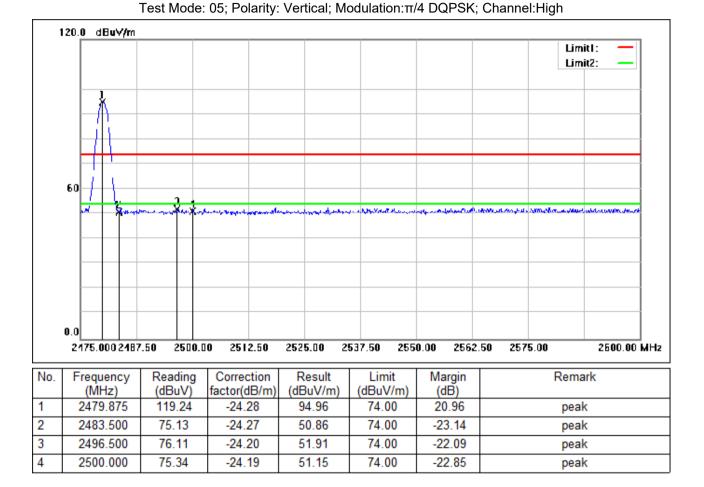
Report No.: KSCR240400056602 Page: 34 of 153



Test Mode: 05; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:Low

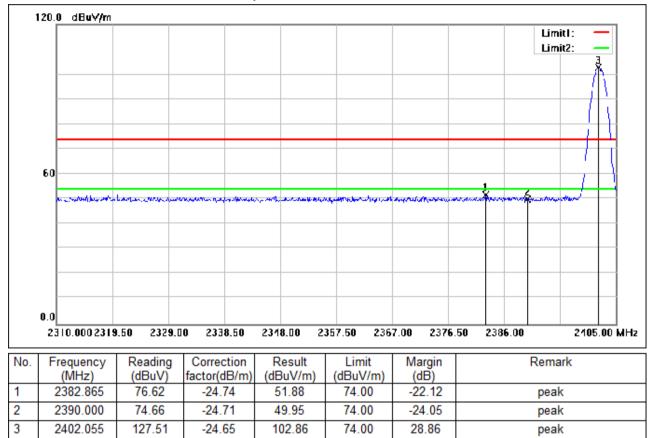
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 35 of 153



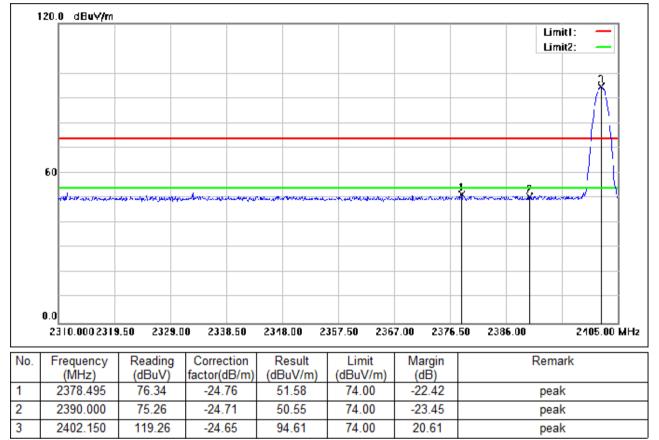
Test Mode: 05; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 36 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

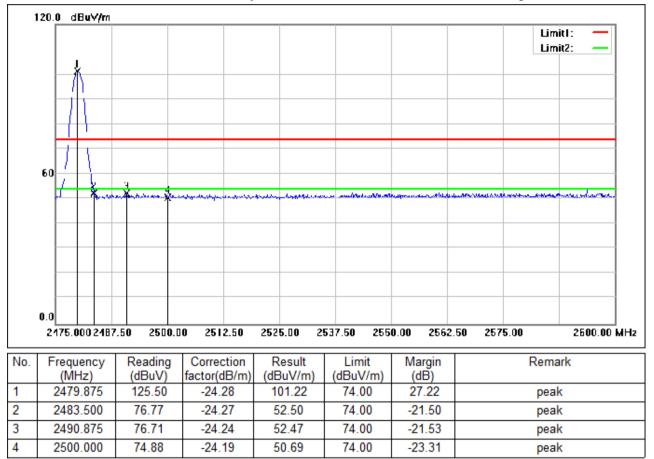
Report No.: KSCR240400056602 Page: 37 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

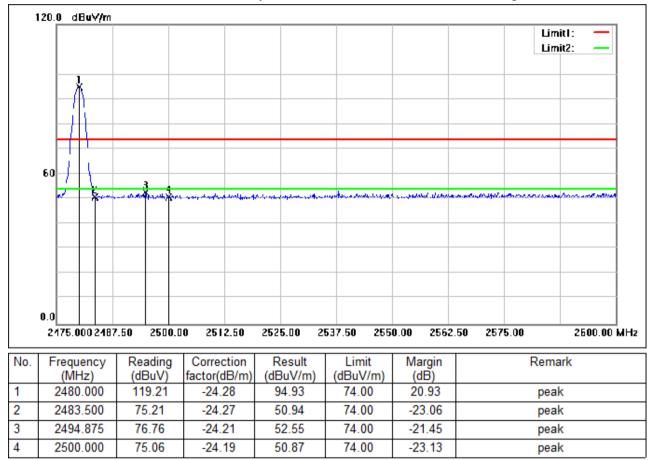
Report No.: KSCR240400056602 Page: 38 of 153



Test Mode: 05; Polarity: Vertical; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 39 of 153

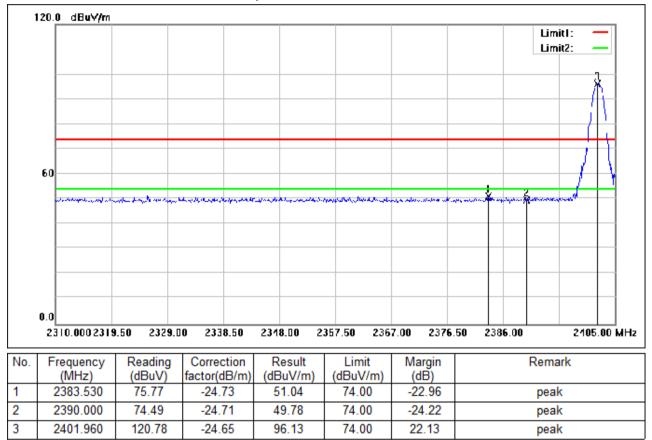


Test Mode: 05; Polarity: Horizontal; Modulation:8DPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 40 of 153

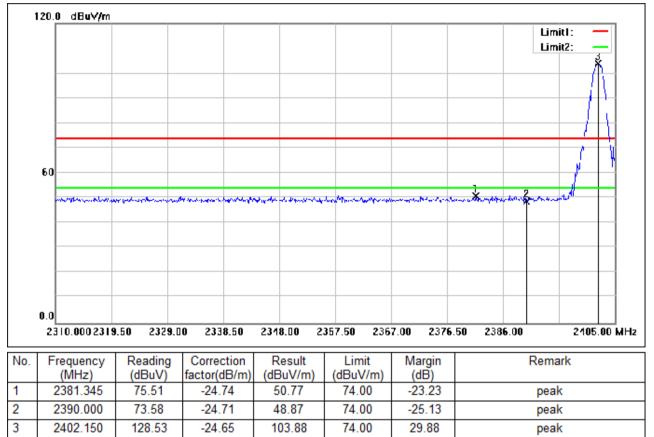
Test Mode: 05; Polarity: Vertical; Modulation:8DPSK; Channel:High



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

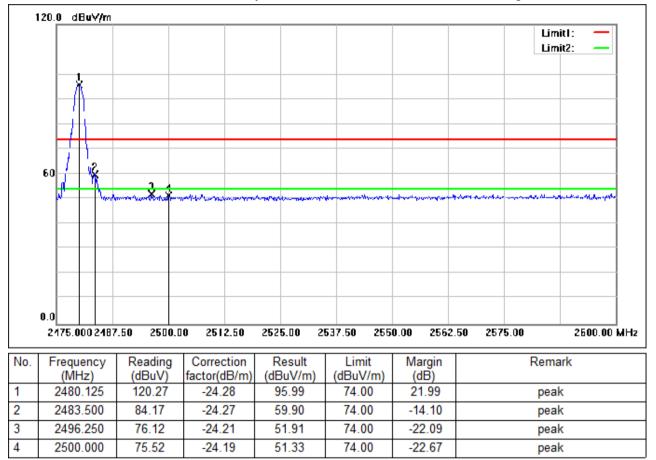
Report No.: KSCR240400056602 Page: 41 of 153

PCB Antenna


Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

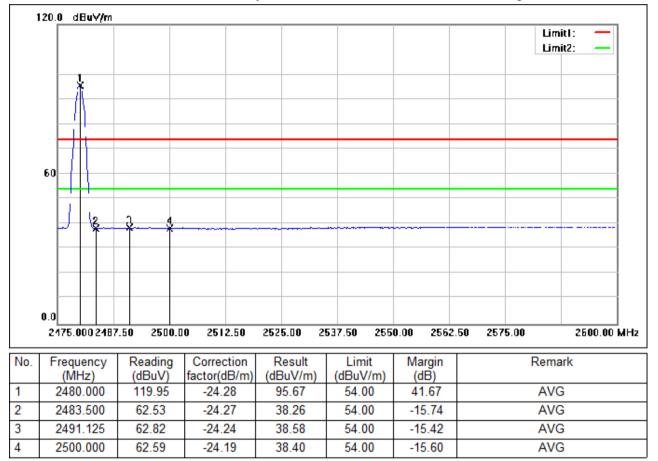
Report No.: KSCR240400056602 Page: 42 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

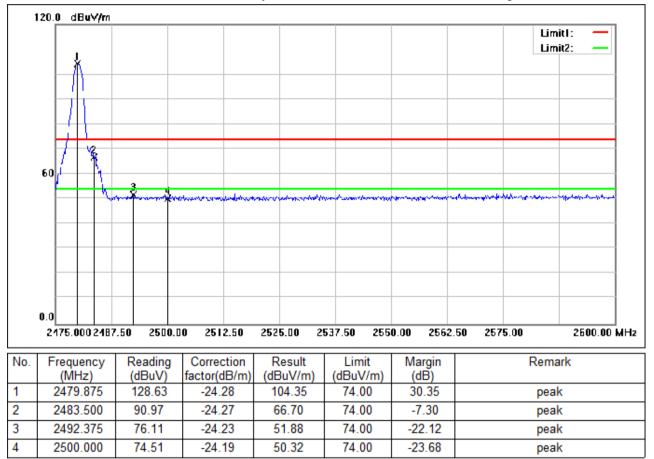
Report No.: KSCR240400056602 Page: 43 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

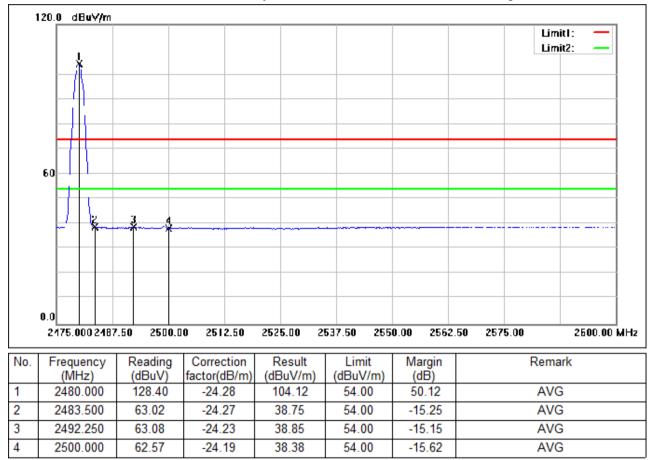
Report No.: KSCR240400056602 Page: 44 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

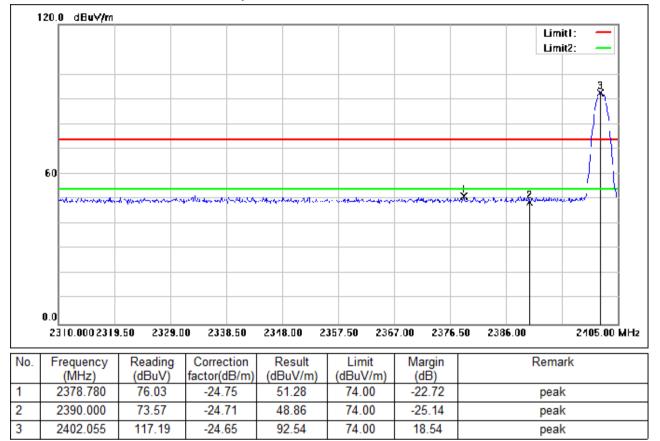
Report No.: KSCR240400056602 Page: 45 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

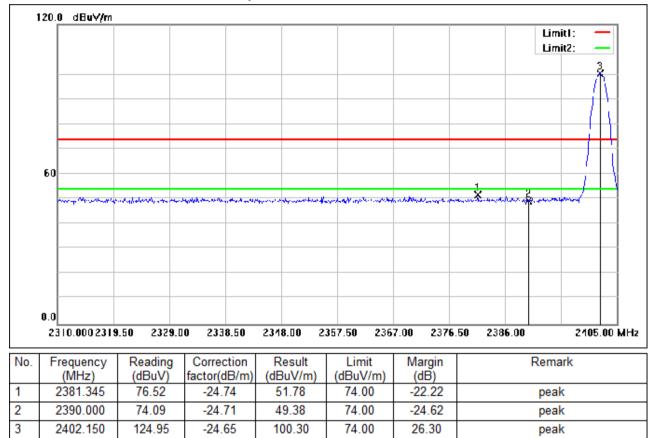
Report No.: KSCR240400056602 Page: 46 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

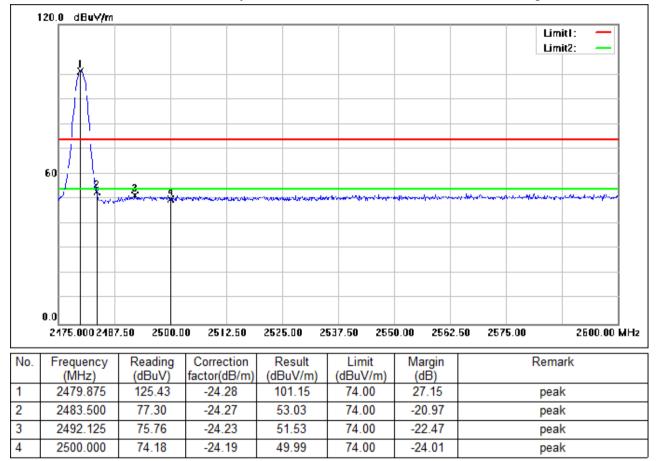
Report No.: KSCR240400056602 Page: 47 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

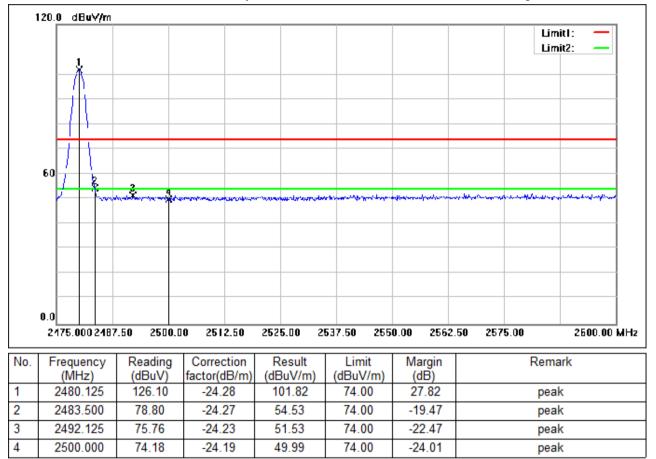
Report No.: KSCR240400056602 Page: 48 of 153



Test Mode: 05; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

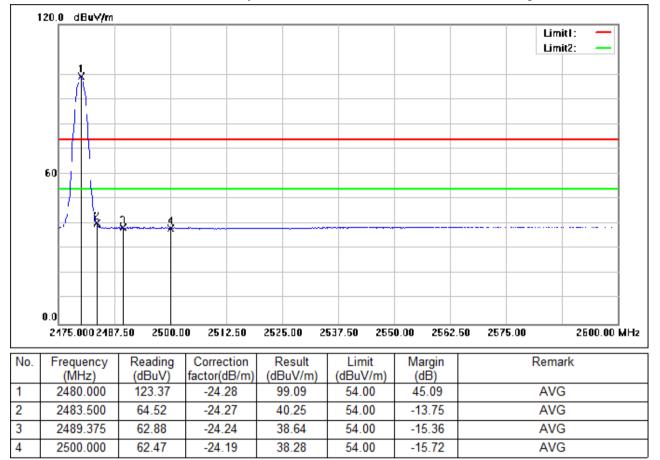
Report No.: KSCR240400056602 Page: 49 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 50 of 153



Test Mode: 05; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

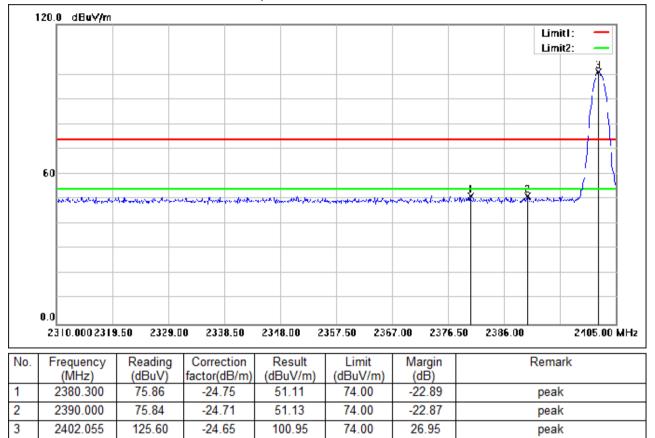
Report No.: KSCR240400056602 Page: 51 of 153



