

SAR TEST REPORT

Product Name	HSDPA/HSUPA/HSPA+/UMTS quad band /
	GSM quad band/LTE 6 band Mobile phone
Model Name	4045A
Brand Name	ALCATEL ONETOUCH
FCC ID	RAD536
Applicant	TCT Mobile Limited
Manufacturer	TCT Mobile Limited
Date of issue	February 2, 2015

TA Technology (Shanghai) Co., Ltd.

TA Technology (Shanghai)	Co.,	Ltd.
Test Report		

GENERAL SUMMARY

Reference Standard(s)	 FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices ANSI C95.1- 1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1991) IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03: SAR Measurement Requirements for 100 MHz to 6 GHz KDB 447498 D01 Mobile Portable RF Exposure v05r02: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies KDB 648474 D04 Handset SAR v01r02: SAR Evaluation Considerations for Wireless Handsets. KDB 941225 D01 SAR test for 3G devices v03: SAR Measurement Procedures CDMA 20001x RTT, 1x Ev-Do, WCDMA, HSDPA/HSPA KDB 941225 D05 SAR for LTE Devices v02r03 SAR Test Considerations for LTE Handsets and Data Modems 	
	KDB 248227 D01 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11a/b/g Transmitters.	
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards for the tested bands only. General Judgment: Pass	
Comment	The test result only responds to the measured sample.	
Approved by	Kai Xu DirectorJiang peng Lan Jiangpeng Lan SAR ManagerPerformed byJie Li SAR Engineer	

TA Technology (Shanghai) Co., Ltd. Test Report	
Report No.: RXA1412-0289SAR01R3	

TABLE OF CONTENT

2.1. SAR Measurement Set-up122.2. DASY5 E-field Probe System132.2.1. EX3DV4 Probe Specification132.2.2. E-field Probe Calibration142.3. Other Test Equipment142.3.1. Device Holder for Transmitters142.3.2. Phantom152.4. Scanning Procedure152.5. Data Storage and Evaluation172.5.1. Data Storage172.5.2. Data Evaluation by SEMCAD173. Laboratory Environment19	1. General Information	5
1.3. Applicant Information 6 1.4. Manufacturer Information 6 1.4. Manufacturer Information 6 1.5. Information of EUT 7 1.6. EUT Antenna Locations 9 1.7. The Maximum Reported SAR ₁₉ 10 1.8. Test Date 11 2. SAR Measurement System Configuration 12 2.1. SAR Measurement System Configuration 12 2.1. SAR Measurement Set-up 12 2.2. DASY5 E-field Probe System 13 2.2.1. EX3DV4 Probe Specification 13 2.2.2. E-field Probe Calibration 14 2.3. Other Test Equipment 14 2.3. Other Test Equipment 14 2.3.1. Device Holder for Transmitters 14 2.3.2. Phantom 15 2.4. Scanning Procedure 15 2.5. Data Storage 17 2.5.1. Data Storage 17 2.5.2. Data Evaluation by SEMCAD 17 3. <td< td=""><td>1.1. Notes of the Test Report</td><td> 5</td></td<>	1.1. Notes of the Test Report	5
1.4. Manufacturer Information 6 1.5. Information of EUT 7 1.6. EUT Antenna Locations 9 1.7. The Maximum Reported SAR ₁₉ 10 1.8. Test Date 11 2. SAR Measurements System Configuration 12 2.1. SAR Measurement Set-up 12 2.2. DASY5 E-field Probe System 13 2.2.1. EXBUV4 Probe Specification 13 2.2.2. E-field Probe Calibration 14 2.3. Other Test Equipment 14 2.3. Other Test Equipment 14 2.3. Phantom 15 2.4. Scanning Procedure 15 2.5. Data Storage 17 2.5. Data Storage 17 2.5. Data Evaluation by SEMCAD 17 3. Laboratory Environment 19 4. Tissue-equivalent Liquid Ingredients 20 4.1. Tissue-equivalent Liquid Ingredients 21 2.5. System Check 24 5. System Check<	1.2. Testing Laboratory	5
1.5. Information of EUT 7 1.6. EUT Antenna Locations 9 1.7. The Maximum Reported SAR _{1g} 10 1.8. Test Date 11 2. SAR Measurements System Configuration 12 2.1. SAR Measurement Set-up 12 2.2. DASY5 E-field Probe System 13 2.2.1. E-field Probe Specification 13 2.2.2. E-field Probe Calibration 14 2.3. Other Test Equipment 14 2.3. Other Test Equipment 14 2.3. Device Holder for Transmitters 14 2.3.1. Device Holder for Transmitters 14 2.3.2. Phantom 15 2.4. Scanning Procedure 15 2.5. Data Storage and Evaluation 17 2.5.1. Data Storage 17 2.5.2. Data Storage 17 3. Laboratory Environment 19 4. Tissue-equivalent Liquid Ingredients 20 4.1 Tissue-equivalent Liquid Properties 23 <	1.3. Applicant Information	6
1.6. EUT Antenna Locations 9 1.7. The Maximum Reported SAR1g 10 1.8. Test Date 11 2.8 AR Measurements System Configuration 12 2.1. SAR Measurement Set-up 12 2.2. DASY5 E-field Probe System 13 2.2.1. EX3DV4 Probe Specification 13 2.2.2. E-field Probe Calibration 14 2.3. Other Test Equipment 14 2.3.1. Device Holder for Transmitters 14 2.3.2. Phantom 15 2.4. Scanning Procedure 15 2.5. Data Storage and Evaluation 17 2.5.1. Data Storage and Evaluation 17 2.5.2. Data Storage and Evaluation 17 3. Laboratory Environment 19 4. Tissue-equivalent Liquid Ingredients 20 4.1. Tissue-equivalent Liquid Properties 23 5. System Check 24 5.1. Description of System Check 24 5.2. System Check Results 26		
1.7. The Maximum Reported SAR ₁₉ 10 1.8. Test Date 11 2. SAR Measurements System Configuration 12 2.1. SAR Measurement Set-up 12 2.2. DASY5 E-field Probe System 13 2.2.1 EX3DV4 Probe Specification 13 2.2.2. E-field Probe Calibration 14 2.3. Other Test Equipment 14 2.3. Other Test Equipment 14 2.3.1 Device Holder for Transmitters 14 2.3.2. Phantom 15 2.4. Scanning Procedure 15 2.5. Data Storage and Evaluation 17 2.5.1. Data Storage 17 2.5.2. Data Evaluation by SEMCAD 17 3. Laboratory Environment 19 4. Tissue-equivalent Liquid Ingredients 20 4.2. Tissue-equivalent Liquid Properties 23 5. System Check 24 5.2. System Check Results 26 6. Operational Conditions during Test 27 6.1. General Description of Test Procedures 27 6.2. Body Worn Configuration 27 6.3. Measurement Variability 29 6.4. Test Configuration 30	1.5. Information of EUT	7
1.8. Test Date 11 2. SAR Measurements System Configuration 12 2.1. SAR Measurement Set-up 12 2.2. DASY5 E-field Probe System 13 2.2.1. EX3DV4 Probe Specification 13 2.2.2. E-field Probe Calibration 14 2.3. Other Test Equipment 14 2.3. Other Test Equipment 14 2.3.1. Device Holder for Transmitters 14 2.3.2. Phantom 15 2.4. Scanning Procedure 15 2.5. Data Storage and Evaluation 17 2.5.1. Data Storage 17 2.5.2. Data Evaluation by SEMCAD 17 3. Laboratory Environment 19 4. Tissue-equivalent Liquid 20 4.1. Tissue-equivalent Liquid Ingredients 20 4.2. Tissue-equivalent Liquid Properties 23 5. System Check 24 5.1. Description of System Check 24 5.1. Description of System Check 27 6.1. General Description of Test Procedures 27 6.2. Test Positions 27 6.2. Test Positions 27 6.3. Measurement Variability 29	1.6. EUT Antenna Locations	9
2. SAR Measurements System Configuration 12 2.1. SAR Measurement Set-up 12 2.2. DASY5 E-field Probe System 13 2.2.1. EX3DV4 Probe Specification 13 2.2.2. E-field Probe Calibration 14 2.3. Other Test Equipment 14 2.3. Other Test Equipment 14 2.3.1. Device Holder for Transmitters 14 2.3.2. Phantom 15 2.4. Scanning Procedure 15 2.5. Data Storage and Evaluation 17 2.5.1. Data Storage 17 2.5.2. Data Evaluation by SEMCAD 17 3. Laboratory Environment 19 4. Tissue-equivalent Liquid Ingredients 20 4.1. Tissue-equivalent Liquid Properties 23 5. System Check 24 5.1. Description of System Check 24 5.1. Description of Test Procedures 27 6.2. Test Positions 27 6.3. Measurement Variability 29		
2.1. SAR Measurement Set-up 12 2.2. DASY5 E-field Probe System 13 2.2.1. EX3DV4 Probe Specification 13 2.2.2. E-field Probe Calibration 14 2.3. Other Test Equipment 14 2.3.1. Device Holder for Transmitters 14 2.3.2. Phantom 15 2.4. Scanning Procedure 15 2.5. Data Storage and Evaluation 17 2.5.1. Data Storage 17 2.5.2. Data Evaluation by SEMCAD 17 3. Laboratory Environment 19 4. Tissue-equivalent Liquid 20 4.1. Tissue-equivalent Liquid Ingredients 20 4.2. Tissue-equivalent Liquid Properties 23 5. System Check 24 5.1. Description of System Check 24 5.2. System Check Results 26 6. Operational Conditions during Test 27 6.1. General Description of Test Procedures 27 6.2. Test Positions 27 6.3. Measurement Variability 29 6.4. Test Configuration 30 6.4.1. GSM Test Configuration 30 6.4.1. TEstest Configuration 32	1.8. Test Date	11
2.2. DASY5 E-field Probe System 13 2.2.1. EX3DV4 Probe Specification 13 2.2.2. E-field Probe Calibration 14 2.3. Other Test Equipment 14 2.3. Other Test Equipment 14 2.3.1. Device Holder for Transmitters 14 2.3.2. Phantom 15 2.4. Scanning Procedure 15 2.5. Data Storage and Evaluation 17 2.5.1. Data Storage. 17 2.5.2. Data Evaluation by SEMCAD 17 3. Laboratory Environment. 19 4. Tissue-equivalent Liquid 20 4.1. Tissue-equivalent Liquid Ingredients. 20 4.2. Tissue-equivalent Liquid Properties 23 5. System Check 24 5.1. Description of System Check. 24 5.2. System Check Results 26 6. Operational Conditions during Test 27 6.1. General Description of Test Procedures 27 6.2. Test Positions 27 6.3. Measurement Variability. 29 6.4.1. GSM Test Configuration 30 6.4.1. GSM Test Configuration 30 6.4.1. CSM Test Configuration	2. SAR Measurements System Configuration	12
2.2.1. EX3DV4 Probe Specification 13 2.2.2. E-field Probe Calibration 14 2.3. Other Test Equipment 14 2.3.1. Device Holder for Transmitters 14 2.3.2. Phantom 15 2.4. Scanning Procedure 15 2.4. Scanning Procedure 15 2.5. Data Storage and Evaluation 17 2.5.1. Data Storage 17 2.5.2. Data Evaluation by SEMCAD 17 3. Laboratory Environment. 19 4. Tissue-equivalent Liquid 20 4.1. Tissue-equivalent Liquid Ingredients. 20 4.2. Tissue-equivalent Liquid Properties 23 5. System Check 24 5.1. Description of System Check 24 5.2. System Check Results 26 6. Operational Conditions during Test 27 6.1. General Description of Test Procedures 27 6.2. Test Configuration 27 6.3. Measurement Variability 29 <td>2.1. SAR Measurement Set-up</td> <td> 12</td>	2.1. SAR Measurement Set-up	12
2.2.2. E-field Probe Calibration 14 2.3. Other Test Equipment 14 2.3.1. Device Holder for Transmitters 14 2.3.2. Phantom 15 2.4. Scanning Procedure 15 2.5. Data Storage and Evaluation 17 2.5.1. Data Storage 17 2.5.2. Data Evaluation by SEMCAD 17 3. Laboratory Environment 19 4. Tissue-equivalent Liquid 20 4.1. Tissue-equivalent Liquid Ingredients 20 4.2. Tissue-equivalent Liquid Ingredients 20 4.2. Tissue-equivalent Liquid Properties 23 5. System Check 24 5.1. Description of System Check 24 5.2. System Check Results 26 6.0 Operational Conditions during Test 27 6.1. General Description of Test Procedures 27 6.2. Test Positions 27 6.2. Test Positions 27 6.3. Measurement Variability. 29 <td>2.2. DASY5 E-field Probe System</td> <td> 13</td>	2.2. DASY5 E-field Probe System	13
2.3. Other Test Equipment 14 2.3.1. Device Holder for Transmitters 14 2.3.2. Phantom 15 2.4. Scanning Procedure 15 2.5. Data Storage and Evaluation 17 2.5.1. Data Storage 17 2.5.2. Data Evaluation by SEMCAD 17 3. Laboratory Environment 19 4. Tissue-equivalent Liquid 20 4.1. Tissue-equivalent Liquid Ingredients 20 4.2. Tissue-equivalent Liquid Properties 23 5. System Check 24 5.1. Description of System Check 24 5.2. System Check Results 26 6.0 Operational Conditions during Test 27 6.1. General Description of Test Procedures 27 6.2. Test Positions 27 6.3. Measurement Variability. 29 6.4. Test Configuration 30 6.4.1. GSM Test Configuration 30 6.4.2. UMTS Test Configuration 31 6.4.3. HSUPA Test Configuration 32 6.4.4. LTE Test Configuration 32	2.2.1. EX3DV4 Probe Specification	13
2.3.1.Device Holder for Transmitters142.3.2.Phantom152.4.Scanning Procedure152.5.Data Storage and Evaluation172.5.1.Data Storage172.5.2.Data Evaluation by SEMCAD173.Laboratory Environment194.Tissue-equivalent Liquid204.1.Tissue-equivalent Liquid Ingredients204.2.Tissue-equivalent Liquid Properties235.System Check245.1.Description of System Check245.2.System Check Results266.Operational Conditions during Test276.1.General Description of Test Procedures276.2.Resultation276.2.1.Against Phantom Head276.2.2.Body Worn Configuration206.4.1.GSM Test Configuration306.4.2.UMTS Test Configuration316.4.3.HSUPA Test Configuration326.4.4.LTE Test Configuration326.4.4.LTE Test Configuration326.4.4.LTE Test Configuration326.4.4.LTE Test Configuration35	2.2.2. E-field Probe Calibration	14
2.3.2. Phantom152.4. Scanning Procedure152.5. Data Storage and Evaluation172.5.1. Data Storage172.5.2. Data Evaluation by SEMCAD173. Laboratory Environment194. Tissue-equivalent Liquid204.1. Tissue-equivalent Liquid Ingredients204.2. Tissue-equivalent Liquid Properties235. System Check245.1. Description of System Check245.2. System Check Results266. Operational Conditions during Test276.1. General Description of Test Procedures276.2. Test Positions276.2.1. Against Phantom Head276.2.2. Body Worn Configuration306.4.1. GSM Test Configuration306.4.1. GSM Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35	2.3. Other Test Equipment	14
2.4.Scanning Procedure152.5.Data Storage and Evaluation172.5.1.Data Storage172.5.2.Data Evaluation by SEMCAD173.Laboratory Environment194.Tissue-equivalent Liquid204.1.Tissue-equivalent Liquid Ingredients204.2.Tissue-equivalent Liquid Properties235.System Check245.1.Description of System Check245.2.System Check Results266.Operational Conditions during Test276.1.General Description of Test Procedures276.2.Test Positions276.2.1.Against Phantom Head276.2.2.Body Worn Configuration306.4.1.GSM Test Configuration306.4.2.UMTS Test Configuration316.4.3.HSUPA Test Configuration326.4.4.LTE Test Configuration326.4.4.LTE Test Configuration35		
2.5. Data Storage and Evaluation172.5.1. Data Storage172.5.2. Data Evaluation by SEMCAD173. Laboratory Environment194. Tissue-equivalent Liquid204.1. Tissue-equivalent Liquid Ingredients204.2. Tissue-equivalent Liquid Properties235. System Check245.1. Description of System Check245.2. System Check Results266. Operational Conditions during Test276.1. General Description of Test Procedures276.2. Test Positions276.2.1. Against Phantom Head276.2.2. Body Worn Configuration276.3. Measurement Variability296.4. Test Configuration306.4.1. GSM Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35		
2.5.1. Data Storage.172.5.2. Data Evaluation by SEMCAD173. Laboratory Environment.194. Tissue-equivalent Liquid204.1. Tissue-equivalent Liquid Ingredients.204.2. Tissue-equivalent Liquid Properties235. System Check.245.1. Description of System Check.245.2. System Check Results.266. Operational Conditions during Test.276.1. General Description of Test Procedures276.2. Test Positions.276.2.1. Against Phantom Head.276.2.2. Body Worn Configuration.276.3. Measurement Variability.296.4. Test Configuration.306.4.1. GSM Test Configuration.316.4.3. HSUPA Test Configuration.326.4.4. LTE Test Configuration.35	2.4. Scanning Procedure	15
2.5.2. Data Evaluation by SEMCAD173. Laboratory Environment194. Tissue-equivalent Liquid204.1. Tissue-equivalent Liquid Ingredients204.2. Tissue-equivalent Liquid Properties235. System Check245.1. Description of System Check245.2. System Check Results266. Operational Conditions during Test276.1. General Description of Test Procedures276.2. Test Positions276.2.1. Against Phantom Head276.2.2. Body Worn Configuration276.3. Measurement Variability296.4. Test Configuration306.4.1. GSM Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35	2.5. Data Storage and Evaluation	17
3. Laboratory Environment. 19 4. Tissue-equivalent Liquid 20 4.1. Tissue-equivalent Liquid Ingredients. 20 4.2. Tissue-equivalent Liquid Properties 23 5. System Check 24 5.1. Description of System Check 24 5.2. System Check Results 26 6. Operational Conditions during Test 27 6.1. General Description of Test Procedures 27 6.2. Test Positions 27 6.2.1. Against Phantom Head 27 6.2.2. Body Worn Configuration 27 6.3. Measurement Variability 29 6.4.1. GSM Test Configuration 30 6.4.2. UMTS Test Configuration 31 6.4.3. HSUPA Test Configuration 32 6.4.4. LTE Test Configuration 35	2.5.1. Data Storage	17
4. Tissue-equivalent Liquid 20 4.1. Tissue-equivalent Liquid Ingredients 20 4.2. Tissue-equivalent Liquid Properties 23 5. System Check 24 5.1. Description of System Check 24 5.2. System Check Results 26 6. Operational Conditions during Test 27 6.1. General Description of Test Procedures 27 6.2. Test Positions 27 6.2.1. Against Phantom Head 27 6.2.2. Body Worn Configuration 27 6.3. Measurement Variability 29 6.4.1. GSM Test Configuration 30 6.4.2. UMTS Test Configuration 31 6.4.3. HSUPA Test Configuration 32 6.4.4. LTE Test Configuration 35	2.5.2. Data Evaluation by SEMCAD	17
4.1. Tissue-equivalent Liquid Ingredients204.2. Tissue-equivalent Liquid Properties235. System Check245.1. Description of System Check245.2. System Check Results266. Operational Conditions during Test276.1. General Description of Test Procedures276.2. Test Positions276.2.1. Against Phantom Head276.2.2. Body Worn Configuration276.3. Measurement Variability296.4. Test Configuration306.4.1. GSM Test Configuration306.4.2. UMTS Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35	3. Laboratory Environment	19
4.2. Tissue-equivalent Liquid Properties235. System Check245.1. Description of System Check245.2. System Check Results266. Operational Conditions during Test276.1. General Description of Test Procedures276.2. Test Positions276.2.1. Against Phantom Head276.2.2. Body Worn Configuration276.3. Measurement Variability296.4. Test Configuration306.4.1. GSM Test Configuration306.4.2. UMTS Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35	4. Tissue-equivalent Liquid	20
5. System Check245.1. Description of System Check245.2. System Check Results266. Operational Conditions during Test276.1. General Description of Test Procedures276.2. Test Positions276.2.1. Against Phantom Head276.2.2. Body Worn Configuration276.3. Measurement Variability296.4. Test Configuration306.4.1. GSM Test Configuration306.4.2. UMTS Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35	4.1. Tissue-equivalent Liquid Ingredients	20
5.1. Description of System Check245.2. System Check Results266. Operational Conditions during Test276.1. General Description of Test Procedures276.2. Test Positions276.2.1. Against Phantom Head276.2.2. Body Worn Configuration276.3. Measurement Variability296.4. Test Configuration306.4.1. GSM Test Configuration306.4.2. UMTS Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35	4.2. Tissue-equivalent Liquid Properties	23
5.2.System Check Results266.Operational Conditions during Test276.1.General Description of Test Procedures276.2.Test Positions276.2.1.Against Phantom Head276.2.2.Body Worn Configuration276.3.Measurement Variability296.4.Test Configuration306.4.1.GSM Test Configuration306.4.2.UMTS Test Configuration316.4.3.HSUPA Test Configuration326.4.4.LTE Test Configuration35	5. System Check	24
6. Operational Conditions during Test276.1. General Description of Test Procedures276.2. Test Positions276.2.1. Against Phantom Head276.2.2. Body Worn Configuration276.3. Measurement Variability296.4. Test Configuration306.4.1. GSM Test Configuration306.4.2. UMTS Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35	5.1. Description of System Check	24
6.1. General Description of Test Procedures276.2. Test Positions276.2.1. Against Phantom Head276.2.2. Body Worn Configuration276.3. Measurement Variability296.4. Test Configuration306.4.1. GSM Test Configuration306.4.2. UMTS Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35	5.2. System Check Results	26
6.1. General Description of Test Procedures276.2. Test Positions276.2.1. Against Phantom Head276.2.2. Body Worn Configuration276.3. Measurement Variability296.4. Test Configuration306.4.1. GSM Test Configuration306.4.2. UMTS Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35	6. Operational Conditions during Test	27
6.2.1. Against Phantom Head276.2.2. Body Worn Configuration276.3. Measurement Variability296.4. Test Configuration306.4.1. GSM Test Configuration306.4.2. UMTS Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35		
6.2.2. Body Worn Configuration276.3. Measurement Variability296.4. Test Configuration306.4.1. GSM Test Configuration306.4.2. UMTS Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35	6.2. Test Positions	27
6.3. Measurement Variability	6.2.1. Against Phantom Head	27
6.4. Test Configuration306.4.1. GSM Test Configuration306.4.2. UMTS Test Configuration316.4.3. HSUPA Test Configuration326.4.4. LTE Test Configuration35	6.2.2. Body Worn Configuration	27
6.4.1.GSM Test Configuration306.4.2.UMTS Test Configuration316.4.3.HSUPA Test Configuration326.4.4.LTE Test Configuration35	6.3. Measurement Variability	29
6.4.2.UMTS Test Configuration	6.4. Test Configuration	30
6.4.3.HSUPA Test Configuration	6.4.1. GSM Test Configuration	30
6.4.4. LTE Test Configuration	6.4.2. UMTS Test Configuration	31
5	6.4.3. HSUPA Test Configuration	32
6.4.5. WiFi Test Configuration	6.4.4. LTE Test Configuration	35
	6.4.5. WiFi Test Configuration	37

