

Intertek 731 Enterprise Drive Lexington, KY 40510

Tel 859 226 1000 Fax 859 226 1040

www.intertek.com

Otodata Wireless Network Inc. TEST REPORT

SCOPE OF WORK

EMC TESTING - MEP3ADLTE

REPORT NUMBER

103481663LEX-001

ISSUE DATE [REVISED DATE]

9/13/2018 9/13/2018

PAGES 30

DOCUMENT CONTROL NUMBER

Non-Specific EMC Report Shell Rev. December 2017 © 2017 INTERTEK

EMC TEST REPORT

(FULL COMPLIANCE)

Report Number: 103481663LEX-001

Project Number: G103481663

Report Issue Date: 9/13/2018

Model(s) Tested: MEP3ADLTE

Standards: Title 47 CFR Part 15.247

RSS-247 Issue 2 RSS-Gen Issue 4

Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Dr. Lexington, KY 40510 USA Client: Otodata Wireless Network Inc. 9280 Boul. De l'Acadie Montreal, QC H4N 3C5

Canada

Report prepared by

Report reviewed by

Brian Daffin, Engineer Bryan Taylor, Team Leader

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Date: 9/13/2018

Table of Contents

1	Introduction and Conclusion	4
2	Test Summary	4
3	Client Information	5
4	Description of Equipment under Test and Variant Models	6
5	System Setup and Method	7
6	Receiver Spurious Emissions	9
7	Transmitter Spurious Emissions	14
8	Conducted Output Power	20
9	Occupied Bandwidth	23
10	Power Spectral Density	26
11	Antenna Requirement	29
12	Revision History	30

Date: 9/13/2018

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
6	Receiver Spurious Emissions (ANSI C63.4: 2014)	Pass
7	Transmitter Spurious Emissions (FCC Part 15.247(d), RSS-247 Issue 2 § 5.5)	Pass
8	Conducted Spurious Emissions (FCC Part 15.247(d), RSS-Gen Issue 4 § 7.1.3)	Pass
9	Output Power (FCC Part 15.247(b)(1), RSS-247 Issue 2 § 5.4(b))	Pass
9	Occupied Bandwidth (FCC Part 15.247, RSS-247 Issue 2 § 5.2(a))	Pass
11	Power Spectral Density (FCC Part 15.247(e), RSS-247 Issue 2 § 5.2(b))	Pass
11	Antenna Requirement (FCC Part 15.203, RSS-Gen Issue 4 § 8.3)	Pass
-	Conducted Emissions (ANSI C63.4: 2014)	NA^1

Report Number: 103481663LEX-001

¹ Test it not applicable. Unit is battery powered and does not connect directly or indirectly to AC Mains.

Date: 9/13/2018

3 Client Information

This product was tested at the request of the following:

	Client Information				
Client Name:	Otodata Wireless Network Inc.				
Address:	9280 Boul. De l'Acadie Montreal, QC H4N 3C5 Canada				
Contact:	Jason Gallovich				
Telephone:	514 673 0244				
Email:	jmgallovich@otodata.ca				
	Manufacturer Information				
Manufacturer Name:	Otodata Wireless Network Inc.				
Manufacturer Address:	9280 Boul. De l'Acadie Montreal, QC H4N 3C5 Canada				

Date: 9/13/2018

4 Description of Equipment under Test and Variant Models

Equipment Under Test				
Product Name	MEP3ADLTE			
Model Number	MEP3ADLTE			
IMEI	355285081100594355285081100594			
Receive Date	6/11/2018			
Test Start Date	6/11/2018			
Test End Date	9/13/2018			
Device Received Condition	Good			
Test Sample Type	Production			
Rated Voltage 7.2 VDC via internal battery Wireless Technology BLE used as Digital Transmission System				
				Frequency Band(s)
Modulation Type(s)	GFSK			
Data Rate	2Mbps			
Test Channel(s)	0, 19, 39			
Maximum Antenna Gain (dBi)	2.14dBi			
Maximum Conducted Output Power (dBm)	4.97dBm			
Description of Equipment Under Test (provided by client)				
Remote tank level monitoring communicator.				