Test Mode: 05; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

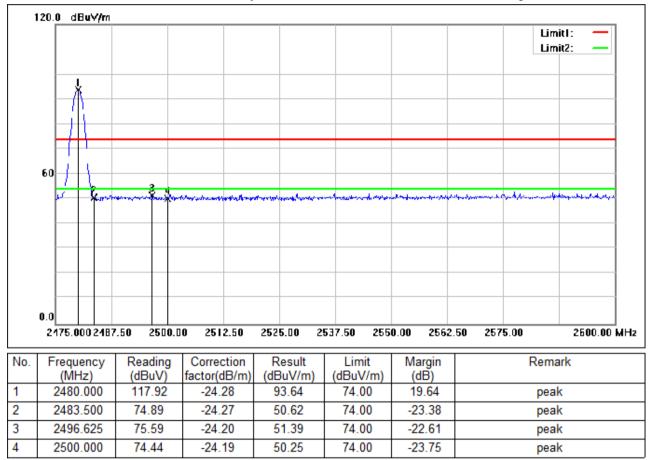
Report No.: KSCR240400056602 Page: 52 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

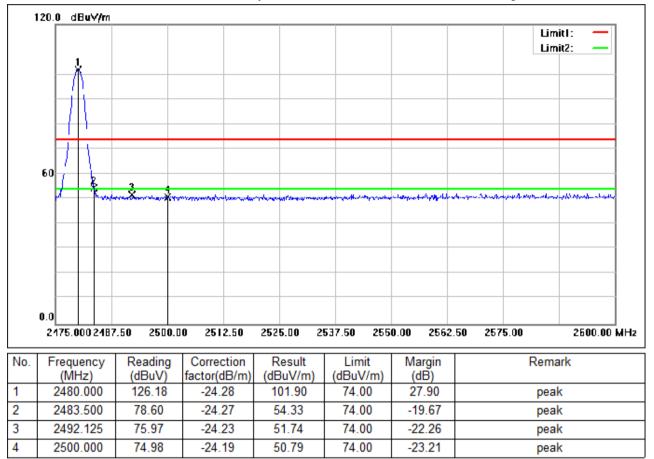
Report No.: KSCR240400056602 Page: 53 of 153



Test Mode: 05; Polarity: Vertical; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

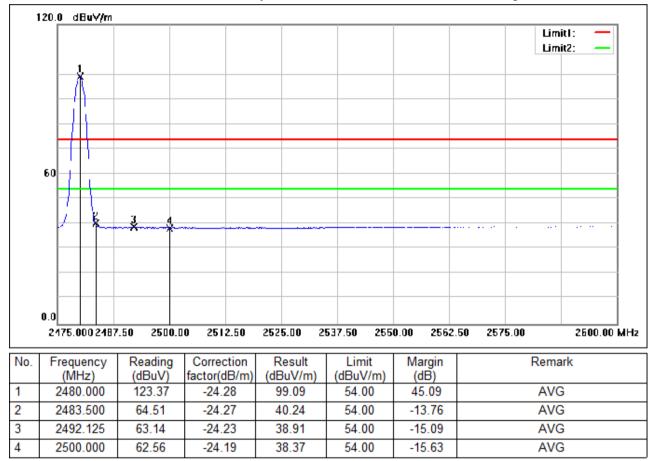
Report No.: KSCR240400056602 Page: 54 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:8DPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 55 of 153



Test Mode: 05; Polarity: Vertical; Modulation:8DPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 56 of 153

Test Mode: 05; Polarity: Vertical; Modulation:8DPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 57 of 153

7.10 Radiated Spurious Emissions Below 1GHz

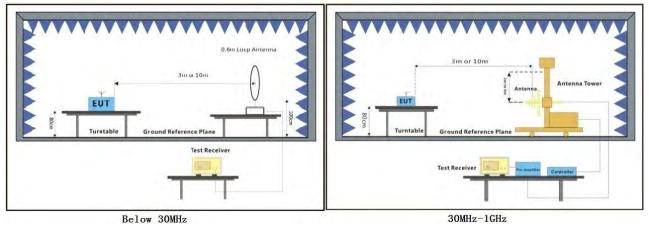
Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4,6.5

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
960-1000	500	3

7.10.1 E.U.T. Operation

Operating Environment: Temperature: 20.5 °C


Humidity: 50.5 % RH

Atmospheric Pressure: 1010 mbar

7.10.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.10.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 58 of 153

7.10.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

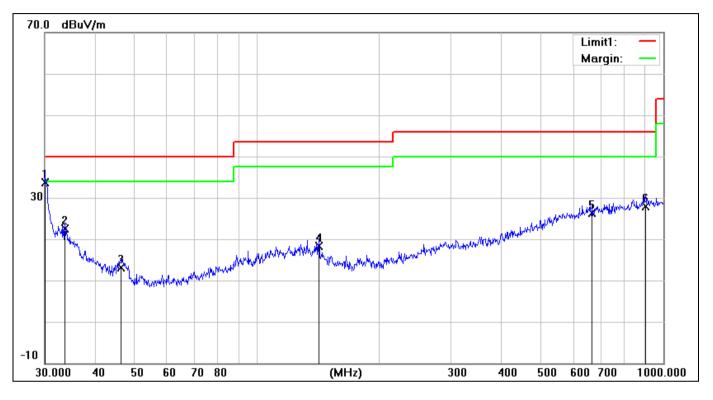
g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete.

Remark:

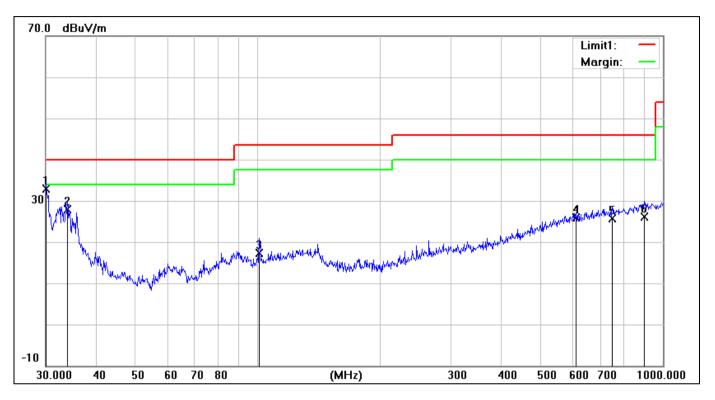
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor


2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 59 of 153

Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Antenna: Dipole; Channel:Middle


No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.0000	14.27	19.42	33.69	40.00	-6.31	100	0	QP
2	33.5624	5.45	17.06	22.51	40.00	-17.49	100	318	QP
3	46.1780	4.90	8.19	13.09	40.00	-26.91	100	19	QP
4	141.8262	4.37	13.87	18.24	43.50	-25.26	100	0	QP
5	668.1423	2.68	23.66	26.34	46.00	-19.66	100	220	QP
6	903.3094	2.15	25.69	27.84	46.00	-18.16	200	5	QP

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 60 of 153

Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Antenna: Dipole; Channel:Middle

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.0000	13.44	19.42	32.86	40.00	-7.14	100	306	QP
2	33.9174	11.03	16.81	27.84	40.00	-12.16	100	0	QP
3	100.9340	4.59	12.77	17.36	43.50	-26.14	100	1	QP
4	609.9217	2.91	23.05	25.96	46.00	-20.04	100	168	QP
5	750.1083	1.34	24.29	25.63	46.00	-20.37	100	252	QP
6	900.1474	0.23	25.91	26.14	46.00	-19.86	200	60	QP

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

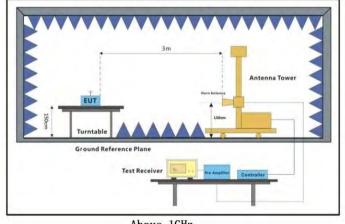
Report No.: KSCR240400056602 Page: 61 of 153

7.11 Radiated Spurious Emissions Above 1GHz

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.6

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
Above 1000	500	3


7.11.1 E.U.T. Operation

Operating Enviro	nment:			
Temperature:	20.5 °C	Humidity:	50.5 % RH	Atmospheric Pressure: 1010 mbar

7.11.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.11.3 Test Setup Diagram

Above 1GHz

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 62 of 153

7.11.4 Measurement Procedure and Data

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

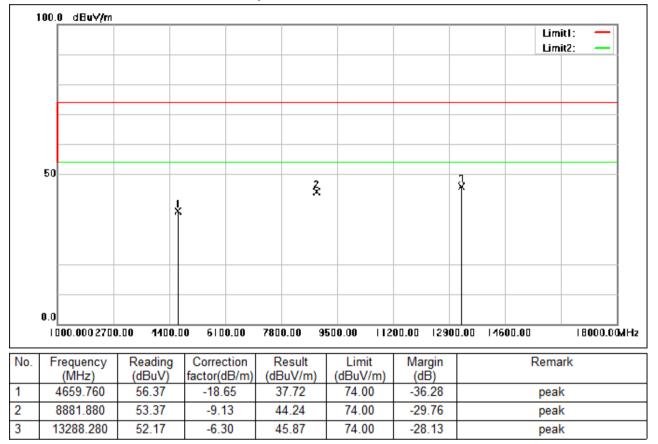
i. Repeat above procedures until all frequencies measured was complete.

Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

2. Scan from 1GHz to 25GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

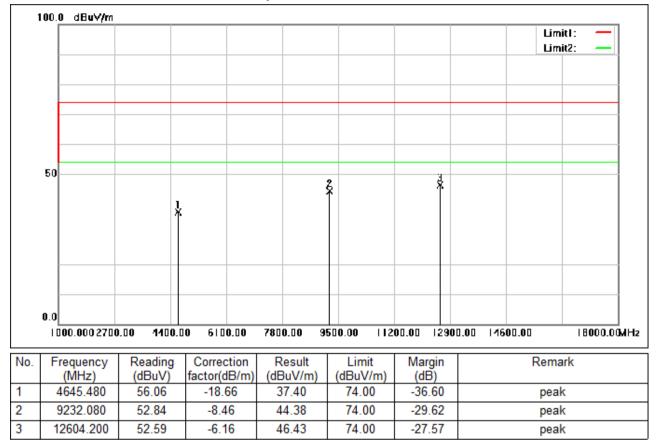
3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

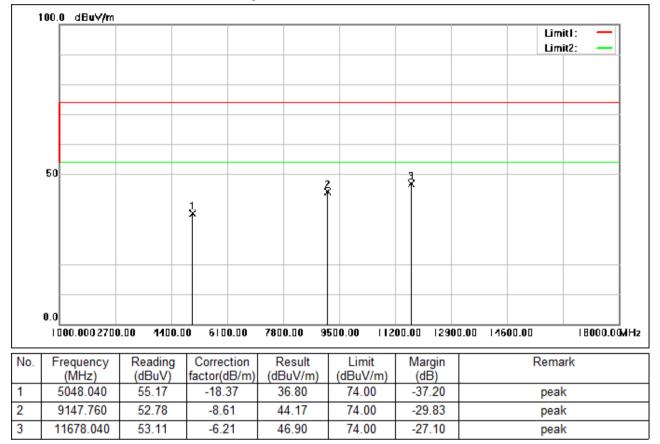
Report No.: KSCR240400056602 Page: 63 of 153

Dipole Antenna


Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

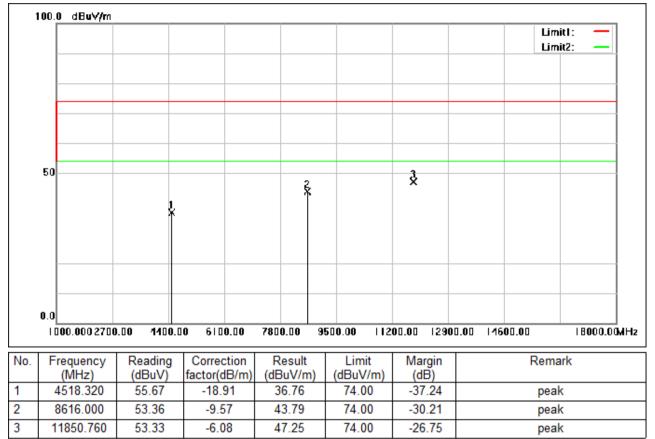
Report No.: KSCR240400056602 Page: 64 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

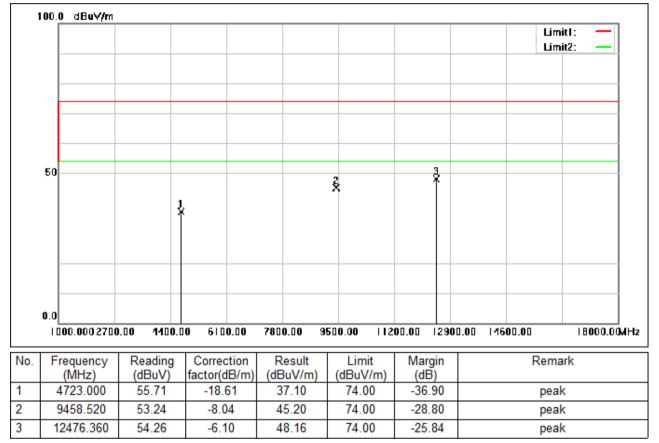
Report No.: KSCR240400056602 Page: 65 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

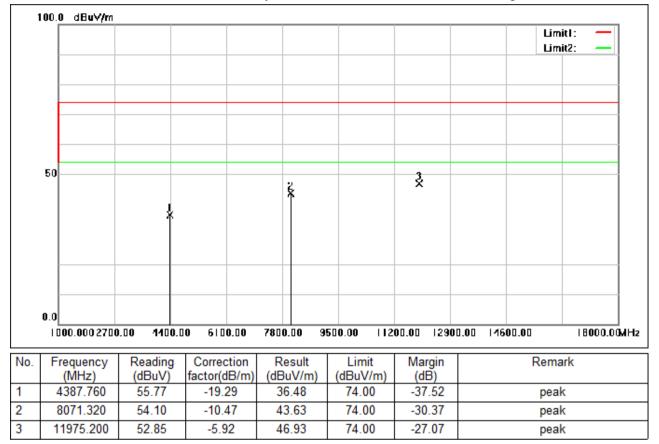
Report No.: KSCR240400056602 Page: 66 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

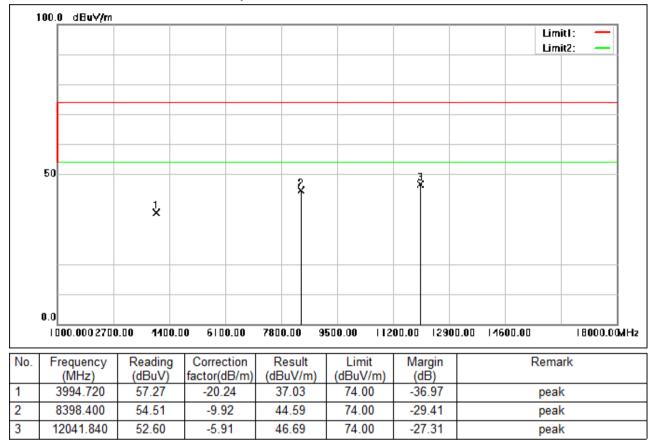
Report No.: KSCR240400056602 Page: 67 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

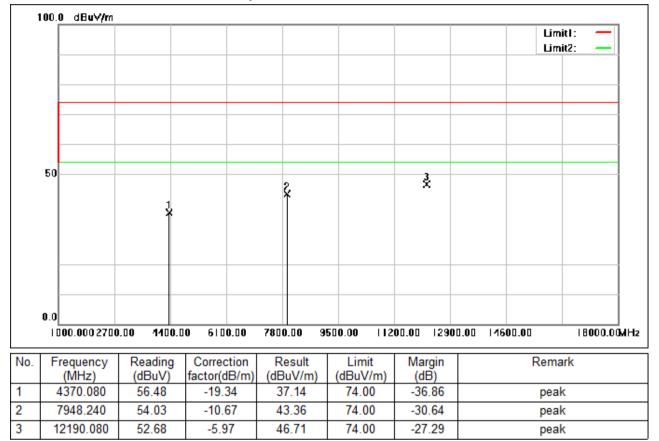
Report No.: KSCR240400056602 Page: 68 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

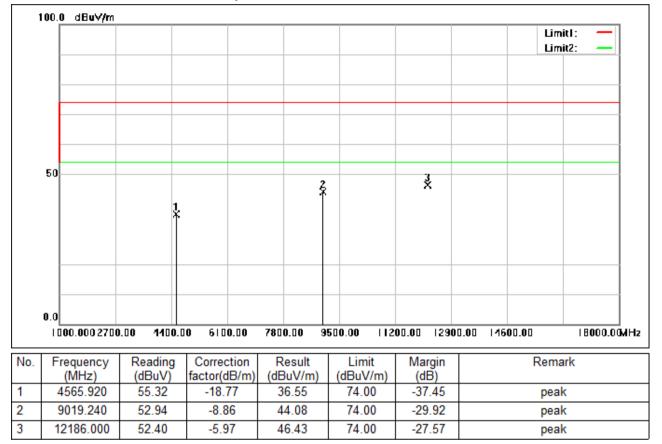
Report No.: KSCR240400056602 Page: 69 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

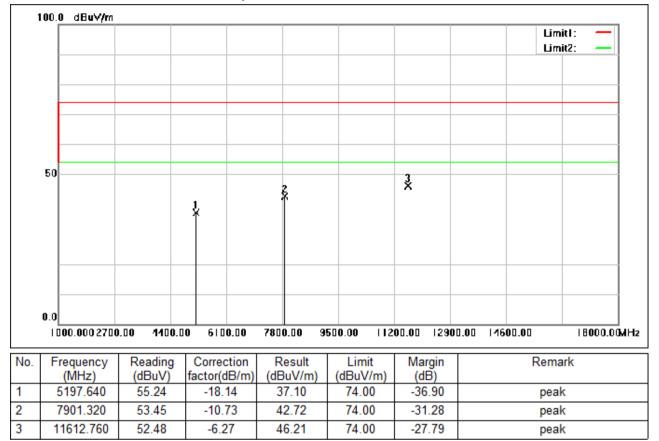
Report No.: KSCR240400056602 Page: 70 of 153