Report No.: RXA1412-0289SAR01R3

7. Tes	st Results	
7.1.	Conducted Power Results	. 38
7.2.	Standalone SAR Test Exclusion Considerations	. 46
7.3.	SAR Test Results	. 47
7.3	.1. GSM 850	. 47
7.3	.2. GSM 1900	. 49
7.3	.3. UMTS Band II	. 51
7.3	.4. UMTS Band V	. 53
7.3	.5. LTE Band 2	. 54
7.3	.6. LTE Band 4	. 56
7.3	.7. LTE Band 7	. 58
7.3		
7.4.	Simultaneous Transmission Conditions	. 60
8. 700	OMHz to 3GHz Measurement Uncertainty	. 66
9. Ma	in Test Instruments	. 68
ANNEX	A: Test Layout	. 69
ANNEX	B: System Check Results	. 75
ANNEX	C: Highest Graph Results	. 87
ANNEX	D: Probe Calibration Certificate	119
ANNEX	E: D750V3 Dipole Calibration Certificate	130
ANNEX	F: D835V2 Dipole Calibration Certificate	138
ANNEX	G: D1750V2 Dipole Calibration Certificate	146
ANNEX	H: D1900V2 Dipole Calibration Certificate	154
ANNEX	I: D2450V2 Dipole Calibration Certificate	162
ANNEX	J: D2600V2 Dipole Calibration Certificate	170
ANNEX	K: DAE4 Calibration Certificate	178
ANNEX	L: The EUT Appearances and Test Configuration	183

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. The sample under test was selected by the Client. This report only refers to the item that has undergone the test.

This report alone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electronic report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
E-mail:	xukai@ta-shanghai.com

1.3. Applicant Information

Company:	TCT Mobile Limited
Address:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
	Pudong Area Shanghai
	P.R. China
	201203

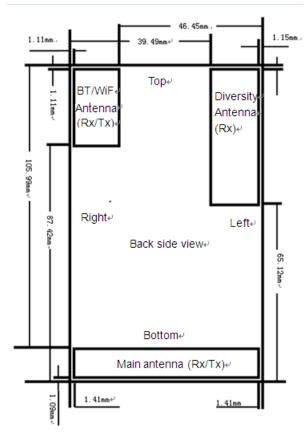
1.4. Manufacturer Information

Company:	TCT Mobile Limited
Address:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
	Pudong Area Shanghai
	P.R. China
	201203

1.5. Information of EUT General Information

Device Type:	Portable Device			
Exposure Category:	Uncontrolled Environment / General Population			
State of Sample:	Prototype Unit			
Product IMEI:	014261000100851			
Hardware Version:	PIO			
Software Version:	5L2E			
Antenna Type:	Internal Antenna			
Device Operating Configurations :				
Test Mode(s): GSM 850/GSM 1900; UMTS Band II/UMTS Band V; LTE FDD Band 2/4/7; 802.11b/g/n HT20; Bluetooth; Bluetooth 4.0;				
Test Modulation:	(GSM)GMSK; (UMTS)QPSK, (LTE) QP	SK, 16QAM; (WiFi)CCK		
Device Class:	B			
HSDPA UE Category:	10			
HSUPA UE Category:	6			
DC- HSDPA UE Category:	24			
HSPA+ UE Downlink Category:	14			
LTE UE Category:	4			
	Max Number of Timeslots in Uplink	4		
GPRS Multislot Class(12):	Max Number of Timeslots in Downlink	4		
	Max Total Timeslot	5		
	Max Number of Timeslots in Uplink	4		
EGPRS Multislot Class(12):	Max Number of Timeslots in Downlink	4		
Max Total Timeslot 5		5		
	Mode	Tx (MHz)		
	GSM 850	824.2 ~ 848.8		
	GSM 1900	1850.2 ~ 1909.8		
Operating Frequency Range(s):	UMTS Band II 1852.4 ~ 1907			
	UMTS Band V	826.4 ~ 846.6		
	LTE FDD 2 1850.7 ~ 1909.3			
	LTE FDD 4 1710.7 ~ 1754.3			

Report No.: RXA1412-0289SAR01R3


Page 8 of 189

	LTE FDD 7 2502.5 ~ 2567		
	Bluetooth/ Bluetooth 4.0	2402 ~2480	
	WiFi	2412 ~2462	
	GSM 850: 4		
Power Class:	GSM 1900: 1		
Power Class.	UMTS Band II/V: 3		
	LTE FDD 2/4/7: 3		
	GSM 850: level 5		
Dower Lovel	GSM 1900: level 0		
Power Level	UMTS Band II/V: all up bits		
	LTE FDD 2/4/7: max power		

Auxiliary Equipment Details

Name	Model	Capacity	Manufacturer	S/N
Battery 1	TLi020F1	2000mAh	BYD	B2000009C11000ZV
Battery 2	TLi020F2	2000mAh	SCUD	B2000013C2Y0S9VG

1.6. EUT Antenna Locations

Mobile Hotspot Sides for SAR Testing

Mode	Back Side	Front Side	Left Edge	Right Edge	Top Edge	Bottom Edge
GSM 850	Yes	Yes	Yes	Yes	N/A	Yes
GSM 1900	Yes	Yes	Yes	Yes	N/A	Yes
UMTS Band II	Yes	Yes	Yes	Yes	N/A	Yes
UMTS Band V	Yes	Yes	Yes	Yes	N/A	Yes
LTE Band 2	Yes	Yes	Yes	Yes	N/A	Yes
LTE Band 4	Yes	Yes	Yes	Yes	N/A	Yes
LTE Band 7	Yes	Yes	Yes	Yes	N/A	Yes
WiFi	Yes	Yes	N/A	Yes	Yes	N/A
Note: When the and	tenna-to-edge	distance is gre	eater than 2.5	cm, such positio	on does not ne	eed to be tested.

1.7. The Maximum Reported SAR_{1g}

Head SAR Configuration

		Channel	Limit SAR _{1g} 1.6 W/kg		
Mode	Test Position	/Frequency(MHz)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
GSM 850	Left Cheek	190/836.6	0.601	0.774	
GSM 1900	Right Cheek	661/1880	0.451	0.489	
UMTS Band II	Right Cheek	9262/1852.4	0.934	1.019	
UMTS Band V	Right Cheek	4183/836.6	0.654	0.739	
LTE Band 2	Right Cheek	19100/1900	0.968	1.094	
LTE Band 4	Right Cheek	20300/1745	0.873	0.901	
LTE Band 7	Right Cheek	21350/2560	0.579	0.695	
WiFi(802.11b)	Left Cheek	1/2412	0.747	0.768	

Body Worn Configuration

		Channel	Limit SAR _{1g} 1.6 W/kg		
Mode	Test Position	/Frequency(MHz)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
GPRS 850	Front Side	128/824.2	1.070	1.187	
GPRS 1900	Back Side	661/1880	0.952	1.179	
UMTS Band II	Back Side	9538/1907.6	1.120	1.197	
UMTS Band V	Front Side	4183/836.6	0.649	0.733	
LTE Band 2	Back Side	18900/1880	1.020	1.196	
LTE Band 4	Back Side	20175/1732.5	1.140	1.199	
LTE Band 7	Back Side	21100/2535	0.759	0.918	
WiFi(802.11b)	Back Side	1/2412	0.212	0.218	

Report No.: RXA1412-0289SAR01R3

Page 11 of 189

hotspot Configuration

			Limit SAR _{1g} 1.6 W/kg		
Mode	Test Position	Channel /Frequency(MHz)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
GPRS 850	Front Side	128/824.2	1.070	1.187	
GPRS 1900	Back Side	661/1880	0.952	1.179	
UMTS Band II	Back Side	9538/1907.6	1.120	1.197	
UMTS Band V	Front Side	4183/836.6	0.649	0.733	
LTE Band 2	Back Side	18900/1880	1.020	1.196	
LTE Band 4	Back Side	20175/1732.5	1.140	1.199	
LTE Band 7	Back Side	21100/2535	0.759	0.918	
WiFi(802.11b)	Back Side	1/2412	0.212	0.218	

1.8. Test Date

The test performed from January 8, 2015 to January 19, 2015.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

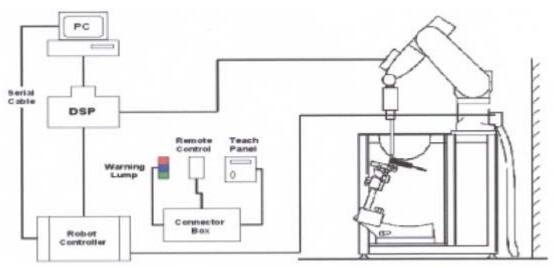


Figure 1 SAR Lab Test Measurement Set-up

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4(manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. EX3DV4 Probe Specification

- Construction Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
- Calibration ISO/IEC 17025 calibration service available
- Frequency 10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Figure 2.EX3DV4 E-field Probe

- Directivity \pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis)
- Dynamic Range 10μ W/g to > 100 mW/g Linearity:
 - \pm 0.2dB (noise: typically < 1 μ W/g)
- Dimensions Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
- Application High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Figure 3. EX3DV4 E-field probe

Report No.: RXA1412-0289SAR01R3

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta \mathbf{T}}{\Delta \mathbf{t}}$$

Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 4 Device Holder

Report No.: RXA1412-0289SAR01R3

2.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness	2±0.1 mm
Filling Volume	Approx. 20 liters
Dimensions	810 x 1000 x 500 mm (H x L x W) Aailable Special

Figure 5 Generic Twin Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid

Report No.: RXA1412-0289SAR01R3

spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

• Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

• Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Frequency	Maximum Area Scan Resolution (mm) (∆x _{area} , ∆y _{area})	Maximum Zoom Scan Resolution (mm) (∆x _{zoom} , ∆y _{zoom})	Maximum Zoom Scan Spatial Resolution (mm) ∆z _{zoom} (n)	Minimum Zoom Scan Volume (mm) (x,y,z)
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≥ 22

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity - Conversion factor	Normi, a _{i0} , a _{i1} , a _{i2} ConvF _i
	- Diode compression point	Dcpi
Device parameters:	- Frequency - Crest factor	f cf
Media parameters:	- Conductivity	

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

Report No.: RXA1412-0289SAR01R3

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With	V_i = compensated signal of channel i	(i = x, y, z)
	\boldsymbol{U}_i = input signal of channel i	(i = x, y, z)
	<i>cf</i> = crest factor of exciting field	(DASY parameter)
	<i>dcp</i> _i = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field p	probes:	$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$	
H-field p	probes:	$H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2}) / f$	
With	V _i	= compensated signal of channel i	(i = x, y, z)
	Norm _i	= sensor sensitivity of channel i [mV/(V/m) ²] for E-field Probes	(i = x, y, z)
	ConvF	= sensitivity enhancement in solution	
	a _{ij}	= sensor sensitivity factors for H-field probes	

- **f** = carrier frequency [GHz]
- E_i = electric field strength of channel i in V/m
- H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

- **E**_{tot} = total field strength in V/m
 - = conductivity in [mho/m] or [Siemens/m]
 - = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

*E*_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 2: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ground system resistance	< 0.5 Ω	
Ambient noise is checked and found very low and in compliance with requirement of standards.		
Reflection of surrounding objects is minimize	ed and in compliance with requirement of standards.	

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 3 and table 4 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB 865664 D01.

Table 3: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz
Water	41.45
Sugar	56
Salt	1.45
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz ε=41.5 σ=0.9

MIXTURE%	FREQUENCY(Brain) 1750MHz
Water	55.24
Glycol	44.45
Salt	0.31
Dielectric Parameters	f=1750MHz ε=40.1 σ=1.37
Target Value	

MIXTURE%	FREQUENCY(Brain) 1900MHz			
Water	55.242			
Glycol monobutyl	44.452			
Salt	0.306			
Dielectric Parameters	f=1900MHz ε=40.0 σ=1.40			
Target Value	f=1900MHz ε=40.0 σ=1.40			

MIXTURE%	FREQUENCY(Brain) 2450MHz			
Water	62.7			
Glycol	36.8			
Salt	0.5			
Dielectric Parameters Target Value	f=2450MHz ε=39.2 σ=1.80			

Report No.: RXA1412-0289SAR01R3

MIXTURE%	FREQUENCY(Brain) 2600MHz			
Water	55.242			
Glycol	44.452			
Salt	0.306			
Dielectric Parameters	f=2600MHz ε=39.0 σ=1.96			
Target Value	f=2600MHz ε=39.0 σ=1.96			

 Table 4: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97

MIXTURE%	FREQUENCY(Body) 1750MHz			
Water	69.91			
Glycol	29.97			
Salt	0.12			
Dielectric Parameters Target Value	f=1750MHz ε=53.4 σ=1.49			

MIXTURE%	FREQUENCY (Body) 1900MHz			
Water	69.91			
Glycol monobutyl	29.96			
Salt	0.13			
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52			

MIXTURE%	FREQUENCY(Body) 2450MHz			
Water	73.2			
Glycol	26.7			
Salt	0.1			
Dielectric Parameters Target Value	f=2450MHz ε=52.7 σ=1.95			

Report No.: RXA1412-0289SAR01R3

MIXTURE%	FREQUENCY (Body) 2600MHz			
Water	72.6			
Glycol monobutyl	27.3			
Salt	0.1			
Dielectric Parameters	f=2000MU= c=52.5 c=2.46			
Target Value	f=2600MHz ε=52.5 σ=2.16			

4.2. Tissue-equivalent Liquid Properties

			Measured Dielectric		Target D	ielectric	Limit	
Frequency	Test Date	Temp	Parameters		Parameters		(Within ±5%)	
Frequency	Test Date	C	٤r	σ(s/m)	٤r	σ(s/m)	Dev ε _r (%)	Dev σ(%)
835MHz (head)	2015-1-8	21.5	41.4	0.93	41.5	0.90	-0.24	3.33
1750MHz (head)	2015-1-14	21.5	39.7	1.32	40.1	1.37	-1.00	-3.65
1900MHz	2015-1-9	21.5	39.6	1.43	40.0	1.40	-1.00	2.14
(head)	2015-1-11	21.5	39.6	1.44	40.0	1.40	-1.00	2.86
2450MHz (head)	2015-1-19	21.5	38.6	1.81	39.2	1.80	-1.53	0.56
2600MHz (head)	2015-1-17	21.5	38.6	1.98	39.0	1.96	-1.03	1.02
835MHz (body)	2015-1-12	21.5	55.9	0.99	55.2	0.97	1.27	2.06
1750MHz (body)	2015-1-15	21.5	52.9	1.50	53.4	1.49	-0.94	0.67
1900MHz	2015-1-10	21.5	53.1	1.52	53.3	1.52	-0.38	0.00
(body)	2015-1-13	21.5	53.1	1.53	53.3	1.52	-0.38	0.66
2450MHz (body)	2015-1-18	21.5	52.1	1.99	52.7	1.95	-1.14	2.05
2600MHz (body)	2015-1-16	21.5	51.9	2.17	52.5	2.16	-1.14	0.46

Table 5: Dielectric Performance of Tissue Simulating Liquid

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 6 and table 7.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

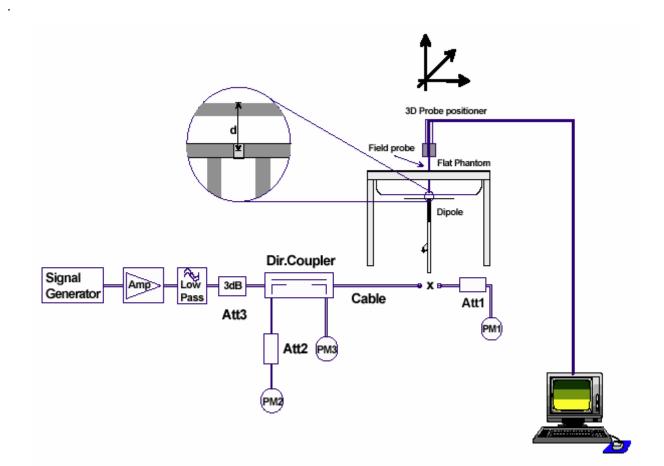


Figure 6 System Check Set-up

Report No.: RXA1412-0289SAR01R3

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole D2600V2 SN: 1012								
Head Liquid								
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ				
5/2/2012	-25	/	48	/				
5/1/2013	-23.5	6%	46.6	1.4Ω				
4/29/2014	-24.1	3.6%	47.3	0.7Ω				
	Body I	_iquid						
Date of Measurement Return Loss(dB) Δ % Impedance (Ω) Δ								
5/2/2012	-23.6	/	45	/				
5/1/2013	-24.5	3.8%	43.2	1.8Ω				
4/29/2014	-22.9	3.0%	43.6	1.4Ω				

5.2. System Check Results

Frequency	_		Dielectric Parameters 250mW Measured SAR _{1g}		1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10%
		٤r	σ(s/m)		Deviation)		
835MHz	2015-1-8	41.4	0.93	2.44	9.76	9.54	2.31%
1750MHz	2015-1-14	39.7	1.32	8.95	35.80	37.20	-3.76 %
1900MHz	2015-1-9	39.6	1.43	9.48	37.92	39.20	-3.27 %
19001012	2015-1-11	39.6	1.44	9.59	38.36	39.20	-2.14 %
2450MHz	2015-1-19	38.6	1.81	13.70	54.80	52.50	4.38%
2600MHz	2015-1-17	38.6	1.98	13.90	55.60	57.00	-2.46%
Note: 1. The graph results see ANNEX B. 2. Target Values used derive from the calibration certificate							

Table 6: System Check in Head Tissue Simulating Liquid

Table 7: System Check in Body Tissue Simulating Liquid

Frequency Test Date		Dielectric Parameters		250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10% Deviation)
		٤ _r	σ(s/m)		Deviation		
835MHz	2015-1-12	55.9	0.99	2.41	9.64	9.54	1.05%
1750MHz	2015-1-15	52.9	1.50	9.24	36.96	38.80	-4.74%
1900MHz	2015-1-10	53.1	1.52	9.93	39.72	40.00	-0.70%
190010172	2015-1-13	53.1	1.53	9.82 39.28		40.00	-1.80%
2450MHz	2015-1-18	52.1	1.99	12.50	50.00	52.40	-4.58%
2600MHz	2015-1-16	51.9	2.17	13.50	54.00	54.30	-0.55%
Note: 1. The graph results see ANNEX B. 2. Target Values used derive from the calibration certificate							

6. Operational Conditions during Test

6.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with CMW 500, and the EUT is set to maximum output power by CMW 500. The EUT battery must be fully charged and checked periodically during the test to as certain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

6.2. Test Positions

6.2.1. Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

6.2.2. Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If

Report No.: RXA1412-0289SAR01R3

multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.3. Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band: 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

6.4. Test Configuration

6.4.1. GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. the EGPRS class is 12 for this EUT, it has at most 4 timeslots is 12 for this EUT, it has at most 4 timeslots is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following: Output power of reductions:

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

Table 8: The allowed power reduction in the multi-slot configuration

6.4.2. UMTS Test Configuration

6.4.2.1. 3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the 3G SAR test reduction procedure by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

6.4.2.2. Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are requied in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

6.4.2.3. Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

6.4.2.4. Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

Report No.: RXA1412-0289SAR01R3

6.4.2.5. Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 9: Subtests for UMTS Release 5 HSDPA

Sub-set	β _c	β_d	β _d (SF)	β _c /β _d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
2	2 (note 4) (note 4	(note 4)	04	(note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
Note1: A	Note1: \triangle_{ACK} , \triangle_{NACK} and \triangle_{CQI} = 8			B _{hs} /β _c =30/15	(≓) β _{hs} =30/15*β _c		

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

6.4.3. HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures

Report No.: RXA1412-0289SAR01R3

Page 33 of 189

described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

Sub- set	β _c	β_d	β _d (SF)	β_c/β_d	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	311/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Table 10: Sub-Test 5 Setup for Release 6 HSUPA

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \leftrightarrow \underline{\beta}_{hs} = 30/15 * \beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d = 12/15$, $\underline{\beta}_{hs}/\underline{\beta}_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: ßed can not be set directly; it is set by Absolute Grant Value.

