

FCC Test Report

Report No: FCS202308133W01

Issued for

Applicant:	Shenzhen Zhanjie Wenda Electronics CO.,Ltd
Address:	201,Block C,No.310 Wuhe Avenue,Luhu Community,Guanhu Street,Longhua District,Shenzhen
Product Name:	Wireless Bluetooth
Brand Name:	N/A
Model Name:	WD66
Series Model:	WD66-1,WD66-2,WD66-3,WD66-4
FCC ID:	2BCLQ-WD66
Issued By: Flux Compliance Service Laboratory Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Te Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com	

TEST RESULT CERTIFICATION

Applicant's Name:	Shenzhen Zhanjie Wenda Electronics CO.,Ltd
Address:	201,Block C,No.310 Wuhe Avenue,Luhu Community,Guanhu Street,Longhua District,Shenzhen
Manufacture's Name:	Shenzhen Zhanjie Wenda Electronics CO.,Ltd
Address:	201,Block C,No.310 Wuhe Avenue,Luhu Community,Guanhu Street,Longhua District,Shenzhen
Product Description	
Product Name:	Wireless Bluetooth
Brand Name	N/A
Model Name:	WD66
Series Model	WD66-1,WD66-2,WD66-3,WD66-4
Test Standards	FCC Rules and Regulations Part 15 Subpart C, Section 247
Test Procedure:	ANSI C63.10:2013

This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document.

Date of Test.....

Date (s) of performance of tests.: Aug 16, 2023 ~ Aug 21, 2023

Date of Issue		Aug 21	, 2023
---------------	--	--------	--------

Test Result..... Pass

:	Scott shen	
	(Scott Shen)	STON CERIFICITIO
:	Dutedin	FCS
	(Duke Qian)	
:	Juknow	MUTURSHO
	: : :	(Scott Shen)

(Jack Wang)

Table of Contents

Page

1. SUMMARY OF TEST RESULTS	
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.4 EQUIPMENTS LIST	12
3 CONDUCTED EMISSION MEASUREMENT	13
4. 20 DB BANDWIDTH	17
4.1 Limit	17
4.2 Test Procedure	17
4.3 Test setup	17
4.4 Test results	17
4.5 Original Test Data	18
5. CONDUCTED OUTPUT POWER	19
5.1 LIMIT	19
5.3 TEST SETUP	19
5.5 TEST RESULTS	19
6 NUMBER OF HOPPING CHANNEL	20
6.1 LIMIT	20
6.2 TEST PROCEDURE	20
5.3 TEST SETUP	20
6.4 EUT OPERATION CONDITIONS	20
6.5 TEST RESULTS	21
7. BAND EDGE AND SPURIOUS(CONDUCTED)	22
7.1 LIMIT	22
7.2 TEST PROCEDURE	22
7.3 TEST SETUP	22
7.4 TEST RESULTS	
7.5 Original test data	23

Table of Contents

Page

7.6 For Hopping Band edge	26
8. RADIATED EMISSION MEASUREMENT	27
8.1 RADIATED EMISSION LIMITS	
8.2 TEST PROCEDURE	
8.3 TESTSETUP	
8.4. TEST RESULTS	31
8.5 (30MHZ-1000MHZ)	
■ 8.6 ABOVE 1GHZ	
8.7 RADIATED BAND EDGE DATA	37
9. AVERAGE TIME OF OCCUPANCY	
9.1 LIMIT	
9.2 TEST PROCEDURE	
9.3 TEST SETUP	
9.4 TEST RESULTS	
9.5 ORIGINAL TEST DATA	
10. HOPPING CHANNEL SEPARATION MEASUREMEN	41
10.1 LIMIT	41
10.2 TEST PROCEDURE	41
10.3 TEST SETUP	41
10.4 EUT OPERATION CONDITIONS	41
10.5 TEST RESULTS	42
11. ANTENNA REQUIREMENT	43
11.1 STANDARD REQUIREMENT	
11.2 RESULT	43

Revision History

Rev.	Issue Date	Effect Page	Contents
00	Aug 21 , 2023	N/A	N/A

Flux Compliance Service LaboratoryRoom 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song
shan lake DongguanTel: 769-27280901Fax:769-27280901http://www.FCS-lab.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

	FCC Part 15.247,Subpart C		
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247 (b)(1)	Output Power	PASS	
15.209	Radiated Spurious Emission	PASS	
15.247(d)	Conducted Spurious & Band Edge Emission	PASS	
15.247(a)(1)(i)	Number of Hopping Frequency	PASS	
15.247(a)(1)(i)	Dwell Time	PASS	
15.247(a)(1)	20dB Bandwidth 99% Bandwidth	PASS	
15.205	Restricted bands of operation	PASS	
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

Company Name:	Flux Compliance Service Laboratory			
Address: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan				
Telephone: +86-769-27280901				
Fax:	+86-769-27280901			
Laboray Accreditations				
FCC Test Firm Regist CNAS Number: L15 Designation number: A2LA accreditation nu ISED Number: 25807	CN0127 mber: 5545.01			

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	\pm 4.13 dB
4	All emissions radiated (9KHz -30MHz)	±3.1 dB
5	Conducted Emission (150KHz-30MHz)	\pm 4.74 dB
6	All emissions,radiated(<1G) 30MHz-1000MHz	\pm 5.2 dB
7	All emissions, radiated 1GHz -18GHz	±4.66 dB
8	All emissions, radiated 18GHz -40GHz	±4.31 dB
9	Occupied bandwidth and PSD	±0.3 dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Wireless Bluetooth
Trade Name	N/A
Model Name	WD66
Series Model	WD66-1,WD66-2,WD66-3,WD66-4
Model Difference	We (Shenzhen Zhanjie Wenda Electronics CO.,Ltd) hereby state that all the models are electrical identical including the same software parameter and hardware design (i.e., circuit design, PCB Layout, RF module/circuit, antenna type(s) and antenna location, components on PCB, etc.,), same mechanical structure and design (including product enclosure, materials, etc.,), the only difference is the model name and appearance color.
Channel List	Please refer to the Note 2.
Operation frequency	2402MHz-2480MHz
Modulation:	GFSK
Channel number	79 CH
Transmitter rate:	1MHz
Power Supply	Input:DC 5V 1A
Battery	DC 3.7V
Report number	FCS202308133W01
Hardware version number	V1.0
Software version number	V1.0
Connecting I/O Port(s)	Please refer to the User's Manual

