TEST REPORT

FCC/IC DTS Test for ETWFAEWC01

Certification

APPLICANT LG Innotek Co., Ltd.

REPORT NO. HCT-RF-2004-FI001

DATE OF ISSUE April 20, 2020

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 F ax. +82 31 645 6401

HCT Co., Ltd.

TEST REPORT FCC/IC DTS Test for ETWFAEWC01	REPORT NO. HCT-RF-2004-FI001 DATE OF ISSUE 20 April 2020 Additional Model -
Applicant	LG Innotek Co., Ltd. 26, Hanamsandan 5beon-ro Gwangsan-gu, Gwangju, 506-731, South Korea
EUT Type Model Name	RF Module ETWFAEWC01
FCC ID	YZP-ETWFAEWC01
IC	7414C-ETWFAEWC01
Max. RF Output Power	802.11b : 25.99 dBm / 802.11g : 24.49 dBm / 802.11n(HT20) : 23.65 dBm 802.11n(HT40): 24.00 dBm
Modulation type	CCK/DSSS/OFDM
FCC Classification	Digital Transmission System(DTS)
FCC Rule Part(s)	Part 15.247
ISED Rule Part(s)	RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5_Amendment 1 (March 2019)
	This test results were applied only to the test methods required by the standard

This test results were applied only to the test methods required by the standard.

Tested by Jeong Ho Kim

Technical Manager Jong Seok Lee

(signature)

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	April 20, 2020	Initial Release

The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / IC Rules under normal use and maintenance

CONTENTS

1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	6
GENERAL TEST PROCEDURES	6
DESCRIPTION OF TEST MODES	7
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS	7
FACILITIES	7
EQUIPMENT	7
5. ANTENNA REQUIREMENTS	8
6. MEASUREMENT UNCERTAINTY	8
7. DESCRIPTION OF TESTS	9
8. SUMMARY TEST OF RESULTS	29
9. TEST RESULT	31
9.1 DUTY CYCLE	31
9.2 6dB BANDWIDTH & 99 % BANDWIDTH	34
9.3 OUTPUT POWER	42
9.4 POWER SPECTRAL DENSITY	46
9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	49
9.6 RADIATED SPURIOUS EMISSIONS	64
9.7 RADIATED RESTRICTED BAND EDGES	75
9.8 RECEIVER SPURIOUS EMISSIONS	83
9.9 POWERLINE CONDUCTED EMISSIONS	84
10. LIST OF TEST EQUIPMENT	88
11. ANNEX A_ TEST SETUP PHOTO	90

1. EUT DESCRIPTION

Model	ETWFAEWC01
Additional Model	-
EUT Type	RF Module
Power Supply	DC 12.0 V
Frequency Range	802.11b, g, n(HT20): 2 412 MHz – 2 462 MHz 802.11n(HT40): 2 422 MHz – 2 452 MHz
	PT. LG INNOTEK INDONESIA
Factory	Bekasi International Industrial Estate, Blok C8 NO. 12 & 12 A, Desa Cibatu,
	Cikarang Selatan, Bekasi 17750 – Indonesia
	LG Innotek Co., Ltd.
Manufacturer	26, Hanamsandan 5beon-ro Gwangsan-gu, Gwangju, 506-731, South Ko
	rea
Max. RF Output Power	Peak Power 802.11b : 25.99 dBm 802.11g : 24.49 dBm 802.11n(HT20) : 23.65 dBm 802.11n(HT40): 24.00 dBm Average Power 802.11b: 18.90 dBm 802.11g: 16.66 dBm 802.11n(HT20): 15.64 dBm 802.11n(HT40): 15.70 dBm
Modulation Type	DSSS/CCK : 802.11b OFDM : 802.11g, 802.11n
Number of Channels	802.11b/g/n(20M) : 11 Channels (1,2,3,4,5,6,7,8,9,10,11) 802.11n(40M) : 7 Channels (3,4,5,6,7,8,9)
Antenna Specification	Antenna type: External PCB Antenna Peak Gain : 1.50 dBi
Date(s) of Tests	March 23, 2020 ~ April 09, 2020
PMN (Product Marketing Number)	RF Module
HVIN (Hardware Version Identification Number)	ETWFAEWC01
FVIN (Firmware Version Identification Number)	V0.0.2
HMN (Host Marketing Name)	N/A

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpse of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C. / RSS-Gen issue 5, RSS-247 issue 2.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radi ated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of A NSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

For ISED, test facility was accepted dated February 14, 2019 (CAB identifier: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section." The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § § 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

- The E.U.T Complies with the requirement of §15.203

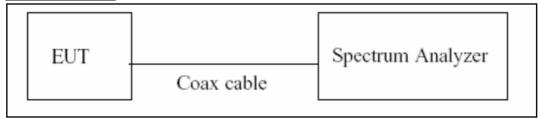
6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of

ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the *U*_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.


Parameter	Expanded Uncertainty (\pm dB)	
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82	
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40	
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80	
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70	
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05	

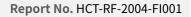
7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

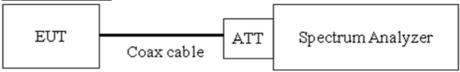

We tested according to the zero-span measurement method.

The largest availble value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest availble value)
- 2. VBW = 8 MHz (\geq RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10log(1/Duty Cycle)



7.2. 6dB Bandwidth & 99 % Bandwidth

Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 11.8.1 in ANSI 63.10-2013)

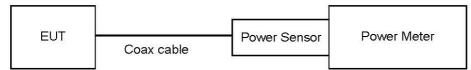
- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Test Procedure (99 % Bandwidth for IC)

The transmitter output is connected to the spectrum analyzer.

RBW = $1\% \sim 5\%$ of the occupied bandwidth VBW $\Rightarrow 3 \times$ RBW Detector = Peak Trace mode = max hold Sweep = auto couple Allow the trace to stabilize

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.



7.3. Output Power

Limit

The maximum permissible conducted output power is 1 Watt.

Test Configuration

Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.

• Average Power (Procedure 11.9.2.3 in ANSI 63.10-2013)

- 1) Measure the duty cycle.
- 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 3) Add 10 $\log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

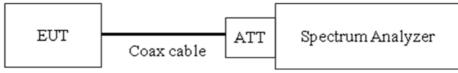
Sample Calculation

- Conducted Output Power(Peak) = Reading Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Reading Value + ATT loss + Cable loss + Duty Cycle Factor

Note :

1. The Output power results for Reading value is already including the actual values of loss for the attenuator and cable combination.

2. Spectrum offset = Attenuator loss + Cable loss



7.4. Power Spectral Density

Limit

The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3kHz BW.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013.

The spectrum analyzer is set to :

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Span = 1.5 times the DTS channel bandwidth.
- (3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- (4) VBW \geq 3 x RBW.
- (5) Sweep = auto couple
- (6) Detector = peak
- (7) Trace Mode = max hold
- (8) Allow trace to fully stabilize.
- (9) Use the peak marker function to determine the maximum amplitude level within the RBW. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

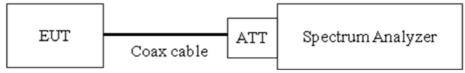
Power Spectral Density = Reading Value + ATT loss + Cable loss

Note :

1. The PSD results for Reading value in plot is already including the actual values of loss for the attenuator and cable combination.

2. Spectrum offset = Attenuator loss + Cable loss

7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions


Limit

The maximum conducted (Average) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least

30 dB relative to the maximum in-band peak PSD level in 100 kHz.

[Conducted > 30 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points $\geq 2 \times \text{Span/RBW}$
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

Factors for frequency

Freq(MHz)	Factor(dB)
30	10.09
100	10.12
200	10.17
300	10.22
400	10.25
500	10.26
600	10.26
700	10.28
800	10.29
900	10.31
1000	10.32
2000	10.46
2400	10.50
2480	10.52
2500	10.52
3000	10.57
4000	10.65
5000	10.76
5150	10.76
5850	10.78
6000	10.78
7000	10.85
8000	10.90
9000	10.96
10000	11.02
11000	11.07
12000	11.15
13000	11.24
14000	11.21
15000	11.26
16000	11.27
17000	11.30
18000	11.35
19000	11.37
20000	11.41
21000	11.53
22000	11.60
23000	11.60
24000	11.64
25000	11.73
26000	11.74

Note : 1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Attenuator loss(10 dB) + Cable loss(1ea)

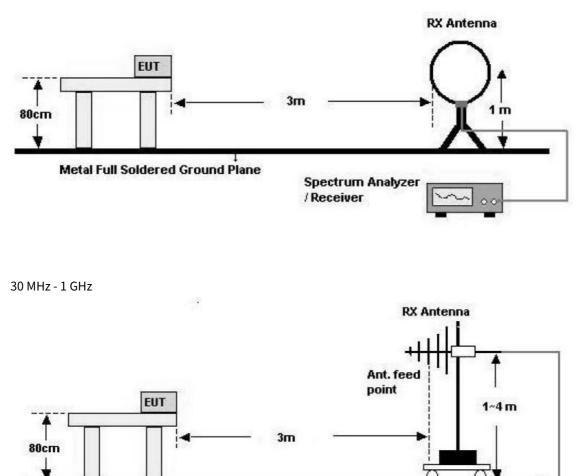
7.6. Radiated Test

FCC

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 – 0.490	09 – 0.490 2400/F(kHz) 3	
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30

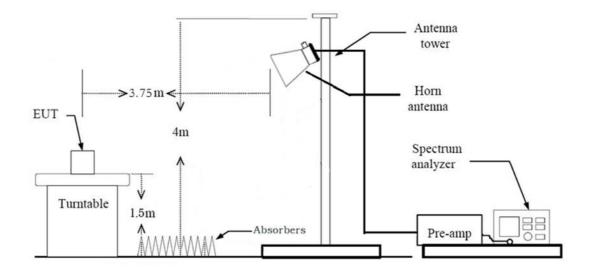
IC

Frequency (MHz)	Field Strength (uA/m)	Measurement Distance (m)
0.009 – 0.490	6.37/F(kHz)	300
0.490 – 1.705	63.7/F(kHz)	30
1.705 – 30	0.08	30


FCC&IC

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration


Below 30 MHz

Metal Full Soldered Ground Plane Spectrum Analyzer / Receiver

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

6. Distance Correction Factor(0.009 MHz – 0.490 MHz) = 40log(3 m/300 m) = - 80 dB

Measurement Distance : 3 m

7. Distance Correction Factor(0.490 MHz – 30 MHz) = $40\log(3 \text{ m}/30 \text{ m}) = -40 \text{ dB}$

Measurement Distance : 3 m

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW

9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.

3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz

In general, (1) is used mainly

6. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

7. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 - Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average): Duty cycle \geq 98%
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - (3) Measurement Type(Average): Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz

- VBW \geq 3 x RBW
- Sweep time = auto.
- Trace mode = average (at least 100 traces).
- Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 11. Total(Measurement Type : Peak)

= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F)

Total (Measurement Type : Average, Duty cycle \geq 98%)

= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle < 98%)

- = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)
- + Duty Cycle Factor

Test Procedure of Radiated Restricted Band Edge

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 - Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both

horizontal and vertical.

- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average): Duty cycle \geq 98%,
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - (3) Measurement Type(Average): Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
 - Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 11. Total(Measurement Type : Peak)

= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) – AMP Gain (A.G)+Attenuator(ATT)

Total(Measurement Type : Average, Duty cycle \geq 98%)

= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) – AMP Gain (A.G) +Attenuator(ATT)

Total(Measurement Type : Average, Duty cycle < 98%)

= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) – AMP Gain (A.G) +Attenuator(ATT) + Duty Cycle Factor

7.7. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \,\mu$ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)	
0.50 to 5	56	46	
5 to 30	60	50	

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

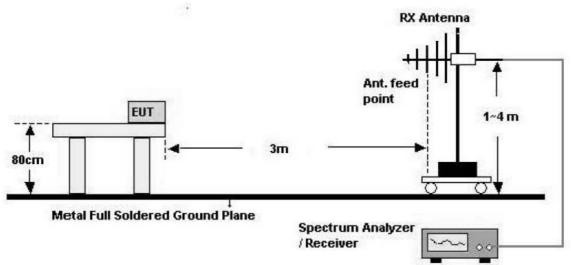
- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

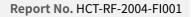
Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

7.8. Receiver Spurious Emissions

Limit


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

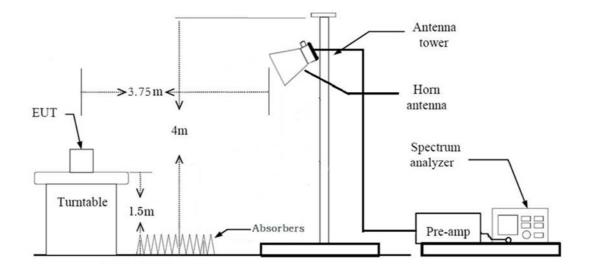

Note:

Measurements for compliance with the limits in table may be performed at distances other than 3 metres.

Test Configuration

Test Procedure of Receiver Spurious Emissions (Below 1GHz)

1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.


- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
- 6. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

Above 1 GHz

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 - Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak

- Trace = Maxhold
- RBW = 1 MHz
- VBW \geq 3 x RBW
- (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW $\geq 1/\tau$ Hz, where τ = pulse width in seconds
 - The actual setting value of VBW = 1 kHz
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

11. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F)

7.9. Worst case configuration and mode

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone
- Worstcase : Stand alone
- 2. EUT Axis
 - Radiated Spurious Emissions : X-V
 - Radiated Restricted Band Edge : Y-V
- 3. 100% continuous signal. Not add the Duty cycle factor
- 4. All data rate of operation were investigated and the test results are worst case in lowest datarate of each mode.
 - 802.11b
 - 802.11g
 - 802.11n_HT20
 - 802.11n_HT40

5. All position of loop antenna were investigated and the test result is a no critical peak found at all

positions.

- Position : Horizontal, Vertical, Parallel to the ground plane

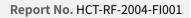
AC Power line Conducted Emissions

- Worstcase : Stand alone

1. This module operation for obtaing power through another device which is connected to the AC power line.

2. We tested by supplying DC 12 [V] to the module using an AC power adapter that is commercially available.

Conducted test


1. The EUT was configured with data rate of highest power.

8. SUMMARY TEST OF RESULTS

FCC Part

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§ 15.247(a)(2)	> 500 kHz	Condition	PASS
Conducted Maximum Output Power	§ 15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§ 15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§ 15.207	cf. Section 7.7		PASS
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Raulateu	PASS

IC Part

Test Description	IC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	RSS-247, 5.2	> 500 kHz		PASS
99% Bandwidth	RSS-GEN, 6.7	N/A		PASS
Conducted Maximum Peak Output Power And e.i.r.p.	RSS-247, 5.4.	< 1 Watt <4 Watt(e.i.r.p.)	Conducted	PASS
Power Spectral Density	RSS-247, 5.2	< 8 dBm / 3 kHz Band		PASS
Band Edge(Out of Band Emissions)	RSS-247, 5.5	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	RSS-GEN, 8.8	cf. Section 7.7		N/A (Note1)
Radiated Spurious Emissions	RSS-GEN, 8.9 cf. Section 7.6			PASS
Receiver Spurious Emissions	RSS-GEN, 7	cf. Section 7.8	Radiated	PASS
Radiated Restricted Band Edge	RSS-GEN, 8.10	cf. Section 7.6		PASS

9. TEST RESULT

9.1 DUTY CYCLE

Mode	Ton (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor (dB)
802.11b	1.0	1.0	1.0	0.0
802.11g	1.0	1.0	1.0	0.0
802.11n (HT20)	1.0	1.0	1.0	0.0
802.11n (HT40)	1.0	1.0	1.0	0.0

Note:

1. Duty Cycle Factor = $10^{1}\log(1/Duty Cycle)$. where, Duty Cycle = T_{on} / T_{total}

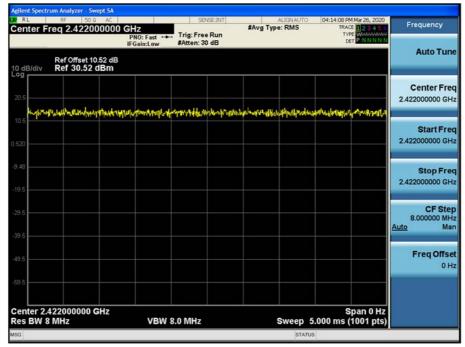
2. Test was performed with 100% continuous Tx.

Test Plots

2 RL RF 50Ω AC Center Freq 2.412000000 (SHZ PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	#Avg Type: RMS	04:12:45 PM Mar 26, 2020 TRACE 1 2 3 4 5 6 TYPE WHAT ANN N DET P N N N N N	Frequency
Ref Offset 10.52 dB 10 dB/div Ref 30.52 dBm	a comeou			Auto Tun
د به به مرود مرود مرود مرود مرود مرود مرود مرود	ale of fort office to find the firm	1 maaan	אן איז איין אין אין אין אין אין אין אין	Center Fre 2.412000000 GH
10.5				Start Fre 2.412000000 GH
-9.48				Stop Fre 2.412000000 GF
29.5				CF Ste 8.000000 Mi Auto Mi
49.5				Freq Offs 0 F
59 5 Center 2.412000000 GHz Res BW 8 MHz	VBW 8.0 MHz		Span 0 Hz .000 ms (1001 pts)	

Duty cycle plot (802.11b(1Mbps))

Duty cycle plot (802.11g(6Mbps))


RL RF 50 Q AC enter Freg 2.412000000 G	SENSE:INT	#Avg Type: RMS	04:13:11 PM Mar 26, 2020 TRACE 2 3 4 5 0	Frequency
Ref Offset 10.52 dB	NO: Fast 🔶 Trig: Free Run Gain:Low #Atten: 30 dB		TYPE WWWWWWW DET P N N N N N	Auto Tun
99 0.5	barkanatra beranarana denatrasar	hy Menoderantic Ansolariantic	Hostination Containing the	Center Fre 2.412000000 GH
520				Start Fre 2.412000000 GH
9.5				Stop Fre 2.412000000 G
95				CF Sto 8.000000 M <u>Auto</u> M
9.5				Freq Offs 0
enter 2.412000000 GHz es BW 8 MHz	VBW 8.0 MHz		Span 0 Hz 5.000 ms (1001 pts)	

Agilent Spectrum Analyzer - Swept SA XI RL RF 50 Ω AC	24	SENSE:INT	ALIGNAUTO	04:13:34 PM Mar 26, 2020	
Center Freg 2.412000000	GHz		#Avg Type: RMS	TRACE 12345	Frequency
Ref Offset 10.52 dB 10 dB/div Ref 30.52 dBm		Trig: Free Run #Atten: 30 dB		TYPE WWWWWW DET PNNNNN	Auto Tun
og 20.5 Hyvielandigereligereligereligereligere	nvondersteentelle	performant	รางโกรเพรลสูงแปลสูงสูงไป	ylulaatharlutyRhilleef.~4	Center Fre 2.412000000 GH
10.5					Start Fre 2.412000000 G⊦
9.48					Stop Fre 2.412000000 GP
95					CF Ste 8.000000 Mi <u>Auto</u> Mi
19.5					Freq Offs
59.5 Center 2.412000000 GHz	VENCE		Swaar	Span 0 Hz .000 ms (1001 pts)	
Res BW 8 MHz	VBW 8.0		Sweep 3		

Duty cycle plot (802.11n(HT20)(MCS0))

Duty cycle plot (802.11n(HT40)(MCS0))

Note:

In order to simplify the report, attached plots were only the most lowest data rate.

9.2 6dB BANDWIDTH & 99 % BANDWIDTH

FCC

802.11	b Mode	Measured	Minimum	
Frequency [MHz]	Channel No.	Bandwidth [MHz]	Bandwidth [MHz]	
2412	1	9.155	0.5	
2437	6	8.737	0.5	
2462	11	8.734	0.5	

802.11	g Mode	Measured	Minimum	
Frequency [MHz]	Channel No.	Bandwidth [MHz]	Bandwidth [MHz]	
2412	1	16.38	0.5	
2417	2	16.38	0.5	
2437	6	16.38	0.5	
2457	10	16.38	0.5	
2462	11	16.38	0.5	

802.11n(HT20) Mode		Measured	Minimum	
Frequency [MHz]	Channel No.	Bandwidth [MHz]	Bandwidth [MHz]	
2412	1	16.93	0.5	
2417	2	16.91	0.5	
2437	6	16.92	0.5	
2457	10	16.92	0.5	
2462	11	16.91	0.5	

802.11n(H	T40) Mode	Measured	Minimum	
Frequency	Channel No.	Bandwidth [MHz]	Bandwidth [MHz]	
[MHz]				
2422	3	36.40	0.5	
2427	4	36.39	0.5	
2437	6	36.38	0.5	
2447	8	36.38	0.5	
2452	9	36.38	0.5	

Test Plots

6dB Bandwidth plot (802.11b-CH 11)

6dB Bandwidth plot (802.11g-CH 2)

enter Freq 2.4170		SENSE:INT Center Freq: 2.417 Trig: Free Run			04:05:21 F	M Mar 27, 2020 I: None	Frequency
	#IFGain:Low	#Atten: 20 dB	Arginola. I	**	Radio De	vice: BTS	
0 dB/div Ref 20.0	t 10.52 dB 00 dBm						
.og 10.0 		materia	mar marine				Center Free 2.417000000 GH:
20.0	met and a second second			wy.			
0.0 why marked with	-mn ^{hrr}			mm	win house	withman	
0.0							
enter 2.417 GHz Res BW 100 kHz		#VBW 300	kHz			an 40 MHz 3.867 ms	CF Ste 4.000000 MH
Occupied Band	width 16.317 M		Power	23.4	dBm		<u>Auto</u> Ma
Transmit Freg Er			Power	qq	.00 %		Freq Offse 0 H
x dB Bandwidth	16.38				00 dB		