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)			
1	1	4	10	4	7110	0.7296			
0	2	8	2	4	2798	4.4500			
2	2	4	10	4	14484	1.4592			
3	2	4	10	4	14484	1.4592			
	2	8	2	2	5772	2.9185			
4	2	4	10	2	20000	2.00			
5	2	4	10	2	20000	2.00			
6	4	8	2		11484	5.76			
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	2.00			
7	4	8	2	2 SF2 & 2 SF4	22996	?			
(No DPDCH)	4	4	10		20000	?			
 NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4. UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0) 									

Table 11: HSUPA UE category

6.4.3.1. HSPA, HSPA+ and DC-HSDPA Test Configuration

measurement is required for HSPA, HSPA+ or DC-HSDPA, a KDB inquiry is required to confirm that the wireless mode configurations in the test setup have remained stable throughout the SAR measurements.35 Without prior KDB confirmation to determine the SAR results are acceptable, a PBA is required for TCB approval.

SAR test exclusion for HSPA, HSPA+ and DC-HSDPA is determined according to the following:

1) The HSPA procedures are applied to configure 3GPP Rel. 6 HSPA devices in the required sub-test mode(s) to determine SAR test exclusion.

2) SAR is required for Rel. 7 HSPA+ when SAR is required for Rel. 6 HSPA; otherwise, the 3G SAR test reduction procedure is applied to (uplink) HSPA+ with 12.2 kbps RMC as the primary mode.36 Power is measured for HSPA+ that supports uplink 16 QAM according to configurations in Table C.11.1.4 of 3GPP TS 34.121-1 to determine SAR test reduction.

3) SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

4) Regardless of whether a PBA is required, the following information must be verified and included in the SAR report for devices supporting HSPA, HSPA+ or DC-HSDPA: a) The output power measurement results and applicable release version(s) of 3GPP TS 34.121.

i) Power measurement difficulties due to test equipment setup or availability must be resolved between the grantee and its test lab.

b) The power measurement results are in agreement with the individual device implementation and specifications. When Enhanced MPR (E-MPR) applies, the normal MPR targets may be modified according to the Cubic Metric (CM) measured by the device, which must be taken into consideration. c) The UE category, operating parameters, such as the β and Δ values used to configure the device for testing, power setback procedures described in 3GGPP TS 34.121 for the power measurements, and HSPA/HSPA+ channel conditions (active and stable) for the entire duration of the measurement according to the required E-TFCI and AG index values.

5) When SAR measurement is required, the test configurations, procedures and power measurement results must be clearly described to confirm that the required test parameters are used, including E-TFCI and AG index stability and output power conditions.

Report No.: RXA1412-0289SAR01R3

Table 12: HS-DSCH UE category

HS-DSCH category	Maximum number of HS-DSCH codes received	Minimum inter-TTI interval	Maximum number of bits of an HS- DSCH transport block received within an HS-DSCH TTI NOTE 1	Total number of soft channel bits	Supported modulations without MIMO operation or dual cell operation	Supported modulatio ns with MIMO operation and without dual cell operation	Supported modulatio ns with dual cell operation
Category 1	5	3	7298	19200			
Category 2	5	3	7298	28800	1		
Category 3	5	2	7298	28800			Not applicable (dual cell operation
Category 4	5	2	7298	38400	1		
Category 5	5	1	7298	57600	ODOK 400414		
Category 6	5	1	7298	67200	QPSK, 16QAM		
Category 7	10	1	14411	115200	1	Not	
Category 8	10	1	14411	134400	1	applicable	
Category 9	15	1	20251	172800	-	(MIMO not	
Category 10	15	1	27952	172800		supported)	
Category 11	5	2	3630	14400			
Category 12	5	1	3630	28800	QPSK		
Category 13	15	1	35280	259200	QPSK.	1	
Category 14	15	1	42192	259200	16QAM, 64QAM		
Category 15	15	1	23370	345600	ODOK 1004M		not supported)
Category 16	15	1	27952	345600	QPSK, 16QAM		
Category 17 NOTE 2 Category 18 NOTE 3	15	1	35280	259200	QPSK, 16QAM, 64QAM	-	,
			23370	345600	-	QPSK, 16QAM	
	/ 18 15	1	42192	259200	QPSK, 16QAM, 64QAM	-	
			27952	345600	-	QPSK, 16QAM	
Category 19	15	1	35280	518400	00001 40044	4 640444	1
Category 20	15	1	42192	518400	QPSK, 16QAI	WI, 04QAM	
Category 21	15	1	23370	345600			QPSK,
Category 22	15	1	27952	345600	1		16QAM
Category 23	15	1	35280	518400	-		QPSK,
Category 24	15	1	42192	518400		9	16QAM, 64QAM

Table 5.1a: FDD HS-DSCH physical layer categories

6.4.4. LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A)Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

Report No.: RXA1412-0289SAR01R3

B)MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 - 6.2.5 under Table 6.2.3-1.

C)A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > $\frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the *reported* SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

6.4.5. WiFi Test Configuration

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. The Tx power is set to 18 for 802.11 b mode by software. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel; SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

7. Test Results

7.1. Conducted Power Results

Table 13: Conducted Power Measurement Results

		Burst Co	nducted Pov	wer(dBm)		Aver	age power(o	dBm)
GSN	1 850	Chann	el/Frequency	/(MHz)	1	Chann	el/Frequency	/(MHz)
		128/824.2	190/836.6	251/848.8		128/824.2	190/836.6	251/848.8
G	SM	32.76	32.40	32.56	-9.03dB	23.73	23.37	23.53
	1Txslot	32.71	32.47	32.48	-9.03dB	23.68	23.44	23.45
GPRS	2Txslots	30.86	31.09	30.56	-6.02dB	24.84	25.07	24.54
(GMSK)	3Txslots	29.04	29.14	29.20	-4.26dB	24.78	24.88	24.94
	4Txslots	28.05	28.10	28.13	-3.01dB	25.04	25.09	25.12
	1Txslot	32.66	32.37	32.53	-9.03dB	23.63	23.34	23.50
EGPRS	2Txslots	30.90	31.04	30.69	-6.02dB	24.88	25.02	24.67
(GMSK)	3Txslots	28.99	29.19	29.25	-4.26dB	24.73	24.93	24.99
	4Txslots	27.92	28.13	28.15	-3.01dB	24.91	25.12	25.14
	1Txslot	26.65	26.62	26.67	-9.03dB	17.62	17.59	17.64
EGPRS	2Txslots	25.58	25.58	25.61	-6.02dB	19.56	19.56	19.59
(8PSK)	3Txslots	24.11	23.89	23.98	-4.26dB	19.85	19.63	19.72
	4Txslots	22.57	22.69	22.56	-3.01dB	19.56	19.68	19.55
		Burst Co	nducted Pov	wer(dBm)		Average power(dBm)		
GSM 1900			Channel/Frequency(MHz)					
GSM	1900	Chann	el/Frequency	/(MHz)	1	Chann	el/Frequency	/(MHz)
GSM	1900	Chann 512/1850.2	el/Frequency 661/1880	/(MHz) 810/1909.8	1	Chann 512/1850.2	el/Frequency 661/1880	/(MHz) 810/1909.8
	1900 SM			, ,	/ -9.03dB			, ,
		512/1850.2	661/1880	810/1909.8		512/1850.2	661/1880	810/1909.8
	SM	512/1850.2 30.08	661/1880 30.15	810/1909.8 30.08	-9.03dB	512/1850.2 21.05	661/1880 21.12	810/1909.8 21.05
G	SM 1Txslot	512/1850.2 30.08 29.92	661/1880 30.15 29.98	810/1909.8 30.08 30.06	-9.03dB -9.03dB	512/1850.2 21.05 20.89	661/1880 21.12 20.95	810/1909.8 21.05 21.03
GPRS	SM 1Txslot 2Txslots	512/1850.2 30.08 29.92 28.25	661/1880 30.15 29.98 28.26	810/1909.8 30.08 30.06 28.37	-9.03dB -9.03dB -6.02dB	512/1850.2 21.05 20.89 22.23	661/1880 21.12 20.95 22.24	810/1909.8 21.05 21.03 22.35
GPRS	SM 1Txslot 2Txslots 3Txslots	512/1850.2 30.08 29.92 28.25 26.60	661/1880 30.15 29.98 28.26 26.61	810/1909.8 30.08 30.06 28.37 26.61	-9.03dB -9.03dB -6.02dB -4.26dB	512/1850.2 21.05 20.89 22.23 22.34	661/1880 21.12 20.95 22.24 22.35	810/1909.8 21.05 21.03 22.35 22.35
GPRS	SM 1Txslot 2Txslots 3Txslots 4Txslots	512/1850.2 30.08 29.92 28.25 26.60 25.65	661/1880 30.15 29.98 28.26 26.61 25.57	810/1909.8 30.08 30.06 28.37 26.61 25.52	-9.03dB -9.03dB -6.02dB -4.26dB -3.01dB	512/1850.2 21.05 20.89 22.23 22.34 22.64	661/1880 21.12 20.95 22.24 22.35 22.56	810/1909.8 21.05 21.03 22.35 22.35 22.35 22.51
GPRS (GMSK)	SM 1Txslot 2Txslots 3Txslots 4Txslots 1Txslot	512/1850.2 30.08 29.92 28.25 26.60 25.65 30.05	661/1880 30.15 29.98 28.26 26.61 25.57 30.05	810/1909.8 30.08 30.06 28.37 26.61 25.52 30.01	-9.03dB -9.03dB -6.02dB -4.26dB -3.01dB -9.03dB	512/1850.2 21.05 20.89 22.23 22.34 22.64 21.02	661/1880 21.12 20.95 22.24 22.35 22.56 21.02	810/1909.8 21.05 21.03 22.35 22.35 22.35 22.51 20.98
GPRS (GMSK) EGPRS	SM 1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots	512/1850.2 30.08 29.92 28.25 26.60 25.65 30.05 28.35	661/1880 30.15 29.98 28.26 26.61 25.57 30.05 28.40	810/1909.8 30.08 30.06 28.37 26.61 25.52 30.01 28.36	-9.03dB -9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -6.02dB	512/1850.2 21.05 20.89 22.23 22.34 22.64 21.02 22.33	661/1880 21.12 20.95 22.24 22.35 22.56 21.02 22.38	810/1909.8 21.05 21.03 22.35 22.35 22.51 20.98 22.34
GPRS (GMSK) EGPRS	SM 1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots	512/1850.2 30.08 29.92 28.25 26.60 25.65 30.05 28.35 26.54	661/1880 30.15 29.98 28.26 26.61 25.57 30.05 28.40 26.65	810/1909.8 30.08 30.06 28.37 26.61 25.52 30.01 28.36 26.58	-9.03dB -9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -6.02dB -4.26dB	512/1850.2 21.05 20.89 22.23 22.34 22.64 21.02 22.33 22.28	661/1880 21.12 20.95 22.24 22.35 22.56 21.02 22.38 22.39	810/1909.8 21.05 21.03 22.35 22.35 22.35 22.51 20.98 22.34 22.32
GPRS (GMSK) EGPRS	SM 1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots 4Txslots	512/1850.2 30.08 29.92 28.25 26.60 25.65 30.05 28.35 26.54 25.60	661/1880 30.15 29.98 28.26 26.61 25.57 30.05 28.40 26.65 25.48	810/1909.8 30.08 30.06 28.37 26.61 25.52 30.01 28.36 26.58 25.56	-9.03dB -9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -6.02dB -4.26dB -3.01dB	512/1850.2 21.05 20.89 22.23 22.34 22.64 21.02 22.33 22.28 22.28	661/1880 21.12 20.95 22.24 22.35 22.56 21.02 22.38 22.39 22.47	810/1909.8 21.05 21.03 22.35 22.35 22.35 22.51 20.98 22.34 22.32 22.32 22.55
GPRS (GMSK) EGPRS (GMSK)	SM 1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots 4Txslots 1Txslot	512/1850.2 30.08 29.92 28.25 26.60 25.65 30.05 28.35 26.54 25.60 25.97	661/1880 30.15 29.98 28.26 26.61 25.57 30.05 28.40 26.65 25.48 26.05	810/1909.8 30.08 30.06 28.37 26.61 25.52 30.01 28.36 26.58 25.56 26.12	-9.03dB -9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -6.02dB -4.26dB -3.01dB	512/1850.2 21.05 20.89 22.23 22.34 22.64 21.02 22.33 22.28 22.59 16.94	661/1880 21.12 20.95 22.24 22.35 22.56 21.02 22.38 22.39 22.47 17.02	810/1909.8 21.05 21.03 22.35 22.35 22.51 20.98 22.34 22.35 22.55 17.09

Note:

1) Division Factors

To average the power, the division factor is as follows:

1Txslot = 1 transmit time slot out of 8 time slots

Report No.: RXA1412-0289SAR01R3

=> conducted power divided by (8/1) => -9.03 dB
2Txslots = 2 transmit time slots out of 8 time slots
=> conducted power divided by $(8/2)$ => -6.02 dB
3Txslots = 3 transmit time slots out of 8 time slots
=> conducted power divided by (8/3) => -4.26 dB
4Txslots = 4 transmit time slots out of 8 time slots
=> conducted power divided by $(8/4)$ => -3.01 dB
2) Average power numbers
The maximum power numbers are marks in bold.

		C	onducted Power (dBn	n)
UMTS	Band II	C	Channel/Frequency(MH:	z)
		9262/1852.4	9400/1880	9538/1907.6
12.2kbps RMC		23.62	23.81	23.71
DMC	64kbps RMC	23.67	23.76	23.62
RMC	144kbps RMC	23.54	23.72	23.73
	384kbps RMC	23.59	23.75	23.67
	Sub - Test 1	22.48	22.6	22.35
	Sub - Test 2	22.56	22.57	22.34
HSDPA	Sub - Test 3	22.15	22.43	22.46
	Sub - Test 4	22.62	22.64	22.37
	Sub - Test 1	22.06	21.88	21.54
	Sub - Test 2	21.37	21.05	20.97
HSUPA	Sub - Test 3	21.86	21.65	21.24
	Sub - Test 4	21.96	21.86	21.95
	Sub - Test 5	22.59	22.73	22.36
	Sub - Test 1	22.43	22.41	22.53
DC-HSDPA	Sub - Test 2	22.16	22.32	21.97
DC-HSDPA	Sub - Test 3	21.98	22.46	21.94
	Sub - Test 4	22.46	22.57	22.06
HSPA+	16QAM	22.25	22.07	22.14
		C	onducted Power (dBn	n)
UMTS	Band V	C	Channel/Frequency(MH	z)
		4132/826.4	4183/836.6	4233/846.6
	12.2kbps RMC	22.81	22.97	22.97
RMC	64kbps RMC	22.85	23.10	22.91
RIVIC	144kbps RMC	22.75	22.96	22.89
	384kbps RMC	22.83	22.98	22.95
HSDPA	Sub - Test 1	21.53	21.61	21.51

Page 39 of 189

Sub - Test 2 21.64 21.46 21.48 Sub - Test 3 21.49 21.58 21.42 Sub - Test 4 21.55 21.60 21.52 Sub - Test 1 22.42 22.46 21.95 Sub - Test 2 20.92 20.86 20.57 HSUPA Sub - Test 3 21.35 21.57 21.43 Sub - Test 4 21.06 20.63 20.54 22.70 22.24 Sub - Test 5 22.52 Sub - Test 1 22.46 21.86 22.31 Sub - Test 2 22.37 21.79 21.96 DC-HSDPA Sub - Test 3 22.16 22.42 22.28 22.39 22.25 22.27 Sub - Test 4 HSPA+ 16QAM 22.15 22.11 22.21

Report No.: RXA1412-0289SAR01R3

Page 40 of 189

Report No.: RXA1412-0289SAR01R3

Page 41 of 189

LTE FDD Band 2				Cond	Conducted Power(dBm)			
		RB		Chan	Channel/Frequency(MHz)			
Bandwidth	Modulation	size	RB offset	18625/1852.5	18900/1880	19175/1907.5		
		1	0	23.88	23.41	23.73		
		1	13	23.51	23.18	23.57		
		1	24	23.47	22.77	23.22		
	QPSK	12	0	22.65	22.18	22.28		
		12	6	22.64	22.75	22.34		
5MHz		12	13	22.63	22.04	22.20		
		25	0	22.64	22.19	22.15		
		1	0	21.97	21.67	21.67		
	160414	1	13	22.17	21.27	21.56		
	16QAM	1	24	22.24	21.49	21.55		
		25	0	21.97	22.10	21.83		
D a a du si d t la	Modulation	RB	RB offset	Chan	nel/Frequency	(MHz)		
Bandwidth	wodulation	size	RB Olisel	18650/1855	18900/1880	19150/1905		
		1	0	23.88	23.41	23.72		
		1	25	23.80	23.47	23.57		
	QPSK	1	49	23.77	23.06	23.71		
		25	0	22.94	22.47	23.07		
		25	13	22.93	23.04	23.13		
10MHz		25	25	22.92	22.33	22.99		
		50	0	22.93	22.48	22.94		
		1	0	21.54	21.96	21.74		
	16QAM	1	25	21.74	21.56	21.63		
	IUGAM	1	49	21.81	21.79	21.62		
		50	0	21.96	22.09	21.82		
Bandwidth	Modulation	RB	RB offset	Channel/Frequency(MHz)				
Bandwidth	Wouldton	size	IND UIISEL	18675/1857.5	18900/1880	19125/1902.5		
		1	0	23.89	23.42	23.74		
		1	38	23.82	23.49	23.58		
		1	74	23.78	23.08	23.72		
	QPSK	36	0	22.96	22.49	23.09		
		36	18	22.94	23.06	23.14		
15MHz		36	39	22.93	22.34	23.01		
		75	0	22.95	22.50	22.95		
		1	0	21.28	21.98	21.48		
	16QAM	1	38	21.97	21.58	21.37		
		1	74	21.54	21.80	21.36		
		75	0	21.97	22.11	21.84		
Bandwidth	Modulation	RB	RB offset	Chan	nel/Frequency	(MHz)		
Bandwidth	wouldtion	size		18700/1860	18900/1880	19100/1900		

Report No.: RXA1412-0289SAR01R3

Page 42 of 189

		1	0	23.88	23.31	23.12
		1	50	23.40	23.08	23.47
		1	99	23.37	22.67	23.11
	QPSK	50	0	22.54	22.08	22.18
		50	25	22.53	22.64	22.23
20MHz		50	50	22.52	21.93	22.09
		100	0	22.54	22.09	22.04
	400.000	1	0	21.86	21.57	21.57
		1	50	22.06	21.16	21.46
	16QAM	1	99	21.53	21.39	21.44
		100	0	21.86	21.99	21.72