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
				*****			į
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	NA	N/A	Chip Antenna	N/A	1.8	Antenna

Page 10 of 43

2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

FCC Assist 1.0.2.2

EUT

Test software:

The test softeware was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

No.	Test model descrption
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK
4	Hopping GFSK

Note:

- 1. All the test modes can be supply by battery, only the result of the worst case recorded in the report. GFSK mode is worst mode.
- 2. For radiated emission, 3 axis were chosen for testing for each applicable mode.
- 3. The EUT used fully charge battery when tested.
- 4. During the test, the dutycycle>98%, the test voltage was tuned from 85% to 115% of the

Nominal rate supply votage, and found that the worst case was the nominal rated supply condition, So the report just shows that condition's data

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note	Note
1	adapter	XIAOMI	AD652G	N/A	Test use	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until	
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2022.08.30	2023.08.29	
Signal Analyzer	R&S	FSV40-N	FCS-E012	2022.08.30	2023.08.29	
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2022.08.30	2023.08.29	
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2022.08.30	2023.08.29	
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2022.08.30	2023.08.29	
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2022.08.30	2023.08.29	
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2022.08.30	2023.08.29	
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2022.08.30	2023.08.29	
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2022.08.30	2023.08.29	
Temperature & Humidity	HTC-1	victor	FCS-E005	2022.08.30	2023.08.29	
Testing Software	EZ-EMC(Ver.STSLAB 03A1 RE)					

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2022.08.30	2023.08.29
LISN	R&S	ENV216	FCS-E007	2022.08.30	2023.08.29
LISN	ETS	3810/2NM	FCS-E009	2022.08.30	2023.08.29
Temperature & Humidity	HTC-1	victor	FCS-E008	2022.08.30	2023.08.29
Testing Software		EZ-EN	IC(Ver.EMC-CON	I 3A1.1)	

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2022.08.30	2023.08.29
Spectrum Analyzer	Agilent	E4447A	MY50180039	2022.08.30	2023.08.29
Spectrum Analyzer	R&S	FSV-40	101499	2022.08.30	2023.08.29
Power Sensor	Agilent	UX2021XA	FCS-E021	2022.08.30	2023.08.29
Testing Software	EZ-EMC(Ver.STSLAB 03A1 RE)				

3 CONDUCTED EMISSION MEASUREMENT

3.1 LIMIT

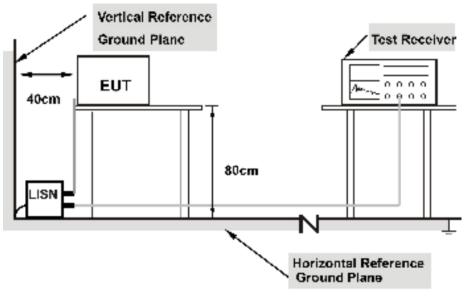
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

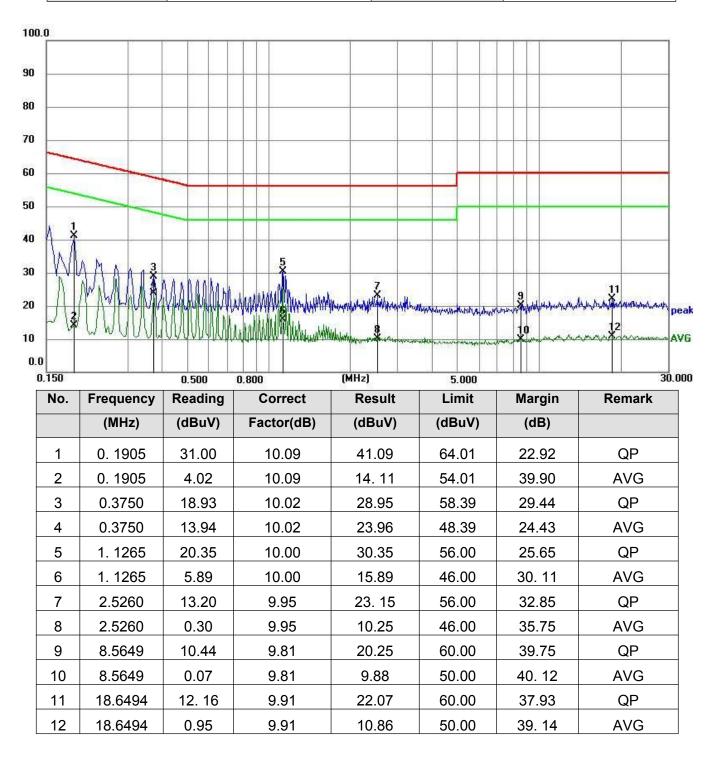
3.2 TEST PROCEDURE


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP



Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.4 TEST RESULTS

Temperature:	25℃	Relative Humidity:	50%
Test Mode:	GFSK(worst mode)	Lest Voltage.	DC 5V from adapter AC 120V/60Hz
Result:	L	Result:	Pass