Agilent Spectrum Analyzer - Occupied BW	12				
RL RF 50.0. AC Center Freq 2.417000000 (Ref Offset 10.52 db	Figure Cente Trig: F #FGain:Low #Atten	sense:INT r Freq: 2.417000000 GHz ree Run Avg Hol : 20 dB	Ra d: 1/1	::17:44 PM Mar 27, 2020 dio Std: None dio Device: BTS	Frequency
10 dB/div Ref 20.00 dBm		an fragmention and a second			Center Free 2.417000000 GH
20.0 30.0 40.0 50.0			- Contraction of the second	papala and the	
600 700 Center 2.417 GHz #Res BW 100 kHz		VBW 300 kHz		Span 40 MHz veep 3.867 ms	CF Stej 4.000000 MH <u>Auto</u> Ma
	113 MHz	Total Power	22.7 dE		Freq Offse
Transmit Freq Error x dB Bandwidth	28.899 kHz 16.91 MHz	OBW Power x dB	99.00 -6.00		UT
SG			STATUS		

6dB Bandwidth plot (802.11n_HT20-CH 2)

6dB Bandwidth plot (802.11n_HT40-CH 9)

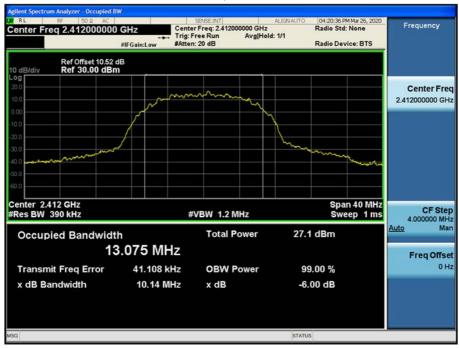
Note:

In order to simplify the report, attached plots were only the most narrow 6 dB BW channel.

99% Bandwidth Measurements(IC)

802.11b M	OBW	Limit	
Frequency [MHz]	Channel No.	Bandwidth [MHz]	[MHz]
2412	1	13.075	N/A
2437	6	13.031	N/A
2462	11	13.046	N/A

802.11g M	ode	OBW	Limit
Frequency [MHz]	Channel No.	Bandwidth [MHz]	[MHz]
2412	1	16.405	N/A
2417	2	16.412	N/A
2437	6	16.432	N/A
2457	10	16.409	N/A
2462	11	16.398	N/A


802.11n(HT20	OBW	Limit	
Frequency [MHz]	Channel No.	Bandwidth [MHz]	[MHz]
2412	1	17.116	N/A
2417	2	17.091	N/A
2437	6	17.084	N/A
2457	10	17.087	N/A
2462	11	17.085	N/A

802.11n(HT40	OBW	Limit	
Frequency	Channel No.	Bandwidth	[MHz]
[MHz]		[MHz]	
2422	3	36.120	N/A
2427	4	36.096	N/A
2437	6	36.110	N/A
2447	8	36.097	N/A
2452	9	36.094	N/A

Test Plots

99% Bandwidth plot (802.11b-CH 1)

99% Bandwidth plot (802.11g-CH 6)

UX RL						
Center Fre	RF 50 R AC 2q 2.437000000	Trig	sense:INT ter Freq: 2.437000000 G : Free Run Avg en: 20 dB	ALIGNAUTO Hz Hold: 1/1	05:34:39 PM Mar 26, 2020 Radio Std: None Radio Device: BTS	Frequency
10 dB/div Log	Ref Offset 10.52 d Ref 20.00 dBm					
10.0 0.00 -10.0		/~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim		Center Fred 2.437000000 GHz
-20.0 -30.0 -40.0					m	
-50.0 -60.0 -70.0						
Center 2.4 #Res BW			#VBW 1.2 MHz		Span 40 MHz Sweep 1 ms	CF Step 4.000000 MH
Occup	ied Bandwidtl	n .432 MHz	Total Power	24.7	7 dBm	<u>Auto</u> Mar
	it Freq Error Indwidth	82.598 kHz 16.26 MHz	OBW Power x dB		9.00 % 00 dB	Freq Offsel 0 Hz
MSG				STATU		

gilent Spectrum Analyzer - Occupied I					
Center Freq 2.412000000	GHz Cente	SENSE:INT r Freq: 2.412000000 GHz Free Run Avg Hol n: 20 dB	ALIGNAUTO 06:02:09 P Radio Std d: 1/1 Radio Dev	None	Frequency
Ref Offset 10.52 10 dB/div Ref 20.00 dBi					
10.0	Jamma	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7		Center Free 2.412000000 GH
20.0 20.0					
40.0					
50.0					
enter 2.412 GHz Res BW 390 kHz	#	VBW 1.2 MHz		n 40 MHz ep 1 ms	CF Ste 4.000000 MH
Occupied Bandwid		Total Power	23.2 dBm		<u>Auto</u> Ma
1	7.116 MHz				Freq Offse
Transmit Freq Error	43.627 kHz	OBW Power	99.00 %		0 H
x dB Bandwidth	16.87 MHz	x dB	-6.00 dB		
SG			STATUS		

99% Bandwidth plot (802.11n_HT20-CH 1)

99% Bandwidth plot (802.11n_HT40-CH 3)

Note:

In order to simplify the report, attached plots were only the most wide 99% Bandwidth channel.

9.3 OUTPUT POWER

Peak Power

1. Power Meter offset = Attenuator loss(10 dB) + Cable loss(1ea)

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.52 dB is offset for 2.4 GHz Band

802.11	b Mode	Measured	Limit
Frequency[MHz]	Channel No.	Power(dBm)	(dBm)
2412	1	25.99	30
2437	6	25.52	30
2462	11	25.58	30

802.11	g Mode	Measured	Limit
Frequency[MHz]	Channel No.	Power(dBm)	(dBm)
2412	1	23.99	30
2417	2	24.43	30
2437	6	24.49	30
2457	10	24.03	30
2462	11	22.16	30

802.11n(H	IT20) Mode	Measured	Limit
Frequency[MHz]	Channel No.	Power(dBm)	(dBm)
2412	1	23.56	30
2417	2	23.65	30
2437	6	23.39	30
2457	10	23.64	30
2462	11	22.98	30

802.11n(H	IT40) Mode	Measured	Limit
Frequency[MHz]	Channel No.	Power(dBm)	(dBm)
2422	3	23.32	30
2427	4	24.00	30
2437	6	23.98	30
2447	8	23.16	30
2452	9	21.95	30

Average Power

- 1. Power Meter offset = Attenuator loss(10 dB) + Cable loss(1ea)
- 2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.
- So, 10.52 dB is offset for 2.4 GHz Band.
- 3. All mode 100% continuous signal. Not add the Duty cycle factor

802.11b	Mode	Measured		Measured Power(dBm)	
Frequency [MHz]	Channel No.	Power (dBm)	Duty Cycle Factor	+ Duty Cycle Factor	Limit (dBm)
2412	1	18.90	0.000	18.90	30
2437	6	18.56	0.000	18.56	30
2462	11	18.70	0.000	18.70	30

802.11g	Mode	Measured		Measured Power(dBm)	
Frequency [MHz]	Channel No.	Power (dBm)	Duty Cycle Factor	+ Duty Cycle Factor	Limit (dBm)
2412	1	16.16	0.000	16.16	30
2417	2	16.62	0.000	16.62	30
2437	6	16.66	0.000	16.66	30
2457	10	16.26	0.000	16.26	30
2462	11	14.36	0.000	14.36	30

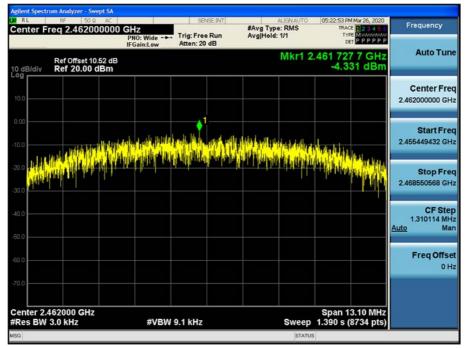
802.11n(HT	20) Mode	Measured		Measured Power(dBm)	
Frequency [MHz]	Channel No.	Power (dBm)	Duty Cycle Factor	+ Duty Cycle Factor	Limit (dBm)
2412	1	15.54	0.000	15.54	30
2417	2	15.64	0.000	15.64	30
2437	6	15.38	0.000	15.38	30
2457	10	15.63	0.000	15.63	30
2462	11	14.98	0.000	14.98	30

802.11n(HT	40) Mode	Measured		Measured Power(dBm)	
Frequency [MHz]	Channel No.	Power (dBm)	Duty Cycle Factor	+ Duty Cycle Factor	Limit (dBm)
2422	3	14.99	0.000	14.99	30
2427	4	15.70	0.000	15.70	30
2437	6	15.69	0.000	15.69	30
2447	8	14.87	0.000	14.87	30
2452	9	13.66	0.000	13.66	30

9.4 POWER SPECTRAL DENSITY

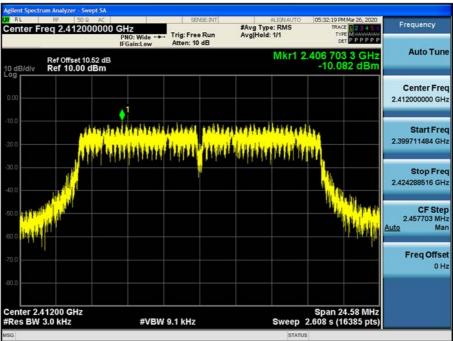
	-		Test	Result
Mode	Frequency (MHz)	Channel No.	Measured PSD (dBm)	Limit (dBm)
	2412	1	-4.591	8
802.11b	2437	6	-4.842	8
	2462	11	-4.331	8
	2412	1	-10.082	8
802.11g	2417	2	-11.046	8
	2437	6	-11.147	8
	2457	10	-11.555	8
	2462	11	-10.910	8
	2412	1	-11.978	8
	2417	2	-12.126	8
802.11n(HT20)	2437	6	-12.366	8
	2457	10	-12.060	8
	2462	11	-11.235	8
	2422	3	-14.533	8
	2427	4	-14.211	8
802.11n(HT40)	2437	6	-14.699	8
	2447	8	-13.348	8
	2452	9	-13.840	8

Note :


1. Spectrum reading values are not plot data.

The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.