4.1 Variant Models:

There were no variant models covered by this evaluation.

Evaluation For: Otodata Wireless Network Inc.

Product: MEP3ADLTE Date: 9/13/2018

5 System Setup and Method

5.1 Method:

Configuration as required by ANSI C63.4: 2014 and ANSI C63.10:2013

No.	Descriptions of EUT Exercising
1	Transmitting a max power, continuous, modulated signal on a specified channel and modulation scheme

	Cables							
ID	Description	Length (m)	Shielding	Ferrites	Termination			

Support Equipment						
Description Manufacturer Model Number Serial Number						

5.2 EUT Photo:

Date: 9/13/2018

6 Receiver Spurious Emissions

6.1 Test Method

Tests are performed in accordance with ANSI C63.4: 2014

TEST SITE: 10m ALSE

Site Designation: 10m Chamber

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	3.9dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.0dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.7dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.7dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.7dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.7dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required.

Date: 9/13/2018

6.2 Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBμV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}\mu\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}\mu\text{V/m}$

To convert from dB μ V to μ V or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \, dB_{\mu}V \, / \, 20)} = 39.8 \, \mu V / m$

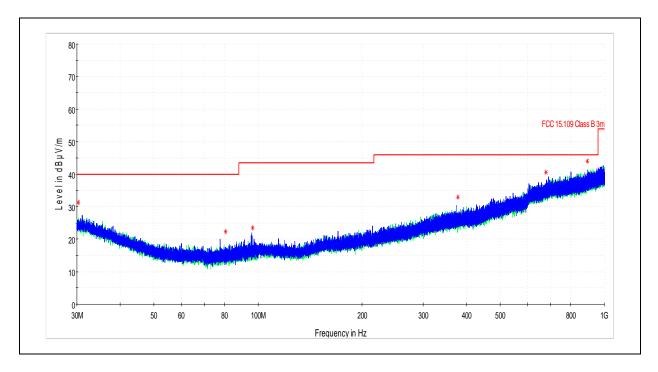
Date: 9/13/2018

6.3 Test Equipment Used

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	3900	Rohde&Schwarz	ESU40	9/20/2017	9/20/2018
Bilog Antenna	3133	ETS Lindgren	3142C	4/6/2017	10/6/2018
Horn Antenna	3780	ETS Lindgren	3117	6/7/2017	6/7/2019
System Controller	4096	ETS Lindgren	2090	Verify at	Verify at
				Time of Use	Time of Use
System Controller	3957	Sunol Sciences	SC99V	Verify at	Verify at
				Time of Use	Time of Use
3m Cable	3074			11/29/2017	11/29/2018
Antenna → Preamp					
3m Cable	3918	TS-PR18	122005	11/29/2017	11/29/2018
Preamplifier					
3m Cable	2588			11/29/2017	11/29/2018
Preamp→Chamber					
3m Cable	2593			11/29/2017	11/29/2018
Chamber→Control Room					
3m Cable	2592			11/29/2017	11/29/2018
Control Room→Receiver					

6.4 Software Utilized

Name	Manufacturer	Version
EMC32	Rohde & Schwarz	Version 9.15.02

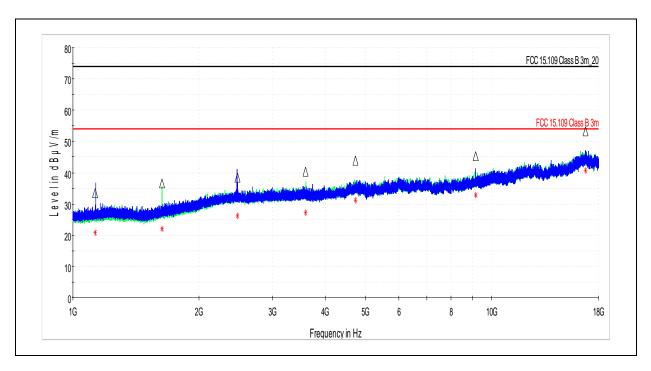

6.5 Test Results

The sample tested was found to be **compliant**.