	perature:	25℃		Relativ	e Humidity:	50%		
Test	Mode:	GFSK(wo	rst mode)	Test Vo	oltage:	DC 5V from adapter AC 120V/60Hz		
Resi	ult:	N		Result:		Pass		
0.0				10	20 - 72 - V			
-	-							
		1						
M	-							
IV			5					
A	TA AAA	A A A A A A A A			7		50-42%-	
	71 VISATE DU AL	低持行打印机推荐	hidd a shadowed with			9	11	
H	ANNAVA		Allana Marine Barrana		Man Municipality	and the stranger and the	ndlown and have	
	JUWUM		Ananna Marian Buranan Ananna Mariana		Martine martine	norman and a second	United and the second	
.0			ALAMAN MANTANANA	All Heles and the second second second	8. 	2.4.2	ndlyguithour the second s	
	Frequency	0.500 Reading			5.000 Limit	2.4.2	United and the second	
.0 0.150	Frequency (MHz)	전 환경 방법	0.800	(MHz)	5.000	10 martine and the second	adaminikan	
.0		Reading	0.800 Correct	(MHz) Result	5.000 Limit	Margin	adaminikan	
.0 0.150	(MHz)	Reading (dBuV)	0.800 Correct Factor(dB)	(MHz) Result (dBuV)	5.000 Limit (dBuV)	Margin (dB)	Remark	
.0 0.150 No.	(MHz) 0.2040	Reading (dBuV) 23.33	0.800 Correct Factor(dB) 10.05	(MHz) Result (dBuV) 33.38	5.000 Limit (dBuV) 63.45	Margin (dB) 30.07	Remark	
0.150 No.	(MHz) 0.2040 0.2040	Reading (dBuV) 23.33 18.35	0.800 Correct Factor(dB) 10.05 10.05	(MHz) Result (dBuV) 33.38 28.40	5.000 Limit (dBuV) 63.45 53.45	Margin (dB) 30.07 25.05	Remark	
0.150 No. 1 2 3	(MHz) 0.2040 0.2040 0.6134	Reading (dBuV) 23.33 18.35 17.83	0.800 Correct Factor(dB) 10.05 10.05 9.99	(MHz) Result (dBuV) 33.38 28.40 27.82	5.000 Limit (dBuV) 63.45 53.45 56.00	Margin (dB) 30.07 25.05 28. 18	Remark	
.0 0.150 No. 1 2 3 4 5 6	(MHz) 0.2040 0.2040 0.6134 0.6134 1. 1265 1. 1265	Reading (dBuV) 23.33 18.35 17.83 11.84 20.22 5.79	0.800 Correct Factor(dB) 10.05 10.05 9.99 9.99 9.99 9.99 9.99	(MHz) Result (dBuV) 33.38 28.40 27.82 21.83 30.21 15.78	5.000 Limit (dBuV) 63.45 53.45 56.00 46.00 56.00 46.00	Margin (dB) 30.07 25.05 28. 18 24. 17 25.79 30.22	Remark QP AVG QP AVG QP AVG	
1 2 3 4 5 6 7	(MHz) 0.2040 0.2040 0.6134 0.6134 1. 1265 1. 1265 3.4350	Reading (dBuV) 23.33 18.35 17.83 11.84 20.22 5.79 11.73	0.800 Correct Factor(dB) 10.05 10.05 9.99 9.99 9.99 9.99 9.99 9.99 9.99	(MHz) Result (dBuV) 33.38 28.40 27.82 21.83 30.21 15.78 21.66	5.000 Limit (dBuV) 63.45 53.45 56.00 46.00 56.00 46.00 56.00	Margin (dB) 30.07 25.05 28. 18 24. 17 25.79 30.22 34.34	Remark QP AVG QP AVG QP AVG QP AVG	
1 2 3 4 5 6	(MHz) 0.2040 0.2040 0.6134 0.6134 1. 1265 1. 1265	Reading (dBuV) 23.33 18.35 17.83 11.84 20.22 5.79	0.800 Correct Factor(dB) 10.05 10.05 9.99 9.99 9.99 9.99 9.99	(MHz) Result (dBuV) 33.38 28.40 27.82 21.83 30.21 15.78	5.000 Limit (dBuV) 63.45 53.45 56.00 46.00 56.00 46.00	Margin (dB) 30.07 25.05 28. 18 24. 17 25.79 30.22	Remark QP AVG QP AVG QP AVG QP AVG QP AVG	
.0 0.150 No. 1 2 3 4 5 6 7	(MHz) 0.2040 0.2040 0.6134 0.6134 1. 1265 1. 1265 3.4350	Reading (dBuV) 23.33 18.35 17.83 11.84 20.22 5.79 11.73	0.800 Correct Factor(dB) 10.05 10.05 9.99 9.99 9.99 9.99 9.99 9.99 9.93 9.93 9.93 9.93 9.93 9.93	(MHz) Result (dBuV) 33.38 28.40 27.82 21.83 30.21 15.78 21.66 9.41 20.65	5.000 Limit (dBuV) 63.45 53.45 56.00 46.00 56.00 46.00 56.00	Margin (dB) 30.07 25.05 28. 18 24. 17 25.79 30.22 34.34	Remark QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP	
0.150 No. 1 2 3 4 5 6 7 8	(MHz) 0.2040 0.2040 0.6134 0.6134 1. 1265 1. 1265 3.4350 3.4350	Reading (dBuV) 23.33 18.35 17.83 11.84 20.22 5.79 11.73 -0.52	0.800 Correct Factor(dB) 10.05 10.05 9.99 9.99 9.99 9.99 9.99 9.99 9.99	(MHz) Result (dBuV) 33.38 28.40 27.82 21.83 30.21 15.78 21.66 9.41	5.000 Limit (dBuV) 63.45 53.45 56.00 46.00 56.00 46.00 56.00 46.00	Margin (dB) 30.07 25.05 28. 18 24. 17 25.79 30.22 34.34 36.59	Remark QP AVG QP AVG QP AVG QP AVG QP AVG	
0.0 0.150 No. 1 2 3 4 5 6 7 8 9	(MHz) 0.2040 0.2040 0.6134 0.6134 1. 1265 1. 1265 3.4350 3.4350 7.7190	Reading (dBuV) 23.33 18.35 17.83 11.84 20.22 5.79 11.73 -0.52 10.82	0.800 Correct Factor(dB) 10.05 10.05 9.99 9.99 9.99 9.99 9.99 9.99 9.99	(MHz) Result (dBuV) 33.38 28.40 27.82 21.83 30.21 15.78 21.66 9.41 20.65	5.000 Limit (dBuV) 63.45 53.45 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	I0 Margin (dB) 30.07 25.05 28. 18 24. 17 25.79 30.22 34.34 36.59 39.35	Remark QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP	

Remark:

All readings are Quasi-Peak and Average values 1.

2. During the test, pre-scan all modes, only the worst case is recorded in the report. AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/60Hz modes, recorded worst case AC 120V/60Hz.