LTE FDD Band 4				Con	ducted Power(c	lBm)
Deve also si al tale	ndwidth Modulation RB size			Char	nnel/Frequency(l	MHz)
Bandwidth	Bandwidth Modulation		offset	19975/1712.5	20175/1732.5	20375/1752.5
		1	0	23.88	23.75	23.57
		1	13	23.89	23.88	23.66
		1	24	23.68	23.57	23.64
	QPSK	12	0	22.71	22.70	22.78
		12	6	22.70	22.71	22.79
5MHz		12	13	22.60	22.71	22.73
		25	0	22.70	22.73	22.72
		1	0	23.80	23.80	23.78
	16QAM	1	13	23.80	23.86	23.78
	IOQAIVI	1	24	23.81	23.81	23.80
		25	0	21.12	21.12	21.12
Bandwidth	Modulation	RB size	RB	Channel/Frequency(MHz)		
Banuwiuth	Modulation	RD SIZE	offset	20000/1715	20175/1732.5	20350/1750
		1	0	23.87	23.74	23.57
		1	25	23.88	23.87	23.65
		1	49	23.67	23.56	23.63
	QPSK	25	0	22.70	22.70	22.77
		25	13	22.69	22.70	22.78
10MHz		25	25	22.59	22.71	22.72
		50	0	22.69	22.73	22.71
		1	0	23.29	23.30	23.27
	16QAM	1	25	23.29	23.35	23.28
	IOQAIVI	1	49	23.30	23.30	23.29
		50	0	21.11	21.11	21.11
Bandwidth	Modulation	RB size	RB	Char	nnel/Frequency(l	MHz)
Bandwidth	modulation	RD SIZE	offset	20025/1717.5	20175/1732.5	20325/1747.5
15MHz	QPSK	1	0	23.88	23.75	23.58
	Qr3N	1	38	23.89	23.88	23.67

Report No.: RXA1412-0289SAR01R3

Page 43 of 189

		1	74	23.68	23.57	23.64
		36	0	22.71	22.71	22.78
		36	18	22.71	22.71	22.79
		36	39	22.60	22.72	22.73
		75	0	22.70	22.74	22.72
		1	0	23.30	23.31	23.29
	160 4 14	1	38	23.30	23.36	23.29
	16QAM	1	74	23.31	23.32	23.31
		75	0	21.12	21.12	21.12
Bandwidth	Madulation	RB size	RB	Channel/Frequency(MHz)		MHz)
Bandwidth	Modulation	RD SIZE	offset	20050/1720	20175/1732.5	20300/1745
	QPSK	1	0	23.78	23.65	23.48
		1	50	23.79	23.78	23.87
		1	99	23.79	23.47	23.54
		50	0	22.61	22.61	22.68
		50	25	22.61	22.61	22.69
20MHz		50	50	22.50	22.62	22.63
		100	0	22.60	22.64	22.62
		1	0	23.20	23.21	23.19
	16QAM	1	50	23.20	23.26	23.19
		1	99	23.21	23.21	23.20
		100	0	21.52	21.52	21.52

LTE	FDD Band 7			Cond	Conducted Power(dBm)		
Bandwidth	Madulation	RB	DP offoot	Channel/Frequency(MHz)			
Bandwidth	Modulation	size	RD UIISEL	20775/2502.5	21100/2535	21425/2567.5	
		1	0	21.61	21.77	21.81	
		1	13	21.38	21.77	21.78	
		1	24	21.50	21.76	21.61	
	QPSK	12	0	20.76	20.85	20.78	
		12	6	20.72	20.95	20.71	
5MHz		12	13	20.67	20.75	20.66	
		25	0	20.67	20.71	20.71	
	16QAM	1	0	20.41	20.43	20.39	
		1	13	20.41	20.43	20.29	
		1	24	20.39	20.35	20.28	
		25	zeRB offset $20775/2502.5$ $21100/2535$ $21425/2502.5$ 10 21.61 21.77 21.50 113 21.38 21.77 21.50 124 21.50 21.76 21.50 20 20.76 20.85 20.50 26 20.72 20.95 20.50 213 20.67 20.75 20.50 250 20.41 20.43 20.50 113 20.41 20.43 20.50 124 20.39 20.35 20.50 25019.8519.5519.5026019.8519.5519.5010 21.60 21.76 21.400 10 21.60 21.76 21.50 125 21.37 21.76 21.50	19.65			
Bandwidth	Modulation	RB	DR offect	Chan	nel/Frequency	(MHz)	
Bandwidth	wouldtion	size	RD UIISEL	20800/2505	21100/2535	21400/2565	
		1	0	21.60	21.76	21.80	
10MHz	QPSK	1	25	21.37	21.76	21.77	
		1	49	21.49	21.75	21.60	

Report No.: RXA1412-0289SAR01R3

Page 44 of 189

		25	0	20.75	20.84	20.77
		25	13	20.71	20.94	20.70
		25	25	20.66	20.74	20.65
		50	0	20.66	20.70	20.70
		1	0	20.40	20.42	20.38
	100414	1	25	20.40	20.42	20.28
	16QAM	1	49	20.38	20.34	20.27
		50	0	19.84	19.54	19.64
Dendwidth	Madulation	RB	DD offeet	Chan	nel/Frequency	(MHz)
Bandwidth	Modulation	size	RB offset	20825/2507.5	21100/2535	21375/2562.5
		1	0	21.60	21.77	21.80
		1	38	21.37	21.76	21.78
		1	74	21.49	21.75	21.60
	QPSK	36	0	20.76	20.84	20.78
		36	18	20.71	20.94	20.71
15MHz		36	39	20.66	20.74	20.66
		75	0	20.66	20.70	20.70
	16QAM	1	0	20.40	20.43	20.38
		1	38	20.40	20.43	20.29
		1	74	20.39	20.34	20.27
		75	0	19.85	19.55	19.65
Bandwidth	Modulation	RB	RB offset	Chan	nel/Frequency	(MHz)
Banuwiuth	WOULIALION	size	RD UIISEL	20850/2510	21100/2535	21350/2560
		1	0	21.51	21.68	21.71
		1	50	21.28	21.67	21.69
		1	99	21.40	21.66	21.51
	QPSK	50	0	20.67	20.75	20.69
		50	25	20.62	20.85	20.62
20MHz		50	50	20.57	20.65	20.57
		100	0	20.57	20.61	20.61
		1	0	20.31	20.34	20.29
	160 ^ \ \	1	50	20.31	20.34	20.20
	16QAM	1	99	20.30	20.25	20.18
		100	0	19.76	19.46	19.56

Report No.: RXA1412-0289SAR01R3

Page 45 of 189

	Conducted Power(dBm)					
ВТ	Channel/Frequency(MHz)					
	Ch 0/2402 MHz	Ch 39/2441 MHz	Ch 78/2480 MHz			
GFSK	5.21	5.41	1.45			
π/4DQPSK	2.72	2.83	-1.05			
8DPSK	2.92	3.03	-0.89			
BT 4.0	Ch 0/2402 MHz	Ch 19/2440 MHz	Ch 39/2480 MHz			
GFSK	1.09	1.80	-1.85			

Mada	Channel/	Data rate	Conducted Power
Mode	Frequency(MHz)	(Mbps)	(dBm)
		1	15.28
	1/2/12	2	15.05
802.11b	1/2412	5.5	14.89
002.110		11	14.58
	6/2437	1	14.19
	11/2462	1	14.26
		6	11.14
		9	10.94
		12	10.69
	1/2412	18	(dBm) 15.28 15.05 14.89 14.58 14.19 14.26 11.14 10.94
802.11g	1/2412	24	9.92
002.TTy		36	9.28
		48	8.73
		54	8.57
	6/2437	6	10.56
	11/2462	6	10.72
		MCS0	10.16
		MCS1	9.68
		MCS2	9.28
	1/2412	MCS3	8.92
802.11n HT20	1/2412	MCS4	(Mbps)(dBm)115.28215.055.514.891114.58114.19114.26611.14910.941210.691810.33249.92369.28488.73548.57610.56610.72MCS010.16MCS19.68MCS38.92MCS48.43MCS57.87MCS67.66MCS77.42
002.1111 1120		MCS5	
		(Mbps) (dBm) 1 15.28 2 15.05 5.5 14.89 11 14.58 1 14.19 1 14.26 6 11.14 9 10.94 12 10.69 18 10.33 24 9.92 36 9.28 48 8.73 54 8.57 6 10.56 6 10.72 MCS0 10.16 MCS1 9.68 MCS2 9.28 MCS3 8.92 MCS4 8.43 MCS5 7.87 MCS6 7.66 MCS7 7.42	
		MCS7	7.42
	6/2437	MCS0	9.61
	11/2462	MCS0	9.78

7.2. Standalone SAR Test Exclusion Considerations

Per FCC KDB 447498 D01, the SAR exclusion threshold for distances <50mm is defined by the following equation:

(max. power of channel, including tune-up tolerance, mW) (min. test separation distance, mm) *√ Frequency (GHz) ≤3.0

Band	Configuration	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Calculation Result	SAR Exclusion Thresholds	Standalone SAR
Dhuataath	Head	2480	7	5	1.58	3.0	No
Bluetooth	Body	2480	7	10	0.79	3.0	No
Wifi	Head	2462	15.4	5	10.88	3.0	Yes
2.4GHz	Body	2462	15.4	10	5.44	3.0	Yes

7.3. SAR Test Results

7.3.1. GSM 850

Table 14: SAR Values [GSM 850 (GSM/GPRS/EGPRS)]

		•		` 	/.	Duift				
_	Channel/			Maximum	Conducted	Drift ± 0.21dB	I	imit SAR	_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	Time slot	Duty Cycle	2	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
				Test I	Position of He	ead				
Left/Cheek	190/836.6	GSM	1:8.3	33.5	32.40	-0.020	0.567	1.29	0.730	/
Left/Tilt	190/836.6	GSM	1:8.3	33.5	32.40	-0.090	0.415	1.29	0.535	/
Right/Cheek	190/836.6	GSM	1:8.3	33.5	32.40	-0.064	0.525	1.29	0.676	/
Right/Tilt	190/836.6	GSM	1:8.3	33.5	32.40	-0.170	0.428	1.29	0.551	/
	1		Wors	st Case Pos	ition of Head	with Battery	/ 2	1		
Left/Cheek	190/836.6	GSM	1:8.3	33.5	32.40	-0.076	0.601	1.29	0.774	Figure19
	1		Те	st position o	of Body (Dista	ance 10mm)				
Back Side	190/836.6	4 Txslots	1:2.07	28.5	28.10	-0.036	0.695	1.10	0.762	/
	251/848.8	4 Txslots	1:2.07	28.5	28.13	-0.040	0.692	1.09	0.754	/
Front Side	190/836.6	4 Txslots	1:2.07	28.5	28.10	-0.020	0.801	1.10	0.878	/
	128/824.2	4 Txslots	1:2.07	28.5	28.05	0.030	1.070	1.11	1.187	Figure20
Left Edge	190/836.6	4 Txslots	1:2.07	28.5	28.10	-0.190	0.602	1.10	0.660	/
Right Edge	190/836.6	4 Txslots	1:2.07	28.5	28.10	0.100	0.626	1.10	0.686	/
Top Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bottom Edge	190/836.6	4 Txslots	1:2.07	28.5	28.10	0.026	0.332	1.10	0.364	/
	1	Wors	t Case I	Position of I	Body with EG	PRS (Distar	nce 10mm)	1		
Front Side	128/824.2	4 Txslots	1:2.07	28.5	27.92	-0.010	0.836	1.14	0.955	/
	1	Worst	Case P	osition of B	ody with Batt	tery 2 (Dista	nce 10mm)	1		
Front Side	128/824.2	4 Txslots	1:2.07	28.5	28.05	-0.070	0.654	1.11	0.725	/
	1	,	Worst C	Case Positio	on of Body (1 ^s	^t Repeated	SAR)	1		
Front Side	128/824.2	4 Txslots	1:2.07	28.5	28.05	-0.130	0.980	1.11	1.087	/
Note: 1.The val	ue with blue c	olor is the	maximu	m SAR Value	e of each test	band.		•		
	•				to account for				U	
					aluated witho			o the devi	ce. Since th	e reported
SAR was ≤	≤ 1.2 W/kg, no	o additional	SAR ev	aluations us	ing a headset	cable were r	equired.			

Table 15: SAR Measurement Variability Results [GSM 850 (GSM/GPRS/EGPRS)]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Front Side	128/824.2	1.070	0.980	1.09	N/A	N/A

Note: 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

7.3.2. GSM 1900

Table 16: SAR Values [GSM 1900(GSM/GPRS/EGPRS)]

_	Channel/		Duty		Conducted	Drift \pm 0.21dB	L	imit SAR	_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	ncy slot C		Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
				Test	Position of He	ead				
Left/Cheek	661/1880	GSM	1:8.3	30.5	30.15	0.034	0.365	1.08	0.396	/
Left/Tilt	661/1880	GSM	1:8.3	30.5	30.15	-0.190	0.146	1.08	0.158	/
Right/Cheek	661/1880	GSM	1:8.3	30.5	30.15	0.084	0.420	1.08	0.455	1
Right/Tilt	661/1880	GSM	1:8.3	30.5	30.15	-0.095	0.158	1.08	0.171	1
			Wors	st Case Pos	ition of Head	with Battery	/ 2			
Right/Cheek	661/1880	GSM	1:8.3	30.5	30.15	-0.090	0.451	1.08	0.489	Figure21
			Te	st position	of Body (Dista	ance 10mm)		1		
	810/1909.8	4Txslots	1:2.07	26.5	25.52	-0.040	0.864	1.25	1.083	1
Back Side	661/1880	4Txslots	1:2.07	26.5	25.57	-0.190	0.952	1.24	1.179	Figure22
	512/1850.2	4Txslots	1:2.07	26.5	25.65	0.110	0.955	1.22	1.161	1
	810/1909.8	4Txslots	1:2.07	26.5	25.52	-0.020	0.650	1.25	0.815	1
Front Side	661/1880	4Txslots	1:2.07	26.5	25.57	-0.050	0.699	1.24	0.866	1
	512/1850.2	4Txslots	1:2.07	26.5	25.65	0.030	0.726	1.22	0.883	1
Left Edge	661/1880	4Txslots	1:2.07	26.5	25.57	-0.037	0.214	1.24	0.265	1
Right Edge	661/1880	4Txslots	1:2.07	26.5	25.57	-0.170	0.243	1.24	0.301	1
Top Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bottom Edge	661/1880	4Txslots	1:2.07	26.5	25.57	-0.023	0.437	1.24	0.541	1
		Wors	t Case I	Position of I	Body with EG	PRS (Distar	nce 10mm)			
Back Side	661/1880	4Txslots	1:2.07	26.5	25.48	0.040	0.930	1.26	1.176	1
		Worst	Case P	osition of B	ody with Bat	tery 2 (Dista	nce 10mm)	1		
Back Side	661/1880	4Txslots	1:2.07	26.5	25.57	0.100	0.899	1.24	1.114	1
	<u> </u>	,	Worst C	Case Positio	on of Body (1 ^s	t Repeated	SAR)			
Back Side	512/1850.2	4Txslots	1:2.07	26.5	25.65	0.010	0.891	1.22	1.084	1

3. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

Table 17: SAR Measurement Variability Results [GSM 1900 (GSM/GPRS/EGPRS)]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Back Side	512/1850.2	0.955	0.891	1.07	N/A	N/A

Note: 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No.: RXA1412-0289SAR01R3

Page 51 of 189

7.3.3. UMTS Band II

Table 18: SAR Values [UMTS Band II (WCDMA/HSDPA/HSUPA)]

	Channel/			Maximum	Conducted	Drift ± 0.21dB	Limit SAR _{1g} 1.6 W/kg				
Test Position	Frequency (MHz)	Channel Type	Duty Cycle	2	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results	
				Test Pos	sition of Head	ł					
	9538/1907.6	RMC 12.2K	1:1	24	23.71	-0.020	0.830	1.07	0.887	/	
Left/Cheek	9400/1880	RMC 12.2K	1:1	24	23.81	0.020	0.835	1.04	0.872	1	
	9262/1852.4	RMC 12.2K	1:1	24	23.62	-0.040	0.886	1.09	0.967	Figure23	
Left/Tilt	9400/1880	RMC 12.2K	1:1	24	23.81	0.010	0.274	1.04	0.286	1	
	9538/1907.6	RMC 12.2K	1:1	24	23.71	0.067	0.855	1.07	0.914	1	
Right/Cheek	9400/1880	RMC 12.2K	1:1	24	23.81	0.184	0.798	1.04	0.834	/	
	9262/1852.4	RMC 12.2K	1:1	24	23.62	0.040	0.934	1.09	1.019	Figure24	
Right/Tilt	9400/1880	RMC 12.2K	1:1	24	23.81	-0.050	0.363	1.04	0.379	1	
			Worst C	Case Positio	on of Head wit	th Battery 2	1		I		
Right/Cheek	9262/1852.4	RMC 12.2K	1:1	24	23.62	0.020	0.875	1.09	0.955	/	
		1	Test	position of I	Body (Distand	ce 10mm)	1	1	I	1	
	9538/1907.6	RMC 12.2K	1:1	24	23.71	0.030	1.120	1.07	1.197	Figure25	
Back Side	9400/1880	RMC 12.2K	1:1	24	23.81	0.130	1.080	1.04	1.128	1	
	9262/1852.4	RMC 12.2K	1:1	24	23.62	0.160	1.080	1.09	1.179	1	
Front Side	9400/1880	RMC 12.2K	1:1	24	23.81	0.010	0.660	1.04	0.690	/	
Left Edge	9400/1880	RMC 12.2K	1:1	24	23.81	0.000	0.232	1.04	0.242	/	
Right Edge	9400/1880	RMC 12.2K	1:1	24	23.81	-0.150	0.245	1.04	0.256	1	
Top Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Bottom Edge	9400/1880	RMC 12.2K	1:1	24	23.81	-0.040	0.637	1.04	0.665	/	
		Worst Ca	se Pos	ition of Bod	y with Batter	y 2 (Distanc	e 10mm)	1	I	1	
Back Side	9538/1907.6	RMC 12.2K	1:1	24	23.71	0.029	1.120	1.07	1.197	/	
		Wo	orst Cas	e Position o	of Body (1 st R	epeated SA	R)	I	1	ı	
Back Side	9538/1907.6	RMC 12.2K	1:1	24	23.71	0.010	1.110	1.07	1.187	/	

. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

Table 19: SAR Measurement Variability Results [UMTS Band II (WCDMA/HSDPA/HSUPA)]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Back Side	9538/1907.6	1.12	1.11	1.01	N/A	N/A

Note: 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Page 53 of 189

7.3.4. UMTS Band V

Table 20: SAR Values [UMTS Band V (WCDMA/HSDPA/HSUPA)]

Toot	Channel/	Channel	Dute	Maximum	Conducted	Drift ± 0.21dB	I	imit SAR	a _{1g} 1.6 W/kg				
Test Position	Frequency (MHz)	Channel Type	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results			
Test Position of Head													
Left/Cheek 4183/836.6 RMC 12.2K 1:1 23.5 22.97 0.010 0.654 1.13 0.739 Figure 26													
Left/Tilt	4183/836.6	RMC 12.2K	1:1	23.5	22.97	0.050	0.523	1.13	0.591	/			
Right/Cheek	4183/836.6	RMC 12.2K	1:1	23.5	22.97	-0.190	0.599	1.13	0.677	/			
Right/Tilt	4183/836.6	RMC 12.2K	1:1	23.5	22.97	-0.037	0.424	1.13	0.479	/			
Worst Case Position of Head with Battery 2													
Left/Cheek	4183/836.6	RMC 12.2K	1:1	23.5	22.97	-0.087	0.637	1.13	0.720	/			
			Test	position of I	Body (Distand	ce 10mm)							
Back Side	4183/836.6	RMC 12.2K	1:1	23.5	22.97	0.000	0.494	1.13	0.558	/			
Front Side	4183/836.6	RMC 12.2K	1:1	23.5	22.97	0.010	0.618	1.13	0.698	/			
Left Edge	4183/836.6	RMC 12.2K	1:1	23.5	22.97	-0.080	0.429	1.13	0.485	/			
Right Edge	4183/836.6	RMC 12.2K	1:1	23.5	22.97	0.010	0.419	1.13	0.473	/			
Top Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Bottom Edge	4183/836.6	RMC 12.2K	1:1	23.5	22.97	0.040	0.220	1.13	0.249	/			
	Worst Case Position of Body with Battery 2 (Distance 10mm)												
Front Side	4183/836.6	RMC 12.2K	1:1	23.5	22.97	-0.010	0.649	1.13	0.733	Figure27			
Note: 1.The va	lue with blue col	or is the maxim	um SAF	R Value of ea	ach test band.								

2. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

7.3.5. LTE Band 2

Table 21: SAR Values (LTE Band 2/20MHz)

	Channel/	-	Maximum	Conducted	Drift ± 0.21dB	L	imit SAR	_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	RB Offset	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
			Test Posi	tion of Head	(1RB,QPS	K)			
	19100/1900	50	24	23.47	0.130	0.861	1.13	0.973	Figure28
Left/Cheek	18900/1880	0	24	23.31	0.034	0.805	1.17	0.944	/
	18700/1860	0	24	23.88	0.060	0.761	1.03	0.783	/
Left/Tilt	19100/1900	50	24	23.47	-0.034	0.239	1.13	0.270	1
	19100/1900	50	24	23.47	0.050	0.925	1.13	1.046	1
Right/Cheek	18900/1880	0	24	23.31	0.038	0.865	1.17	1.014	1
	18700/1860	0	24	23.88	0.031	0.773	1.03	0.795	1
Right/Tilt	19100/1900	50	24	23.47	-0.021	0.301	1.13	0.340	1
		L	Test Positio	on of Head (50% RB,QP	SK)			
Left/Cheek	18900/1880	25	23	22.64	-0.040	0.678	1.09	0.736	/
Left/Tilt	18900/1880	25	23	22.64	0.070	0.158	1.09	0.172	/
	19100/1900	25	23	22.23	0.080	0.644	1.19	0.769	/
Right/Cheek	18900/1880	25	23	22.64	0.130	0.760	1.09	0.825	/
	18700/1860	0	23	22.54	-0.070	0.635	1.11	0.705	/
Right/Tilt	18900/1880	25	23	22.64	-0.072	0.179	1.09	0.194	/
		Worst Ca	se Position	of Head wit	h Battery 2	(1RB,QPSK)		
Right/Cheek	19100/1900	50	24	23.47	0.004	0.968	1.13	1.094	Figure29
		Test p	osition of B	ody (1RB,QF	PSK ,Distan	ice 10mm)			1
	19100/1900	50	24	23.47	0.020	1.010	1.13	1.142	/
Back Side	18900/1880	0	24	23.31	-0.037	1.020	1.17	1.196	Figure30
	18700/1860	0	24	23.88	0.074	1.100	1.03	1.131	/
	19100/1900	50	24	23.47	0.090	0.870	1.13	0.983	/
Front Side	18900/1880	0	24	23.31	0.050	0.885	1.17	1.038	1
	18700/1860	0	24	23.88	-0.056	0.918	1.03	0.944	1
Left Edge	19100/1900	50	24	23.47	-0.169	0.325	1.13	0.367	/
Right Edge	19100/1900	50	24	23.47	0.053	0.352	1.13	0.398	1
Top Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bottom Edge	19100/1900	50	24	23.47	0.110	0.535	1.13	0.605	1
		Test pos	sition of Bo	dy (50%RB,0	QPSK ,Dista	ance 10mm)	I		
	19100/1900	25	23	22.23	0.050	0.781	1.19	0.932	1
Back Side	18900/1880	25	23	22.64	-0.010	0.775	1.09	0.841	1

Report No.: RXA1412-0289SAR01R3

Page 55 of 189

			1			i	1 1		r		
	18700/1860	0	23	22.54	-0.020	0.804	1.11	0.893	/		
Front Side	18900/1880	25	23	22.64	-0.100	0.664	1.09	0.721	/		
Left Edge	18900/1880	25	23	22.64	-0.110	0.192	1.09	0.208	/		
Right Edge	18900/1880	25	23	22.64	-0.080	0.273	1.09	0.296	/		
Top Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Bottom Edge	18900/1880	25	23	22.64	-0.080	0.455	1.09	0.494	/		
	Worst C	Case Posit	ion of Body	with Battery	/ 2 (1RB,QF	PSK ,Distand	ce 10mm)				
Back Side	18900/1880	0	24	23.31	0.02	0.988	1.17	1.158	/		
Worst Case Position of Body (1st Repeated SAR)											
Back Side	18700/1860	0	24	23.88	0.02	1.110	1.03	1.141	1		
Note: 1.The value with blue color is the maximum SAR Value of each test band.											

Table 22: SAR Measurement Variability Results [LTE Band 2/20MHz]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Back Side	18700/1860	1.10	1.11	1.01	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

7.3.6. LTE Band 4

Table 23: SAR Values (LTE Band 4/20MHz)

Toot	Channel/	, DB	Maximum Allowed	Conducted	Drift \pm 0.21dB	Lim	nit SAR _{1g} 1	l.6 W/kg			
Test Position	Frequency (MHz)	RB Offset	Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results		
			Test Pos	sition of Hea	d (1RB,QPS	SK)					
Left/Cheek	20175/1732.5	50	24	23.78	0.150	0.648	1.05	0.681	/		
Left/Tilt	20175/1732.5	50	24	23.78	-0.020	0.248	1.05	0.261	/		
	20300/1745	50	24	23.87	-0.026	0.843	1.03	0.870	/		
Right/Cheek	20175/1732.5	50	24	23.78	0.130	0.775	1.05	0.815	/		
	20050/1720	50	24	23.79	-0.080	0.765	1.05	0.803	/		
Right/Tilt	20175/1732.5	50	24	23.78	-0.120	0.305	1.05	0.321	/		
			Test Posit	ion of Head (50% RB,QI	PSK)					
Left/Cheek	20300/1745	25	23	22.69	0.130	0.508	1.07	0.546	/		
Left/Tilt	20300/1745	25	23	22.69	0.030	0.215	1.07	0.231	/		
Right/Cheek	20300/1745	25	23	22.69	-0.050	0.662	1.07	0.711	/		
Right/Tilt	20300/1745	25	23	22.69	-0.051	0.239	1.07	0.257	/		
Worst Case Position of Head with Battery 2 (1RB,QPSK)											
Right/Cheek	20300/1745	50	24	23.87	0.056	0.873	1.03	0.901	Figure31		
		Test	position of I	Body (1RB,Q	PSK ,Dista	nce 10mm)					
	20300/1745	50	24	23.87	0.020	1.150	1.03	1.186	/		
Back Side	20175/1732.5	50	24	23.78	0.030	1.130	1.05	1.188	/		
	20050/1720	50	24	23.79	0.039	1.120	1.05	1.175	/		
	20300/1745	50	24	23.87	0.027	0.900	1.03	0.928	/		
Front Side	20175/1732.5	50	24	23.78	-0.044	0.876	1.05	0.921	/		
	20050/1720	50	24	23.79	0.053	0.850	1.05	0.892	/		
Left Edge	20175/1732.5	50	24	23.78	0.042	0.170	1.05	0.179	/		
Right Edge	20175/1732.5	50	24	23.78	-0.049	0.284	1.05	0.299	/		
Top Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Bottom Edge	20175/1732.5	50	24	23.78	-0.030	0.633	1.05	0.666	/		
		Test po	osition of Be	ody (50%RB,	QPSK ,Dist	tance 10mm)	•				
	20300/1745	25	23	22.69	-0.020	0.888	1.07	0.954	1		
Back Side	20175/1732.5	50	23	22.62	-0.070	0.874	1.09	0.955	/		
	20050/1720	0	23	22.61	0.050	0.850	1.09	0.930	/		
Front Side	20300/1745	25	23	22.69	0.180	0.699	1.07	0.751	/		
Left Edge	20300/1745	25	23	22.69	-0.050	0.148	1.07	0.159	/		
Right Edge	20300/1745	25	23	22.69	-0.021	0.245	1.07	0.263	/		

Report No.: RXA1412-0289SAR01R3

Page 57 of 189

Top Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Bottom Edge	20300/1745	25	23	22.69	0.021	0.532	1.07	0.571	/		
Worst Case Position of Body with Battery 2 (1RB,QPSK ,Distance 10mm)											
Back Side	20175/1732.5	50	24	23.78	0.020	1.140	1.05	1.199	Figure32		
	Worst Case Position of Body (1 st Repeated SAR)										
Back Side	20300/1745	50	24	23.87	0.100	1.130	1.03	1.166	/		
Note: 1.The va	Note: 1.The value with blue color is the maximum SAR Value of each test band.										

Table 24: SAR Measurement Variability Results [LTE Band 4/20MHz]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Back Side	20300/1745	1.15	1.13	1.02	N/A	N/A

Note: 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

7.3.7. LTE Band 7

Table 25: SAR Values (LTE Band 7/20MHz)

_	Channel/		Maximum	Conducted	Drift ± 0.21dB	Lin	nit SAR _{1g} 1	l.6 W/kg	
Test Position	Frequency (MHz)	RB Offset	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
			Test Pos	ition of Head	d (1RB,QPS	iK)			
Left/Cheek	21350/2560	0	22.5	21.71	-0.074	0.529	1.20	0.635	1
Left/Tilt	21350/2560	0	22.5	21.71	0.041	0.252	1.20	0.302	1
Right/Cheek	21350/2560	0	22.5	21.71	-0.058	0.569	1.20	0.683	1
Right/Tilt	21350/2560	0	22.5	21.71	0.16	0.275	1.20	0.330	1
	·		Test Posit	ion of Head (50% RB,QF	PSK)	•		
Left/Cheek	21100/2535	25	21.5	20.85	0.129	0.381	1.16	0.442	/
Left/Tilt	21100/2535	25	21.5	20.85	-0.02	0.174	1.16	0.202	/
Right/Cheek	21100/2535	25	21.5	20.85	0.105	0.387	1.16	0.449	/
Right/Tilt	21100/2535	25	21.5	20.85	0.04	0.199	1.16	0.231	/
		Worst C	ase Positio	n of Head wi	th Battery 2	2 (1RB,QPSK)			
Right/Cheek	21350/2560	0	22.5	21.71	0.158	0.579	1.20	0.695	Figure33
		Test p	osition of I	Body (1RB,Q	PSK ,Dista	nce 10mm)			
Back Side	21350/2560	0	22.5	21.71	-0.02	0.613	1.20	0.735	/
Front Side	21350/2560	0	22.5	21.71	0.072	0.26	1.20	0.312	/
Left Edge	21350/2560	0	22.5	21.71	0.19	0.317	1.20	0.380	/
Right Edge	21350/2560	0	22.5	21.71	-0.05	0.279	1.20	0.335	/
Top Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bottom Edge	21350/2560	0	22.5	21.71	-0.05	0.321	1.20	0.385	1
		Test po	sition of Bo	ody (50%RB,	QPSK ,Dist	ance 10mm)	•		
Back Side	21100/2535	25	21.5	20.85	0.06	0.441	1.16	0.512	/
Front Side	21100/2535	25	21.5	20.85	0.08	0.212	1.16	0.246	/
Left Edge	21100/2535	25	21.5	20.85	0.09	0.257	1.16	0.298	1
Right Edge	21100/2535	25	21.5	20.85	0.06	0.198	1.16	0.230	/
Top Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bottom Edge	21100/2535	25	21.5	20.85	0.18	0.225	1.16	0.261	1
	Worst	Case Posi	tion of Bod	y with Batte	ry 2 (1RB,Q	PSK ,Distance 1	10mm)		
	21350/2560	0	22.5	21.71	0.032	0.764	1.20	0.917	1
Back Side	21100/2535	0	22.5	21.68	-0.033	0.759	1.21	0.918	Figure34
	20850/2510	0	22.5	21.51	0.010	0.717	1.26	0.901	/
Note: 1.The va	alue with blue co	or is the m	aximum SAF	R Value of ea	ch test band	l.			

Page 59 of 189

7.3.8. WiFi

Table 26: SAR Values(802.11b/g/n)

	Channel/			Maximum Allowed	Conducted	Drift \pm 0.21dB	L	imit of S	AR 1.6 W/kç	J
Test Position	Frequency (MHz)	Service	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
				Test I	Position of H	ead				
Left/Cheek	1/2412	DSSS	1:1	15.4	15.28	0.058	0.743	1.03	0.764	1
Left/Tilt	1/2412	DSSS	1:1	15.4	15.28	0.047	0.368	1.03	0.378	/
Right/Cheek	1/2412	DSSS	1:1	15.4	15.28	0.029	0.281	1.03	0.289	1
Right/Tilt	1/2412	DSSS	1:1	15.4	15.28	0.184	0.239	1.03	0.246	1
Worst Case Position of Head with Battery 2										
Left/Cheek	1/2412	DSSS	1:1	15.4	15.28	0.036	0.747	1.03	0.768	Figure35
		Te	st posit	ion of Body	with Battery	1 (Distanc	e 10mm)	•		
Back Side	1/2412	DSSS	1:1	15.4	15.28	0.151	0.205	1.03	0.211	/
Front Side	1/2412	DSSS	1:1	15.4	15.28	0.196	0.15	1.03	0.154	/
Left Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Right Edge	1/2412	DSSS	1:1	15.4	15.28	0.028	0.0912	1.03	0.094	1
Top Edge	1/2412	DSSS	1:1	15.4	15.28	0.049	0.12	1.03	0.123	1
Bottom Edge	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Worst Case Position of Body with Battery 2 (Distance 10mm)										
Back Side	1/2412	DSSS	1:1	15.4	15.28	0.168	0.212	1.03	0.218	Figure36

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. KDB 248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than measured on the corresponding 802.11b channels.

3. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

7.4. Simultaneous Transmission Conditions

Air- Interface	Band (MHz)	Туре	SimultaneousTransmissions	Voice Over Digital Transport (Data)	
	850	Voice			
GSM	1900	Voice	Yes	NA	
GSIM	GPRS	Data	BT or WiFi	INA	
	EGPRS	Data			
	UMTS Band II	Voice			
	UMTS Band V	Voice			
	RMC	Data			
WCDMA	HSDPA	Data	Yes BT or WiFi	NA	
	HSUPA	Data			
	DC-HSDPA	Data			
	HSPA+	Data			
	Band 2	Data			
LTE	Band 4	Data	Yes BT or WiFi	NA	
	Band 7	Data			
WiFi	2450	Data	Yes GSM,GPRS,EGPRS, RMC,HSDPA,HSUPA,DC-HSD PA,HSPA+, LTE	Yes	
Bluetooth (BT)	2450	Data	Yes GSM,GPRS,EGPRS, RMC,HSDPA,HSUPA,DC-HSD PA,HSPA+, LTE	NA	

Report No.: RXA1412-0289SAR01R3

Page 61 of 189

When standalone SAR is not required to be measured per FCC KDB 447498 D01, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=	(max. power of channel, including tune-up tolerance, mW)	\sqrt{f} (GHz)
LStimated OAN-	(min. test separation distance, mm)	7.5

Band	Configuration	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR (W/kg)
Bluetooth	Head	2480	7	5	0.210
Bluetooth	Body	2480	7	10	0.105

Per FCC KDB 447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio = $\frac{(SAR_1 + SAR_2)^{1.5}}{(peak location separation, mm)} < 0.04$

WiFi & BT Mode

BT and WiFi antenna cannot transmit simultaneously.

Report No.: RXA1412-0289SAR01R3

Page 62 of 189

SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band V	LTE 2	LTE 4	LTE 7	BT	MAX. ΣSAR _{1g}	Peak location separation ratio
Left, Touch	0.774	0.396	0.967	0.739	0.973	0.681	0.635	0.210	1.183	NA
Left, Tilt	0.535	0.158	0.286	0.591	0.270	0.261	0.302	0.210	0.801	NA
Right, Touch	0.676	0.489	1.019	0.677	1.094	0.901	0.695	0.210	1.304	NA
Right, Tilt	0.551	0.171	0.379	0.479	0.340	0.321	0.330	0.210	0.761	NA
Back Side	0.762	1.179	1.197	0.558	1.196	1.199	0.918	0.105	1.304	NA
Front Side	1.187	0.883	0.690	0.733	1.038	0.928	0.312	0.105	1.292	NA
Left Edge	0.660	0.265	0.242	0.485	0.367	0.179	0.380	0.105	0.765	NA
Right Edge	0.686	0.301	0.256	0.473	0.398	0.299	0.335	0.105	0.791	NA
Top Edge	NA	NA	NA	NA	NA	NA	NA	0.105	0.105	NA
Bottom Edge	0.364	0.541	0.665	0.249	0.605	0.666	0.385	0.105	0.771	NA
Note: 1.The value with blue color is the maximum ΣSAR_{1g} Value.										
2 MAV 2640	-L Inline	nood CA		oppood C	۸D					

About BT and GSM/UMTS/LTE antenna

2. MAX. ΣSAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

MAX. Σ SAR_{1g} = 1.304 W/kg <1.6 W/kg, so the Simultaneous transimition SAR with volum scan are not required for BT and GSM/UMTS/LTE antenna.

SAR _{1g} (W/kg)	GSM	GSM	UMTS	UMTS	LTE	LTE	LTE		MAX.	Peak location
Test Position	850	1900	Band II	Band V	2	4	7	WiFi	ΣSAR_{1g}	separation ratio
Left, Touch	0.774	0.396	0.967	0.739	0.973	0.681	0.635	0.768	1.741	Yes
Left, Tilt	0.535	0.158	0.286	0.591	0.270	0.261	0.302	0.378	0.969	NA
Right, Touch	0.676	0.489	1.019	0.677	1.094	0.901	0.695	0.289	1.383	NA
Right, Tilt	0.551	0.171	0.379	0.479	0.340	0.321	0.330	0.246	0.797	NA
Back Side	0.762	1.179	1.197	0.558	1.196	1.199	0.918	0.218	1.417	NA
Front Side	1.187	0.883	0.690	0.733	1.038	0.928	0.312	0.154	1.341	NA
Left Edge	0.660	0.265	0.242	0.485	0.367	0.179	0.380	NA	0.660	NA
Right Edge	0.686	0.301	0.256	0.473	0.398	0.299	0.335	0.094	0.780	NA
Top Edge	NA	NA	NA	NA	NA	NA	NA	0.123	0.123	NA
Bottom Edge	0.364	0.541	0.665	0.249	0.605	0.666	0.385	NA	0.666	NA
Note: 1.The value with blue color is the maximum ΣSAR_{1g} Value. 2. MAX. ΣSAR_{1g} =Unlicensed SAR _{MAX} +Licensed SAR _{MAX}										

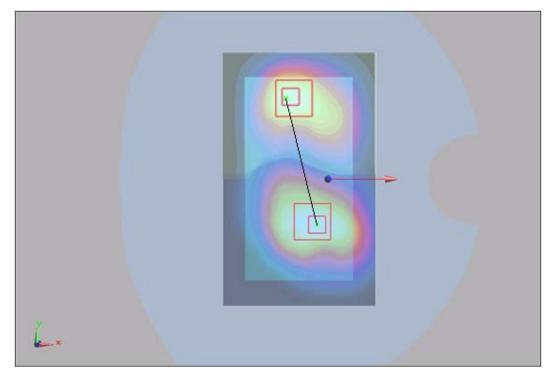
About WiFi and GSM/UMTS/LTE antenna

Report No.: RXA1412-0289SAR01R3

Page 63 of 189

Cimananeous										
SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band V	LTE 2	LTE 4	LTE 7	WiFi	MAX. ΣSAR _{1g}	Peak location separation ratio
	0.774	/	/	/	/	/	/	0.768	1.542	NA
	/	0.396	/	/	/	/	/	0.768	1.164	NA
	/	/	0.967	/	/	/	/	0.768	1.735	Yes
Left Touch	/	/	/	0.739	/	/	/	0.768	1.507	NA
	/	/	/	/	0.973	/	/	0.768	1.741	Yes
	/	/	/	/	/	0.681	/	0.768	1.449	NA
	/	1	/	/	/	/	0.635	0.768	1.403	NA

Simultaneous Transmission for test position of right touch


Report No.: RXA1412-0289SAR01R3

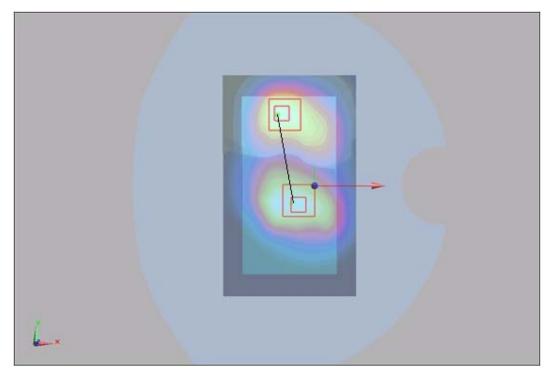
• Pair Simultaneous Transmission for UMTS Band II and WiFi

The position SAR_{UMTS Band II} is $(x_1=76.17, y_1=256.4, z_1=-173.4)$,

The position SAR_{Max.WiFi} is (x₂= 47.59, y₂=320.5,z₂= -172.9)

so the distance between the SAR_{Max. UMTS Band II} and SAR_{Max.WiFi} is 70.18mm.

The peak location separation ratio is 0.033, so the Simultaneous transimition SAR with volum scan are not required for WiFi and UMTS Band 2 antenna.


Report No.: RXA1412-0289SAR01R3

• Pair Simultaneous Transmission for LTE Band 2 and WiFi

The position SAR_{LTE 2} is $(x_1=74.34, y_1=259.3, z_1=-174.1)$,

The position SAR_{Max.WiFi} is(x_2 = 47.59, y_2 =320.5, z_2 = -172.9)

so the distance between the SAR $_{\text{Max.LTE 2}}$ and SAR $_{\text{Max.WiFi}}$ is 66.80mm.

The peak location separation ratio is 0.034, so the Simultaneous transimition SAR with volum scan are not required for WiFi and LTE 2 antenna.