Test Mode: 05; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

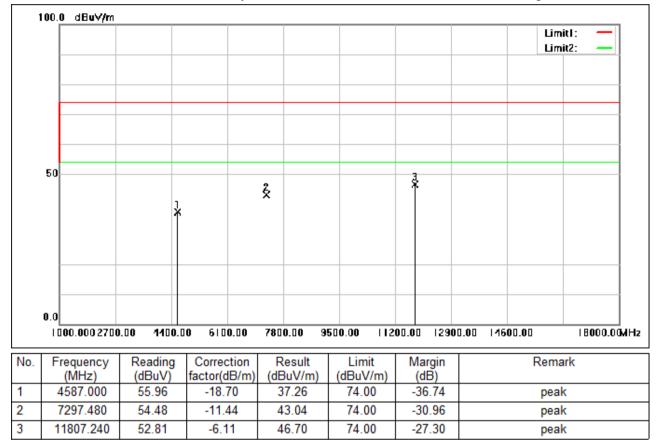
Report No.: KSCR240400056602 Page: 71 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

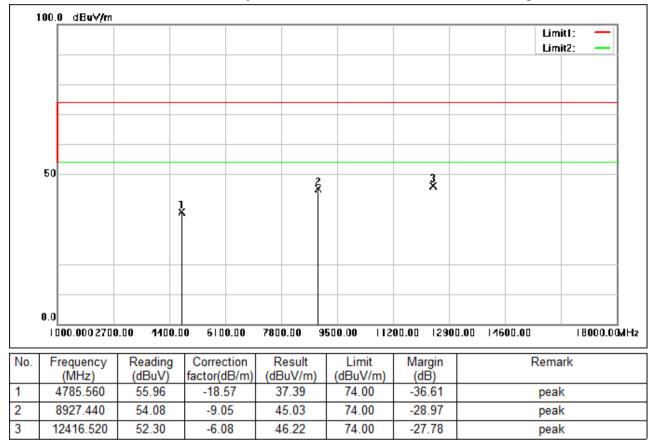
Report No.: KSCR240400056602 Page: 72 of 153



Test Mode: 05; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

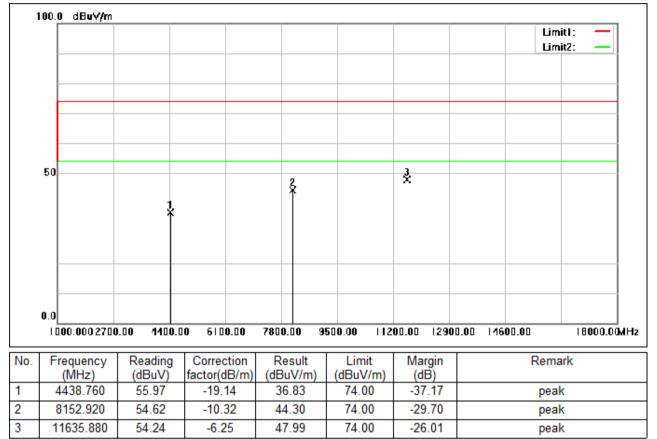
Report No.: KSCR240400056602 Page: 73 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

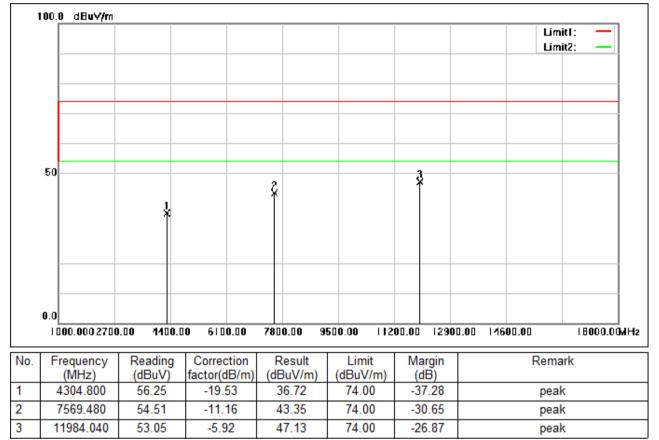
Report No.: KSCR240400056602 Page: 74 of 153



Test Mode: 05; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

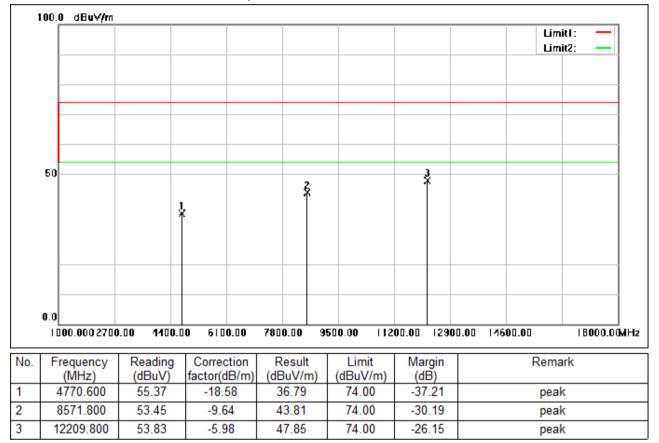
Report No.: KSCR240400056602 Page: 75 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

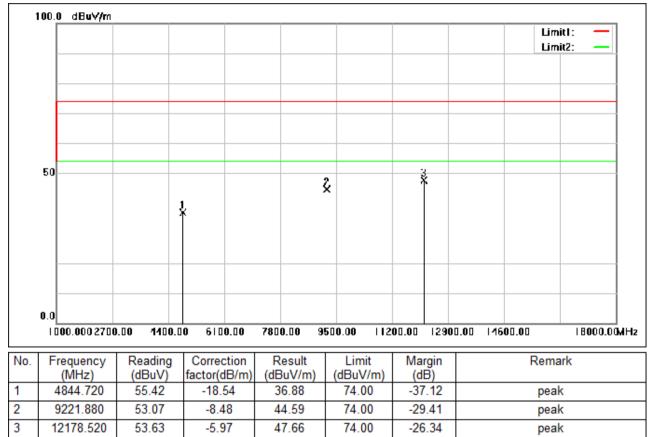
Report No.: KSCR240400056602 Page: 76 of 153



Test Mode: 05; Polarity: Vertical; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

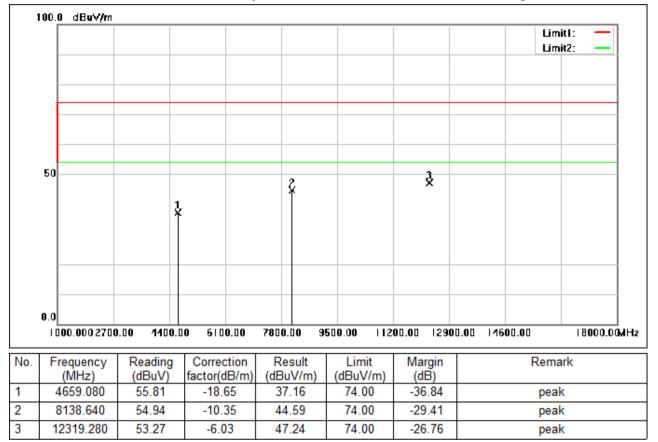
Report No.: KSCR240400056602 Page: 77 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:8DPSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

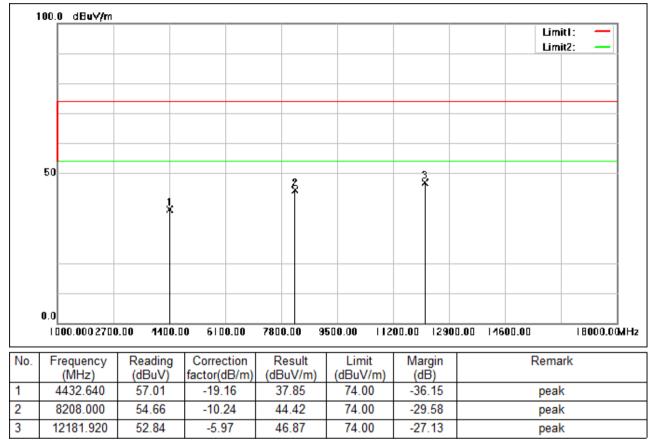
Report No.: KSCR240400056602 Page: 78 of 153



Test Mode: 05; Polarity: Vertical; Modulation:8DPSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 79 of 153

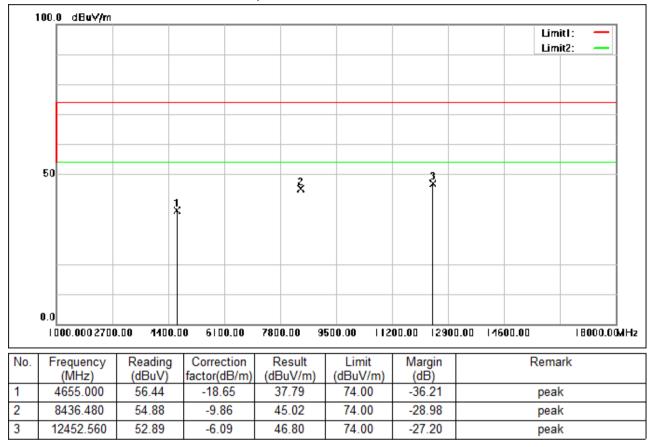


Test Mode: 05; Polarity: Horizontal; Modulation:8DPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 80 of 153

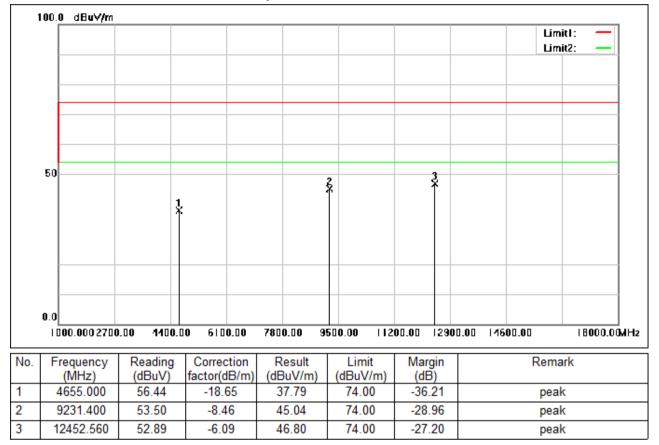
Test Mode: 05; Polarity: Vertical; Modulation:8DPSK; Channel:High



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

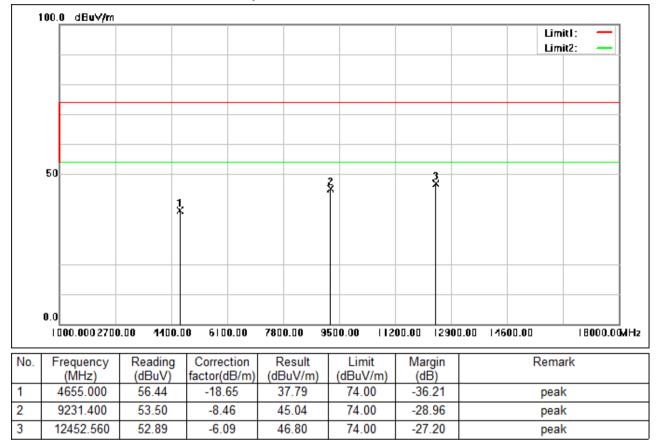
Report No.: KSCR240400056602 Page: 81 of 153

PCB Antenna


Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

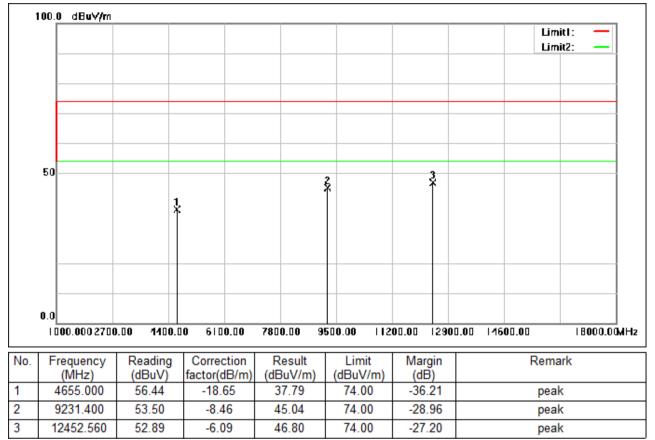
Report No.: KSCR240400056602 Page: 82 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 83 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

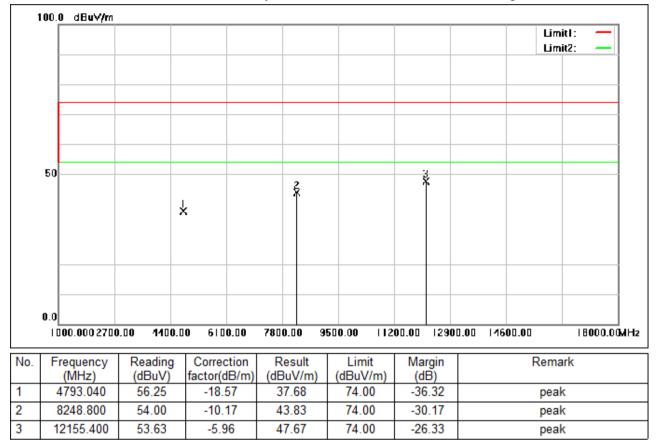
Report No.: KSCR240400056602 Page: 84 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

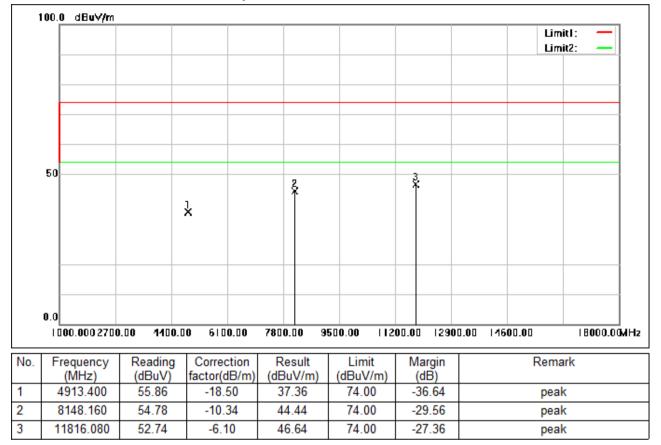
Report No.: KSCR240400056602 Page: 85 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

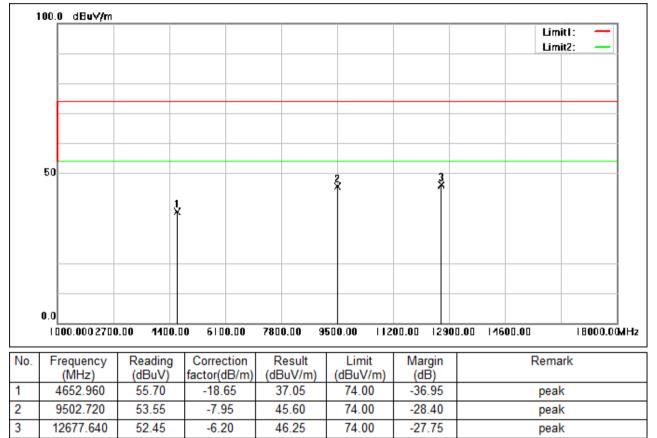
Report No.: KSCR240400056602 Page: 86 of 153



Test Mode: 05; Polarity: Vertical; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

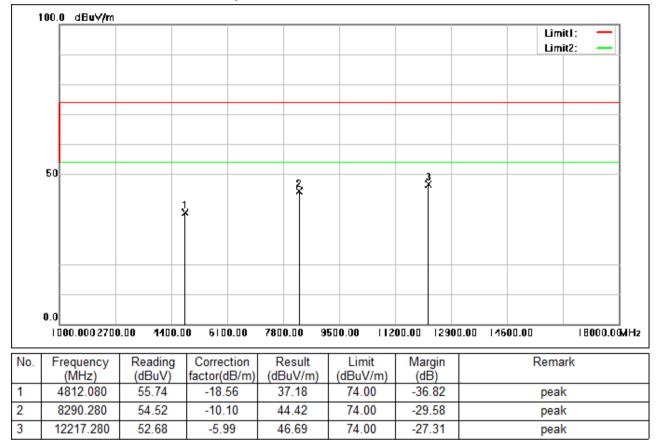
Report No.: KSCR240400056602 Page: 87 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

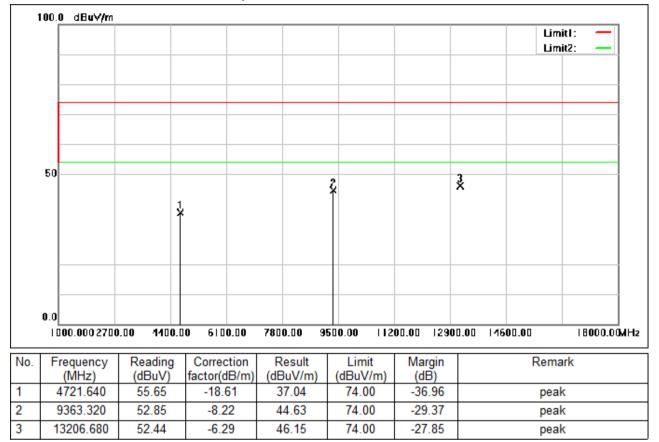
Report No.: KSCR240400056602 Page: 88 of 153



Test Mode: 05; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

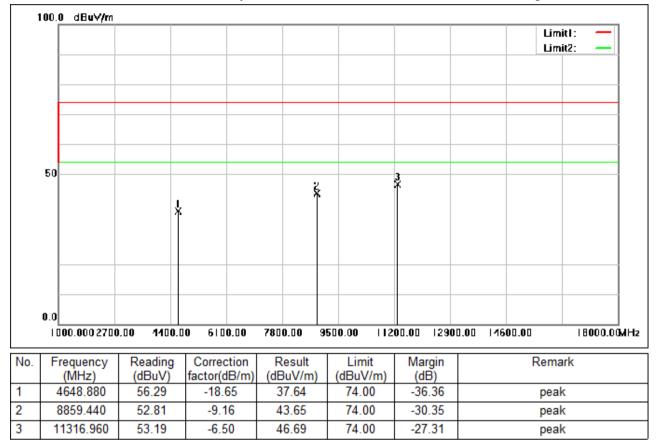
Report No.: KSCR240400056602 Page: 89 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