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

4. 20 DB BANDWIDTH

4.1 Limit

	FCC Part15	(15.247) , Subpar	C
Section	Test Item	Limit	Frequency Range (MHz)
15.247a(1)	20dB bandwidth	N/A	2400-2483.5

4.2 Test Procedure

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

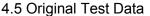
(2) Set the spectrum analyzer as follows

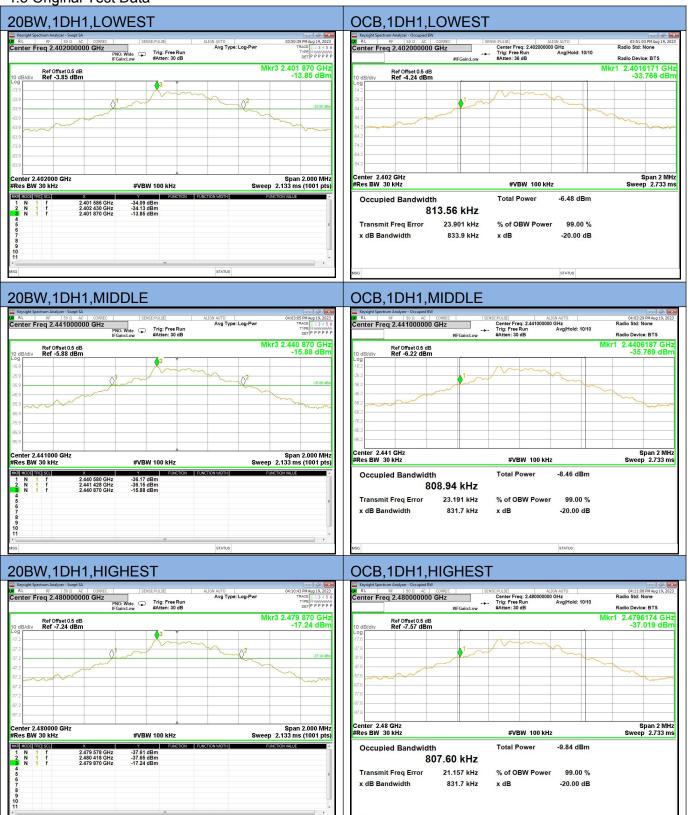
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 20 dB Bandwidth :30KHz
RDW	For 99% Bandwidth :1% to 5% of the occupied bandwidth
	For 20dB Bandwidth : ≥3 × RBW
VBW	For 99% Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto

(3) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator

- (4) Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- (5) Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.

4.3 Test setup


Spectrum Analyzer


4.4 Test results

TestMode	Channel (MHz)	99%OBW(MHz)	20dB Bandwidth (MHz)	Verdict
Lowest	2402MHz	0.814	0.844	Pass
Middle	2441MHz	0.809	0.848	Pass
Highest	2480MHz	0.808	0.840	Pass

STATUS

STATUS

5. CONDUCTED OUTPUT POWER

5.1 LIMIT

FCC Part 15 Subpart C						
Section	Test Item	Limit	Frequency Range			
15.247(b)(1)	Peak output power	Power <1W(30dBm)	2400-2483.5			

1.Connect each EUT's antenna output to power sensor by RF cable and attenuator 2.Measure the PK output power of each antenna port by power sensor.

5.3 TEST SETUP

5.5 TEST RESULTS

TestMode	Channel (MHz)	Result (dBm)	Limit (dBm)	Verdict
Lowest	2402MHz	-2.89	30	Pass
Middle	2441MHz	-3.68	30	Pass
Highest	2480MHz	-3.67	30	Pass

6 NUMBER OF HOPPING CHANNEL

6.1 LIMIT

FCC Part 15.247,Subpart C RSS-247 Issue 2							
Section	Test Item	Limit	FrequencyRange (MHz)	Result			
15.247 (a)(1)(iii) RSS-247	Number of Hopping Channel	>15	2400-2483.5	PASS			

6.2 TEST PROCEDURE

a The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto

5.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	Hopping Mode -GFSK Mode	Test Voltage:	DC 3.7V

RL	spect	RF	alyzer - Swept S			Lan	an out only						
			50 Ω A		-	SEI	NSE:PULSE	-	AL.	IGN AUTO Avg Type:	log Dwr		2 PM Aug 19, 20 RACE 1 2 3 4 5
enter	Fre	q 2.	4417500	UU GHZ	PNO: Fast IFGain:Low	Ģ	Trig: Free #Atten: 30			Avg Type.	Log-rwi		TYPE MWWW DET P P P P
dB/div			ffset0.5 dE •2.41 dBn								Mkr	2 2.479 9 -1	09 5 GH 6.68 dBr
g 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	, ↑ ↓ ↓ ↓												2
art 2. Res B	W 1	00 k	Hz	x		¢VB	N 300 kHz	CTION	FUNCT	ION WIDTH		Stop 2 p 8.000 m UNCTION VALUE	.48350 GH s (1001 pt
1 N 2 N 3 4 5 6 7 8		f		101 920 5 GI 179 909 5 GI		3.39 6.68							
							m						

Flux Compliance Service LaboratoryRoom 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song
shan lake DongguanTel: 769-27280901Fax:769-27280901http://www.FCS-lab.com

7. BAND EDGE AND SPURIOUS(CONDUCTED)

7.1 LIMIT

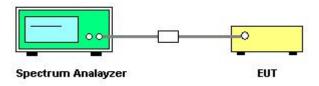
In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 30dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

7.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Establish a reference level by using the following procedure:

Center frequency	DTS Channel center
	frequency
RBW:	100kHz
VBW:	300kHz
Span	1.5times the DTS bandwidth
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold


(3) Establish Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.

(4) Set the spectrum analyzer as follows:

RBW:	100kHz
VBW:	300kHz
Span	Encompass frequency range to be
	measured
Number of measurement points	≥span/RBW
Number of measurement points Detector Mode:	≥span/RBW Peak
•	

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

7.3 TEST SETUP

7.4 TEST RESULTS

Eut set mode	CH or Frequency	Result
GFSK	CH1	Pass
	CH79	Pass

7.5 Original test data

CH1 2402MHZ

antor Frog 2 2	50 Ω AC CORREC	SENSE:PULSE		ALIGN AUTO			PM Aug 19, 202
enter Freq 2.5): Fast Trig: in:Low #Atte	Free Run n: 30 dB	Avg Type: I	Log-Pwr		ACE 1 2 3 4 9 TYPE M WWW DET P P P P F
	set 0.5 dB .39 dBm				1	Akr2 2.39 -56	9 90 GH 6.79 dBr
3.4				- R			
3.4						2	
3.4						1	-33.39 df
3.4				$\wedge^1 \wedge^2 \checkmark$	1.rx	h.	121
	weren warphanger	apperson and a production	hybrighter		Array My	tial themps	wenter
3.4							
.4							
3.4						8	01
art 2.30000 GH	Z					Stop 2.	45000 GH
DW 400 klk	2	#VBW 300	kHz		Swee	p 14.40 ms	
Kes BW 100 KH.	×	Y	FUNCTION	FUNCTION WIDTH	1	UNCTION VALUE	
R MODE TRC SCL		-56 07 dBm					
R MODE TRC SCL 1 N 1 f 2 N 1 f	2.392 25 GHz 2.399 90 GHz	-56.07 dBm -56.79 dBm					
R MODE TRC SCL I N 1 f 2 N 1 f 3	2.392 25 GHz						
R MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 5 5	2.392 25 GHz						
	2.392 25 GHz						
MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 5 5 5 5 7 3	2.392 25 GHz						