Page 66 of 189

8. 700MHz to 3GHz Measurement Uncertainty

No.	source	Туре	Uncertaint y Value (%)	Probabilit y Distributio n	k	Ci	Standard Uncertai nty u _i (%)	Degree of freedom V _{eff} or v _i
1	System repetivity	А	0.5	Ν	1	1	0.5	9
			surement syst		[1	
2	-probe calibration	В	6.0	N	1	1	6.0	∞
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
4	- Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	8
5	-boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	8
6	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	8
7	- System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞
8	-readout Electronics	В	1.0	Ν	1	1	1.0	8
9	-response time	В	0.8	R	$\sqrt{3}$	1	0.5	8
10	-integration time	В	4.3	R	$\sqrt{3}$	1	2.5	8
11	-RF Ambient noise	В	3.0	R	$\sqrt{3}$	1	1.7	8
12	-RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.7	8
13	-Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	∞
14	-Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	∞
15	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	∞
		Test	sample Relat	ted				
16	-Test Sample Positioning	А	2.9	Ν	1	1	2.9	71
17	-Device Holder Uncertainty	А	4.1	Ν	1	1	4.1	5
18	- Power drift	В	5.0	R	$\sqrt{3}$	1	2.9	×
		Phy	sical paramet	er				

Report No.: RXA1412-0289SAR01R3

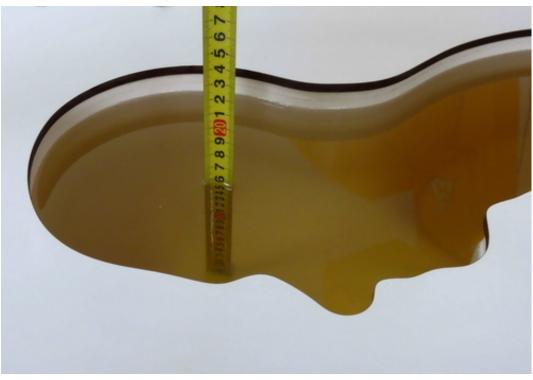
Page 67 of 189

-							•	
19	-phantom Uncertainty	В	4.0	R	$\sqrt{3}$	1	2.3	∞
20	Algorithm for correcting SAR for deviations in permittivity and conductivity	В	1.9	Ν	1	0.84	0.9	ø
21	-Liquid conductivity (measurement uncertainty)	В	2.5	Ν	1	0.71	1.8	9
22	-Liquid permittivity (measurement uncertainty)	В	2.5	Ν	1	0.26	0.7	9
23	-Liquid conductivity -temperature uncertainty	В	1.7	R	$\sqrt{3}$	0.71	0.7	8
24	-Liquid permittivity -temperature uncertainty	В	0.3	R	$\sqrt{3}$	0.26	0.05	8
Combined standard uncertainty		<i>u</i> _c =	$\sqrt{\sum_{i=1}^{24} c_i^2 u_i^2}$				11.34	
Expa of 95	nded uncertainty (confidence interval %)	u	$u_e = 2u_c$	Ν	k=	=2	22.68	

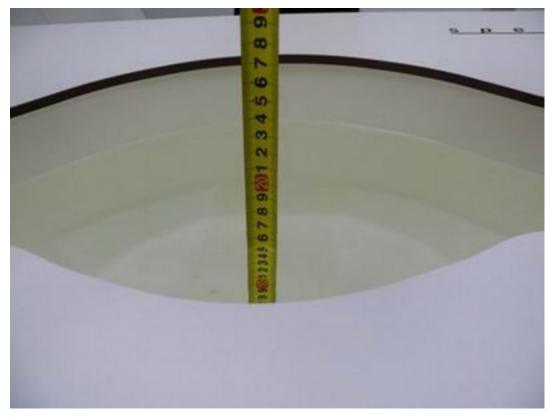
9. Main Test Instruments

Table 27:	List of Ma	ain Instruments

No.	Name	Туре	Serial Number	Calibration Date	Expiration Time	Valid Period
01	Network analyzer	E5071B	MY42404014	2014-05-26	2015-05-25	1 year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested		
03	Power meter	Agilent E4417A	GB41291714	2014-03-09	2015-03-08	1 year
04	Power sensor	Agilent N8481H	MY50350004	2014-09-24	2015-09-23	1 year
05	Power sensor	E9327A	US40441622	2015-01-02	2016-01-01	1 year
06	Signal Generator	HP 8341B	2730A00804	2014-09-02	2015-09-01	1 year
07	Dual directional coupler	778D-012	50519	2014-03-24	2015-03-23	1 year
08	Dual directional coupler	777D	50146	2014-03-24	2015-03-23	1 year
09	Amplifier	IXA-020	0401	No Calibration Requested		
10	Wideband radio communication tester	CMW 500	113645	2014-09-28	2015-09-27	1 year
11	E-field Probe	EX3DV4	3977	2014-02-17	2015-02-16	1 year
13	DAE	DAE4	1291	2014-11-14	2015-11-13	1 year
14	Validation Kit 835MHz	D835V2	4d020	2014-08-28	2017-08-27	3 years
15	Validation Kit 1750MHz	D1750V2	1033	2014-01-26	2017-01-25	3 years
16	Validation Kit 1900MHz	D1900V2	5d060	2014-09-01	2017-08-31	3 years
17	Validation Kit 2450MHz	D2450V2	786	2014-09-01	2017-08-31	3 years
18	Validation Kit 2600MHz	D2600V2	1012	2012-05-02	2015-05-01	3 years
20	Temperature Probe	JM222	AA1009129	2014-03-13	2015-03-12	1 year
21	Hygrothermograph	WS-1	64591	2014-09-25	2015-09-24	1 year


*****END OF REPORT *****

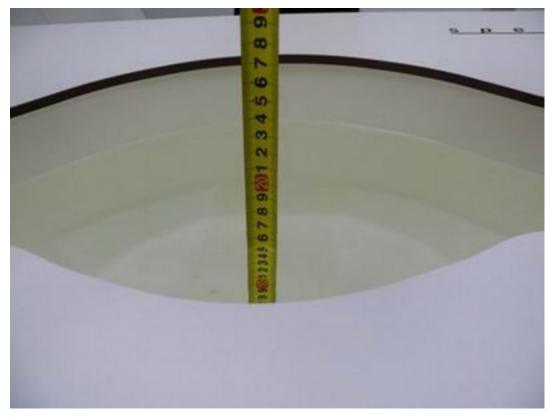
ANNEX A: Test Layout



Picture 1: Liquid depth in the flat Phantom (835MHz, 15.4cm depth)

Picture 2: Liquid depth in the head Phantom (835MHz, 15.3cm depth)

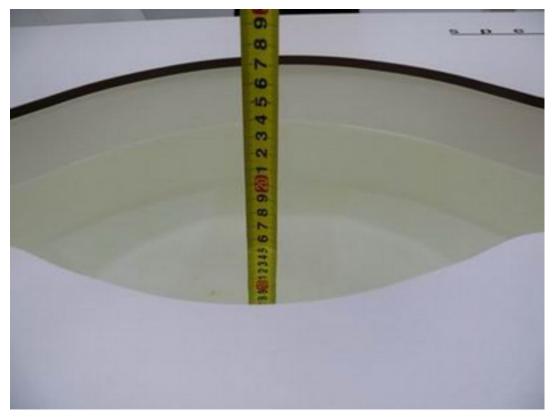
Report No.: RXA1412-0289SAR01R3



Picture 3: Liquid depth in the flat Phantom (1750 MHz, 15.2cm depth)

Picture 4: liquid depth in the head Phantom (1750 MHz, 15.3cm depth)

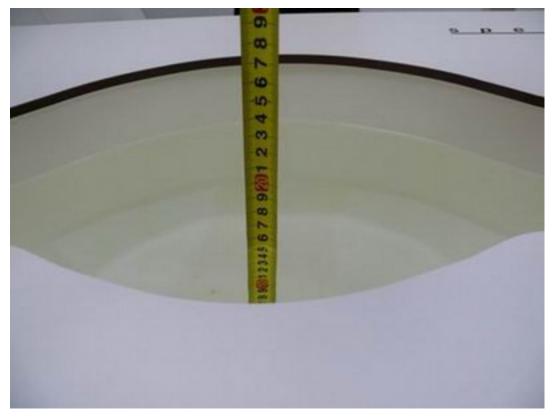
Report No.: RXA1412-0289SAR01R3



Picture 5: Liquid depth in the flat Phantom (1900 MHz, 15.2cm depth)

Picture 6: liquid depth in the head Phantom (1900 MHz, 15.3cm depth)

Report No.: RXA1412-0289SAR01R3



Picture 7: Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)

Picture 8: Liquid depth in the head Phantom (2450 MHz, 15.4cm depth)

Report No.: RXA1412-0289SAR01R3

Picture 9: Liquid depth in the flat Phantom (2600 MHz, 15.3cm depth)

Picture 10: Liquid depth in the head Phantom (2600 MHz, 15.4cm depth)

ANNEX B: System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Date: 1/8/2015 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.93 mho/m; ϵ_r = 41.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.64 mW/g d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.4 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.64 mW/g

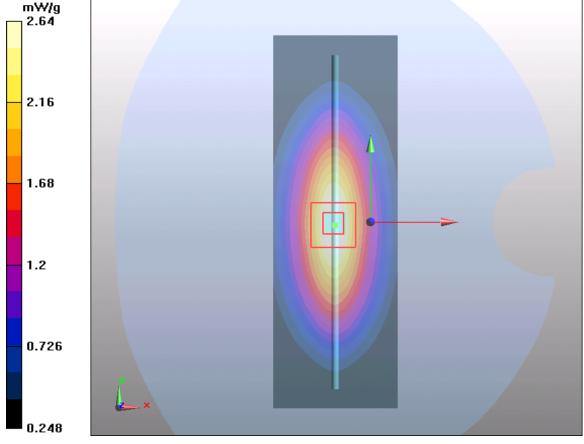


Figure 7 System Performance Check 835MHz 250mW

System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date: 1/12/2015 Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.99 mho/m; ε_r = 55.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(9.74, 9.74, 9.74); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.58 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.9 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 3.5 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.6 mW/g Maximum value of SAR (measured) = 2.6 mW/g

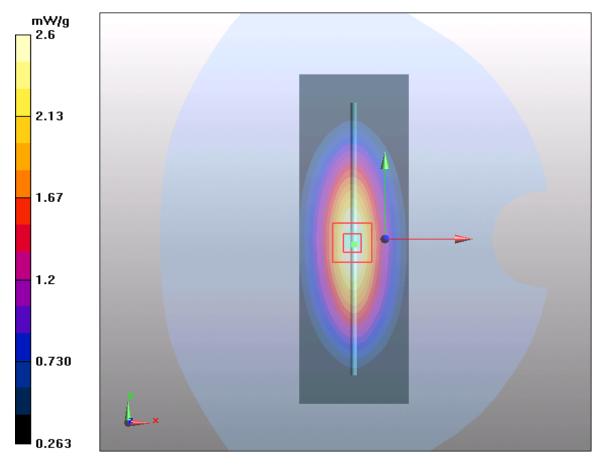


Figure 8 System Performance Check 835MHz 250Mw

ГА Technology (Shanghai) Co	., Ltd
Test Report	

Page 77 of 189

System Performance Check at 1750 MHz Head TSL

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033

Date: 1/14/2015 Communication System: CW; Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.32 mho/m; ϵ_r = 39.7; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(8.14, 8.14, 8.14); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (51x81x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 9.78 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 80 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 15.5 W/kg

SAR(1 g) = 8.95 mW/g; SAR(10 g) = 4.5 mW/g

Maximum value of SAR (measured) = 9.46 mW/g

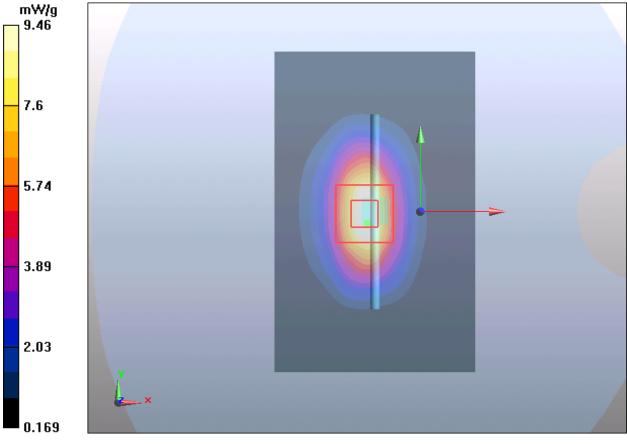


Figure 9 System Performance Check 1750MHz 250mW

System Performance Check at 1750 MHz Body TSL

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033 Date: 1/15/2015

Communication System: CW; Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.50 mho/m; ε_r = 52.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.7 °C DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.69, 7.69, 7.69); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (51x81x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 10.6 mW/g

d=10mm, Pin=250mW/Area Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.7 V/m; Power Drift = 0.097 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.24 mW/g; SAR(10 g) = 4.9 mW/g Maximum value of SAR (measured) = 10.3 mW/g

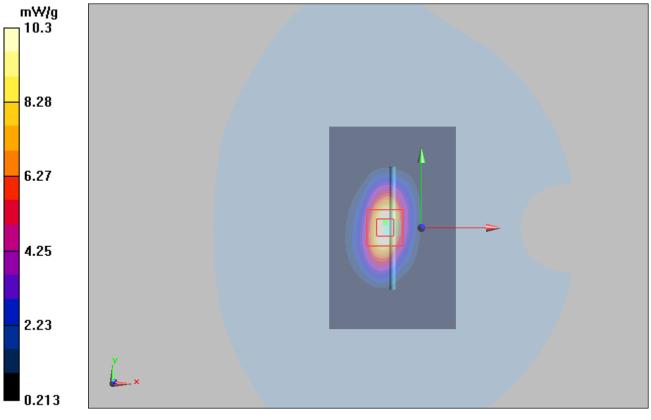


Figure 10 System Performance Check 1750MHz 250mW

TA Technology (Shanghai)	Co.,	Ltd.
Test Report		

Page 79 of 189

System Performance Check at 1900 MHz Head TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 1/9/2015 Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.43 mho/m; ϵ_r = 39.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 11.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 85.5 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.48 mW/g; SAR(10 g) = 4.9 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

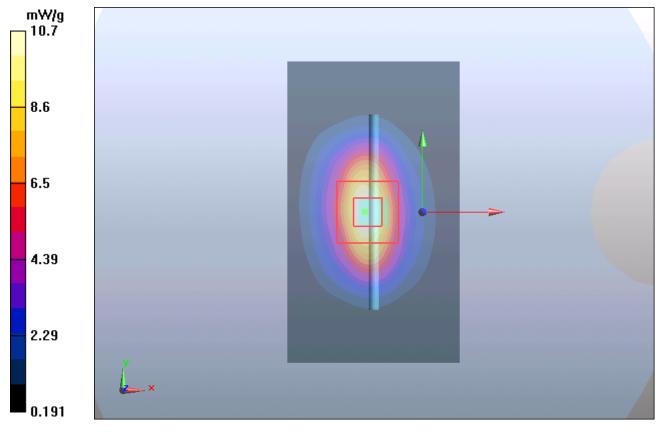


Figure 11 System Performance Check 1900MHz 250mW

TA Technology (Shanghai)	Co.,	Ltd.
Test Report		

Page 80 of 189

System Performance Check at 1900 MHz Head TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 1/11/2015 Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.44 mho/m; ϵ_r = 39.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.500mm, dy=1.500mm Maximum value of SAR (interpolated) = 12.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 87.8 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 20.1 W/kg

SAR(1 g) = 9.59 mW/g; SAR(10 g) = 5.29 mW/g

Maximum value of SAR (measured) = 11.52 mW/g

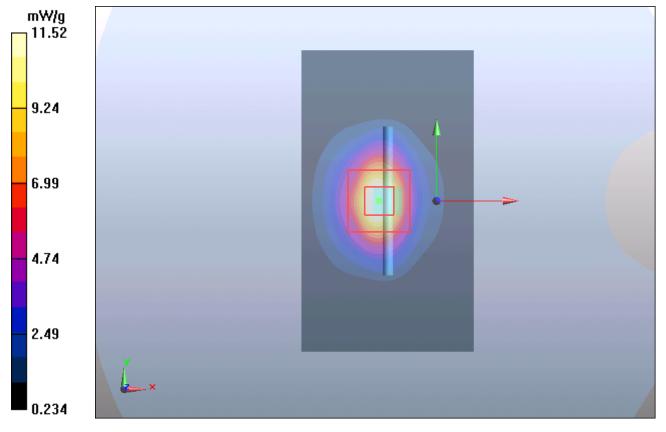


Figure 12 System Performance Check 1900MHz 250mW

System Performance Check at 1900 MHz Body TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 1/10/2015

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.52 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³

Ambient Temperature: 22.3 $^{\circ}$ Liquid Temperature: 21.5 $^{\circ}$

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

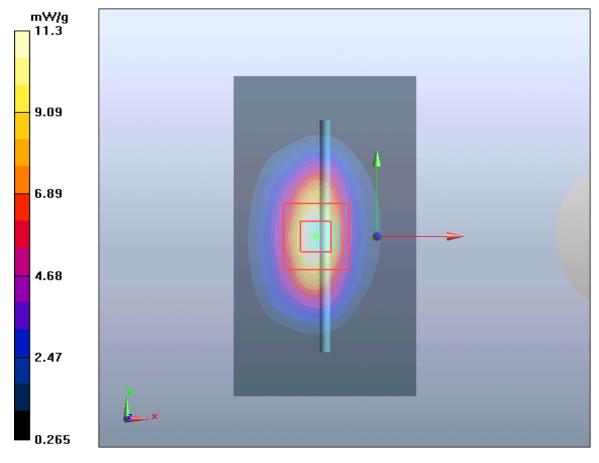
Probe: EX3DV4 - SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2/17/2014;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.2 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.3 V/m; Power Drift = 0.068 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.25 mW/g

Maximum value of SAR (measured) = 11.3 mW/g

System Performance Check at 1900 MHz Body TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 1/13/2015 Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.53 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 80.8 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.82 mW/g; SAR(10 g) = 5.2 mW/g

Maximum value of SAR (measured) = 11 mW/g

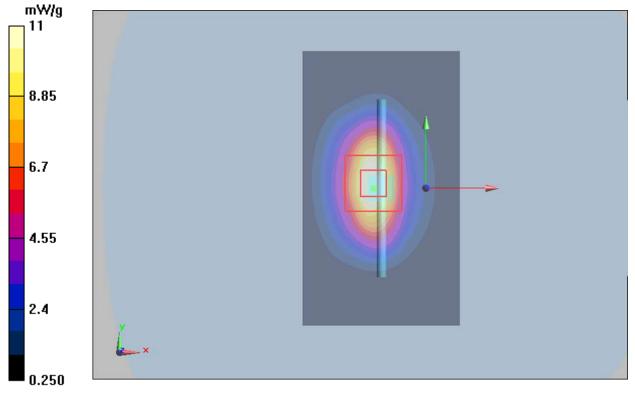


Figure 14 System Performance Check 1900MHz 250mW

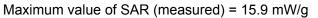
TA Technology (Shanghai) Co., Lt	α.
Test Report	

System Performance Check at 2450 MHz Head TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 1/19/2015 Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.81 mho/m; ϵ_r = 38.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.2 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 88.8 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 30 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.22 mW/g

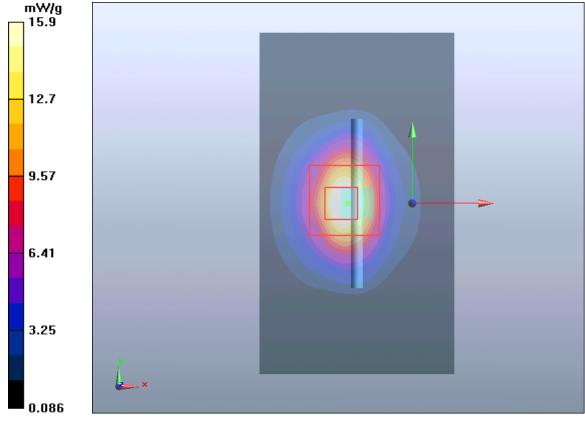


Figure 15 System Performance Check 2450MHz 250mW

TA Technology (Shanghai) Co.,	Ltd.
Test Report	

System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 1/18/2015 Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.99 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(6.97, 6.97, 6.97); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 16 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.2 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 6.20 mW/g

Maximum value of SAR (measured) = 14.4 mW/g

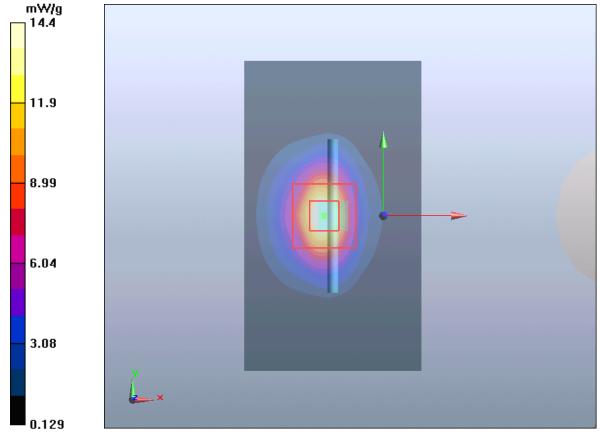


Figure 16 System Performance Check 2450MHz 250Mw

TA Technology (Shanghai) Co.,	Ltd.
Test Report	

System Performance Check at 2600 MHz Head TSL

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1012

Date/Time: 1/17/2015 Communication System: CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 1.98 mho/m; ϵ_r = 38.6; ρ = 1000 kg/m³ Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3977; ConvF(7.07, 7.07, 7.07); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 17.439 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.998 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 31.858 W/kg

SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.07 mW/g Maximum value of SAR (measured) = 15.617 mW/g

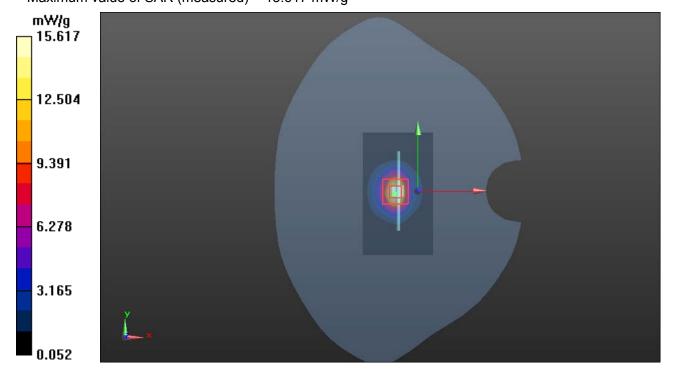


Figure 17 System Performance Check 2600MHz 250mW

System Performance Check at 2600 MHz Body TSL

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1012

Date/Time: 1/16/2015 Communication System: CW; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.17 mho/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3977; ConvF(6.68, 6.68, 6.68); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW /Area Scan (41x71x1): Measurement grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 17.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 74 V/m; Power Drift = -0.0027 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 5.99 mW/g

Maximum value of SAR (measured) = 15.7 mW/g

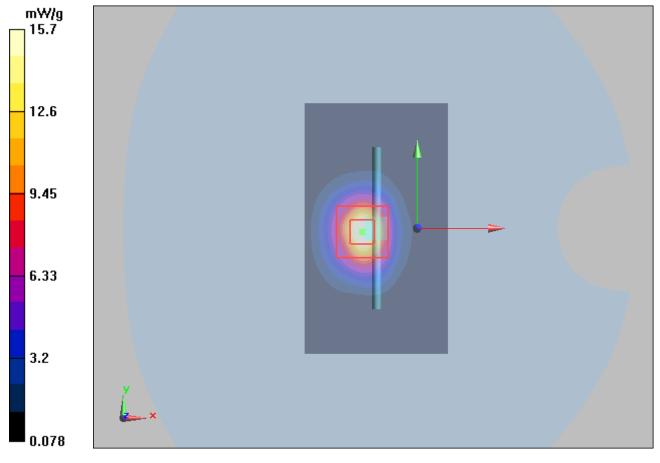
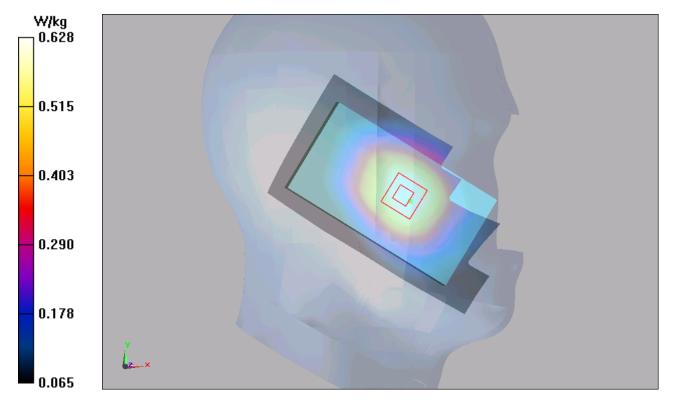


Figure 18 System Performance Check 2600MHz 250mW

Report No.: RXA1412-0289SAR01R3

ANNEX C: Highest Graph Results


GSM 850 Left Cheek Middle

Date: 1/8/2015 Communication System: UID 0, GSM (0); Frequency: 836.6 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 837 MHz; σ = 0.932 S/m; ϵ_r = 41.357; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Left/Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.613 W/kg

Left/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.332 V/m; Power Drift = -0.076 dB Peak SAR (extrapolated) = 0.702 W/kg SAR(1 g) = 0.601 W/kg; SAR(10 g) = 0.459 W/kg

Maximum value of SAR (measured) = 0.628 W/kg

Report No.: RXA1412-0289SAR01R3

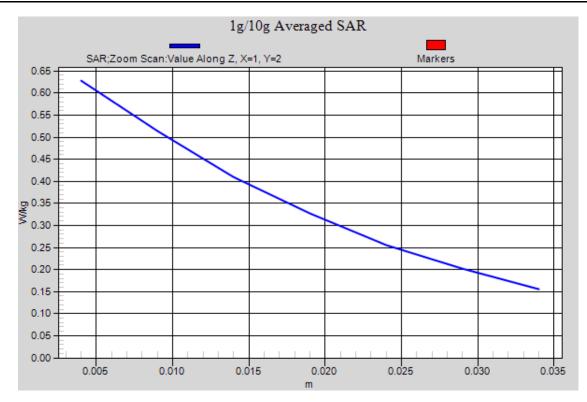
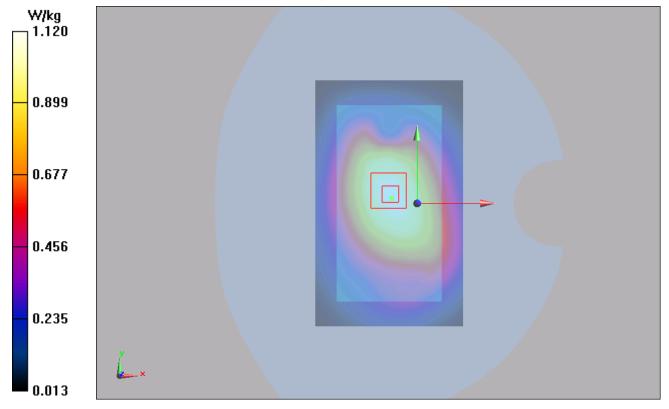


Figure 19 Left Hand Touch Cheek GSM 850 Channel 190

Report No.: RXA1412-0289SAR01R3


GSM 850 GPRS (4Txslots) Front Side Low

Date: 1/12/2015 Communication System: UID 0, GPRS 4TX (0); Frequency: 824.2 MHz;Duty Cycle: 1:2.07491 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.978 S/m; ε_r = 55.938; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(9.74, 9.74, 9.74); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Front Side Low/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.13 W/kg

Front Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 35.17 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.25 W/kg SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.813 W/kg

Maximum value of SAR (measured) = 1.12 W/kg

Report No.: RXA1412-0289SAR01R3

Page 90 of 189

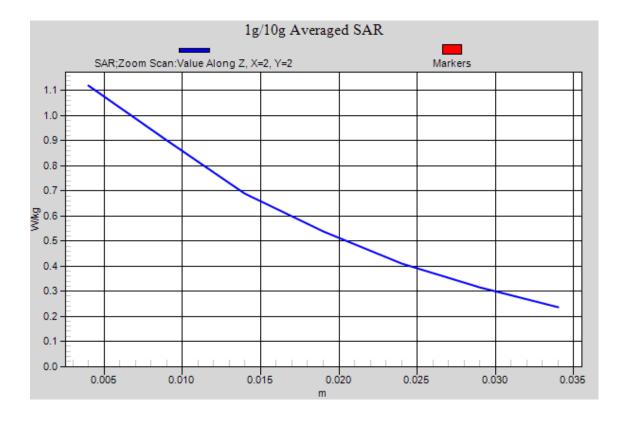
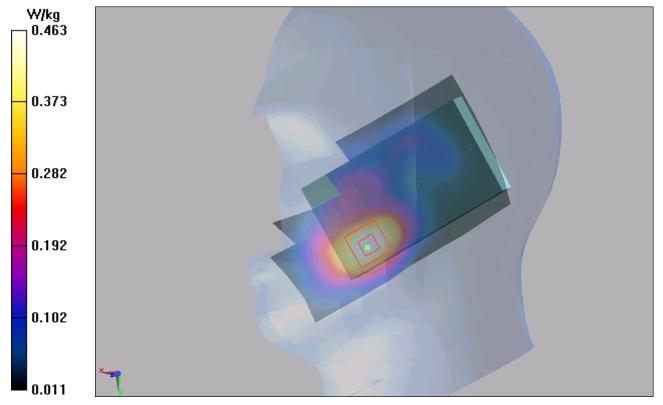


Figure 20 Body, Back Side, GSM 850 GPRS (4Txslots) Channel 128

Report No.: RXA1412-0289SAR01R3


GSM 1900 Right Cheek Middle

Date: 1/9/2015 Communication System: UID 0, GSM (0); Frequency: 1880 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 1880 MHz; σ = 1.413 S/m; ϵ_r = 39.689; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right/Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.474 W/kg

Right/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.329 V/m; Power Drift = -0.090 dB Peak SAR (extrapolated) = 0.638 W/kg SAR(1 g) = 0.451 W/kg; SAR(10 g) = 0.272 W/kg

Maximum value of SAR (measured) = 0.463 W/kg

Report No.: RXA1412-0289SAR01R3

Page 92 of 189

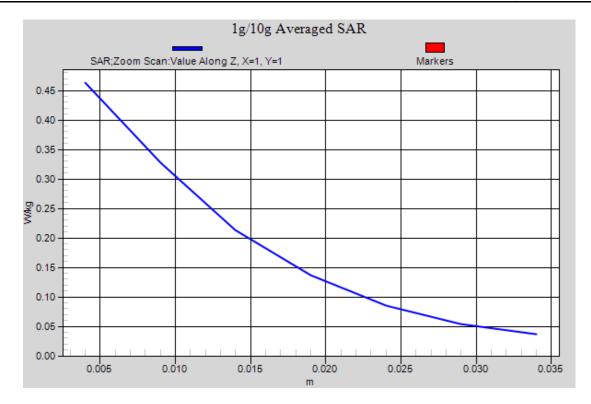
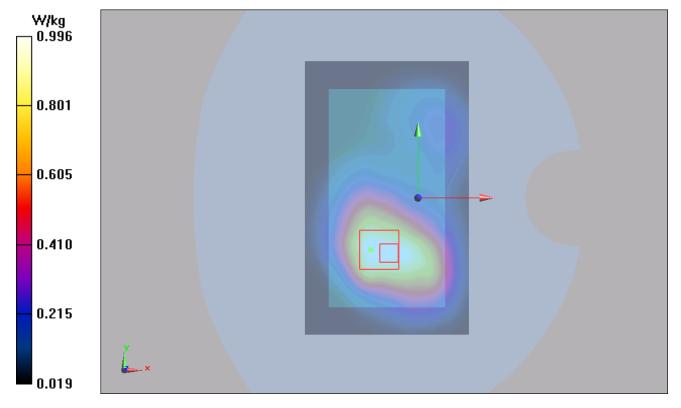


Figure 21 Right Hand Touch Cheek GSM 1900 Channel 661


TA Technology	(Shanghai)	Co.,	Ltd
Tes	t Report		

GSM 1900 GPRS (4Txslots) Back Side Middle

Date: 1/13/2015 Communication System: UID 0, GPRS 4TX (0); Frequency: 1880 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.137; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.07 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.60 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 1.57 W/kg SAR(1 g) = 0.952 W/kg; SAR(10 g) = 0.582 W/kg Maximum value of SAR (measured) = 0.996 W/kg

Report No.: RXA1412-0289SAR01R3

Page 94 of 189

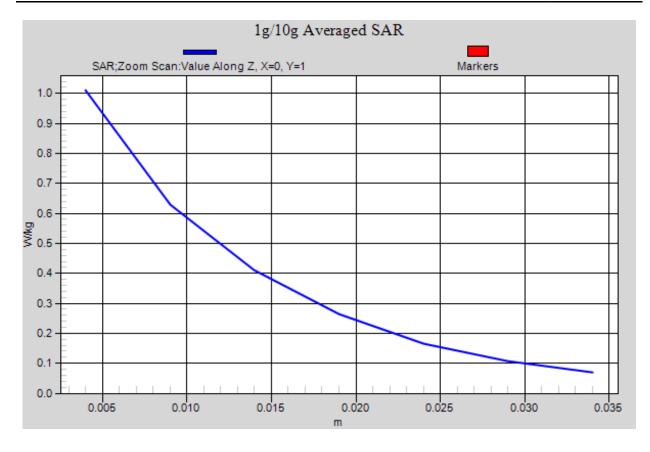
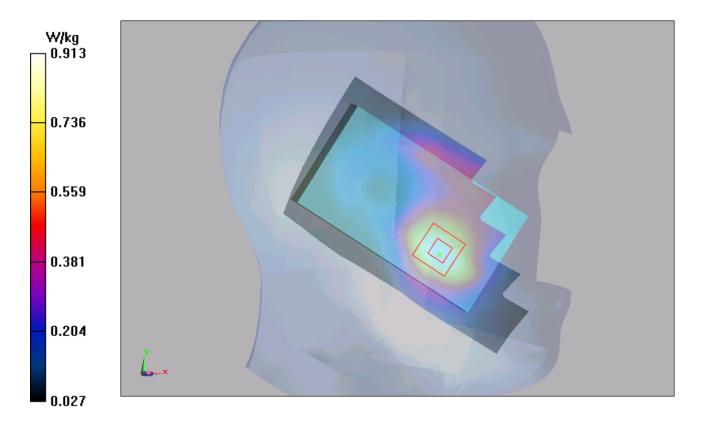


Figure 22 Body, Front Side, GSM 1900 GPRS (4Txslots) Channel 661

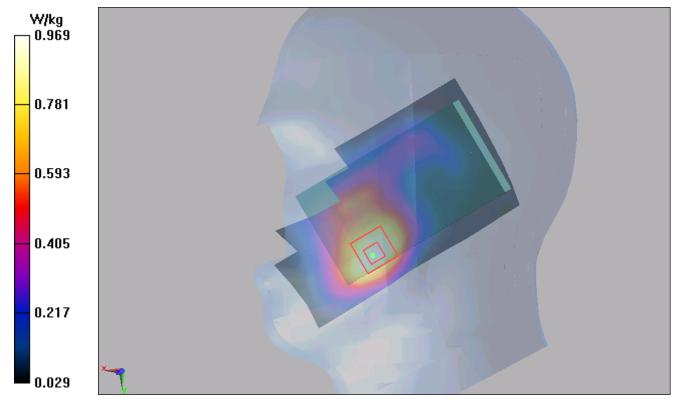

Report No.: RXA1412-0289SAR01R3

Page 95 of 189

UMTS Band II Left Cheek Low

Date: 1/9/2015 Communication System: UID 0, WCDMA (0); Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1852.4 MHz; σ = 1.389 S/m; ϵ_r = 39.803; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Left/Cheek Low/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.968 W/kg

Left /Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.34 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.886 W/kg; SAR(10 g) = 0.565 W/kg Maximum value of SAR (measured) = 0.913 W/kg


Report No.: RXA1412-0289SAR01R3

UMTS Band II Right Cheek Low

Date: 1/9/2015 Communication System: UID 0, WCDMA (0); Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1852.4 MHz; σ = 1.389 S/m; ϵ_r = 39.803; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right/Cheek Low/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.994 W/kg

Right/Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.82 V/m; Power Drift = 0.040 dB Peak SAR (extrapolated) = 1.26 W/kg SAR(1 g) = 0.934 W/kg; SAR(10 g) = 0.591 W/kg Maximum value of SAR (measured) = 0.969 W/kg

Report No.: RXA1412-0289SAR01R3

Page 97 of 189

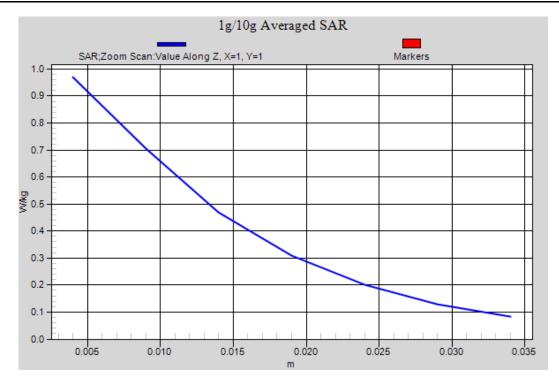
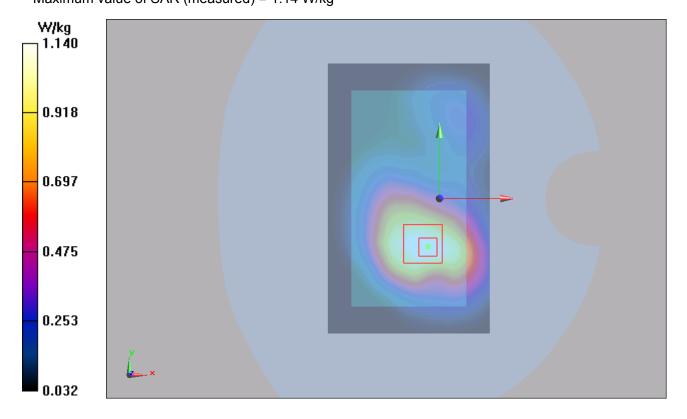


Figure 24 Right Hand Touch Cheek UMTS Band II Channel 9262


Report No.: RXA1412-0289SAR01R3

UMTS Band II Back Side High

Date: 1/13/2015 Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1908 MHz; σ = 1.532 S/m; ϵ_r = 53.111; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side High /Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.23 W/kg

Back Side High /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.01 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.88 W/kg SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.680 W/kg Maximum value of SAR (measured) = 1.14 W/kg

Report No.: RXA1412-0289SAR01R3

Page 99 of 189

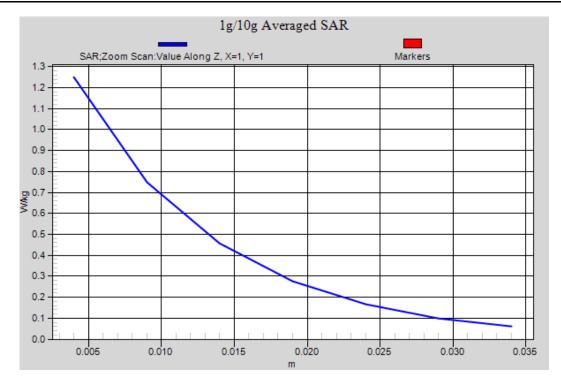
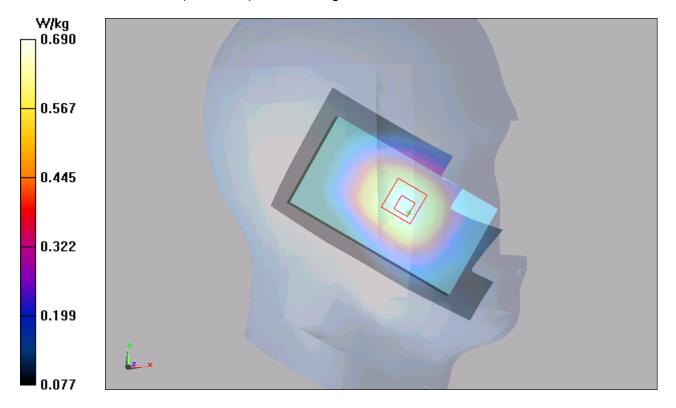


Figure 25 Body, Back Side, UMTS Band II Channel 9538


Report No.: RXA1412-0289SAR01R3

UMTS Band V Left Cheek Middle

Date: 1/8/2015 Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.4 MHz; σ = 0.931 S/m; ε_r = 41.363; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Left/Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.657 W/kg

Left/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.020 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.770 W/kg SAR(1 g) = 0.654 W/kg; SAR(10 g) = 0.498 W/kg Maximum value of SAR (measured) = 0.690 W/kg