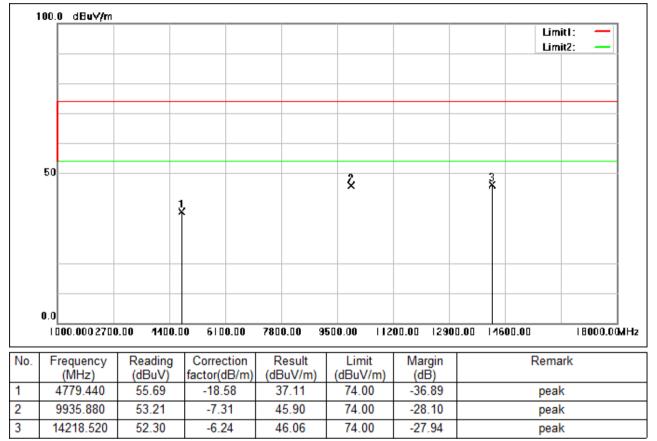
Report No.: KSCR240400056602 Page: 90 of 153



Test Mode: 05; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

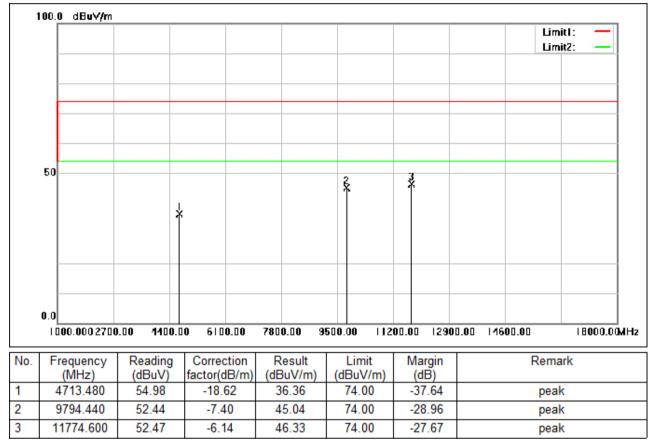
Report No.: KSCR240400056602 Page: 91 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

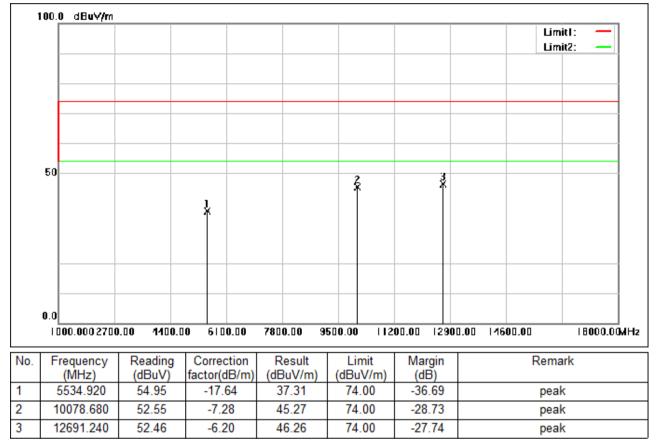
Report No.: KSCR240400056602 Page: 92 of 153



Test Mode: 05; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

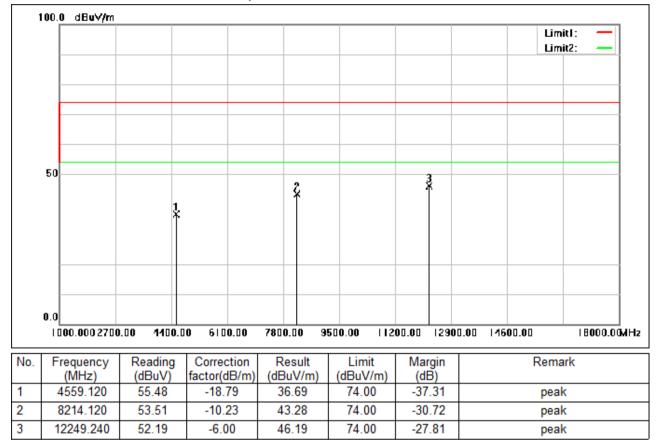
Report No.: KSCR240400056602 Page: 93 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

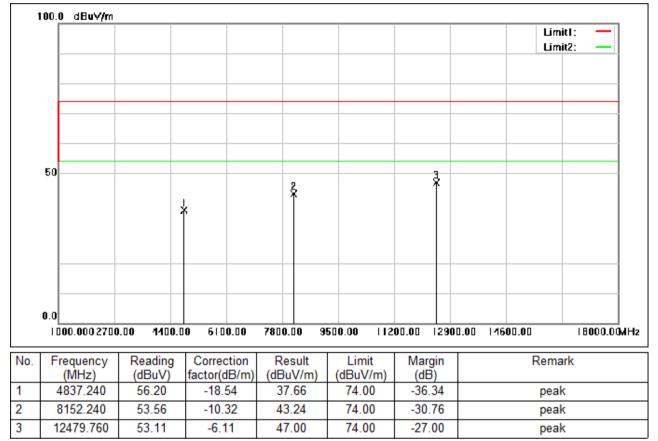
Report No.: KSCR240400056602 Page: 94 of 153



Test Mode: 05; Polarity: Vertical; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

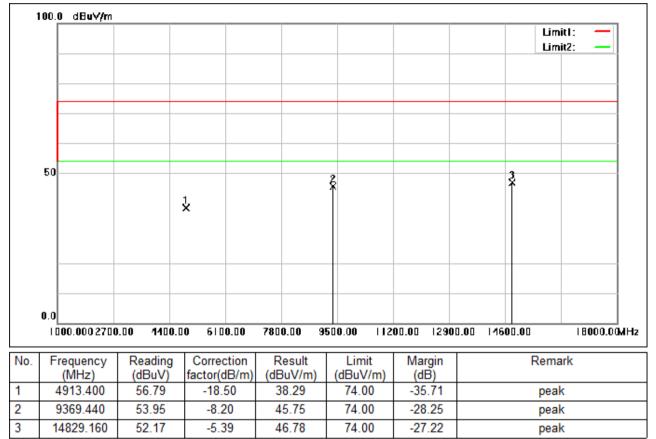
Report No.: KSCR240400056602 Page: 95 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:8DPSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

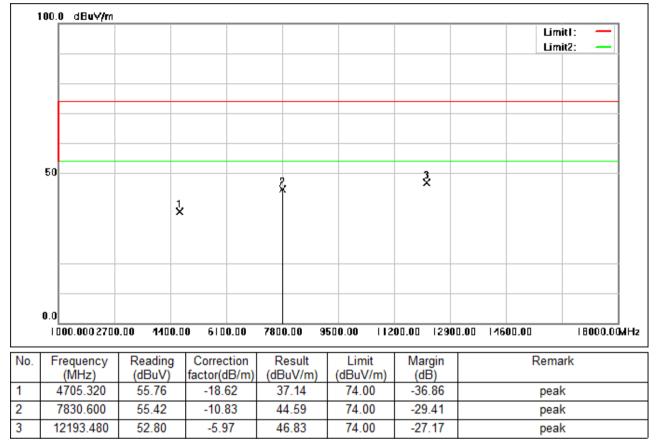
Report No.: KSCR240400056602 Page: 96 of 153



Test Mode: 05; Polarity: Vertical; Modulation:8DPSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 97 of 153



Test Mode: 05; Polarity: Horizontal; Modulation:8DPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 98 of 153

Test Mode: 05; Polarity: Vertical; Modulation:8DPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

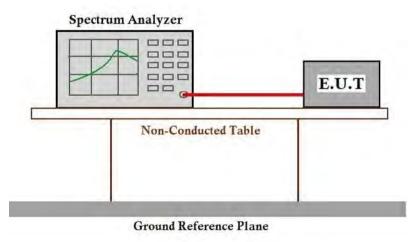
Report No.: KSCR240400056602 Page: 99 of 153

7.12 99% Bandwidth

Test Requirement	RSS-Gen Section 6.7
Test Method:	ANSI C63.10 (2013) Section 6.9.3

7.12.1 E.U.T. Operation

Operating Environment: Temperature: 18.1 °C


Humidity: 50.5 % RH

Atmospheric Pressure: 1010 mbar

7.12.1 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.12.2 Test Setup Diagram

7.12.3 Measurement Procedure and Data

Please Refer to Appendix for Details

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 100 of 153

8 Test Setup Photo

Refer to Appendix - Test Setup Photo for KSCR2404000566AT

9 EUT Constructional Details (EUT Photos)

Refer to External and Internal Photos for KSCR2404000566AT

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 101 of 153

10 Appendix

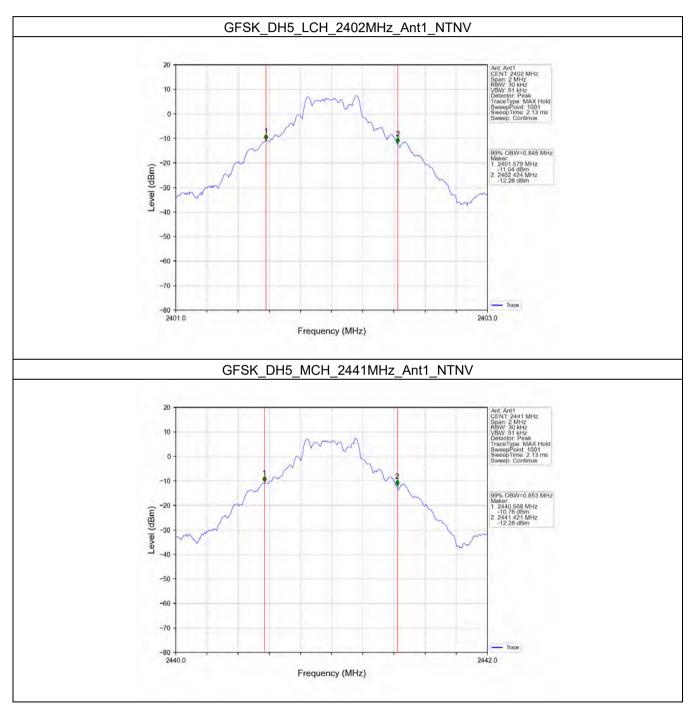
- 1. Bandwidth
- 1.1 Test Result

1.1.1 OBW

Mode TX Type	ΤX	Frequency (MHz)	Packet Type	ANT	99% Occupied Bandwidth (MHz)		Vardiat
	Туре				Result	Limit	Verdict
GFSK SISO		2402	DH5	1	0.845	/	Pass
	2441	DH5	1	0.853	/	Pass	
		2480	DH5	1	0.859	/	Pass
Pi/4DQPSK SISO		2402	2DH5	1	1.204	/	Pass
	SISO	2441	2DH5	1	1.203	/	Pass
		2480	2DH5	1	1.204	/	Pass
8DPSK	SISO	2402	3DH5	1	1.194	/	Pass
		2441	3DH5	1	1.196	/	Pass
		2480	3DH5	1	1.204	/	Pass

1.1.2 20dB BW

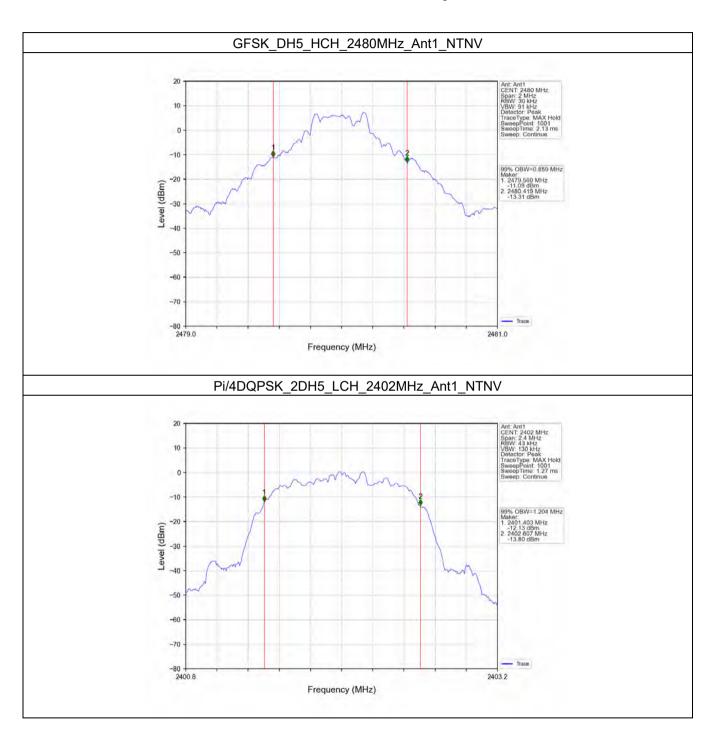
Mode	ТΧ	Frequency Packet (MHz) Type	Packet	ANT	20dB Bandwidth (MHz)		Vordiet
	Туре		Туре		Result	Limit	Verdict
GFSK SISO		2402	DH5	1	0.938	/	Pass
	2441	DH5	1	0.942	/	Pass	
	2480	DH5	1	0.940	/	Pass	
Pi/4DQPSK SISO		2402	2DH5	1	1.409	/	Pass
	SISO	2441	2DH5	1	1.409	/	Pass
		2480	2DH5	1	1.408	/	Pass
8DPSK S	SISO	2402	3DH5	1	1.321	/	Pass
		2441	3DH5	1	1.322	/	Pass
		2480	3DH5	1	1.324	/	Pass



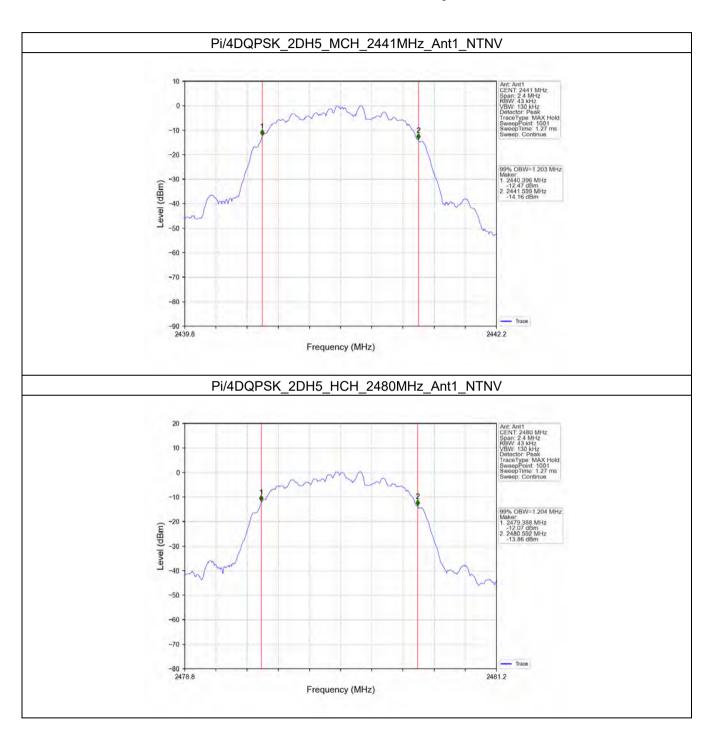
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 102 of 153

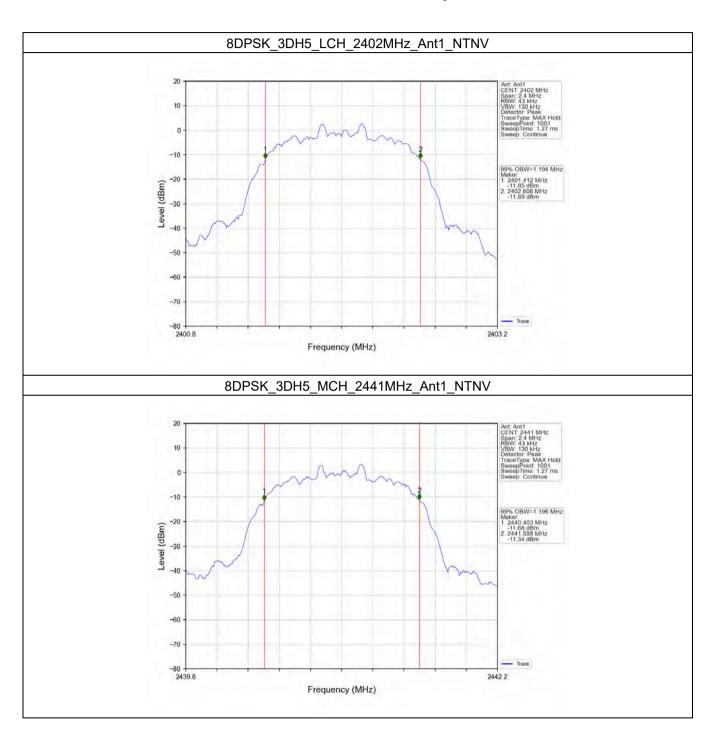
1.2 Test Graph


1.2.1 OBW

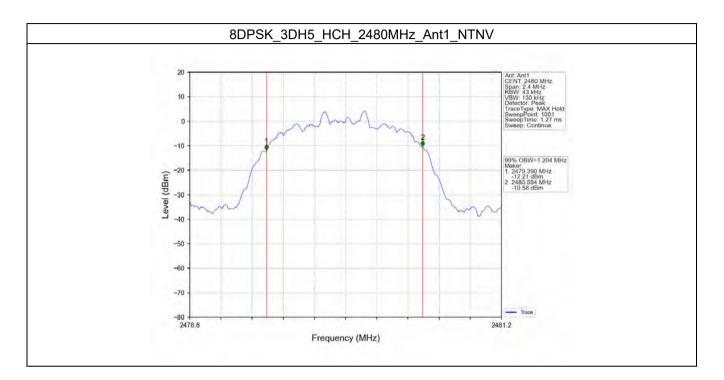
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 103 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