CH79 2480MHZ

Keysight Spectrum		1			
RL RF Renter Freq	50 Ω AC CORREC 2.505000000 GHz	PNO: Fast IFGain:Low #At	se g: Free Run ten: 30 dB	ALIGN AUTO Avg Type: Log-I	04:14:00 PM Aug 19, 202: Pwr TRACE 1 2 3 4 5 TYPE M WWWWM DET P P P P P
	Offset 0.5 dB f -6.74 dBm				Mkr2 2.489 85 GHz -55.09 dBm
16.7					
16.7 16.7					-36.74 dB
5.7		2			
5.7 manutermores	Here and the state of the state	water a land and and	han the month	torest we we have the second	alores
6.7	2				
5.7					
i.7					
6.7					
art 2.43000 Res BW 100		#VBW 30	0 kHz		Stop 2.58000 GH Sweep 14.40 ms (1001 pts
R MODE TRC SCI 1 N 1 f 2 N 1 f 3 4 1 f	X 2.483 55 GH 2.489 85 GH		FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
5					
3))					
			Ш.		•
а				STATUS	

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	GFSK Mode	Test Voltage:	DC 3.7V

Spurious emissions

04:01:43 PM Aug 19, 2023 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P P Keysight Sp R L Center Freq 12.515000000 GHz Avg Type: Log-Pwr PNO: Fast Trig: Free Run IFGain:Low Atten: 6 dB Mkr2 2.402 2 GHz -14.13 dBm Ref Offset 0.5 dB Ref -10.46 dBm 0 dB/div 30.6 40.5 $()^3$ -50.5 $\langle \rangle^4$ 60.5 $\langle \rangle$ 80.5 90.5 -100 Stop 25.00 GHz Sweep 2.387 s (32001 pts) Start 0.03 GHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL -81.19 dBm -14.13 dBm -47.99 dBm -61.67 dBm 2.058 8 GHz 2.402 2 GHz 4.804 0 GHz 14.413 5 GHz NNNN 1 3 4 5 6 7 8 9 10 1 STATUS

Low Channel 30MHz-25GHz

Middle Channel 30MHz-25GHz

Keys R L	ight !	Spect	rum A	alyzer - Swept SA 50 Ω AC CORREC		nucr-put ccl				04-00-	55 PM Aug 19, 20
	er	Fre		2.515000000 GHz		Trig: Free Atten: 6 o		ALIGN AUTO Avg Type:	Log-Pwr		TRACE 1 2 3 4 5 TYPE MWWW DET P P P P
0 dB og r	/div			Dffset 0.5 dB -12.55 dBm							441 2 GH 5.33 dBr
2.6 -			1	2			-				
2.6	_		_								-95.97 dt
2.6							-				
2.6	-						-				1
2.6 -									and a constant	and the second descent	an and a state of the
2.6		-	$\langle \rangle$	hadden at a contract of the second	Land Hall & Anna Anna Anna Anna Anna Anna Anna An	a sa ang ang ang ang ang ang ang ang ang an	a she they attac			the local distance of the second second	
2.6		1000		the state of the second se							
03 -											
			GHz								p 25.00 Gł
les	B	N 1	00 k	Hz	#VE	SW 300 kH:	2		Swe	ep 2.387 s	(32001 p
_	ODE N	TRC 1	SCL	× 2.180 5 G		dBm	ICTION F	UNCTION WIDTH		FUNCTION VALUE	
	N	1	f	2.441 2 GF 5.748 1 GF	Hz -15.33	dBm					
	N	1	f	24.598 1 G) dBm					
5											
3											
)											
1						m					Þ

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

High Channel 30MHz-25GHz

7.6 For Hopping Band edge

Keysight Spectrum Analyzer - Swept SA 04:22:56 PM Aug 19, 2023 TRACE 1 2 3 4 5 6 TYPE M WWW DET P P P P P P Avg Type: Log-Pwr Center Freq 2.440000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast IFGain:Low \mathbf{P} Mkr4 2.492 36 GHz -54.36 dBm Ref Offset 0.5 dB Ref -2.41 dBm 10 dB/div Log 12.4 22.4 -32.41 dE -32.4 -42.4 ϕ^2 $\langle \rangle^3 \langle \rangle$ $\langle \rangle$ -52.4 -62.4 -72.4 -82.4 -92.4 Start 2.3000 GHz Stop 2.5800 GHz #VBW 300 kHz #Res BW 100 kHz Sweep 26.80 ms (1001 pts) MKR MODE TRC SCL FUNCTION FUNCTION WIDTH -55.34 dBm -56.94 dBm -56.60 dBm -54.36 dBm x 2.380 92 GHz 2.399 96 GHz 2.483 68 GHz 2.492 36 GHz 1 2 3 4 5 6 7 8 9 10 NNNN f f f SG STATUS

8. RADIATED EMISSION MEASUREMENT

8.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

	· · · · · · · · · · · · · · · · · · ·	/
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

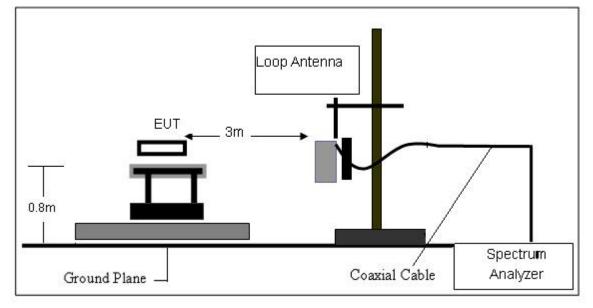
Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted			
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz		

For Band edge

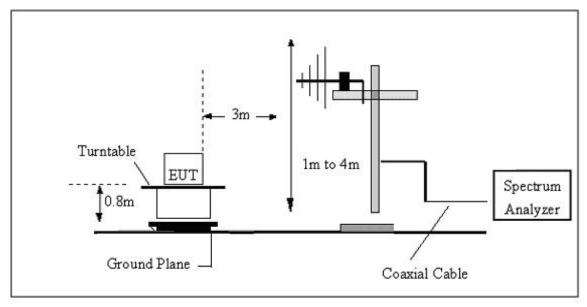
Spectrum Parameter	Setting				
Detector	Peak/AV				
Start/Stop Fraguanay	Lower Band Edge: 2300 to 2403 MHz				
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz				
RB / VB (emission in restricted band	d) PK=1MHz / 1MHz, AV=1 MHz / 10 Hz				
Receiver Parameter	Setting				
Attenuation	Auto				
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV				
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP				
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV				
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP				
	490kHz~30MHz / RB 9kHz for QP 30MHz~1000MHz / RB 120kHz for QP				