6.6 Test Conditions

Supervising/Reviewing Engineer:	_		
(Where Applicable)	NA	Limit Applied:	See Above
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	22.7 C
Input Voltage:	Battery	Relative Humidity:	47.3 %
Pretest Verification w / Ambient	_		
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

6.7 Test Data: 30MHz - 1GHz



Final_Result

Frequency	QuasiPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
30.320000	31.35	40.00	8.65	120.000	258.6	٧	283.0	24.5
80.590000	22.26	40.00	17.74	120.000	123.8	٧	73.0	15.8
96.527000	23.44	43.52	20.08	120.000	390.0	٧	322.0	17.0
377.620000	32.94	46.02	13.08	120.000	272.1	٧	20.0	26.0
678.170000	40.61	46.02	5.41	120.000	170.7	Н	331.0	32.9
892.120000	44.04	46.02	1.98	120.000	97.9	٧	128.0	35.7

Deviations, Additions, or Exclusions: None

6.8 Test Data: 1GHz - 18GHz

Final_Result_PK+

Frequency	MaxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
1129.114500	33.50	74.00	40.50	1000.000	300.0	٧	212.0	-1.8
1632.436000	36.53	74.00	37.47	1000.000	410.0	Н	321.0	-0.9
2474.729000	38.54	74.00	35.46	1000.000	300.0	٧	9.0	3.9
3597.549000	40.27	74.00	33.73	1000.000	237.0	Н	201.0	5.7
4729.269000	43.75	74.00	30.25	1000.000	209.0	٧	10.0	8.4
9167.194500	45.25	74.00	28.75	1000.000	252.0	٧	146.0	12.7
16756.594500	53.23	74.00	20.77	1000.000	223.0	٧	209.0	21.7

Final Result AVG

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1129.114500	20.69	54.00	33.31	1000.000	300.0	٧	212.0	-1.8
1632.436000	22.03	54.00	31.97	1000.000	410.0	Н	321.0	-0.9
2474.729000	26.27	54.00	27.73	1000.000	300.0	٧	9.0	3.9
3597.549000	27.17	54.00	26.83	1000.000	237.0	Н	201.0	5.7
4729.269000	31.08	54.00	22.92	1000.000	209.0	٧	10.0	8.4
9167.194500	32.91	54.00	21.09	1000.000	252.0	٧	146.0	12.7
16756.594500	40.77	54.00	13.23	1000.000	223.0	٧	209.0	21.7

Deviations, Additions, or Exclusions: None

Date: 9/13/2018

7 Transmitter Spurious Emissions

7.1 Test Limits

FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247 Issue 2 § 5.5:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2 Test Method

Tests are performed in accordance with ANSI C63.10:2013.

Date: 9/13/2018

7.3 Test Equipment Used

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	3900	Rohde&Schwarz	ESU40	9/20/2017	9/20/2018
Bilog Antenna	3133	ETS Lindgren	3142C	10/6/2017	10/6/2018
Horn Antenna	3780	ETS Lindgren	3117	6/7/2017	6/7/2018
18-40GHz Horn Antenna			3116C		
System Controller	4096	ETS Lindgren	2090	Verify at Time of Use	Verify at Time of Use
System Controller	3957	Sunol Sciences	SC99V	Verify at Time of Use	Verify at Time of Use
3m Cable Antenna→Preamp	3074			11/29/2017	11/29/2018
3m Cable Preamplifier	3918	TS-PR18	122005	11/29/2017	11/29/2018
3m Cable Preamp→Chamber	2588			11/29/2017	11/29/2018
3m Cable Chamber→Control Room	2593			11/29/2017	11/29/2018
3m Cable Control Room→Receiver	2592			11/29/2017	11/29/2018
40GHz Antenna→Preamp	7020			12/1/2017	12/1/2018
40GHz Preamp→Receiver	7021			12/1/2017	12/1/2018
18-40GHz preamp	3921	Rohde&Schwarz	TS-PR40	12/1/2017	12/1/2018

7.4 Software Utilized

Name	Manufacturer	Version
EMC32	Rohde & Schwarz	Version 9.15.02

7.5 Test Results

The sample tested was found to be **compliant**.