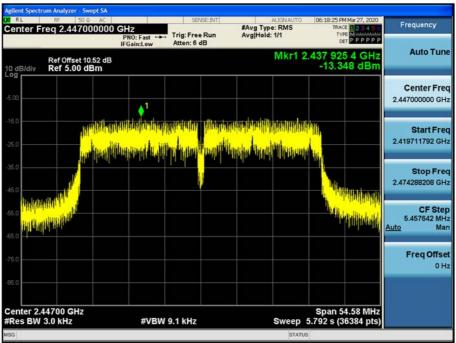
- 2. Spectrum offset = Attenuator loss(10 dB) + Cable loss(1ea)
- 3. 10.52 dB is offset for 2.4 GHz Band.

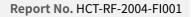


Test Plots

Power Spectral Density (802.11b-CH 11)

Power Spectral Density (802.11g-CH 1)




Power Spectral Density (802.11n_HT20 -CH 11)

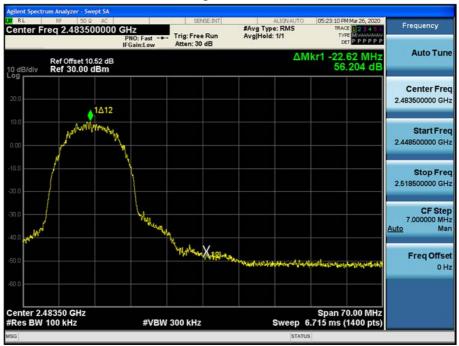
Power Spectral Density (802.11n_HT40 -CH 8)

Note :

In order to simplify the report, attached plots were only the worstcase PSD channel.

9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS

Test Result : please refer to the plot below.


In order to simplify the report, attached plots were only the worst case channel and data rate.

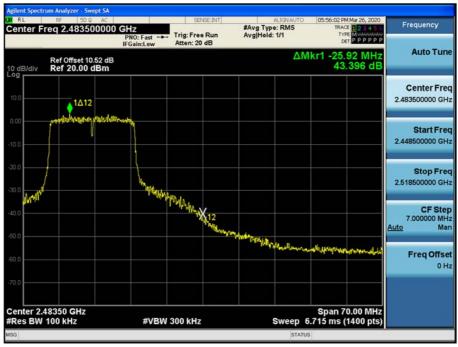
Test Plots(BandEdge)

Band Edge (802.11b-CH11)

RL RF 50Ω AC Center Freq 2.400000000 0	PNO: Fast Trig: Fr	ee Run A	ALIGNAUTO Avg Type: RMS wg Hold: 1/1	05:32:36 PM Mar 26, 2020 TRACE 2 2 4 5 TYPE M DET P P P P P	Frequency
Ref Offset 10.52 dB 0 dB/div Ref 20.00 dBm	IFGain:Low Atten:	20 dB	Δι	Mkr1 17.56 MH: 36.758 dE	Auto Tun
00g			1∆	12	Center Fre 2.400000000 GH
0.00			and and and and		Start Fre 2.365000000 GH
800					Stop Fre 2.435000000 GH
100	net the all and the set of the set	A 12		- montality and the for	CF Ste 7.000000 MH <u>Auto</u> Ma
50.0					Freq Offs 0 F
70.0 Center 2.40000 GHz Res BW 100 kHz	#VBW 300 kH	7	Sween	Span 70.00 MH: 5.715 ms (1400 pts	

Band Edge (802.11g-CH1)

Band Edge (802.11g-CH2)



RL RF 50 Ω AC Center Freg 2.4835000		SENSE:IN		ALIGNAUTO	04:38:59 PM Mar 27, 2020 TRACE 2 2 3 4 5 6	Frequency
2.400000	PNO: Fast ++ IFGain:Low	Atten: 20 dB			DET P P P P P	
Ref Offset 10.52 c 0 dB/div Ref 20.00 dBn				ΔM	kr1 -29.02 MHz 49.675 dB	Auto Tun
10.0 1 Δ12						Center Fre 2.483500000 GH
0.00 patrixiting of thing of thing of the second						Start Fre 2.448500000 GH
80.0	L. Mark					Stop Fre 2.518500000 G
0.0	Arrowalling	how when the state	244			CF Ste 7.000000 Mi Auto M
50.0			"In the second second	holdellen halde	Verletinn-Johnstan Fried	Freq Offs 01
70.0						
Center 2.48350 GHz Res BW 100 kHz	#VBV	V 300 kHz		Sweep 6	Span 70.00 MHz .715 ms (1400 pts)	
SG				STATUS		

Band Edge (802.11g-CH10)

Band Edge (802.11g-CH11)

Center F	req 2.40000000	D GHz PNO: Fast	SENSE:INT Trig: Free Run Atten: 20 dB	#Avg Type Avg Hold:		TRAC	M Mar 27, 2020	Frequency
0 dB/div	Ref Offset 10.52 dB Ref 20.00 dBm		Hum 20 db		ΔN	/kr1 6. 38	75 MHz .477 dB	Auto Tune
10.0				↓1∆12				Center Fre 2.400000000 GH
0.00			pum	ad socks state by peter	the spectrum			Start Fre 2.365000000 GH
30.0						1		Stop Fre 2.435000000 GH
40.0	antalapalan manafalan dagan d	unterreptitient jalah bili	W12			J.W. WWC	Unintrum of	CF Ste 7.000000 MH Auto Ma
	antel have been and the other of the server							Freq Offs 0 F
Center 2.4	40000 GHz	#VBW	300 kHz		Sweep 6.7	Span 7	0.00 MHz	
SG		#*EN			STATUS	i o ino ((100 pits)	

Band Edge (802.11n(HT20)-CH1)

Band Edge (802.11n(HT20)-CH2)

RL	RF 50 Q AC		SENSE:INT	ALIGN AUTO	05:31:11 PM Mar 27, 2020	Frequency
Center F	req 2.483500000	PNO: Fast	Trig: Free Run Atten: 20 dB	#Avg Type: RMS Avg Hold: 1/1	TRACE 23450 TYPE MUMOUND DET PPPPP	Frequency
10 dB/div	Ref Offset 10.52 dB Ref 20.00 dBm			ΔN	lkr1 -29.82 MHz 50.752 dB	Auto Tun
10.0	1∆12					Center Fre 2.483500000 GH
0.00 /***** *	where and a construction of the second					Start Fre 2.448500000 GH
20.0 30.0						Stop Fre 2.518500000 GF
40.0		The state of the s	Marylohamal was \$12	techteritecteritecture		CF Ste 7.000000 MH Auto Ma
60.0			لي	entrissististicture and a state of the state	vennelevilevilevilevile	Freq Offso 0 H
-70.0	48350 GHz				On on 70 00 Mile	
#Res BW		#VBW	300 kHz	Sweep (Span 70.00 MHz 5.715 ms (1400 pts)	
ISG				STATU	S	

Band Edge (802.11n(HT20)-CH10)

Band Edge (802.11n(HT20)-CH11)

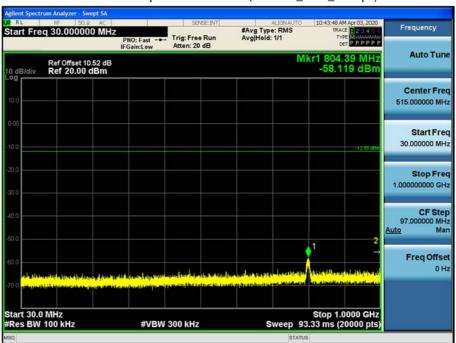
Band Edge (802.11n(HT40)-CH3)

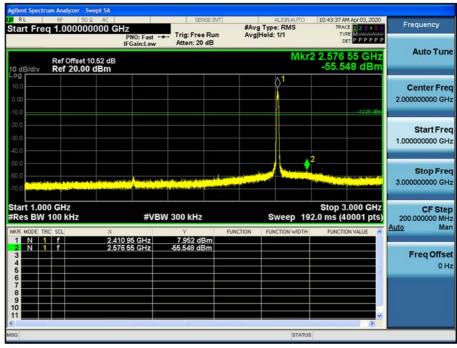
Band Edge (802.11n(HT40)-CH4)



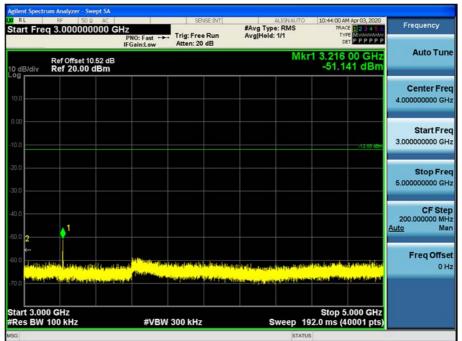
Center F	RF 50 9 AC req 2.4835000		SENSE:INT Trig: Free Run Atten: 16 dB	#Avg Typ Avg Hold		06:18:42 PM M TRACE TYPE DET	lar 27, 2020 1 2 3 4 5 6 M P P P P P P P	Frequency
10 dB/div	Ref Offset 10.52 d Ref 15.00 dBm	в			ΔM	kr1 -30.9 33.7	1 MHz '06 dB	Auto Tun
5.00	proversity forthering	1∆12						Center Fre 2.483500000 GH
15.0								Start Fre 2.428500000 GH
35.0		WIN	With Martin X	2				Stop Fre 2.538500000 GP
45.0 55.0			fro	nandrage and name of	Vrakykáján jeletetetetetetetetetetetetetetetetetete	in the state of th	hilling	CF Ste 11.000000 Mi Auto Mi
65.0								Freq Offs 01
	48350 GHz					Span 110	0.0 MHz	
#Res BW	100 kHz	#VBW	300 kHz		Sweep 1	0.56 ms (23	200 pts)	

Band Edge (802.11n(HT40)-CH8)

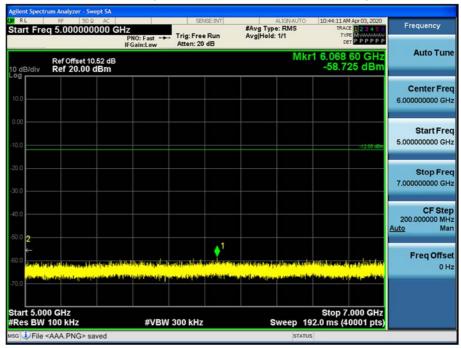

Band Edge (802.11n(HT40)-CH9)


Test Plots(Conducted Spurious Emission)

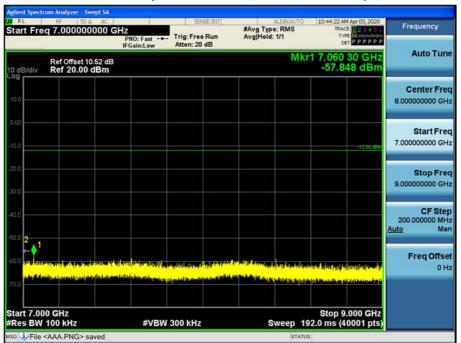
30 MHz ~ 1 GHz


Conducted Spurious Emission (802.11b_Ch.1_2 Mbps)