8.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

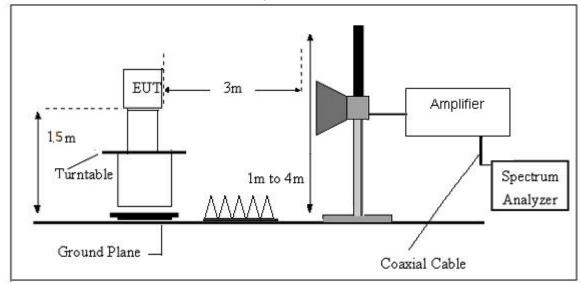

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported



8.3 TESTSETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz


(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Page 30 of 43

(C) Radiated Emission Test-Up Frequency Above 1GHz

8.4. TEST RESULTS

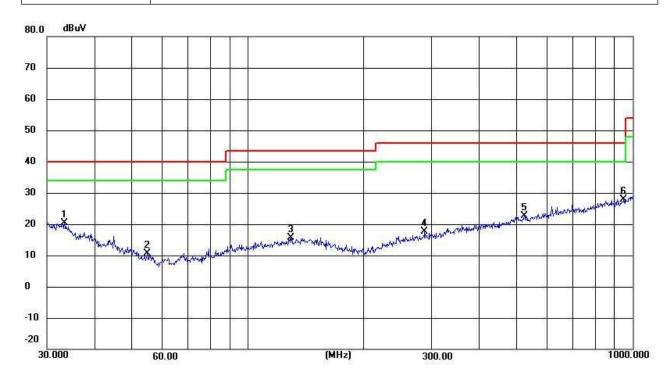
(9KHz-30MHz)

Temperature:	22.7℃	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Test Mode:	GFSK(worst mode)

Freq.	Reading	Limit	Margin	State	Toot Docult	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result	
					PASS	
					PASS	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

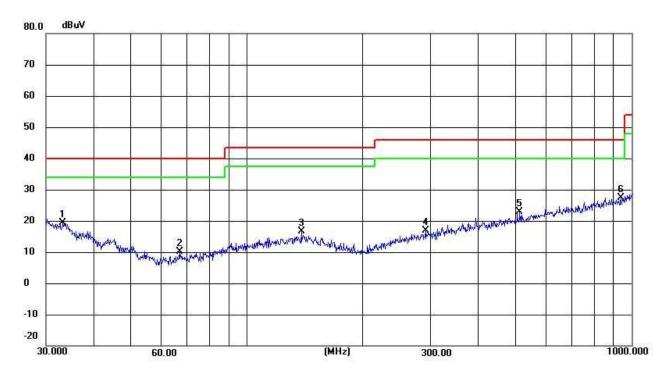
Limit line = specific limits (dBuv) + distance extrapolation factor.

8.5 (30MHZ-1000MHZ)

Temperature:	24.7°C	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Phase:	Horizontal
Test Mode:	GFSK(worst mode)		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/	(dBuV/m)	(dBuV/m)	(dB)	
			m)				
1	33.3278	30.05	-9.57	20.48	40.00	- 19.52	QP
2	54.6428	30.36	-19.61	10.75	40.00	-29.25	QP
3	129.4677	47.96	-32.27	15.69	43.50	-27.81	QP
4	287.9904	49.71	-32. 11	17.60	46.00	-28.40	QP
5	522.7180	54.56	-31.87	22.69	46.00	-23.31	QP
6	948.7610	59.26	-31.35	27.91	46.00	-18.09	QP

Note: 1. Margin = Result (Result =Reading + Factor)–Limit


2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Flux Compliance Service Laboratory

Temperature:	22.7°C	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Phase:	Vertical
Test Mode:	GFSK(worst mode)		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/	(dBuV/m)	(dBuV/m)	(dB)	
			m)				
1	33.2112	28.96	-9.50	19.46	40.00	-20.54	QP
2	66.7325	30.55	-20.51	10.04	40.00	-29.96	QP
3	138.3873	48.94	-32.26	16.68	43.50	-26.82	QP
4	291.0360	49.02	-32. 11	16.91	46.00	-29.09	QP
5	511.8352	54.74	-31.88	22.86	46.00	-23.14	QP
6	938.8326	58.77	-31.36	27.41	46.00	-18.59	QP

Note: 1. Margin = Result (Result = Reading + Factor)-Limit

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

8.6 ABOVE 1GHZ

Ten	nperature:	25 °C	Relative Humidity:	60%
Tes	t Mode:	GFSK Mode	Test Voltage:	DC 3.7V

Low CH (GFSK)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	42.00	31.78	8.60	32.09	50.29	74.00	-23.71	Vertical
7206.00	34.28	36.15	11.65	32.00	50.08	74.00	-23.92	Vertical
9608.00	31.86	37.95	14.14	31.62	52.33	74.00	-21.67	Vertical
12010.00	*				0	74.00	3	Vertica
14412.00	*				2	74.00		Vertica
4804.00	45.76	31.78	8.60	32.09	54.05	74.00	-19.95	Horizontal
7206.00	37.88	36.15	11.65	32.00	53.68	74.00	-20.32	Horizontal
9608.00	34.42	37.95	14.14	31.62	54.89	74.00	-19.11	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	28.44	31.78	8.60	32.09	36.73	54.00	-17.27	Vertical
7206.00	22.96	36.15	11.65	32.00	38.76	54.00	-15.24	Vertical
9608.00	23.70	37.95	14.14	31.62	44.17	54.00	-9.83	Vertica
12010.00	*		2			54.00		Vertica
14412.00	*					54.00	2 C	Vertica
4804.00	32.32	31.78	8.60	32.09	40.61	54.00	-13.39	Horizonta
7206.00	23.56	36.15	11.65	32.00	39.36	54.00	-14.64	Horizonta
9608.00	23.14	37.95	14.14	31.62	43.61	54.00	-10.39	Horizontal
12010.00	*					54.00		Horizonta
14412.00	*					54.00		Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	GFSK Mode	Test Voltage:	DC 3.7V