7.6 Test Conditions

Test Personnel:	Brian Daffin	Test Date:	6/12/2018 - 6/18/2018
Supervising/Reviewing Engineer:		_	
(Where Applicable)	NA	Limit Applied:	See Above
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	22.7 C
Input Voltage:	Battery	Relative Humidity:	47.3 %
Pretest Verification w / Ambient		_	
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

Date: 9/13/2018

7.7 Test Data: Radiated Spurious Emissions

Final Result PK+

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
4804.018000	61.69	74.00	12.31	1000.000	341.0	Н	226.0	7.8
7206.010000	52.42	74.00	21.58	1000.000	294.0	Н	201.0	10.2
9603.626000	45.95	74.00	28.05	1000.000	400.0	٧	295.0	13.5

Final Result AVG

_									
	Frequency	Average	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
	4804.018000	46.94	54.00	7.06	1000.000	341.0	Н	226.0	7.8
	7206.010000	41.60	54.00	12.40	1000.000	294.0	Н	201.0	10.2
	9603.626000	33.31	54.00	20.69	1000.000	400.0	٧	295.0	13.5

2440MHz

Final_Result_PK+

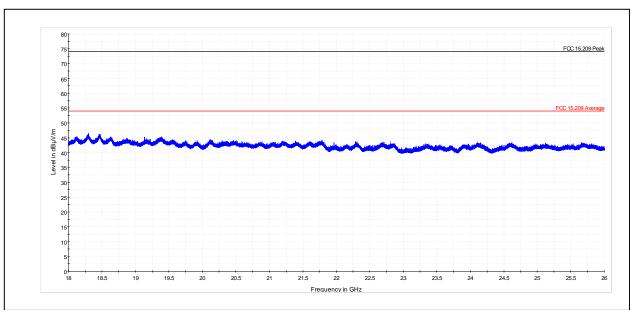
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
4880.050500	57.03	74.00	16.97	1000.000	313.0	٧	278.0	7.4
7319.989000	50.44	74.00	23.56	1000.000	400.0	Н	0.0	10.5
9765.522000	46.20	74.00	27.80	1000.000	300.0	٧	168.0	13.8

Final Result AVG

_	_							
Frequency	Average	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
4880.050500	45.29	54.00	8.71	1000.000	313.0	٧	278.0	7.4
7319.989000	39.31	54.00	14.69	1000.000	400.0	Н	0.0	10.5
9765.522000	33.34	54.00	20.66	1000.000	300.0	٧	168.0	13.8

2480MHz

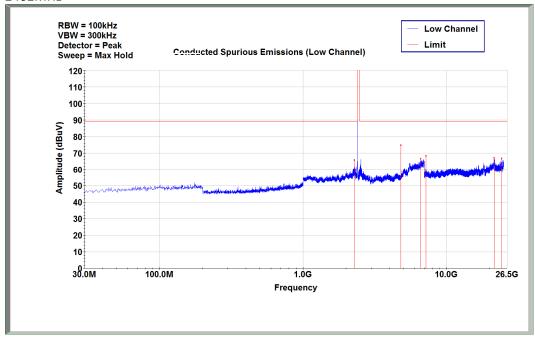
Final Result PK+

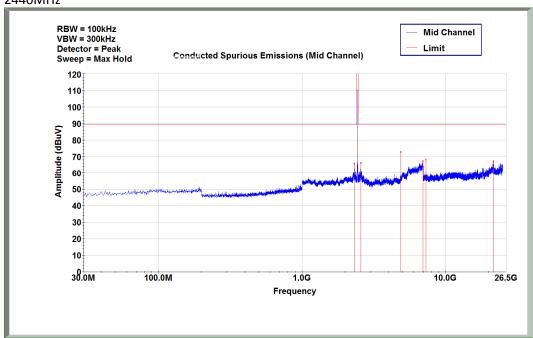

Frequen	- ,	xPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dB	μV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
4959.90	06000	63.22	74.00	10.78	1000.000	400.0	Н	66.0	7.2
7440.09	90000	53.18	74.00	20.82	1000.000	276.0	Н	296.0	10.7
9918.5°	14000	46.36	74.00	27.64	1000.000	261.0	Н	77.0	14.0