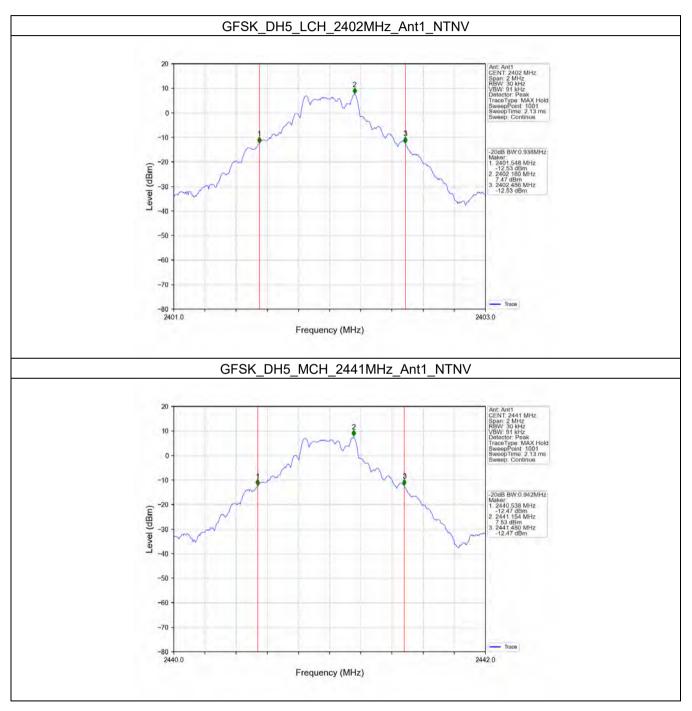

Report No.: KSCR240400056602 Page: 104 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 105 of 153

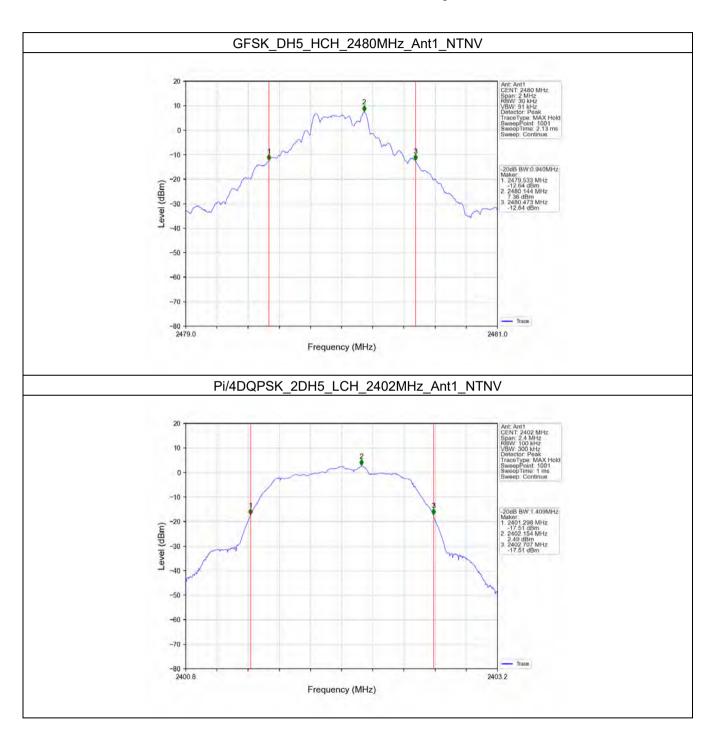
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 106 of 153

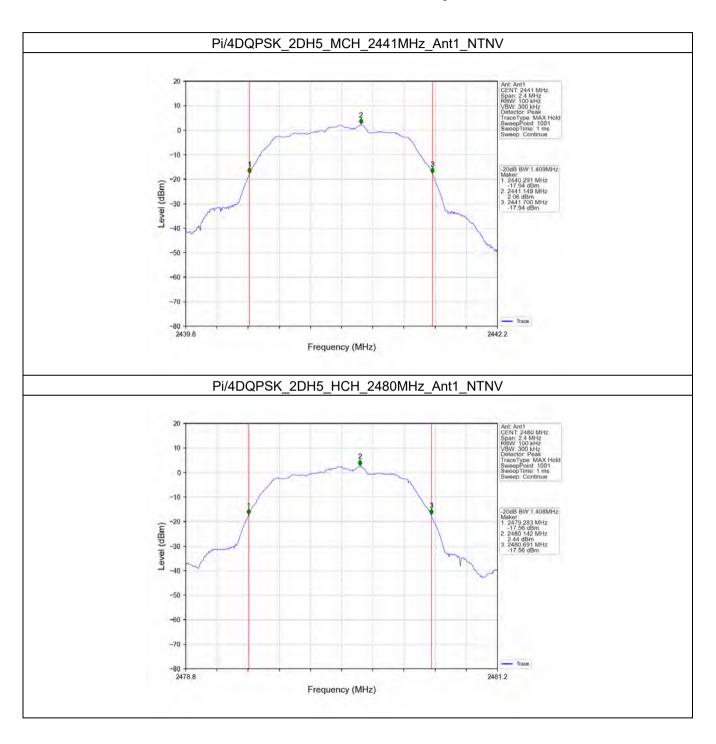


CCSEM-TRF-001 Rev. 02 Sep 01, 2023

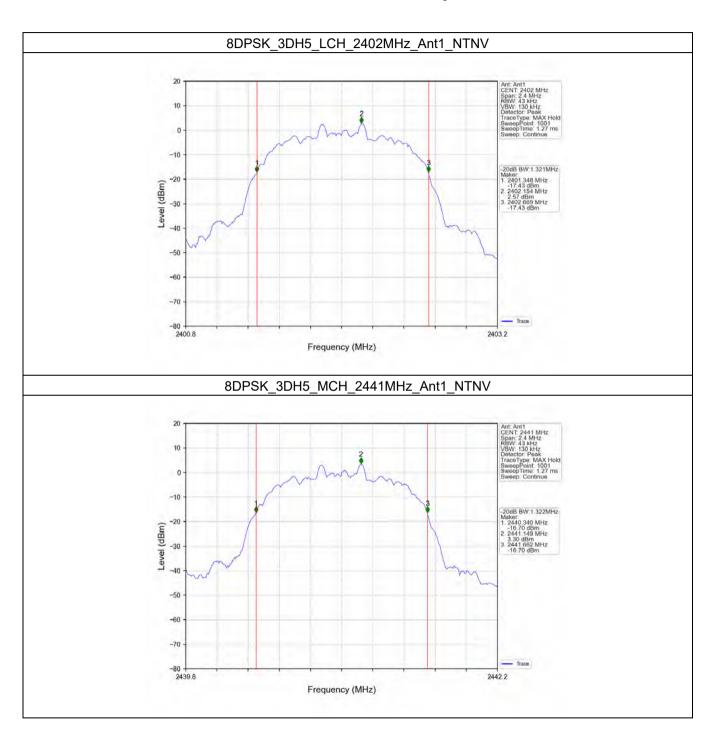
Report No.: KSCR240400056602 Page: 107 of 153


1.2.2 20dB BW

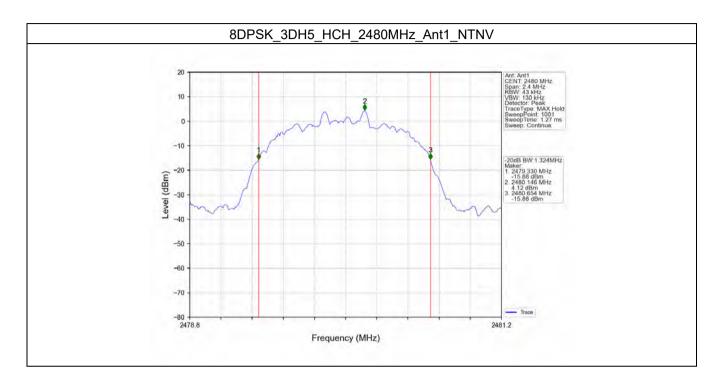
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 108 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 109 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 110 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 111 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 112 of 153

2. Maximum Conducted Output Power

2.1 Test Result

2.1.1 Power

Mode TX Type	TX	Frequency	Packet		ducted Output Power 3m)	Verdict
	туре	(MHz)	Туре	ANT1	Limit	
		2402	DH5	8.76	<=30	Pass
GFSK	GFSK SISO	2441	DH5	8.88	<=30	Pass
		2480	DH5	8.55	<=30	Pass
		2402	2DH5	5.39	<=20.97	Pass
Pi/4DQPSK	SISO	2441	2DH5	5.84	<=20.97	Pass
		2480	2DH5	6.06	<=20.97	Pass
		2402	3DH5	5.78	<=20.97	Pass
8DPSK	SISO	2441	3DH5	6.16	<=20.97	Pass
		2480	3DH5	6.24	<=20.97	Pass

2.1.2 EIRP (Dipole antenna)

Mode	ТХ	Frequency	Packet	E.I.R.	P (dBm)	Verdict
wode	Туре	(MHz)	Туре	ANT1	Limit	verdict
GFSK		2402	DH5	11.76	<=36.02	Pass
	SISO	2441	DH5	11.88	<=36.02	Pass
		2480	DH5	11.55	<=36.02	Pass
	SISO	2402	2DH5	8.39	<=36.02	Pass
Pi/4DQPSK		2441	2DH5	8.84	<=36.02	Pass
		2480	2DH5	9.06	<=36.02	Pass
		2402	3DH5	8.78	<=36.02	Pass
8DPSK	SISO	2441	3DH5	9.16	<=36.02	Pass
		2480	3DH5	9.24	<=36.02	Pass

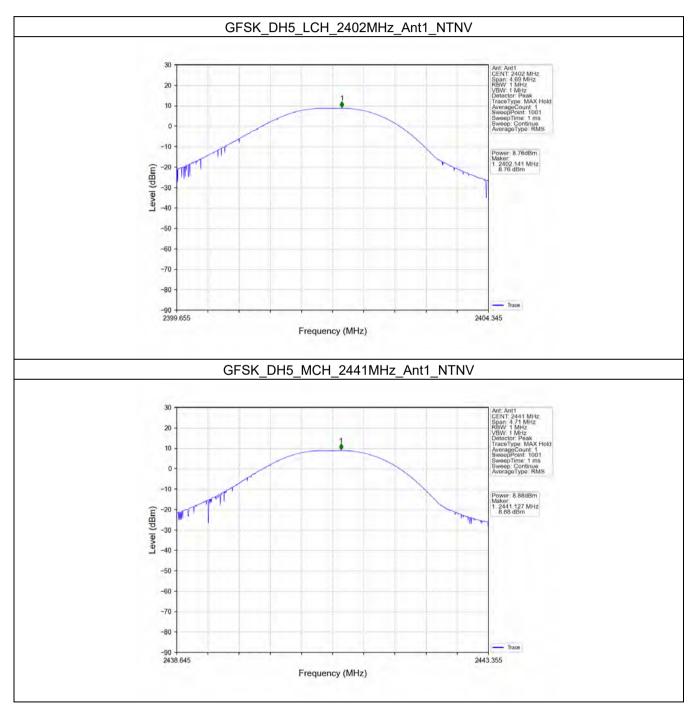
2.1.3 EIRP (PCB antenna)

Mode	ΤX	Frequency	Packet	E.I.R.F	² (dBm)	Verdict	
	Туре	(MHz)	Туре	ANT1	Limit		
		2402	DH5	11.56	<=36.02	Pass	
GFSK	SISO	2441	DH5	11.68	<=36.02	Pass	
		2480	DH5	11.35	<=36.02	Pass	
	8180	2402	2DH5	8.19	<=36.02	Pass	
Pi/4DQPSK	SISO	2441	2DH5	8.64	<=36.02	Pass	

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 113 of 153

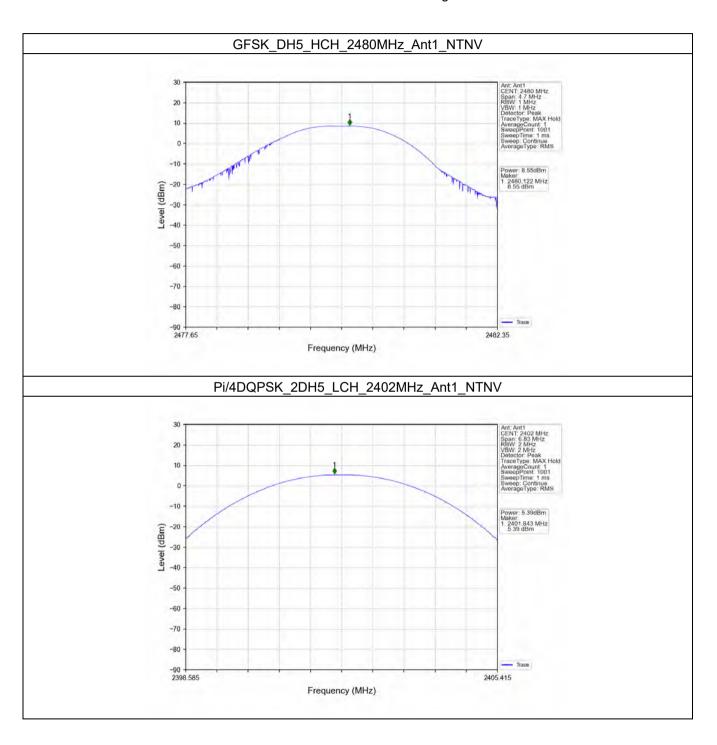
		2480	2DH5	8.86	<=36.02	Pass
8DPSK		2402	3DH5	8.58	<=36.02	Pass
	SISO	2441	3DH5	8.96	<=36.02	Pass
		2480	3DH5	9.04	<=36.02	Pass



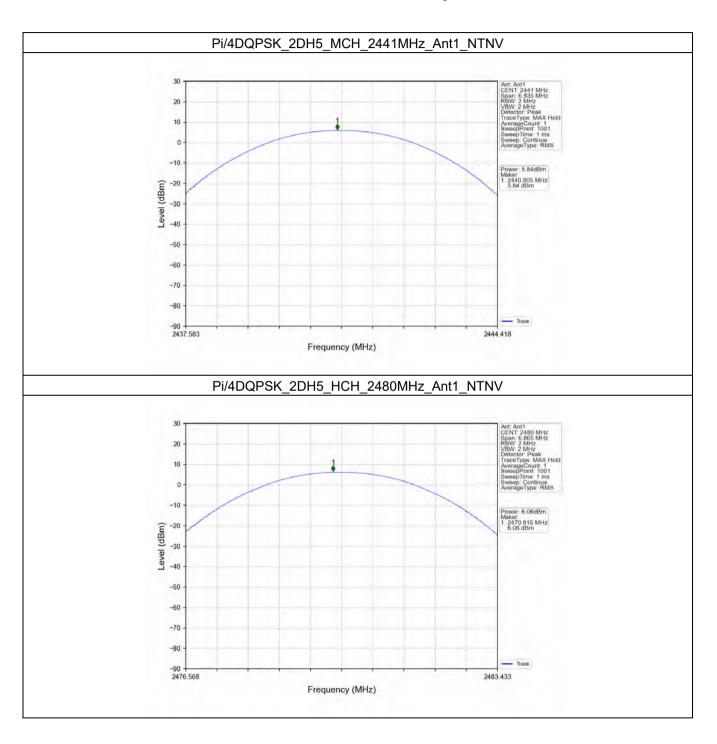
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 114 of 153

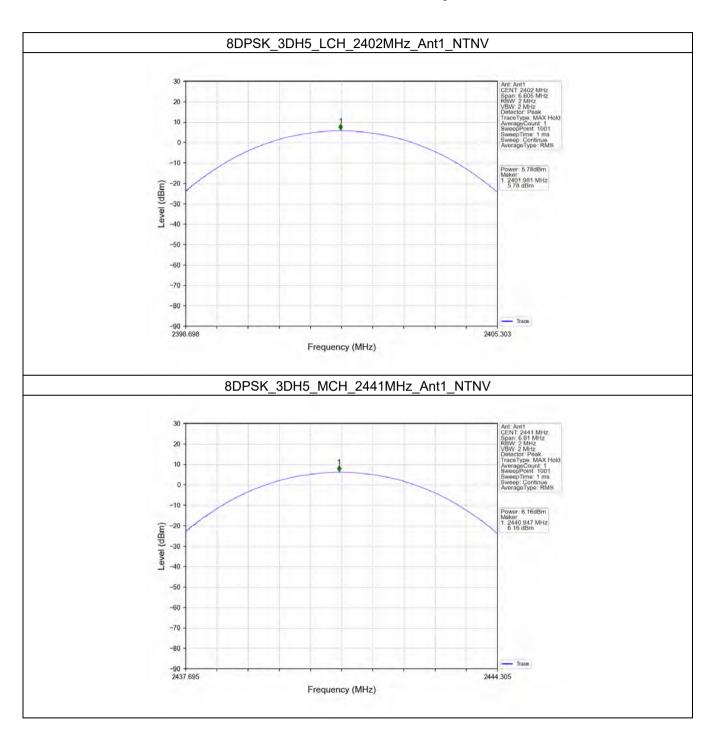
2.2 Test Graph


2.2.1 Power

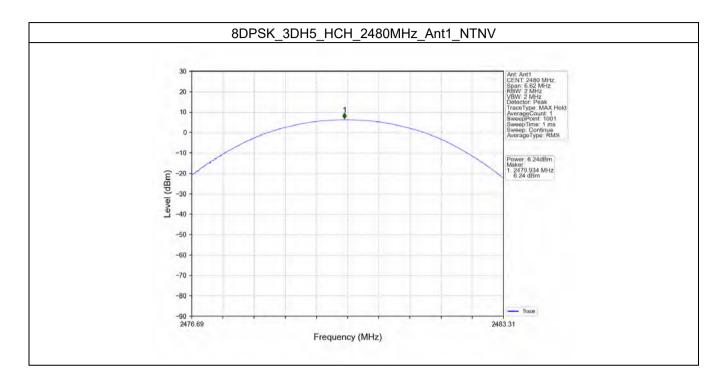
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 115 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 116 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 117 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 118 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