Middle CH (GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4882.00	37.65	31.85	8.67	32.12	46.05	74.00	-27.95	Vertical
7323.00	32.38	36.37	11.72	31.89	48.58	74.00	-25.42	Vertical
9764.00	29.73	38.35	14.25	31.62	50.71	74.00	-23.29	Vertical
12205.00	*		8			74.00		Vertical
14646.00	*			i i i i i i i i i i i i i i i i i i i		74.00		Vertical
4882.00	38.89	31.85	8.67	32.12	47.29	74.00	-26.71	Horizonta
7323.00	31.46	36.37	11.72	31.89	47.66	74.00	-26.34	Horizonta
9764.00	28.05	38.35	14.25	31.62	49.03	74.00	-24.97	Horizontal
12205.00	*					74.00		Horizonta
14646.00	*					74.00		Horizonta

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4882.00	26.30	31.85	8.67	32.12	34.70	54.00	-19.30	Vertical
7323.00	22.16	36.37	11.72	31.89	38.36	54.00	-15.64	Vertical
9764.00	20.85	38.35	14.25	31.62	41.83	54.00	-12.17	Vertical
12205.00	*					54.00		Vertical
14646.00	*		8			54.00		Vertical
4882.00	32.51	31.85	8.67	32.12	40.91	54.00	-13.09	Horizonta
7323.00	24.38	36.37	11.72	31.89	40.58	54.00	-13.42	Horizontal
9764.00	20.80	38.35	14.25	31.62	41.78	54.00	-12.22	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

Flux Compliance Service Laboratory

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	GFSK Mode	Test Voltage:	DC 3.7V

High CH(GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	38.16	31.93	8.73	32.16	46.66	74.00	-27.34	Vertical
7440.00	33.70	36.59	11.79	31.78	50.30	74.00	-23.70	Vertical
9920.00	31.04	38.81	14.38	31.88	52.35	74.00	-21.65	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertica
4960.00	39.79	31.93	8.73	32.16	48.29	74.00	-25.71	Horizonta
7440.00	32.46	36.59	11.79	31.78	49.06	74.00	-24.94	Horizonta
9920.00	31.96	38.81	14.38	31.88	53.27	74.00	-20.73	Horizonta
12400.00	*					74.00		Horizonta
14880.00	*					74.00		Horizonta

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4960.00	29.70	31.93	8.73	32.16	38.20	54.00	-15.80	Vertical
7440.00	24.08	36.59	11.79	31.78	40.68	54.00	-13.32	Vertical
9920.00	22.27	38.81	14.38	31.88	43.58	54.00	-10.42	Vertica
12400.00	*	8				54.00	2	Vertica
14880.00	*			0		54.00	aŭ ŝa	Vertical
4960.00	32.36	31.93	8.73	32.16	40.86	54.00	-13.14	Horizonta
7440.00	24.13	36.59	11.79	31.78	40.73	54.00	-13.27	Horizonta
9920.00	23.74	38.81	14.38	31.88	45.05	54.00	-8.95	Horizontal
12400.00	*					54.00		Horizonta
14880.00	*					54.00		Horizonta

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

8.7 RADIATED BAND EDGE DATA

Remark: All restriction band have been tested, and only the worst case is shown in report

Low CH (GFSK)

Peak value:

Read Leve l (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
40.57	27.59	5.38	30.18	43.36	74.00	-30.64	Horizontal
54.23	27.58	5.39	30.18	57.02	74.00	-16.98	Horizontal
40.30	27.59	5.38	30.18	43.09	74.00	-30.91	Vertical
53.41	27.58	5.39	30.18	56.20	74.00	-17.80	Vertical
	Level (dBuV) 40.57 54.23 40.30	Level (dBuV) Factor (dB/m) 40.57 27.59 54.23 27.58 40.30 27.59	Level (dBuV)Factor (dB/m)Loss (dB)40.5727.595.3854.2327.585.3940.3027.595.38	Level (dBuV)Factor (dB/m)Loss (dB)Factor (dB)40.5727.595.3830.1854.2327.585.3930.1840.3027.595.3830.18	Level (dBuV)Factor (dB/m)Loss (dB)Factor (dB)Level (dBuV/m)40.5727.595.3830.1843.3654.2327.585.3930.1857.0240.3027.595.3830.1843.09	Level (dBuV)Factor (dB/m)Loss (dB)Factor (dB)Level (dBuV/m)Limit Line (dBuV/m)40.5727.595.3830.1843.3674.0054.2327.585.3930.1857.0274.0040.3027.595.3830.1843.0974.00	Level (dBuV)Factor (dB/m)Loss (dB)Factor (dB)Level (dB)Limit Line (dBuV/m)Limit Line (dBuV/m)40.5727.595.3830.1843.3674.00-30.6454.2327.585.3930.1857.0274.00-16.9840.3027.595.3830.1843.0974.00-30.91

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	32.30	27.59	5.38	30.18	35.09	54.00	-18.91	Horizontal
2400.00	39.47	27.58	5.39	30.18	42.26	54.00	-11.74	Horizontal
2390.00	32.13	27.59	5.38	30.18	34.92	54.00	-19.08	Vertical
2400.00	41.41	27.58	5.39	30.18	44.20	54.00	-9.80	Vertical

High CH(GFSK)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	43.75	27.53	5.47	29.93	46.82	74.00	-27.18	Horizontal
2500.00	44.93	27.55	5.49	29.93	48.04	74.00	-25.96	Horizontal
2483.50	43.52	27.53	5.47	29.93	46.59	74.00	-27.41	Vertical
2500.00	42.16	27.55	5.49	29.93	45.27	74.00	-28.73	Vertical

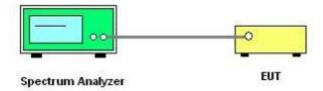
Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.59	27.53	5.47	29.93	36.66	54.00	-17.34	Horizontal
2500.00	32.81	27.55	5.49	29.93	35.92	54.00	-18.08	Horizontal
2483.50	34.03	27.53	5.47	29.93	37.10	54.00	-16.90	Vertical
2500.00	34.97	27.55	5.49	29.93	38.08	54.00	-15.92	Vertical