Final Result AVG

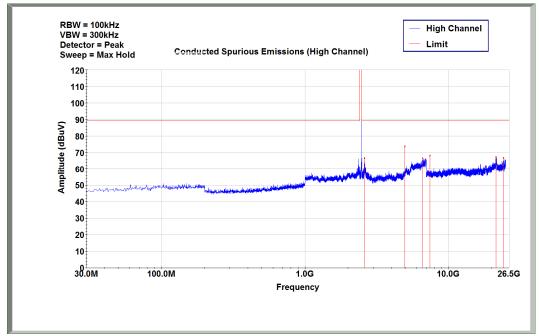
Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
4959.906000	53.92	54.00	0.08	1000.000	400.0	Н	66.0	7.2
7440.090000	42.36	54.00	11.64	1000.000	276.0	Н	296.0	10.7
9918.514000	33.86	54.00	20.14	1000.000	261.0	Н	77.0	14.0

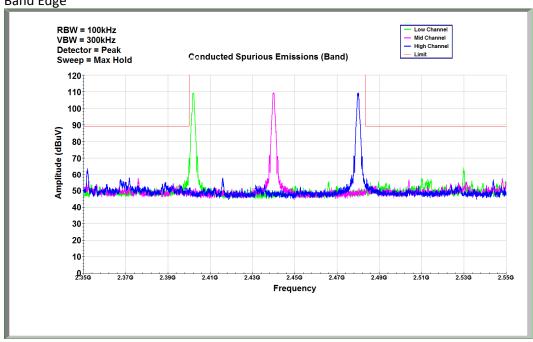
Date: 9/13/2018


18-26GHz spurious emissions data, representative of the worst case of all transmission modes, measured in 3 orthogonal axes.



7.8 Test Data: Conducted Spurious Emissions


2402MHz


2440MHz

2480MHz

Band Edge

Date: 9/13/2018

8 Conducted Output Power

8.1 Test Limits

FCC Part 15.247(b)(1):

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 Issue 2 § 5.4(b):

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

8.2 Test Method

Tests are performed in accordance with ANSI C63.10:2013.

8.3 Test Equipment Used

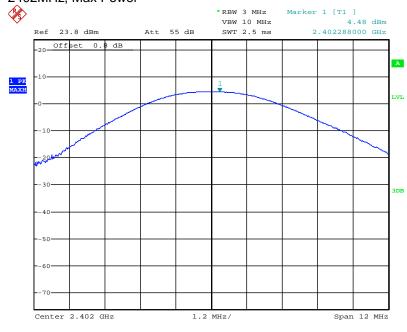
Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	3900	Rohde&Schwarz	ESU40	9/20/2017	9/20/2018

Non-Specific EMC Report Shell Rev. December 2017 Report Number: 103481663LEX-001

Page 20 of 30

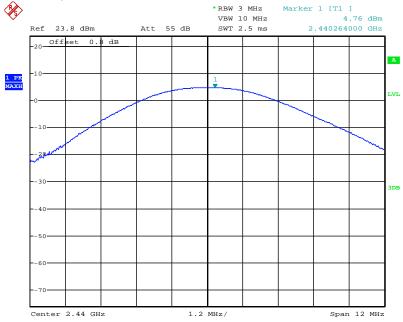
Date: 9/13/2018

8.4 Test Results

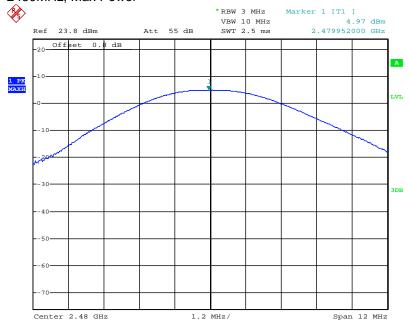

The device was found to be **compliant**. The output power was less than 0.125W.