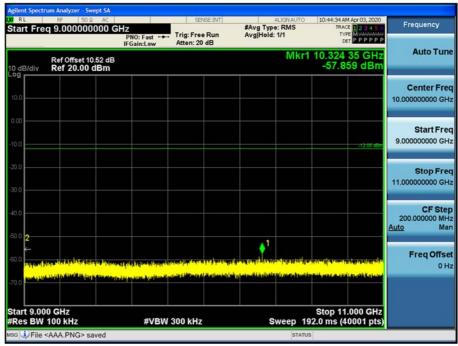
1 GHz ~ 3 GHz



3 GHz ~ 5 GHz


Conducted Spurious Emission (802.11b_Ch.1_2 Mbps)

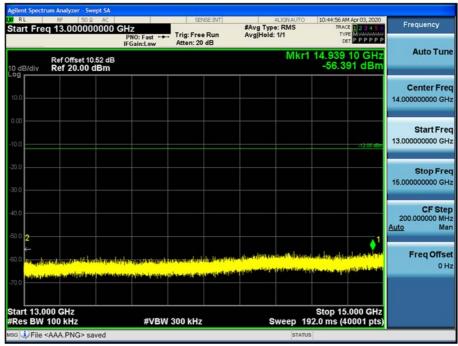
5 GHz ~ 7 GHz



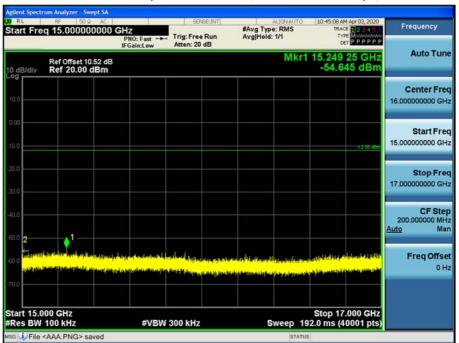
7 GHz ~ 9 GHz

Conducted Spurious Emission (802.11b_Ch.1_2 Mbps)

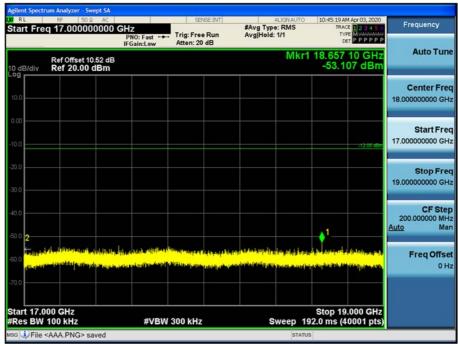
9 GHz ~ 11 GHz



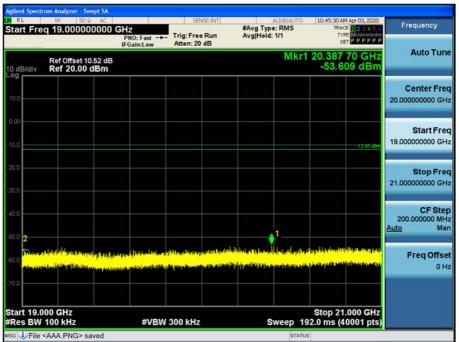
11 GHz ~ 13 GHz

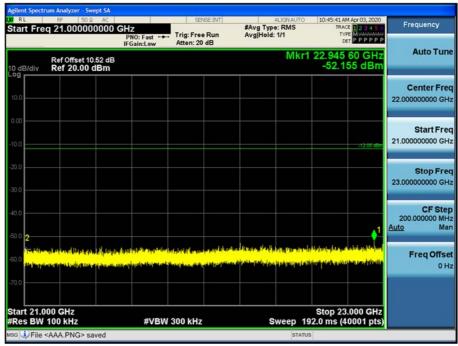

Conducted Spurious Emission (802.11b_Ch.1_2 Mbps)

13 GHz ~ 15 GHz


15 GHz ~ 17 GHz

Conducted Spurious Emission (802.11b_Ch.1_2 Mbps)


17 GHz ~ 19 GHz


19 GHz ~ 21 GHz

Conducted Spurious Emission (802.11b_Ch.1_2 Mbps)

21 GHz ~ 23 GHz

23 GHz ~ 25 GHz

RL	RF 50 Ω		-	SEN	ISE:INT	#Avg Typ	ALIGN AUTO		M Apr 03, 2020	Frequency
tart Fre	q 23.000000	1	PNO: Fast	Trig: Free Atten: 20		Avg Hold		TY		
0 dB/div	Ref Offset 10.5 Ref 20.00 d	52 dB	Gam.cow				Mkr1		50 GHz 01 dBm	Auto Tune
og										Center Free 24.000000000 GH
0.0									-12:05 dBm	Start Free 23.000000000 GH
20.0										Stop Free 25.00000000 GH
0.0									1 <mark>,</mark>	CF Stej 200.000000 MH <u>Auto</u> Ma
theat.	di na dalatika dalam ngana katang	dijînadarî Porte te d	a chindheadd Tergy agus ann			Artarilitikatik Reginantikatika				Freq Offse 0 H
70.0	00 GHz							Stop 25	.000 GHz	
	100 kHz		#VBW	300 kHz		\$	weep 19		0001 pts)	

9.6 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30MHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin				
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB				
	No Critical peaks found										

Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin				
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB				
	No Critical peaks found										

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

Operation Mode:	802.11b
Transfer Rate:	1 Mbps
Operating Frequency	2412
Channel No.	01 Ch

Frequency	Reading	A.F+C.L-AMP+D.F	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4824	52.74	4.31	V	57.05	73.98	16.93	PK
4824	43.95	4.31	V	48.26	53.98	5.72	AV
7236	41.62	12.35	V	53.97	73.98	20.01	PK
7236	30.24	12.35	V	42.59	53.98	11.39	AV
4824	52.45	4.31	Н	56.76	73.98	17.22	PK
4824	43.46	4.31	Н	47.77	53.98	6.21	AV
7236	40.76	12.35	Н	53.11	73.98	20.87	PK
7236	30.12	12.35	Н	42.47	53.98	11.51	AV

Operation Mode:	802.11b
Transfer Rate:	1 Mbps
Operating Frequency	2437
Channel No.	06 Ch

Frequency	Reading	A.F+C.L-AMP+D.F	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4874	53.63	4.40	V	58.03	73.98	15.95	PK
4874	44.73	4.40	V	49.13	53.98	4.85	AV
7311	44.27	12.37	V	56.64	73.98	17.34	PK
7311	32.28	12.37	V	44.65	53.98	9.33	AV
4874	52.79	4.40	Н	57.19	73.98	16.79	PK
4874	44.51	4.40	Н	48.91	53.98	5.07	AV
7311	44.02	12.37	Н	56.39	73.98	17.59	PK
7311	31.26	12.37	Н	43.63	53.98	10.35	AV

Frequency	Reading	A.F+C.L-AMP+D.F	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4924	52.78	4.51	V	57.29	73.98	16.69	PK
4924	43.91	4.51	V	48.42	53.98	5.56	AV
7386	40.59	12.31	V	52.90	73.98	21.08	PK
7386	29.79	12.31	V	42.10	53.98	11.88	AV
4924	52.22	4.51	н	56.73	73.98	17.25	PK
4924	42.85	4.51	Н	47.36	53.98	6.62	AV
7386	41.44	12.31	Н	53.75	73.98	20.23	PK
7386	29.91	12.31	Н	42.22	53.98	11.76	AV

Operation Mode:	802.11g
Transfer Rate:	6 Mbps
Operating Frequency	2412
Channel No.	01 Ch

Frequency	Reading	Duty Cycle	A.F+C.L- AMP+D.F	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4824	47.62	0.00	4.31	V	51.93	73.98	22.05	PK
4824	35.93	0.00	4.31	V	40.24	53.98	13.74	AV
7236	38.99	0.00	12.35	V	51.34	73.98	22.64	PK
7236	26.94	0.00	12.35	V	39.29	53.98	14.69	AV
4824	46.81	0.00	4.31	Н	51.12	73.98	22.86	PK
4824	35.42	0.00	4.31	н	39.73	53.98	14.25	AV
7236	38.55	0.00	12.35	н	50.90	73.98	23.08	PK
7236	26.80	0.00	12.35	Н	39.15	53.98	14.83	AV

Operation Mode:

Transfer Rate:

Operating Frequency Channel No.

802.11g	
6 Mbps	
2437	
06 Ch	

		Duty	A.F+C.L-	ANT.				
Frequency	Reading	Cycle	AMP+D.F	POL	Total	Limit	Margin	
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4874	50.40	0.00	4.40	V	54.80	73.98	19.18	PK
4874	39.45	0.00	4.40	V	43.85	53.98	10.13	AV
7311	43.00	0.00	12.37	V	55.37	73.98	18.61	PK
7311	30.44	0.00	12.37	V	42.81	53.98	11.17	AV
4874	50.24	0.00	4.40	Н	54.64	73.98	19.34	PK
4874	38.31	0.00	4.40	Н	42.71	53.98	11.27	AV
7311	42.02	0.00	12.37	Н	54.39	73.98	19.59	PK
7311	29.58	0.00	12.37	Н	41.95	53.98	12.03	AV

Operation Mode:	802.11g
Transfer Rate:	6 Mbps
Operating Frequency	2462
Channel No.	11 Ch

Frequency	Reading	Duty Cycle	A.F+C.L- AMP+D.F	ANT. POL	Total	Limit	Manain	
	0						Margin	Dataat
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4924	48.23	0.00	4.51	V	52.74	73.98	21.24	PK
4924	36.33	0.00	4.51	V	40.84	53.98	13.14	AV
7386	38.25	0.00	12.31	V	50.56	73.98	23.42	PK
7386	26.41	0.00	12.31	V	38.72	53.98	15.26	AV
4924	47.60	0.00	4.51	Н	52.11	73.98	21.87	PK
4924	35.29	0.00	4.51	Н	39.80	53.98	14.18	AV
7386	37.49	0.00	12.31	Н	49.80	73.98	24.18	PK
7386	26.37	0.00	12.31	Н	38.68	53.98	15.30	AV

Operation Mode:	802.11n (HT20)
Transfer MCS Index:	0
Operating Frequency	2412
Channel No.	01 Ch

Frequency	Reading	Duty Cycle	A.F+C.L- AMP+D.F	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4824	48.64	0.00	4.31	V	52.95	73.98	21.03	PK
4824	36.29	0.00	4.31	V	40.60	53.98	13.38	AV
7236	38.83	0.00	12.35	V	51.18	73.98	22.80	PK
7236	26.85	0.00	12.35	V	39.20	53.98	14.78	AV
4824	48.10	0.00	4.31	Н	52.41	73.98	21.57	PK
4824	36.05	0.00	4.31	Н	40.36	53.98	13.62	AV
7236	38.43	0.00	12.35	Н	50.78	73.98	23.20	PK
7236	26.82	0.00	12.35	Н	39.17	53.98	14.81	AV

Operation Mode:

Channel No.