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

9. AVERAGE TIME OF OCCUPANCY

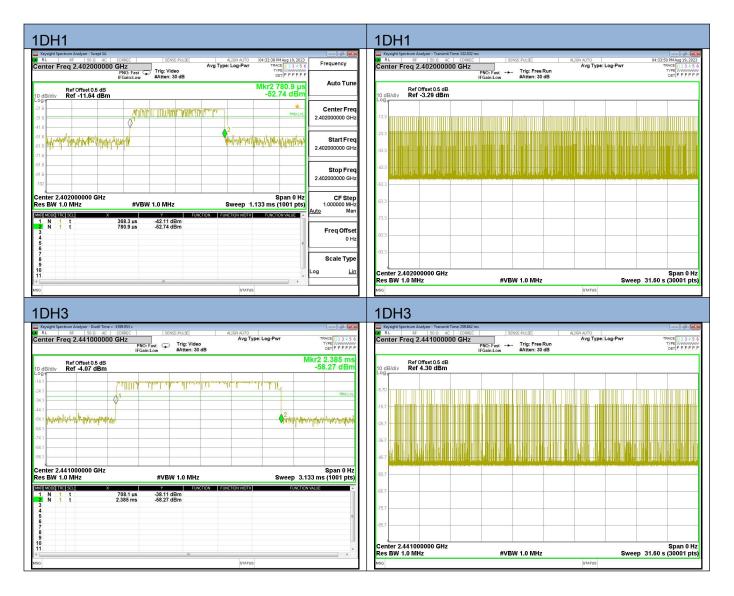

9.1 LIMIT

	FCC Parti 5 (15.247), Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)						
15.247(a)(1)	Average Time of Occupancy	0.4 sec	2400-2483.5						

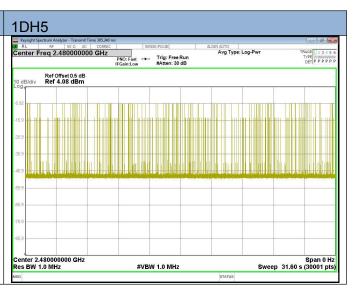
9.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 3.37x31.6 = 106.6.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 5.06x31.6 = 160.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 10.12x31.6 = 320.

9.3 TEST SETUP



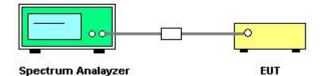
9.4 TEST RESULTS


	AVERAGE_TIME_OF_OCCUPANCY CONDITION MODE FREQUENCY PULSE AVERAGE TIME LIMIT BURST RESULTS									
CONDITION	MODE	FREQUENCY	PULSE	PULSE AVERAGE TIME		BURST	RESULTS			
		(MHZ)	TIME	OF OCCUPANCY	(MS)	NUMBER				
			(MS)	(MS)						
NVNT	1DH1	2402	0.413	132.032	400	320	PASS			
NVNT	1DH3	2441	1.676	259.842	400	155	PASS			
NVNT	1DH5	2480	2.908	305.340	400	105	PASS			

9.5 ORIGINAL TEST DATA

		Spectru			= -1066.622 s									6
en		Fre		50 Ω AC	O GHZ	5	ENSE:PULS		A	IGN AUTO Avg Type:	Log-Pwr	_		RACE 1 2 3 4 5
			9		F	NO: Fast Gain:Low	Trig: #Atte	Video en: 30 dB						DET P P P P P
0 dE	3/div			et0.5 dB 4 dBm								M		3.492 m 2.91 dBn
14.4			_	רו וור ין			anouse o				1	-	1	
24.4	2			1.861	1 1	911		1		1			1	TRIG LV
34.4	8			01								-		
14.4			_	Y			-					-	A2-	
														Myll marally
54.4	KW14	4 vr	-	4			-	-				-	awal.	A. D. Manual
	Karila	Avah	elseversite	W								2	syal	a a fully said
54.4	Kariya	Avah	electron solito	N.									3Mal.	a a billiona
54.4 14.4	Kaula	4PvA	depending of the	V									sya!	a a hilling a
4.4 4.4 4.4	Kolija	Avah	dadaa safa	V									3N/AF	a a billionn
54.4 54.4 54.4														
54.4 54.4 54.4 54.4 34.4	ter 2	2.48	000000											Span 0 H
4.4 4.4 4.4 4.4 en	ter 2 BW	2.48	000000 MHz	00 GHz			3W 1.0						0 ms	
4.4 4.4 4.4 4.4 en es	ter 2 BW	2.48	000000 MHz			Y	_	MHz	FUNC	TION WIDTH		p 4.00	0 ms	Span 0 H
44 44 44 44 44 44 4 4 en es 88 1 2	ter 2 BW	2.48	000000 MHz	00 GHz	584.0 µs 3.492 ms	-42.6	3W 1.0 1 dBm 1 dBm		I FUNC	TION MOTH			0 ms	Span 0 H
54.4 54.4 34.4 34.4 2 3 3 3	ter 2 BW	2.48 1.0	0000000 MHz	00 GHz	584.0 µs	-42.6	1 dBm		I FUNC	TION WIDTH			0 ms	Span 0 H
54.4 (4.4 34.4 34.4 4 34.4 4 34.4 2 3 4 5	ter 2 BW	2.48 1.0	0000000 MHz	00 GHz	584.0 µs	-42.6	1 dBm		FUNC	TION WIDTH			0 ms	Span 0 H
54.4 54.4 34.4 34.4 2 3 3 3	ter 2 BW	2.48 1.0	0000000 MHz	00 GHz	584.0 µs	-42.6	1 dBm		I FUNC	TION WOTH			0 ms	Span 0 H ; (1001 pts
54.4 54.4 34.4 4 34.4 4 34.4 1 2 3 4 5 6	ter 2 BW	2.48 1.0	0000000 MHz	00 GHz	584.0 µs	-42.6	1 dBm		I FUNC	TION WOTH			0 ms	Span 0 H ; (1001 pts

10. HOPPING CHANNEL SEPARATION MEASUREMEN


10.1 LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> 20 dB Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) /100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

10.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement
- 10.3 TEST SETUP

10.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

10.5 TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	GFSK Mode	Test Voltage:	DC 3.7V

Modulation	Test Mode	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
	1DH1	2402	1.000	0.56	Pass
GFSK	1DH1	2441	1.000	0.56	Pass
	1DH1	2480	1.000	0.56	Pass

11. ANTENNA REQUIREMENT

11.1 STANDARD REQUIREMENT

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2 RESULT

The antennas used for this product are Chip antenna and no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 1.8dBi.

******END OF THE REPORT*****

43