8.5 Test Conditions

Brian Daffin	Test Date:	6/14/2018
NA	Limit Applied:	See Above
FCC Part 15.247		
RSS-247 Issue 2	Ambient Temperature:	22.7 C
Battery	Relative Humidity:	47.3 %
Yes	Atmospheric Pressure:	985.4mbar
r F	NA FCC Part 15.247 RSS-247 Issue 2 Battery	NA Limit Applied: FCC Part 15.247 RSS-247 Issue 2 Ambient Temperature: Battery Relative Humidity:


8.6 Test Data

2402MHz, Max Power



2440MHz, Max Power

2480MHz, Max Power

Deviations, Additions, or Exclusions: None.

Date: 9/13/2018

Occupied Bandwidth 9

9.1 Test Limits

FCC Part 15.247(a)(2):

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

RSS-247 Issue 2 § 5.2(a):

The minimum 6 dB bandwidth shall be 500 kHz.

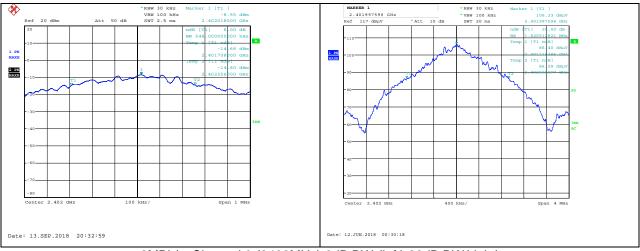
9.2 **Test Method**

Tests are performed in accordance with ANSI C63.10:2013.

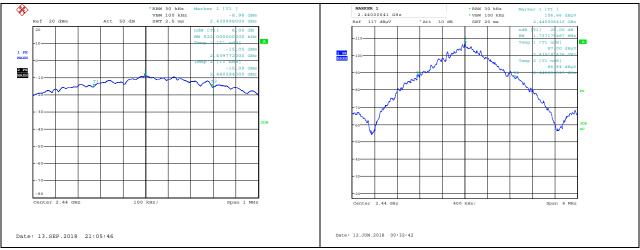
9.3 **Test Equipment Used**

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	10/18/2017	10/18/2018

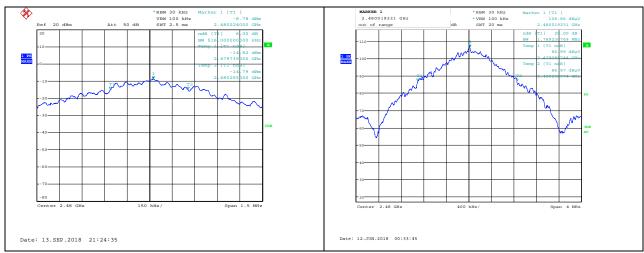
9.4 **Test Results**


The device was found to be **compliant**. The 6dB bandwidth was at least 500kHz.

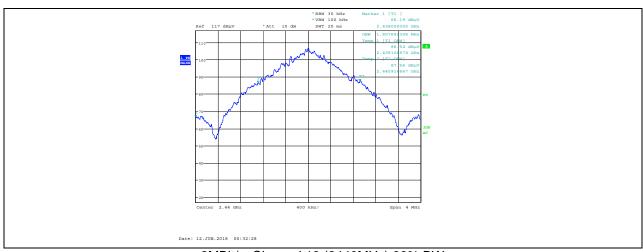
Test Conditions 9.5


Test Personnel:	Brian Daffin	Test Date:	9/13/2018
Supervising/Reviewing Engineer:			
(Where Applicable)	NA	Limit Applied:	See Above
	FCC Part 15.247		_
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	22.7 C
Input Voltage:	Battery	Relative Humidity:	47.3 %
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

9.6 **Test Data**


Channel	Frequency (MHz)	6dB BW (kHz)	20dB BW(kHz)	99% BW(kHz)
0	2402	548	1820.51	1782.05
19	2440	522	1737.17	1807.69
39	2480	516	1769.23	1724.35