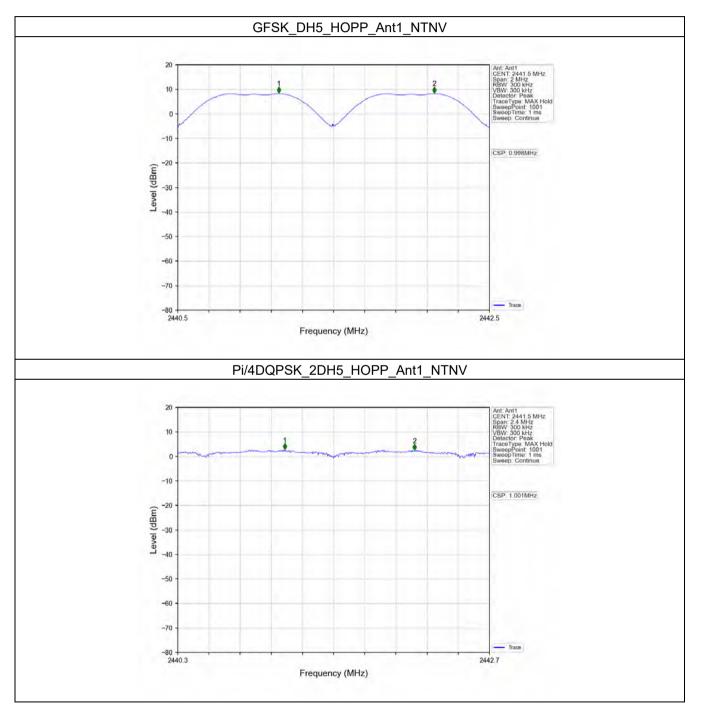
Report No.: KSCR240400056602 Page: 119 of 153

3. Carrier Frequency Separation

3.1 Test Result

3.1.1 Ant1

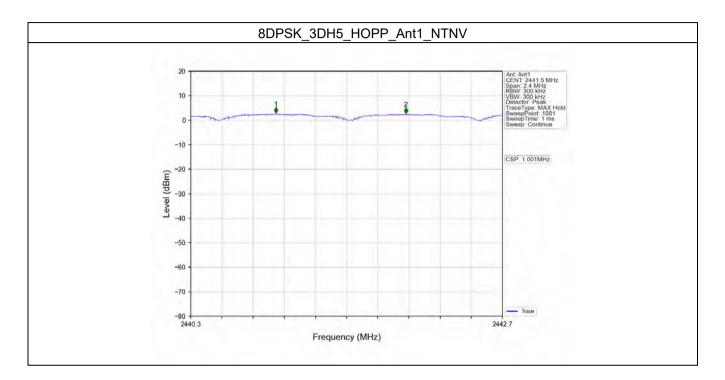
	Ant1										
Mode	ТХ Туре	Type (MHz) Type (MHz)		20dB Bandwidth (MHz)	Limit (MHz)	Verdict					
GFSK	SISO	HOPP	DH5	0.998	0.942	>=0.942	Pass				
Pi/4DQPSK	SISO	HOPP	2DH5	1.001	1.409	>=0.939	Pass				
8DPSK	SISO	HOPP	3DH5	1.001	1.324	>=0.883	Pass				



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 120 of 153

3.2 Test Graph


3.2.1 Ant1

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 121 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

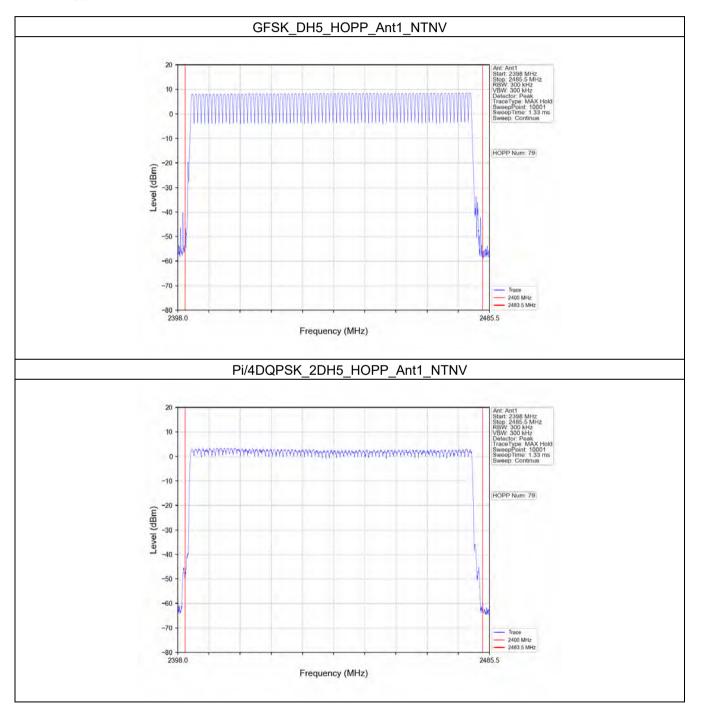
Report No.: KSCR240400056602 Page: 122 of 153

4. Number of Hopping Frequencies

4.1 Test Result

4.1.1 HoppNum

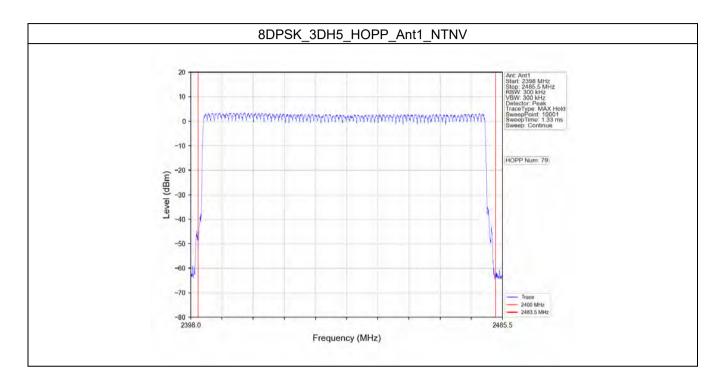
Mode	ΤХ	Frequency	Packet	Num of Hoppir	g Frequencies	\/ardiat
	Туре	(MHz)	Туре	ANT1	Limit	Verdict
GFSK	SISO	HOPP	DH5	79	>=15	Pass
Pi/4DQPSK	SISO	HOPP	2DH5	79	>=15	Pass
8DPSK	SISO	HOPP	3DH5	79	>=15	Pass



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 123 of 153

4.2 Test Graph


4.2.1 HoppNum

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 124 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

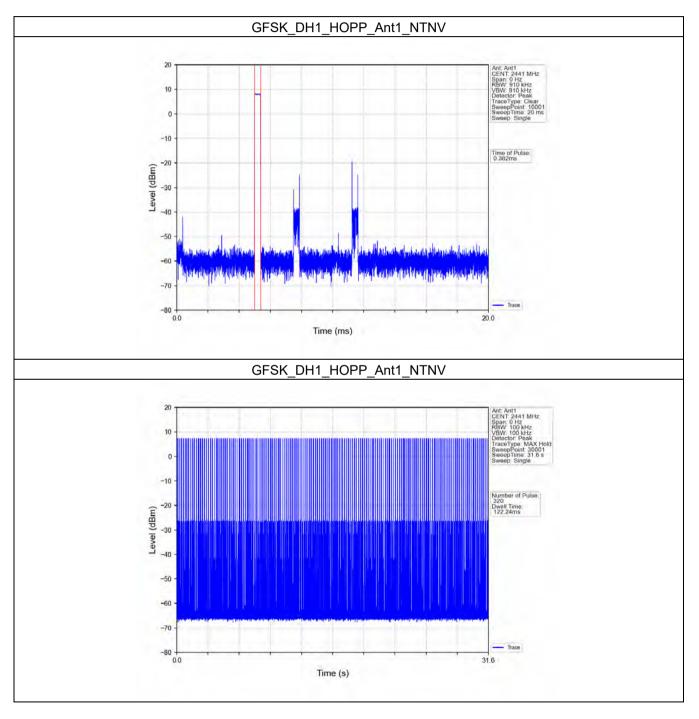
Report No.: KSCR240400056602 Page: 125 of 153

5. Time of Occupancy (Dwell Time)

5.1 Test Result

5.1.1 Ant1

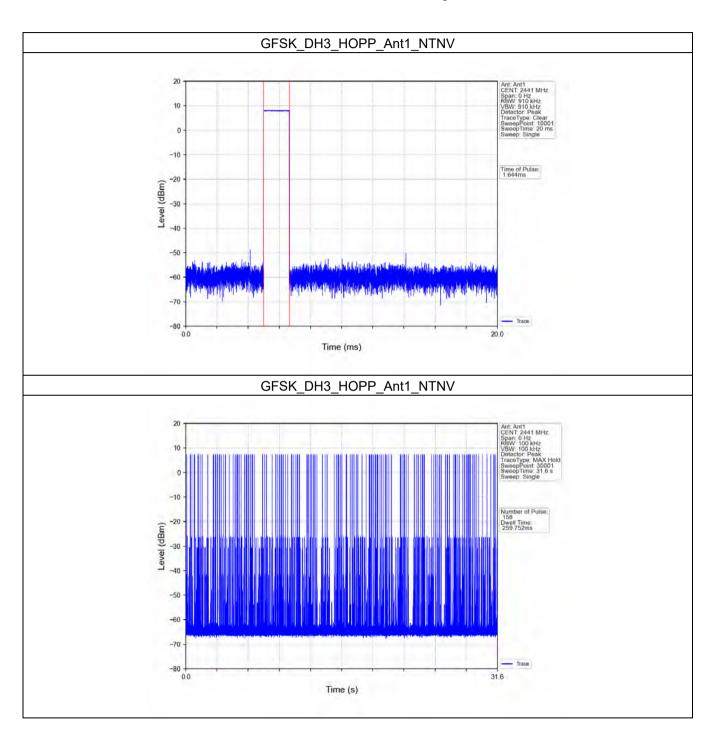
	Ant1										
Mode	ТХ Туре	Frequency (MHz)	Packet Type	Duration of Single Pulse (ms)	Observation Period (s)	Num of Pulse in Observation Period	Dwell Time (ms)	Limit (ms)	Verdict		
			DH1	0.382	31.600	320	122.240	<=400	Pass		
GFSK	SISO	HOPP	DH3	1.644	31.600	158	259.752	<=400	Pass		
			DH5	2.892	31.600	112	323.904	<=400	Pass		
		HOPP	2DH1	0.394	31.600	320	126.080	<=400	Pass		
Pi/4DQPSK	SISO		2DH3	1.640	31.600	142	232.880	<=400	Pass		
			2DH5	2.894	31.600	94	272.036	<=400	Pass		
			3DH1	0.384	31.600	320	122.880	<=400	Pass		
8DPSK	SISO	HOPP	3DH3	1.640	31.600	172	282.080	<=400	Pass		
			3DH5	2.896	31.600	105	304.080	<=400	Pass		



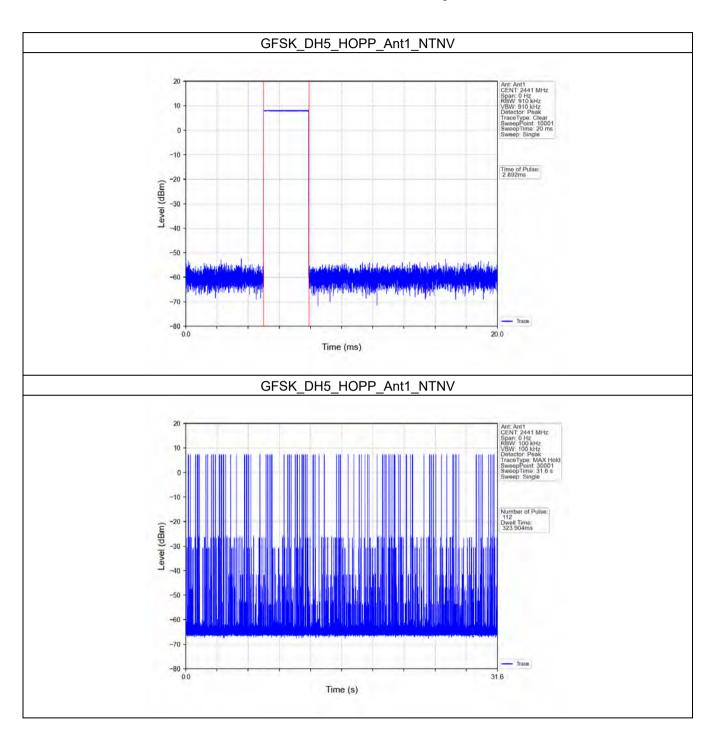
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 126 of 153

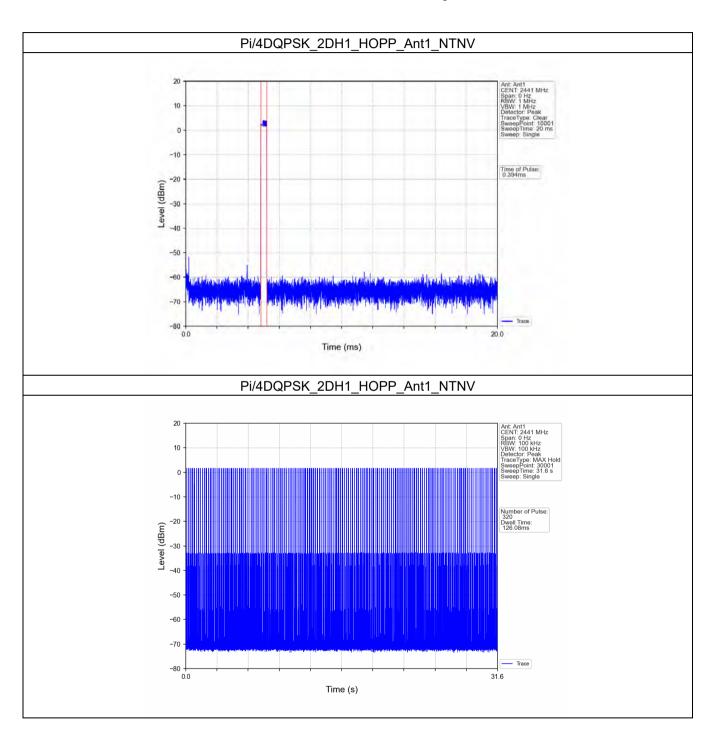
5.2 Test Graph


5.2.1 Ant1

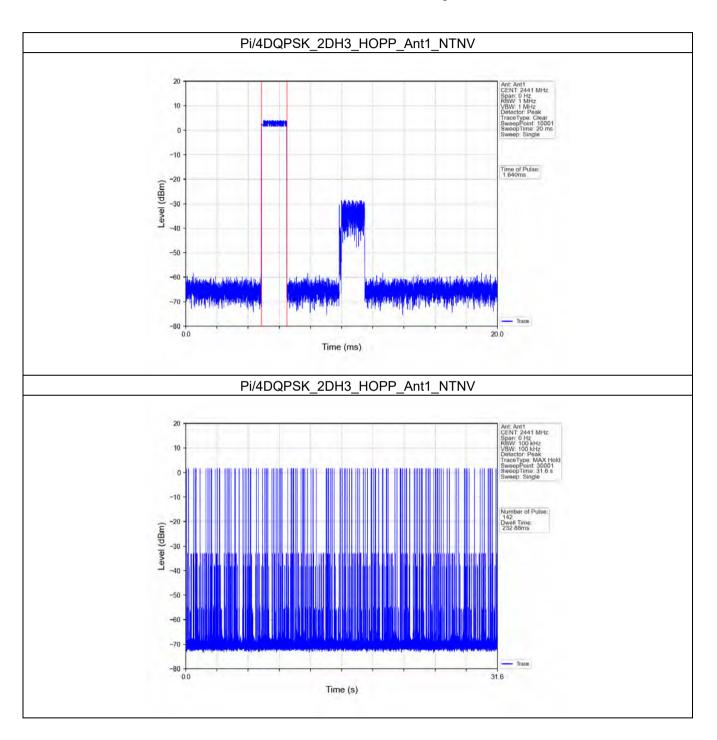
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 127 of 153

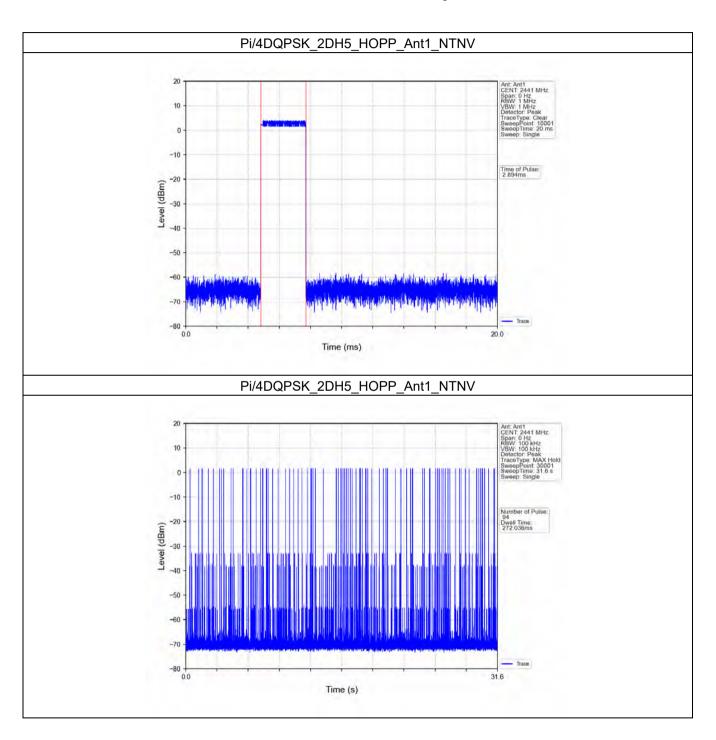
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 128 of 153