Transfer MCS Index: Operating Frequency

802.11n (HT20)
0
2437
06 Ch

		_	A.F+C.L-					
Frequency	Reading	Duty Cycle	AMP+D.F	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4874	50.98	0.00	4.40	V	55.38	73.98	18.60	PK
4874	38.66	0.00	4.40	V	43.06	53.98	10.92	AV
7311	43.35	0.00	12.37	V	55.72	73.98	18.26	PK
7311	30.02	0.00	12.37	V	42.39	53.98	11.59	AV
4874	50.62	0.00	4.40	Н	55.02	73.98	18.96	PK
4874	37.53	0.00	4.40	Н	41.93	53.98	12.05	AV
7311	42.42	0.00	12.37	Н	54.79	73.98	19.19	PK
7311	29.32	0.00	12.37	Н	41.69	53.98	12.29	AV

Operation Mode:	802.11n (HT20)		
Transfer MCS Index:	0		
Operating Frequency	2462		
Channel No.	11 Ch		

F	Deeding	Duty Guala	A.F+C.L-		Tatal	1 :		
Frequency	Reading	Duty Cycle	AMP+D.F	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4924	48.75	0.00	4.51	V	53.26	73.98	20.72	PK
4924	36.58	0.00	4.51	V	41.09	53.98	12.89	AV
7386	39.01	0.00	12.31	V	51.32	73.98	22.66	PK
7386	26.69	0.00	12.31	V	39.00	53.98	14.98	AV
4924	48.17	0.00	4.51	Н	52.68	73.98	21.30	PK
4924	36.05	0.00	4.51	Н	40.56	53.98	13.42	AV
7386	38.51	0.00	12.31	Н	50.82	73.98	23.16	PK
7386	26.61	0.00	12.31	Н	38.92	53.98	15.06	AV

Operation Mode:	802.11n (HT40)		
Operating Frequency	2422		
Channel No.	03 Ch		

			A.F+C.L-					
Frequency	Reading	Duty Cycle	AMP+D.F	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4844	46.70	0.00	4.32	V	51.02	73.98	22.96	PK
4844	34.72	0.00	4.32	V	39.04	53.98	14.94	AV
7266	40.12	0.00	12.52	V	52.64	73.98	21.34	PK
7266	27.06	0.00	12.52	V	39.58	53.98	14.40	AV
4844	45.42	0.00	4.32	Н	49.74	73.98	24.24	PK
4844	34.69	0.00	4.32	Н	39.01	53.98	14.97	AV
7266	38.65	0.00	12.52	н	51.17	73.98	22.81	PK
7266	26.90	0.00	12.52	Н	39.42	53.98	14.56	AV

Operation Mode:

802.11n (HT40)

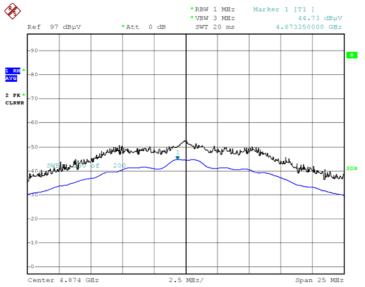
2437

06 Ch

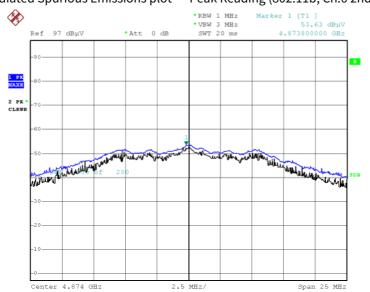
Operating Frequency

Channel No.

			A.F+C.L-					
Frequency	Reading	Duty Cycle	AMP+D.F	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4874	46.69	0.00	4.40	V	51.09	73.98	22.89	PK
4874	35.59	0.00	4.40	V	39.99	53.98	13.99	AV
7311	38.15	0.00	12.37	V	50.52	73.98	23.46	PK
7311	27.02	0.00	12.37	V	39.39	53.98	14.59	AV
4874	46.74	0.00	4.40	Н	51.14	73.98	22.84	PK
4874	35.39	0.00	4.40	Н	39.79	53.98	14.19	AV
7311	38.82	0.00	12.37	Н	51.19	73.98	22.79	PK
7311	27.10	0.00	12.37	Н	39.47	53.98	14.51	AV

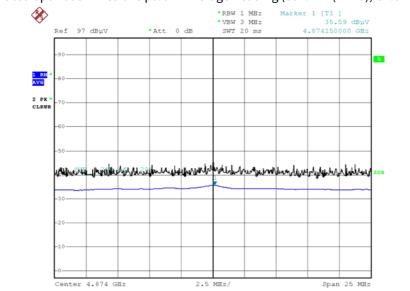

Operation Mode:	802.11n (HT40)		
Operating Frequency	2452		
Channel No.	9 Ch		

			A.F+C.L-					
Frequency	Reading	Duty Cycle	AMP+D.F	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4904	46.22	0.00	4.49	V	50.71	73.98	23.27	PK
4904	33.78	0.00	4.49	V	38.27	53.98	15.71	AV
7356	38.42	0.00	12.26	V	50.68	73.98	23.30	PK
7356	26.52	0.00	12.26	V	38.78	53.98	15.20	AV
4904	44.99	0.00	4.49	Н	49.48	73.98	24.50	PK
4904	32.72	0.00	4.49	Н	37.21	53.98	16.77	AV
7356	37.61	0.00	12.26	н	49.87	73.98	24.11	PK
7356	26.42	0.00	12.26	Н	38.68	53.98	15.30	AV

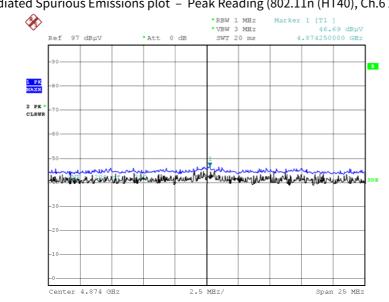


Test Plots (Worst case : Y-V)

Radiated Spurious Emissions plot – Average Reading (802.11b, Ch.6 2nd Harmonic)


Date: 26.MAR.2020 10:48:17

Radiated Spurious Emissions plot - Peak Reading (802.11b, Ch.6 2nd Harmonic)


Date: 26.MAR.2020 10:48:42

Radiated Spurious Emissions plot – Average Reading (802.11n (HT40), Ch.6 2nd Harmonic)

Date: 26.MAR.2020 10:11:09

Radiated Spurious Emissions plot - Peak Reading (802.11n (HT40), Ch.6 2nd Harmonic)

Date: 26.MAR.2020 10:11:54

Note:

Plot of worst case are only reported.

9.7 RADIATED RESTRICTED BAND EDGES

802.11b
1 Mbps
2412 MHz, 2462 MHz
01 Ch, 11 Ch

Frequency	Reading	※ A.F+C.L+D.F	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	uV/m] [dBuV/m] [dB]		Delect
2390.0	27.11	34.31	Н	61.42	73.98	12.56	PK
2390.0	16.25	34.31	н	50.56	53.98	3.42	AV
2390.0	27.05	34.31	V	61.36	73.98	12.62	PK
2390.0	16.12	34.31	V	50.43	53.98	3.55	AV
2483.5	26.49	34.14	Н	60.63	73.98	13.35	PK
2483.5	15.95	34.14	н	50.09	53.98	3.89	AV
2483.5	25.81	34.14	V	59.95	73.98	14.03	PK
2483.5	15.45	34.14	V	49.59	53.98	4.39	AV

Operation Mode: Transfer Rate: Operating Frequency Channel No.

802.11g
6 Mbps
2412 MHz, 2462 MHz
01 Ch, 11 Ch

Frequen cy	Reading	Duty Cycle Facto	× A.F+C.L+D.F	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	r	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	27.18	0.00	34.31	Н	61.49	73.98	12.49	PK
2390.0	16.51	0.00	34.31	Н	50.82	53.98	3.16	AV
2390.0	26.14	0.00	34.31	V	60.45	73.98	13.53	PK
2390.0	15.37	0.00	34.31	V	49.68	53.98	4.30	AV
2483.5	27.82	0.00	34.14	Н	61.96	73.98	12.02	PK
2483.5	15.58	0.00	34.14	Н	49.72	53.98	4.26	AV
2483.5	27.55	0.00	34.14	V	61.69	73.98	12.29	PK
2483.5	15.42	0.00	34.14	V	49.56	53.98	4.42	AV

802.11g
6 Mbps
2417 MHz, 2457 MHz
02 Ch, 10 Ch

Frequen cy	Reading	Duty Cycle Facto	× A.F+C.L+D.F	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	r	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	27.61	0.00	34.31	Н	61.92	73.98	12.06	PK
2390.0	16.39	0.00	34.31	Н	50.70	53.98	3.28	AV
2390.0	27.13	0.00	34.31	V	61.44	73.98	12.54	PK
2390.0	15.22	0.00	34.31	V	49.53	53.98	4.45	AV
2483.5	27.90	0.00	34.14	Н	62.04	73.98	11.94	PK
2483.5	16.24	0.00	34.14	Н	50.38	53.98	3.60	AV
2483.5	27.45	0.00	34.14	V	61.59	73.98	12.39	PK
2483.5	16.02	0.00	34.14	V	50.16	53.98	3.82	AV

Operation Mode: Transfer Rate: Operating Frequency Channel No.

802.11g
6 Mbps
2422 MHz, 2452 MHz
03 Ch, 09 Ch

Frequen cy [MHz]	Reading	Duty Cycle Facto	※ A.F+C.L+D.F	ANT. POL	Total	Limit	Margin	Detect
	dBuV	r	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	28.54	0.00	34.31	Н	62.85	73.98	11.13	PK
2390.0	15.89	0.00	34.31	н	50.20	53.98	3.78	AV
2390.0	26.72	0.00	34.31	V	61.03	73.98	12.95	PK
2390.0	15.28	0.00	34.31	V	49.59	53.98	4.39	AV
2483.5	27.73	0.00	34.14	Н	61.87	73.98	12.11	PK
2483.5	15.82	0.00	34.14	Н	49.96	53.98	4.02	AV
2483.5	27.29	0.00	34.14	V	61.43	73.98	12.55	PK
2483.5	15.43	0.00	34.14	V	49.57	53.98	4.41	AV

Operation Mode:	802.11n (HT20)
Transfer MCS Index:	0
Operating Frequency	2412 MHz, 2462 MHz
Channel No.	01 Ch, 11 Ch

Frequency	Reading	Duty Cycle	※ A.F+C.L+D.F	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Dettett
2390.0	27.57	0.00	34.31	Н	61.88	73.98	12.10	PK
2390.0	16.39	0.00	34.31	Н	50.70	53.98	3.28	AV
2390.0	27.11	0.00	34.31	V	61.42	73.98	12.56	PK
2390.0	16.02	0.00	34.31	V	50.33	53.98	3.65	AV
2483.5	28.60	0.00	34.14	Н	62.74	73.98	11.24	PK
2483.5	16.62	0.00	34.14	Н	50.76	53.98	3.22	AV
2483.5	27.89	0.00	34.14	V	62.03	73.98	11.95	PK
2483.5	16.12	0.00	34.14	V	50.26	53.98	3.72	AV

Operation Mode: Transfer Rate: Operating Frequency Channel No.