2MBit/s, Channel 0 (2402MHz) 6dB BW (left) 20dB BW(right)


2MBit/s, Channel 19 (2440MHz) 6dB BW (left) 20dB BW(right)


2MBit/s, Channel 39 (2480MHz) 6dB BW (left) 20dB BW(right)

2MBit/s, Channel 0 (2402MHz) 99% BW

2MBit/s, Channel 19 (2440MHz) 99% BW

2MBit/s, Channel 39 (2480MHz) 99% BW

Date: 9/13/2018

Deviations, Additions, or Exclusions: None

10 Power Spectral Density

10.1 Test Limits

FCC Part 15.247(e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

RSS-247 Issue 2 § 5.2(b):

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

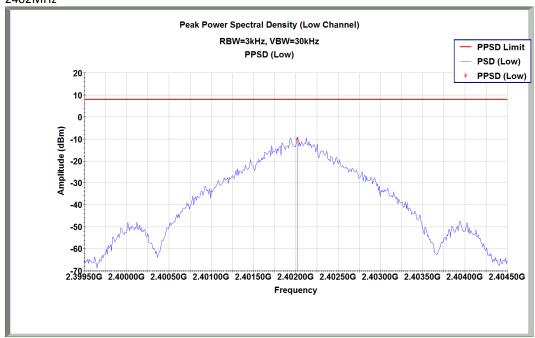
10.2 Test Method

Tests are performed in accordance with ANSI C63.10:2013.

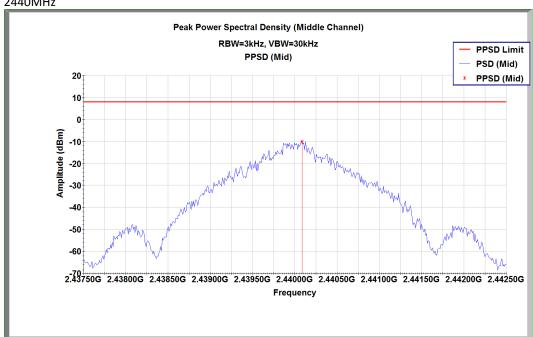
10.3 Test Equipment Used

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	3900	Rohde&Schwarz	ESU40	9/20/2017	9/20/2018

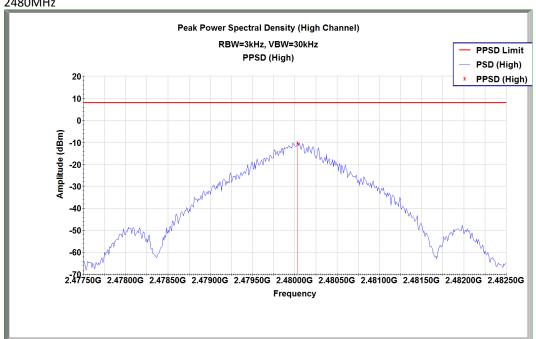
10.4 Test Results


The device was found to be **compliant**. The peak power spectral density was less than 8dBm.

10.5 Test Conditions


Test Personnel:	Brian Daffin	Test Date:	6/18/2018
Supervising/Reviewing Engineer:			
(Where Applicable)	NA	Limit Applied:	See Above
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	22.7 C
Input Voltage:	Battery	Relative Humidity:	47.3 %
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

10.6 Test Data


2402MHz

2440MHz

Deviations, Additions, or Exclusions: None

Date: 9/13/2018

11 Antenna Requirement

11.1 Test Limits

FCC Part 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

RSS-Gen Issue 4 § 8.3:

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for the licence-exempt apparatus.

Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (identify the device by certification number) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi).

11.2 Test Results

The device was found to be **compliant**. The device has an internal, permanently affixed antenna.

Evaluation For: Otodata Wireless Network Inc.

Product: MEP3ADLTE Date: 9/13/2018

12 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	9/13/2018	103481663LEX-001	BD	BCT	Original Issue