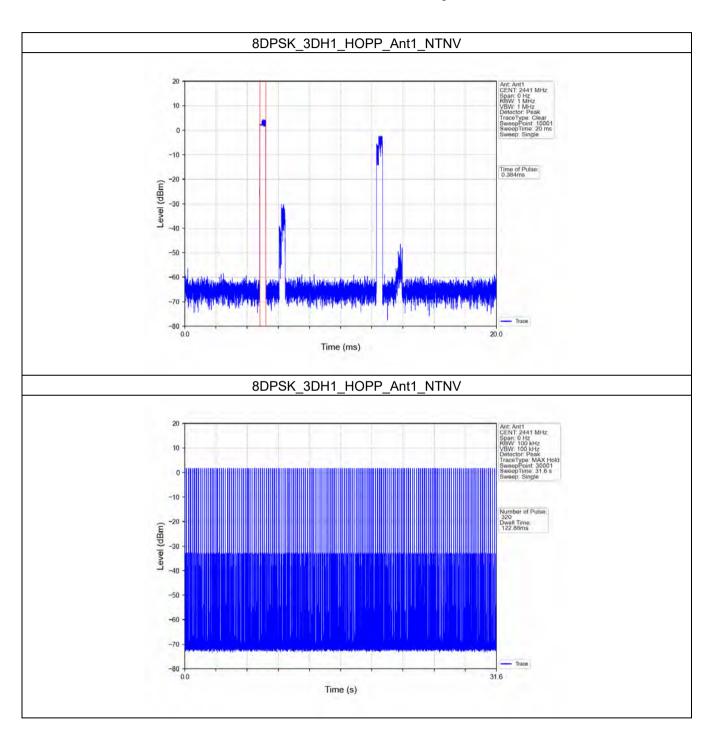
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 129 of 153

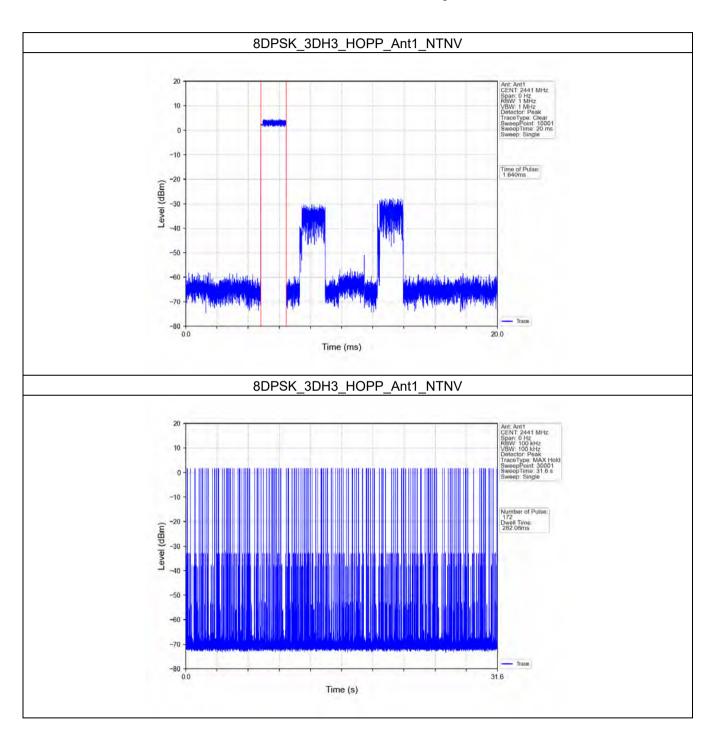
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 130 of 153

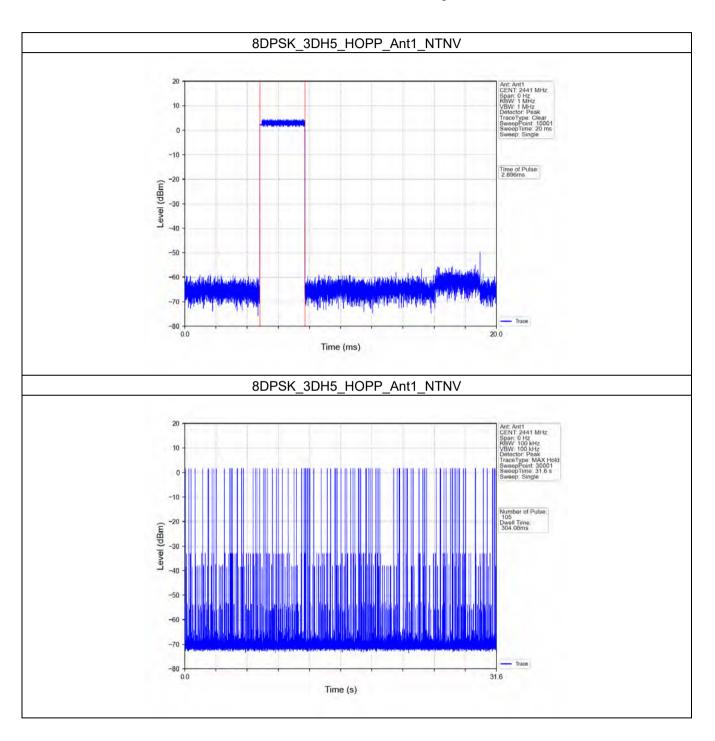
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 131 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 132 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 133 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 134 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 135 of 153

6. Unwanted Emissions In Non-restricted Frequency Bands

6.1 Test Result

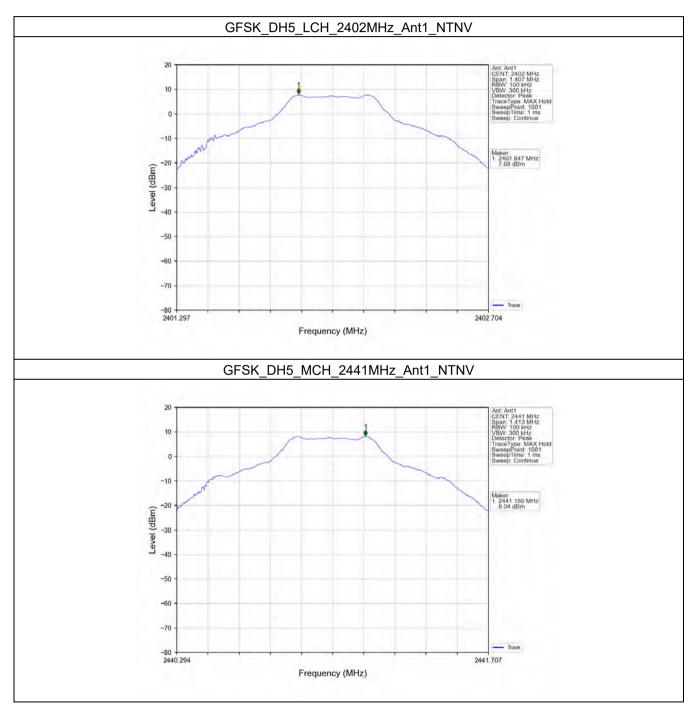
6.1.1 Ref

Mode	TX Type	Frequency (MHz)	Packet Type	ANT	Level of Reference (dBm)	
GFSK		2402	DH5	1	7.68	
	SISO	2441	DH5	1	8.04	
		2480	DH5	1	8.23	
	SISO	2402		2DH5	1	2.45
Pi/4DQPSK		2441	2DH5	1	2.04	
		2480	2DH5	1	2.44	
		2402	3DH5	1	2.63	
8DPSK	SISO	2441	3DH5	1	2.18	
		2480	3DH5	1	2.64	
Note1: Refer to R level was used to			NSI C63.10-201	3, the channel o	contains the maximum PSI	

6.1.2 CSE

ТХ Туре	Frequency (MHz)	Packet Type	ANT	Level of Reference (dBm)	Limit (dBm)	Verdict	
	2402	DH5	1	8.23	-11.77	Pass	
	2441	DH5	1	8.23	-11.77	Pass	
SISO	2480	DH5	1	8.23	-11.77	Pass	
	HOPP	DUE	1	8.23	-11.77	Pass	
		DH5		8.23	-11.77	Pass	
SISO	2402	2DH5	1	2.45	-17.55	Pass	
		2441	2DH5	1	2.45	-17.55	Pass
	2480	2DH5	1	2.45	-17.55	Pass	
	HOPP	2DH5	1	2.45	-17.55	Pass	
				2.45	-17.55	Pass	
	2402	3DH5	1	2.64	-17.36	Pass	
	2441	3DH5	1	2.64	-17.36	Pass	
SISO	2480	3DH5	1	2.64	-17.36	Pass	
		20115	4	2.64	-17.36	Pass	
	НОРР	3DH5	1	2.64	-17.36	Pass	
	Type SISO SISO	Type (MHz) 2402 2441 SISO 2480 HOPP 2402 2402 2441 SISO 2402 2441 2402 2402 2441 SISO 2480 HOPP 2402 2441 2402 2402 2441	Type (MHz) Type 2402 DH5 2441 DH5 2441 DH5 2480 DH5 2480 DH5 HOPP DH5 2402 2DH5 2441 2DH5 2441 2DH5 2440 2DH5 2440 2DH5 2480 2DH5 2480 2DH5 2402 3DH5 2441 3DH5 SISO 2480 3DH5	Type (MHz) Type ANT 2402 DH5 1 2441 DH5 1 2441 DH5 1 2440 DH5 1 2480 DH5 1 HOPP DH5 1 2402 2DH5 1 2402 2DH5 1 2441 2DH5 1 2480 2DH5 1 2480 2DH5 1 HOPP 2DH5 1 HOPP 2DH5 1 SISO 2402 3DH5 1 2402 3DH5 1 1 SISO 2440 3DH5 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

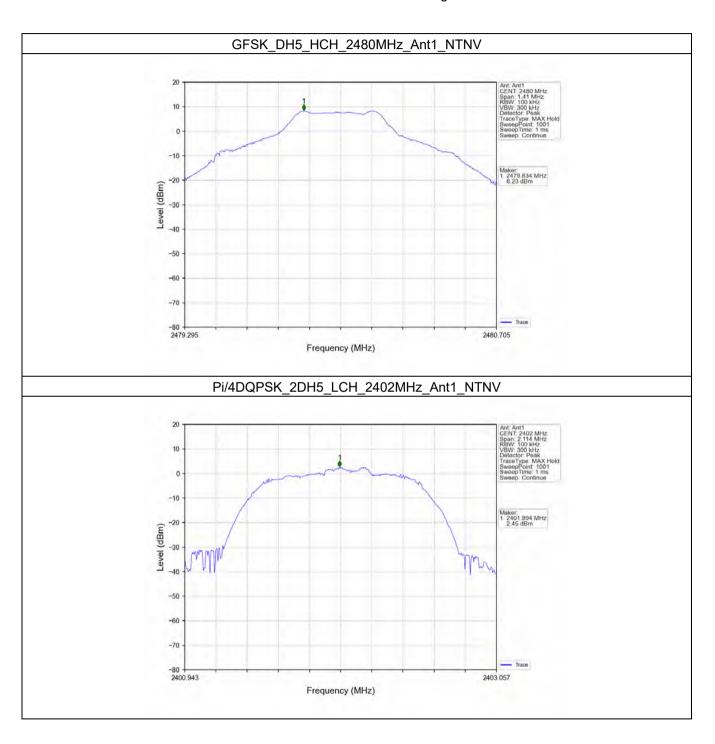
level was used to establish the reference level.



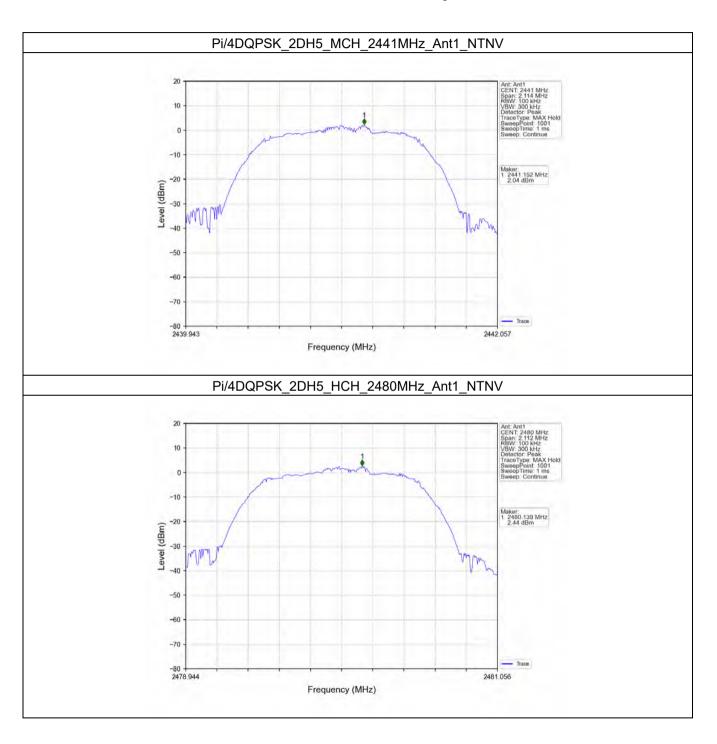
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 136 of 153

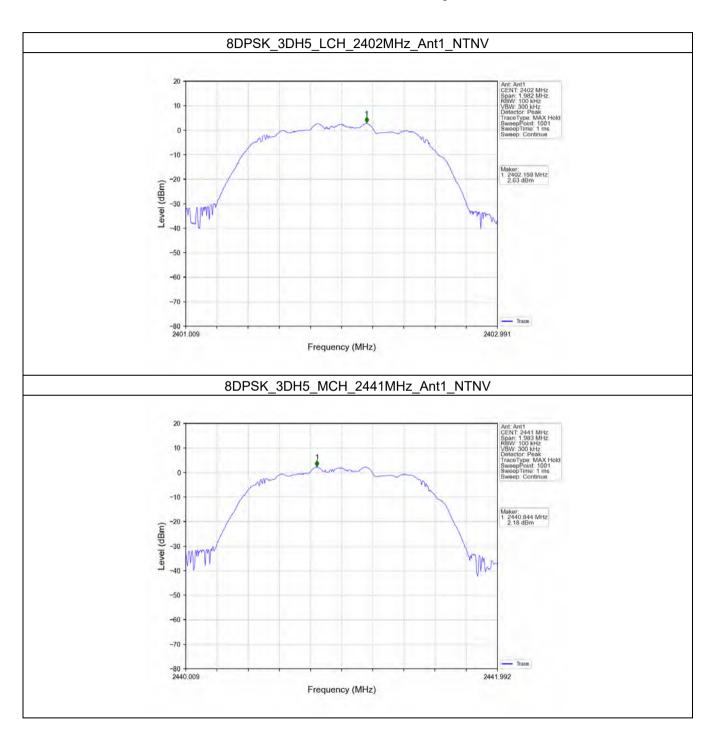
6.2 Test Graph


6.2.1 Ref

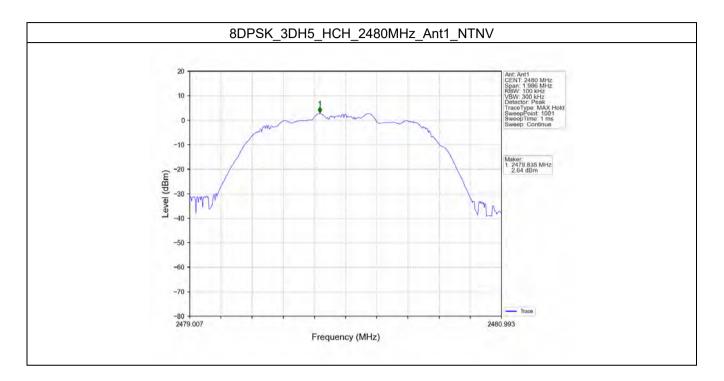
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 137 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

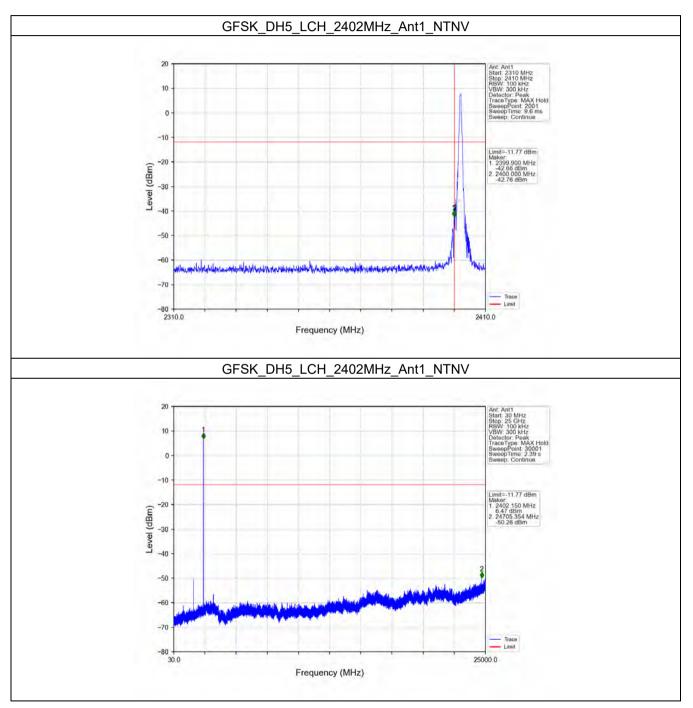

Report No.: KSCR240400056602 Page: 138 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 139 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 140 of 153