802.11n (HT20))
0	
2417 MHz, 245	57 MHz
02 Ch, 10 Ch	

Frequency [MHz]	Reading dBuV	Duty Cycle Factor	※ A.F+C.L+D.F [dB]	ANT. POL [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Detect
2390.0	28.06	0.00	34.31	Н	62.37	73.98	11.61	PK
2390.0	16.27	0.00	34.31	Н	50.58	53.98	3.40	AV
2390.0	27.84	0.00	34.31	V	62.15	73.98	11.83	PK
2390.0	16.11	0.00	34.31	V	50.42	53.98	3.56	AV
2483.5	27.97	0.00	34.14	Н	62.11	73.98	11.87	PK
2483.5	16.38	0.00	34.14	Н	50.52	53.98	3.46	AV
2483.5	27.64	0.00	34.14	V	61.78	73.98	12.20	PK
2483.5	16.05	0.00	34.14	V	50.19	53.98	3.79	AV

Operation Mode:
Transfer Rate:
Operating Frequency
Channel No.

802.11n (HT20)	
0	
2422 MHz, 2452 MH	Z
03 Ch, 09 Ch	

Frequency [MHz]	Reading dBuV	Duty Cycle Factor	※ A.F+C.L+D.F [dB]	ANT. POL [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Detect
2390.0	27.41	0.00	34.31	Н	61.72	73.98	12.26	PK
2390.0	15.83	0.00	34.31	Н	50.14	53.98	3.84	AV
2390.0	26.33	0.00	34.31	V	60.64	73.98	13.34	PK
2390.0	15.77	0.00	34.31	V	50.08	53.98	3.90	AV
2483.5	27.46	0.00	34.14	Н	61.60	73.98	12.38	PK
2483.5	15.61	0.00	34.14	Н	49.75	53.98	4.23	AV
2483.5	26.19	0.00	34.14	V	60.33	73.98	13.65	PK
2483.5	15.33	0.00	34.14	V	49.47	53.98	4.51	AV

Operation Mode:

Operating Frequency Channel No. 802.11n (HT40) 2422 MHz, 2452 MHz 03 Ch, 09 Ch

Frequency	Reading	Duty Cycle	※ A.F+C.L+D.F	ANT. POL	Total	Limit	Margin	Detec
riequency	Reduing	Cycle		102	[dBuV/m	[dBuV/m	Margin	t
[MHz]	dBuV	Factor	[dB]	[H/V]]]	[dB]	
2390.0	28.03	0.00	34.31	Н	62.34	73.98	11.64	PK
2390.0	16.89	0.00	34.31	Н	51.20	53.98	2.78	AV
2390.0	27.16	0.00	34.31	V	61.47	73.98	12.51	PK
2390.0	16.11	0.00	34.31	V	50.42	53.98	3.56	AV
2483.5	27.82	0.00	34.14	Н	61.96	73.98	12.02	PK
2483.5	16.52	0.00	34.14	Н	50.66	53.98	3.32	AV
2483.5	26.81	0.00	34.14	V	60.95	73.98	13.03	PK
2483.5	16.02	0.00	34.14	V	50.16	53.98	3.82	AV

Operation Mode:	802.11n (HT40)		
Operating Frequency	2427 MHz, 2447 MHz		
Channel No.	04 Ch, 08 Ch		

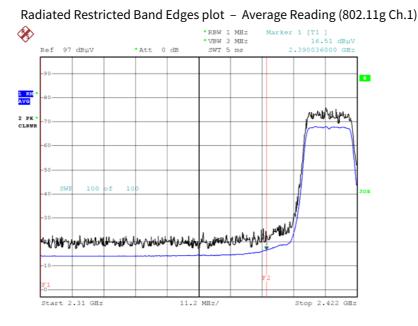
_		Duty		ANT.	T			
Frequency	Reading	Cycle	※ A.F+C.L+D.F	POL	Total	Limit	Margin	Detect
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	27.58	0.00	34.31	Н	61.89	73.98	12.09	PK
2390.0	16.33	0.00	34.31	Н	50.64	53.98	3.34	AV
2390.0	27.18	0.00	34.31	V	61.49	73.98	12.49	PK
2390.0	16.12	0.00	34.31	V	50.43	53.98	3.55	AV
2483.5	27.37	0.00	34.14	н	61.51	73.98	12.47	PK
2483.5	16.47	0.00	34.14	Н	50.61	53.98	3.37	AV
2483.5	27.22	0.00	34.14	V	61.36	73.98	12.62	PK
2483.5	16.05	0.00	34.14	V	50.19	53.98	3.79	AV

Operation Mode: Operating Frequency Channel No.

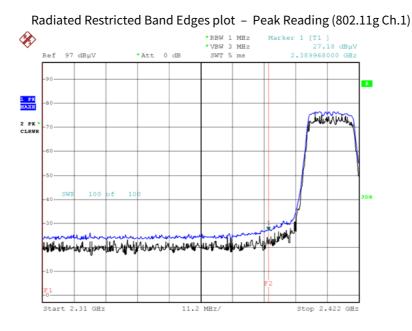
802.11n (HT40)

2432 MHz, 2442 MHz	
05 Ch, 07 Ch	

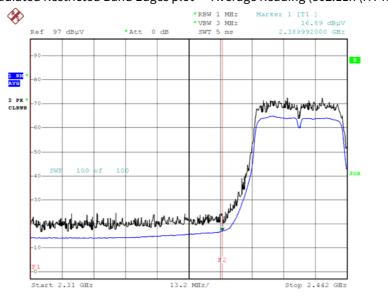
Fraguanay	Deading	Duty	※ A.F+C.L+D.F	ANT.	Tatal	Limit	Margin	
Frequency	Reading	Cycle		POL	Total	Limit	Margin	Detect
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	28.20	0.00	34.31	Н	62.51	73.98	11.47	PK
2390.0	16.47	0.00	34.31	Н	50.78	53.98	3.20	AV
2390.0	27.91	0.00	34.31	V	62.22	73.98	11.76	PK
2390.0	16.34	0.00	34.31	V	50.65	53.98	3.33	AV
2483.5	27.71	0.00	34.14	Н	61.85	73.98	12.13	PK
2483.5	16.33	0.00	34.14	Н	50.47	53.98	3.51	AV
2483.5	27.16	0.00	34.14	V	61.30	73.98	12.68	PK
2483.5	16.22	0.00	34.14	V	50.36	53.98	3.62	AV



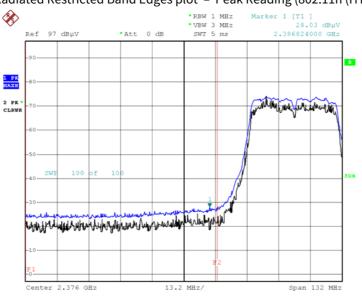
Operation Mode:	802.11n (HT40)
Operating Frequency	2437 MHz
Channel No.	06 Ch


Frequency	Reading	Duty Cycle	※ A.F+C.L+D.F	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	201001
2390.0	27.82	0.00	34.31	Н	62.13	73.98	11.85	PK
2390.0	16.49	0.00	34.31	Н	50.80	53.98	3.18	AV
2390.0	26.37	0.00	34.31	V	60.68	73.98	13.30	PK
2390.0	16.05	0.00	34.31	V	50.36	53.98	3.62	AV
2483.5	26.79	0.00	34.14	Н	60.93	73.98	13.05	PK
2483.5	16.31	0.00	34.14	Н	50.45	53.98	3.53	AV
2483.5	26.65	0.00	34.14	V	60.79	73.98	13.19	PK
2483.5	16.01	0.00	34.14	V	50.15	53.98	3.83	AV

Test Plots (Worst case : X-H)



Date: 25.MAR.2020 17:18:32


Date: 25.MAR.2020 17:19:06

Radiated Restricted Band Edges plot - Average Reading (802.11n (HT40) Ch.3)

Date: 26.MAR.2020 09:15:23

Radiated Restricted Band Edges plot – Peak Reading (802.11n (HT40) Ch.3)

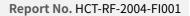
Date: 26.MAR.2020 09:16:35

Note:

Plot of worst case are only reported.

9.8 RECEIVER SPURIOUS EMISSIONS

Frequency Range : Below 1 GHz


Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin				
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB				
	No Critical peaks found										

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

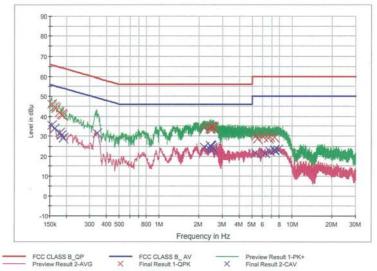
Frequency Range : Above 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin				
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB				
	No Critical peaks found										

9.9 POWERLINE CONDUCTED EMISSIONS

Conducted Emissions (Line 1)

Test


1/2

HCT TEST Report

Common Information EUT: Manufacturer: Test Site: Operating Conditions:

ETWFAEWC01 LG SHIELD ROOM WLAN 2.4G_N

Final Result 1

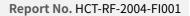
Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.156000	45.8	9.000	On	N	9.7	19.8	65.7
0.162000	44.6	9.000	On	N	9.7	20.7	65.4
0.166000	43.7	9.000	On	N	9.7	21.4	65.2
0.176000	41.9	9.000	On	N	9.7	22.8	64.7
0.184000	40.7	9.000	On	N	9.7	23.6	64.3
0.188000	40.7	9.000	On	N	9.7	23.5	64.1
2.186000	34.1	9.000	On	N	9.8	21.9	56.0
2.392000	33.6	9.000	On	N	9.8	22.4	56.0
2.452000	34.8	9.000	On	N	9.8	21.2	56.0
2.522000	34.5	9.000	On	N	9.8	21.5	56.0
2.544000	33.8	9.000	On	N	9.8	22.2	56.0
2.560000	34.1	9.000	On	N	9.8	21.9	56.0
5.332000	29.8	9.000	On	N	9.8	30.2	60.0
5.492000	28.8	9.000	On	N	9.8	31.2	60.0
6.062000	29.5	9.000	On	N	9.9	30.5	60.0
6.642000	29.0	9.000	On	N	9.9	31.0	60.0
6.804000	29.8	9.000	On	N	9.9	30.2	60.0
7.390000	29.3	9.000	On	N	9.9	30.7	60.0

U.

2020-04-08

오후 1:30:25

2/2


Test

Final Result 2

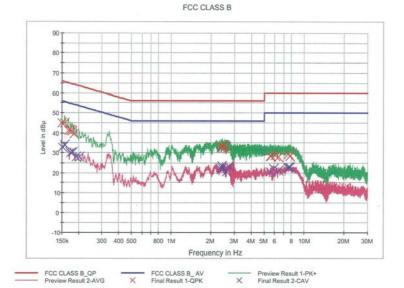
Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.156000	35.6	9.000	On	N	9.7	20.1	55.7
0.162000	33.8	9.000	On	N	9.7	21.6	55.4
0.178000	31.6	9.000	On	N	9.7	23.0	54.6
0.184000	30.3	9.000	On	N	9.7	24.0	54.3
0.190000	29.1	9.000	On	N	9.7	24.9	54.0
0.340000	31.4	9.000	On	N	9.7	17.8	49.2
2.186000	24.6	9.000	On	N	9.8	21.4	46.0
2.416000	23.2	9.000	On	N	9.8	22.8	46.0
2.430000	25.2	9.000	On	N	9.8	20.8	46.0
2.452000	25.0	9.000	On	N	9.8	21.0	46.0
2.522000	24.1	9.000	On	N	9.8	21.9	46.0
2.544000	23.7	9.000	On	N	9.8	22.3	46.0
5.310000	21.5	9.000	On	N	9.8	28.5	50.0
6.224000	21.5	9.000	On	N	9.9	28.5	50.0
6.804000	22.5	9.000	On	N	9.9	27.5	50.0
7.366000	22.9	9.000	On	N	9.9	27.1	50.0
7.390000	23.2	9.000	On	N	9.9	26.8	50.0
7.778000	23.2	9.000	On	N	9.9	26.8	50.0
	0.156000 0.162000 0.178000 0.184000 0.340000 2.416000 2.416000 2.430000 2.522000 2.524000 6.224000 6.224000 6.804000 7.366000 7.366000	(MHz) (dBuV) 0.156000 33.6 0.152000 33.8 0.178000 31.6 0.184000 30.3 0.190000 29.1 0.340000 31.4 2.186000 24.6 2.416000 23.2 2.452000 25.2 2.452000 25.4 2.522000 24.1 2.544000 21.5 6.804000 22.5 7.366000 22.9 7.360000 23.2	(MHz) (dBuV) (kHz) 0.156000 35.6 9.000 0.162000 33.8 9.000 0.178000 31.8 9.000 0.178000 31.8 9.000 0.184000 30.3 9.000 0.190000 29.1 9.000 0.340000 31.4 9.000 2.486000 24.6 9.000 2.452000 25.2 9.000 2.452000 25.0 9.000 2.522000 24.1 9.000 5.310000 21.5 9.000 5.310000 21.5 9.000 7.366000 22.9 9.000 7.366000 23.2 9.000	(MHz) (dBuV) (kHz) 0.166000 35.6 9.000 On 0.162000 33.8 9.000 On 0.178000 31.6 9.000 On 0.178000 31.6 9.000 On 0.178000 29.1 9.000 On 0.340000 21.4 9.000 On 2.46000 23.2 9.000 On 2.452000 25.0 9.000 On 2.452000 24.1 9.000 On 2.522000 24.1 9.000 On 2.544000 23.7 9.000 On 5.310000 21.5 9.000 On 6.804000 22.5 9.000 On 7.366000 22.9 9.000 On	(MHz) (dBuV) (kHz) 0.156000 35.6 9.000 On N 0.156000 33.8 9.000 On N 0.178000 31.8 9.000 On N 0.178000 31.6 9.000 On N 0.178000 31.6 9.000 On N 0.180000 29.1 9.000 On N 0.340000 23.1 9.000 On N 2.456000 23.2 9.000 On N 2.456000 23.2 9.000 On N 2.452000 25.0 9.000 On N 2.522000 24.1 9.000 On N 2.554000 21.5 9.000 On N 5.10000 21.5 9.000 On N 6.804000 22.5 9.000 On N 7.366000 22.9 9.000 On N	(MHz) (dBuV) (kHz) (dB) 0.156000 35.6 9.000 On N 9.7 0.156000 33.8 9.000 On N 9.7 0.178000 31.6 9.000 On N 9.7 0.178000 31.6 9.000 On N 9.7 0.180000 29.1 9.000 On N 9.7 0.340000 21.1 9.000 On N 9.7 0.340000 24.6 9.000 On N 9.7 2.456000 23.2 9.000 On N 9.8 2.452000 25.0 9.000 On N 9.8 2.522000 24.1 9.000 On N 9.8 2.522000 24.1 9.000 On N 9.8 2.544000 21.5 9.000 On N 9.8 5.310000 21.5 9.000 On N 9.	(MHz) (dB _{II} V) (kHz) (dB) (dB) 0.156000 35.6 9.000 On N 9.7 20.1 0.156000 33.8 9.000 On N 9.7 20.1 0.156000 33.8 9.000 On N 9.7 23.0 0.178000 31.6 9.000 On N 9.7 23.0 0.184000 30.3 9.000 On N 9.7 24.9 0.340000 21.4 9.000 On N 9.7 17.8 2.186000 24.6 9.000 On N 9.8 21.4 2.436000 25.2 9.000 On N 9.8 21.8 2.430000 25.2 9.000 On N 9.8 21.9 2.522000 24.1 9.000 On N 9.8 21.9 2.544000 23.7 9.000 On N 9.8 22.3

2020-04-08

오후 1:30:25

Conducted Emissions (Line 2)

Test


1/2

HCT TEST Report

Common Information

EUT: Manufacturer: Test Site: Operating Conditions:

ETWFAEWC01 LG SHIELD ROOM WLAN 2.4G_L1

Final Result 1

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	44.9	9.000	On	L1	9.7	21.1	66.0
0.158000	44.8	9.000	On	L1	9.7	20.8	65.6
0.168000	41.2	9.000	On	L1	9.7	23.9	65.1
0.174000	41.1	9.000	On	L1	9.7	23.7	64.8
0.178000	40.7	9.000	On	L1	9.7	23.8	64.6
0.186000	39.4	9.000	On	L1	9.7	24.8	64.2
2.372000	32.3	9.000	On	L1	9.8	23.7	56.0
2.406000	33.0	9.000	On	L1	9.8	23.0	56.0
2.410000	33.4	9.000	On	L1	9.8	22.6	56.0
2.434000	33.1	9.000	On	L1	9.8	22.9	56.0
2.516000	32.4	9.000	On	L1	9.8	23.6	56.0
2.562000	33.0	9.000	On	L1	9.8	23.0	56.0
5.556000	28.4	9.000	On	L1	9.9	31.6	60.0
5.610000	28.4	9.000	On	L1	9.9	31.6	60.0
6.040000	28.5	9.000	On	L1	9.9	31.5	60.0
6.442000	28.1	9.000	On	L1	9.9	31.9	60.0
7.634000	29.4	9.000	On	L1	9.9	30.6	60.0
7.792000	28.4	9.000	On	L1	9.9	31.6	60.0

2020-04-08

오후 1:18:17

2/2

Test

Final Result 2

(MHz)	(dBuV)	(kHz)	Filter	Line	(dB)	(dB)	Limit (dBuV)
0.152000	32.9	9.000	On	L1	9.7	23.0	55.9
0.158000	34.0	9.000	On	L1	9.7	21.5	55.6
0.174000	29.9	9.000	On	L1	9.7	24.9	54.8
0.180000	30.4	9.000	On	L1	9.7	24.0	54.5
0.192000	28.0	9.000	On	L1	9.7	25.9	53.9
0.204000	28.0	9.000	On	L1	9.7	25.5	53.4
2.372000	21.5	9.000	On	L1	9.8	24.5	46.0
2.390000	22.4	9.000	On	L1	9.8	23.6	46.0
2.406000	22.6	9.000	On	L1	9.8	23.4	46.0
2.410000	23.6	9.000	On	L1	9.8	22.4	46.0
2.596000	20.5	9.000	On	L1	9.8	25.5	46.0
2.726000	23.3	9.000	On	L1	9.8	22.7	46.0
5.556000	20.6	9.000	On	L1	9.9	29.4	50.0
5.902000	22.4	9.000	On	L1	9.9	27.6	50.0
6.442000	21.0	9.000	On	L1	9.9	29.0	50.0
7.588000	22.6	9.000	On	L1	9.9	27.4	50.0
7.634000	22.9	9.000	On	L1	9.9	27.1	50.0
7.792000	22.9	9.000	On	L1	9.9	27.1	50.0

duidth Eiltor Line Corr Margin Limit

2020-04-08

오후 1:18:17

10. LIST OF TEST EQUIPMENT

Conducted Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	09/11/2019	Annual	102245
Rohde & Schwarz	ESCI / Test Receiver	06/18/2019	Annual	100584
ESPAC	SU-642 /Temperature Chamber	08/14/2019	Annual	0093000718
Agilent	N9020A / Signal Analyzer	05/23/2019	Annual	MY51110085
Agilent	N9030A / Signal Analyzer	03/23/2020	Annual	MY49432108
Agilent	N1911A / Power Meter	09/10/2019	Annual	MY45101406
Agilent	N1921A / Power Sensor	09/06/2019	Annual	MY55220026
Agilent	87300B / Directional Coupler	11/11/2019	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	05/24/2019	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	06/18/2019	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	07/02/2019	Annual	07560
Rohde & Schwarz	18N-20dB / Attenuator(20 dB)	03/23/2020	Annual	8
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A
HCT CO., LTD.	FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	N/A	N/A
Rohde & Schwarz	CBT / Bluetooth Tester	05/16/2019	Annual	100422

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Radiated Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
TNM system	FBSM-01B / Amp & Filter Bank Switch Controller	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	01/18/2019	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	08/02/2019	Biennial	01039
Schwarzbeck	BBHA 9120D / Horn Antenna	06/28/2019	Biennial	1300
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	04/29/2019	Biennial	BBHA9170342
Rohde & Schwarz	FSP(9 kHz ~ 40 GHz) / Spectrum Analyzer	07/16/2019	Annual	100843
Wainwright Instruments	WRCJV2400/2483.5-2370/2520- 60/12SS / Band Reject Filter	01/21/2020	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	02/10/2020	Annual	1
CERNEX	CBL18265035 / Power Amplifier	12/26/2019	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	03/23/2020	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/18/2020	Annual	3000C000276
TNM system	FBSM-05B / HPF(3~18GHz) + LNA1(1~18GHz)	01/21/2020	Annual	F6
TNM system	FBSM-05B / ATT(10dB) + LNA1(1~18GHz)	01/21/2020	Annual	None
TNM system	FBSM-05B / ATT(3dB) + LNA1(1~18GHz)	01/21/2020	Annual	None
TNM system	FBSM-05B / LNA1(1~18GHz)	01/21/2020	Annual	25540
TNM system	FBSM-05B / HPF(7~18GHz) + LNA2(6~18GHz)	01/21/2020	Annual	28550
TNM system	FBSM-05B / Thru(30MHz ~ 18GHz)	01/21/2020	Annual	None

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2004-FI001-P

Note:

1. The antenna mounted on the module was too small, so it was fixed on the Styrofoam and tested.