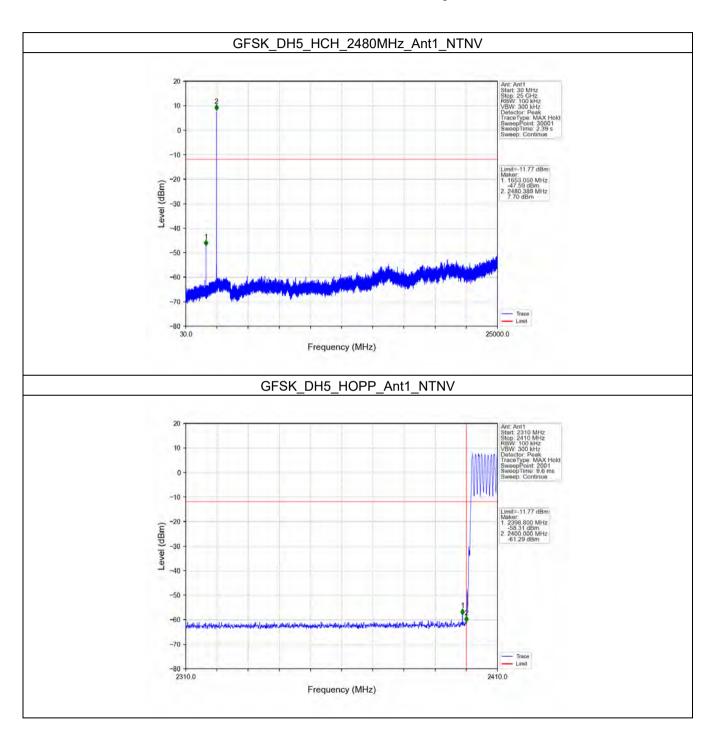


CCSEM-TRF-001 Rev. 02 Sep 01, 2023

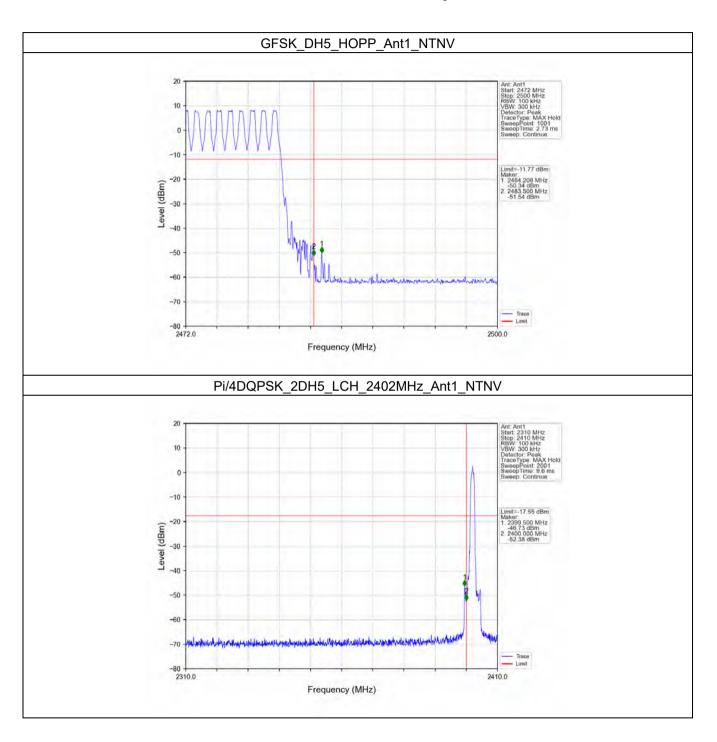
Report No.: KSCR240400056602 Page: 141 of 153


6.2.2 CSE

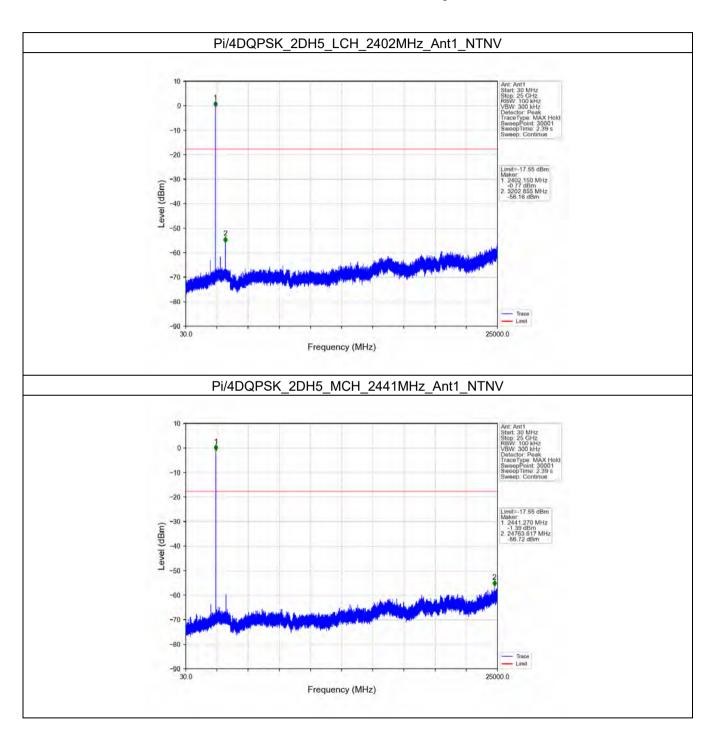
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 142 of 153

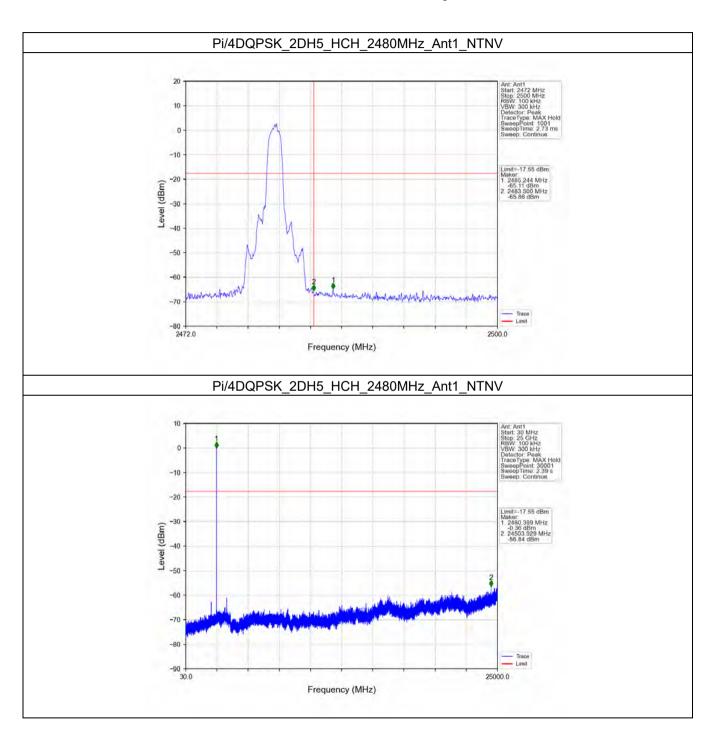
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 143 of 153

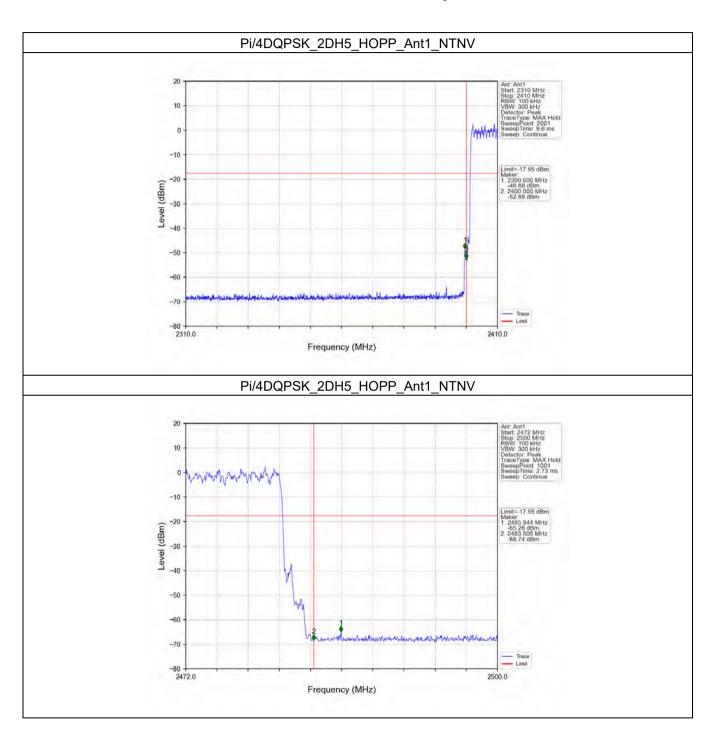
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 144 of 153

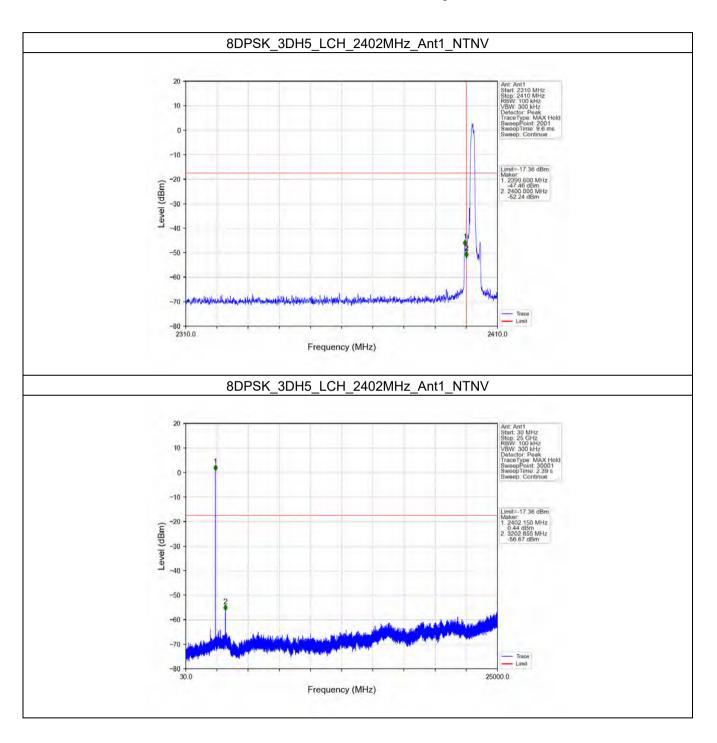
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 145 of 153

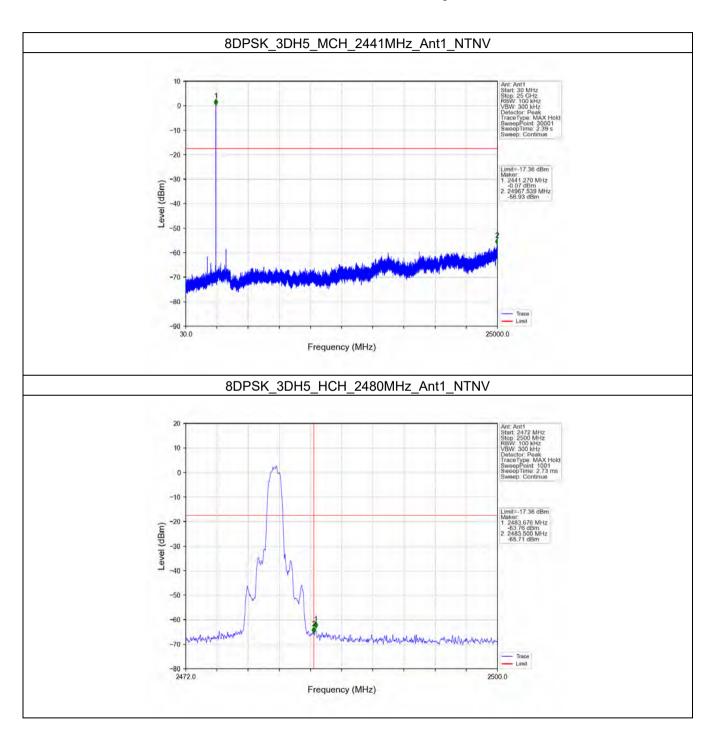
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 146 of 153

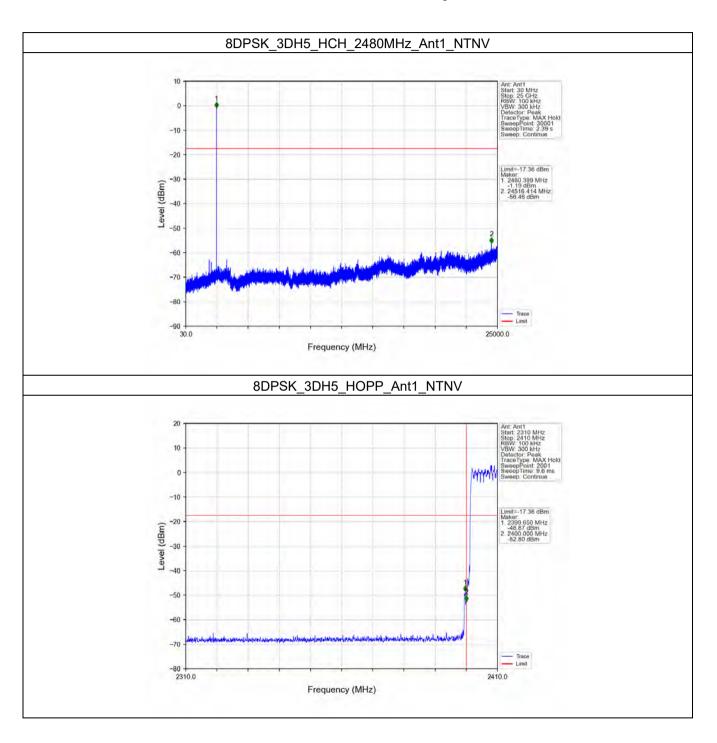
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 147 of 153

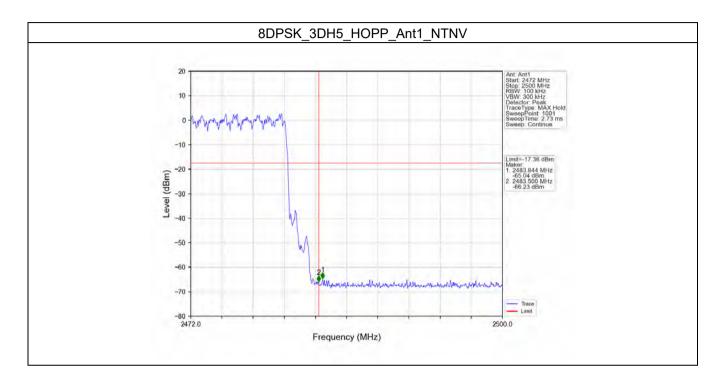
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 148 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 149 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240400056602 Page: 150 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 151 of 153

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 152 of 153

7. Frequency Error

7.1 Test Result

7.1.1 Ant1

					Ant1					
Mode	ТХ Туре	Frequency (MHz)	Packet Type	Temperature (°C)	Voltage (VDC)	Measured Frequency (MHz)	Limit (MHz)	Verdict		
					2.805	2402.001	2401.662 to 2402.338	Pass		
				20	3.300	2402.000	2401.662 to 2402.338	Pass		
		2402	DH5		3.795	2402.000	2401.662 to 2402.338	Pass		
						-20	3.300	2402.001	2401.662 to 2402.338	Pass
	GFSK SISO			50	3.300	2402.001	2401.662 to 2402.338	Pass		
					2.805	2440.992	2440.659 to 2441.341	Pass		
				20	3.300	2440.992	2440.659 to 2441.341	Pass		
GFSK		2441	DH5		3.795	2440.994	2440.659 to 2441.341	Pass		
			-20	3.300	2440.992	2440.659 to 2441.341	Pass			
			50	3.300	2440.992	2440.659 to 2441.341	Pass			
				2.805	2479.978	2479.656 to 2480.344	Pass			
			20	3.300	2479.981	2479.656 to 2480.344	Pass			
		2480	DH5		3.795	2479.977	2479.656 to 2480.344	Pass		
				-20	3.300	2479.977	2479.656 to 2480.344	Pass		
				50	3.300	2479.978	2479.656 to 2480.344	Pass		
		2402			2.805	2402.001	2401.518 to 2402.482	Pass		
			2402 2DH5	20 2DH5	3.300	2402.001	2401.518 to 2402.482	Pass		
					3.795	2402.001	2401.518 to 2402.482	Pass		
				-20	3.300	2402.001	2401.518 to 2402.482	Pass		
				50	3.300	2402.001	2401.518 to 2402.482	Pass		
					2.805	2440.994	2440.519 to 2441.481	Pass		
				20	3.300	2440.995	2440.519 to 2441.481	Pass		
Pi/4DQPSK	SISO	2441	2DH5		3.795	2440.994	2440.519 to 2441.481	Pass		
				-20	3.300	2440.994	2440.519 to 2441.481	Pass		
				50	3.300	2440.995	2440.519 to 2441.481	Pass		
					2.805	2479.988	2479.518 to 2480.482	Pass		
				20	3.300	2479.988	2479.518 to 2480.482	Pass		
		2480	2DH5		3.795	2479.988	2479.518 to 2480.482	Pass		
				-20	3.300	2479.988	2479.518 to 2480.482	Pass		
				50	3.300	2479.988	2479.518 to 2480.482	Pass		
					2.805	2401.996	2401.522 to 2402.478	Pass		
8DPSK	SISO	2402	3DH5	20	3.300	2401.999	2401.522 to 2402.478	Pass		
					3.795	2401.996	2401.522 to 2402.478	Pass		

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240400056602 Page: 153 of 153

		-20	3.300	2401.999	2401.522 to 2402.478	Pass
		50	3.300	2401.998	2401.522 to 2402.478	Pass
		20	2.805	2440.990	2440.522 to 2441.478	Pass
			3.300	2440.992	2440.522 to 2441.478	Pass
2441	3DH5		3.795	2440.989	2440.522 to 2441.478	Pass
		-20	3.300	2440.988	2440.522 to 2441.478	Pass
		50	3.300	2440.990	2440.522 to 2441.478	Pass
			2.805	2479.984	2479.518 to 2480.482	Pass
		20	3.300	2479.982	2479.518 to 2480.482	Pass
2480	3DH5		3.795	2479.982	2479.518 to 2480.482	Pass
		-20	3.300	2479.983	2479.518 to 2480.482	Pass
		50	3.300	2479.984	2479.518 to 2480.482	Pass

- End of the Report -