Report No.: RXA1412-0289SAR01R3

Page 101 of 189

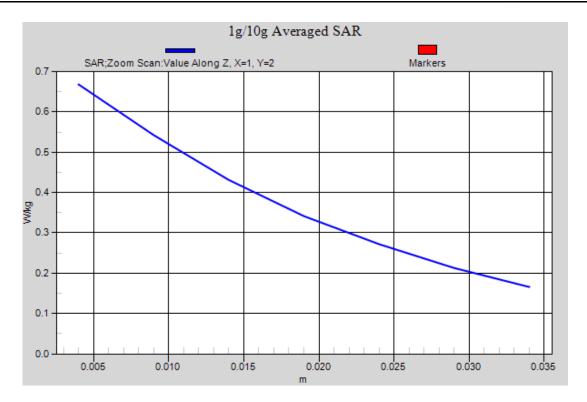
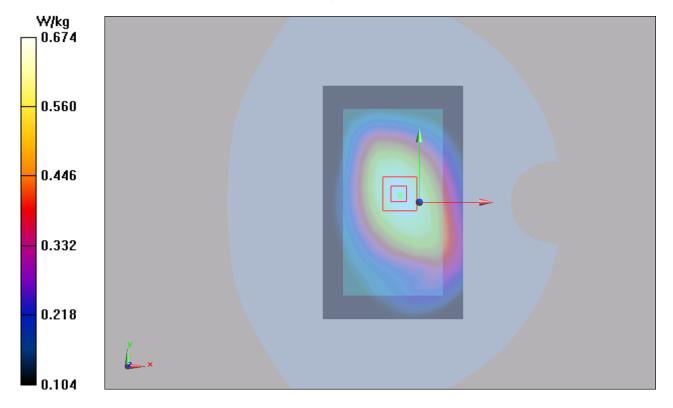


Figure 26 Left Hand Touch Cheek UMTS Band V Channel 4183


Report No.: RXA1412-0289SAR01R3

UMTS Band V Front Side Middle

Date: 1/12/2015 Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.4 MHz; σ = 0.992 S/m; ε_r = 55.885; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(9.74, 9.74, 9.74); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Front Side Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.692 W/kg

Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.99 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.767 W/kg SAR(1 g) = 0.649 W/kg; SAR(10 g) = 0.492 W/kg Maximum value of SAR (measured) = 0.674 W/kg

Report No.: RXA1412-0289SAR01R3

Page 103 of 189

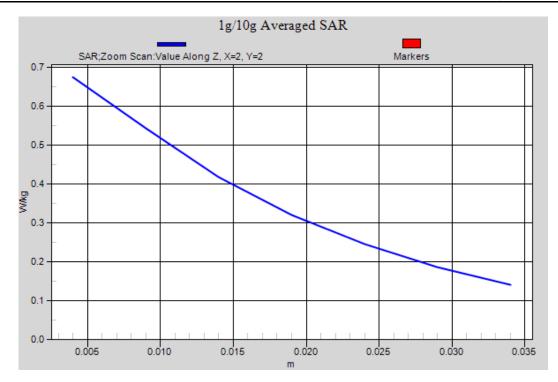


Figure 27 Body, Front Side, UMTS Band V Channel 4183

Report No.: RXA1412-0289SAR01R3

LTE Band 2 1RB Left Cheek High

Date: 1/11/2015 Communication System: UID 0, LTE (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.431 S/m; ϵ_r = 39.602; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Left/Cheek High/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.838 W/kg

Left/Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.114 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.861 W/kg; SAR(10 g) = 0.535 W/kg Maximum value of SAR (measured) = 0.886 W/kg

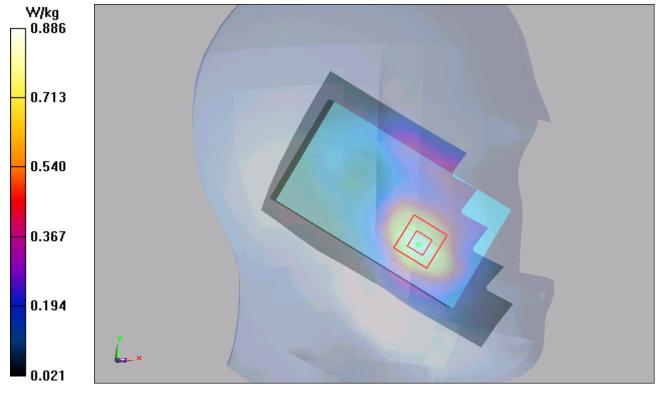
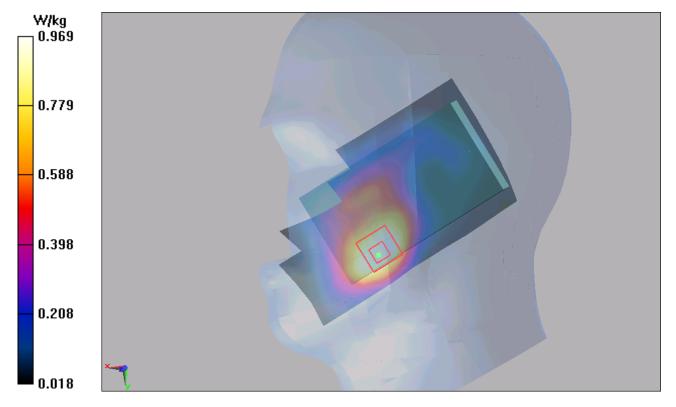


Figure 28 Left Hand Touch Cheek LTE Band 2 1RB Channel 19100


Report No.: RXA1412-0289SAR01R3

LTE Band 2 1RB Right Cheek High (Battery 2)

Date: 1/11/2015 Communication System: UID 0, LTE (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.431 S/m; ϵ_r = 39.602; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right/Cheek High/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.11 W/kg

Right/Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.78 V/m; Power Drift = 0.004 dB Peak SAR (extrapolated) = 1.35 W/kg SAR(1 g) = 0.968 W/kg; SAR(10 g) = 0.602 W/kg Maximum value of SAR (measured) = 0.969 W/kg

Report No.: RXA1412-0289SAR01R3

Page 106 of 189

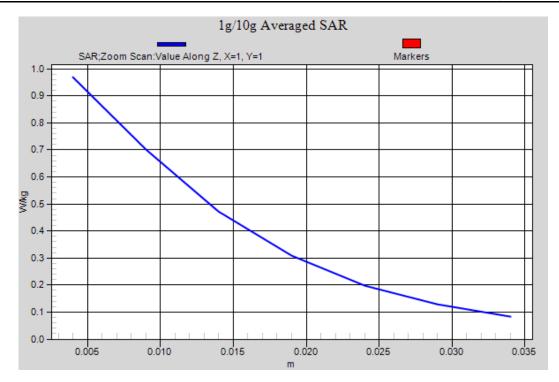
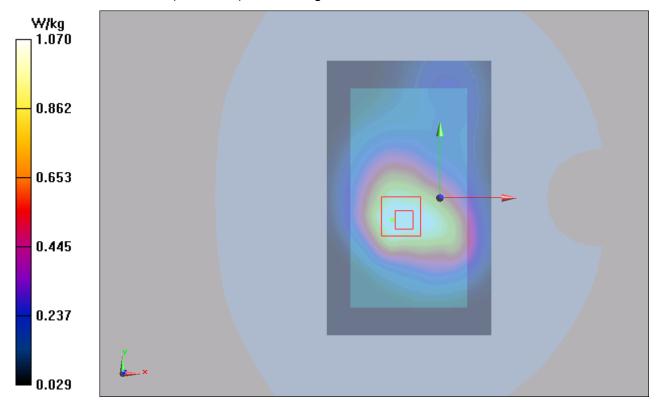


Figure 29 Right Hand Touch Cheek LTE Band 2 1RB Channel 19100


Report No.: RXA1412-0289SAR01R3

LTE Band 2 1RB Back Side Middle

Date: 1/10/2015 Communication System: UID 0, LTE (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ϵ_r = 53.137; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.11 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.58 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 1.73 W/kg SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.627 W/kg Maximum value of SAR (measured) = 1.07 W/kg

Report No.: RXA1412-0289SAR01R3

Page 108 of 189

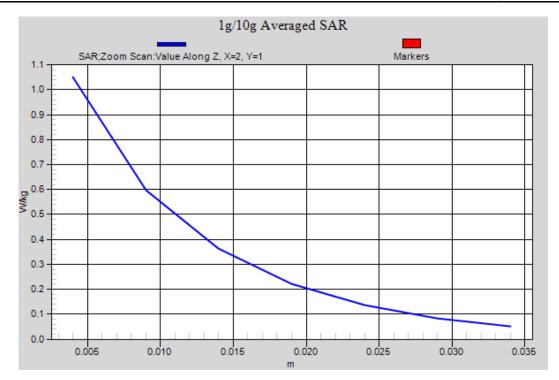
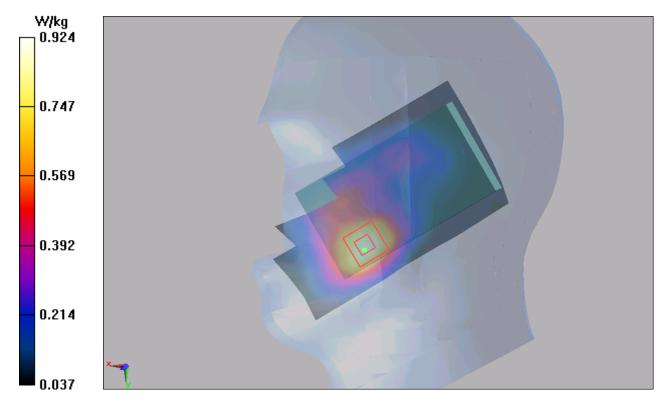


Figure 30 Body, Back Side, LTE Band 2 1RB Channel 18900


Report No.: RXA1412-0289SAR01R3

LTE Band 4 1RB Right Cheek High

Date: 1/14/2015 Communication System: UID 0, LTE (0); Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; σ = 1.315 S/m; ϵ_r = 39.688; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(8.14, 8.14, 8.14); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right/Cheek High/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.870 W/kg

Right/Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.115 V/m; Power Drift = 0.056 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.873 W/kg; SAR(10 g) = 0.551 W/kg Maximum value of SAR (measured) = 0.924 W/kg

Report No.: RXA1412-0289SAR01R3

Page 110 of 189

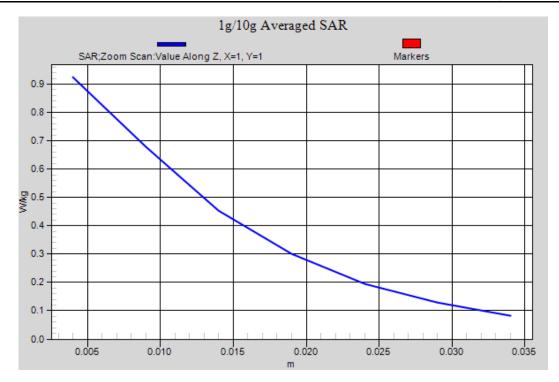
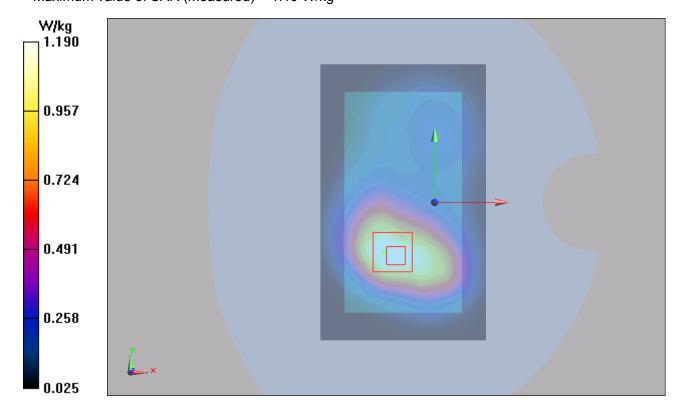


Figure 31 Right Hand Touch Cheek LTE Band 4 1RB Channel 20300


Report No.: RXA1412-0289SAR01R3

LTE Band 4 1RB Back Side Middle

Date: 1/15/2015 Communication System: UID 0, LTE (0); Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1732.5 MHz; σ = 1.488 S/m; ϵ_r = 52.928; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.69, 7.69, 7.69); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.39 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 16.74 V/m; Power Drift = 0.02 dB
Peak SAR (extrapolated) = 1.81 W/kg
SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.686 W/kg
Maximum value of SAR (measured) = 1.19 W/kg

Report No.: RXA1412-0289SAR01R3

Page 112 of 189

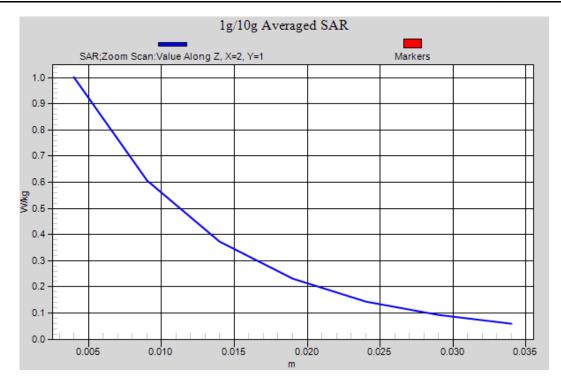
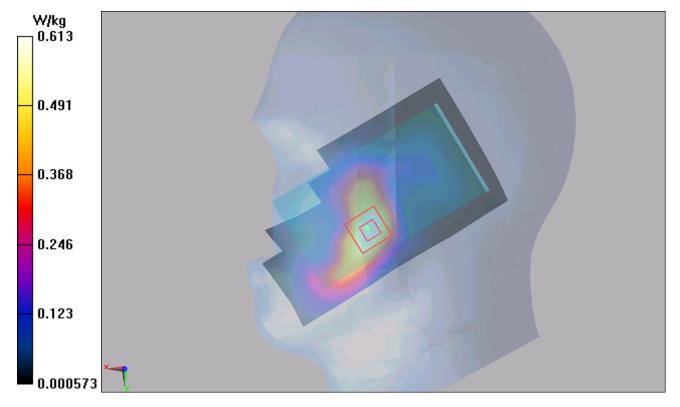


Figure 32 Body, Back Side, LTE Band 4 1RB Channel 20175


Report No.: RXA1412-0289SAR01R3

LTE Band 7 1RB Right Cheek High

Date: 1/17/2015 Communication System: UID 0, LTE (0); Frequency: 2560 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2560 MHz; σ = 1.941 S/m; ϵ_r = 38.761; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(7.07, 7.07, 7.07); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right/Cheek High/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.642 W/kg

Right/Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.777 V/m; Power Drift = 0.158 dB Peak SAR (extrapolated) = 1.02 W/kg SAR(1 g) = 0.579 W/kg; SAR(10 g) = 0.317 W/kg Maximum value of SAR (measured) = 0.613 W/kg

Report No.: RXA1412-0289SAR01R3

Page 114 of 189

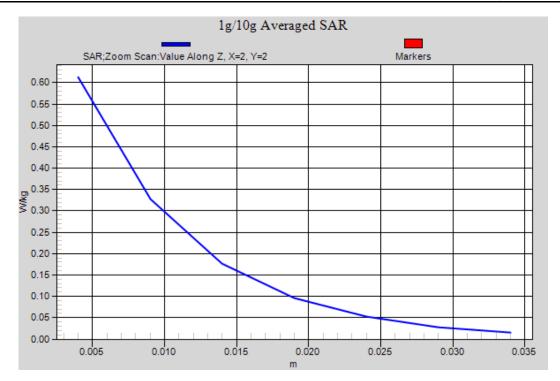
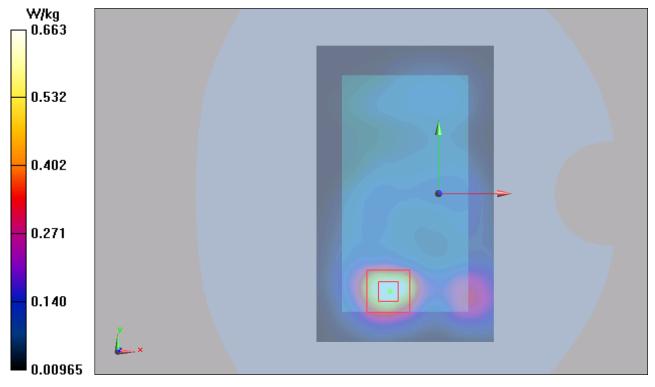


Figure 33 Right Hand Touch Cheek LTE Band 7 1RB Channel 21350

Report No.: RXA1412-0289SAR01R3


LTE Band 7 1RB Back Side Middle

Date: 1/16/2015 Communication System: UID 0, LTE (0); Frequency: 2535 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2535 MHz; σ = 2.079 S/m; ϵ_r = 52.162; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3977; ConvF(6.68, 6.68, 6.68); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.789 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.733 V/m; Power Drift = -0.033 dB Peak SAR (extrapolated) = 1.98 W/kg SAR(1 g) = 0.759 W/kg; SAR(10 g) = 0.332 W/kg

Maximum value of SAR (measured) = 0.663 W/kg

Report No.: RXA1412-0289SAR01R3

Page 116 of 189

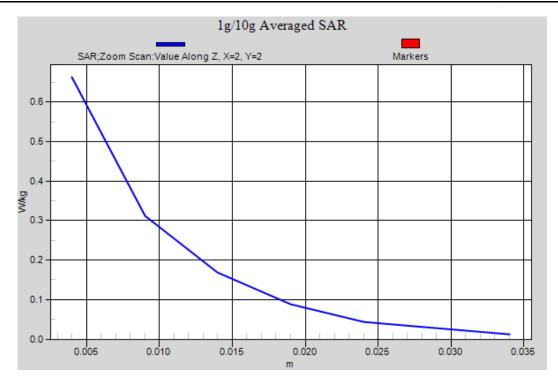


Figure 34 Body, Back Side, LTE Band 7 1RB Channel 21100

Report No.: RXA1412-0289SAR01R3

802.11b Left Cheek Low

Date: 1/19/2015 Communication System: 802.11b; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; σ = 1.84 mho/m; ε_r = 38.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Probe: EX3DV4 - SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY5, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Cheek Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.833 mW/g

Left Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.0 V/m; Power Drift = 0.036 dB Peak SAR (extrapolated) = 1.98 W/kg SAR(1 g) = 0.747 mW/g; SAR(10 g) = 0.300 mW/g Maximum value of SAR (measured) = 0.913 mW/g

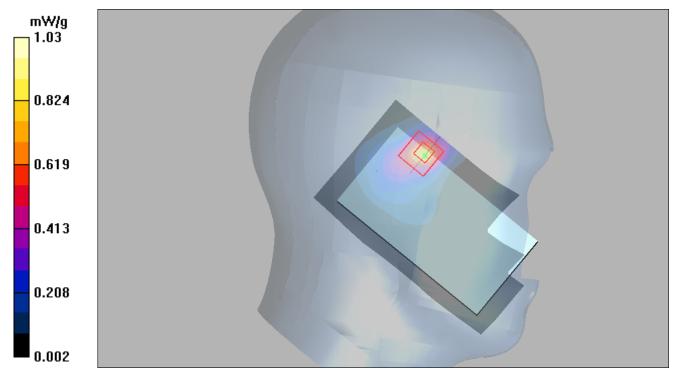
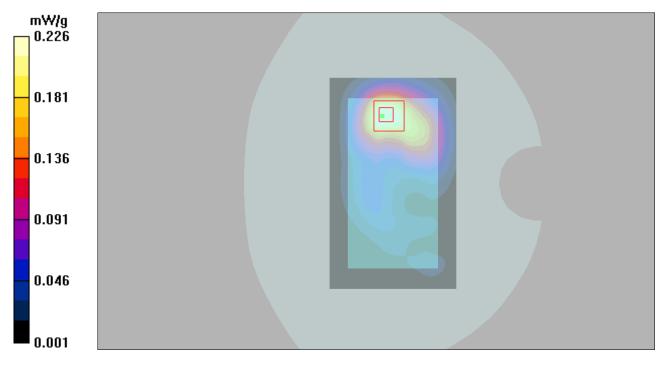


Figure 35 Left Hand Touch Cheek 802.11b Channel 1

Report No.: RXA1412-0289SAR01R3


Page 118 of 189

802.11b Back Side Low

Date: 1/18/2015 Communication System: 802.11b; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; σ = 1.92 mho/m; ε_r = 51.8; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3977; ConvF(6.97, 6.97, 6.97); Calibrated: 2/17/2014; Electronics: DAE4 Sn1291; Calibrated: 11/14/2014 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY5, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Back Side Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.232 mW/g

Back Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.60 V/m; Power Drift = 0.168 dB Peak SAR (extrapolated) = 0.394 W/kg SAR(1 g) = 0.212 mW/g; SAR(10 g) = 0.118 mW/g Maximum value of SAR (measured) = 0.226 mW/g

Figure 36 Body, Back Side, 802.11b Channel 1

Report No.: RXA1412-0289SAR01R3

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

С

S

0

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

ATL (Auden) Client

Certificate No: EX3-3977_Feb14

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:39	77	and the second at the second
Calibration procedure(s)	QA CAL-25.v6	A CAL-12.v9, QA CAL-14.v4, QA dure for dosimetric E-field probes	CAL-23.v5,
Calibration date:	February 17, 201	4	
The measurements and the unc	certainties with confidence pr	onal standards, which realize the physical units obability are given on the following pages and	are part of the certificate.
Calibration Equipment used (Ma		y facility: environment temperature (22 \pm 3)°C a	nd humidity < 70%.
Calibration Equipment used (M			
	&TE critical for calibration)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733)	Scheduled Calibration
Calibration Equipment used (Ma Primary Standards	&TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (Ma Primary Standards Power meter E4419B	&TE critical for calibration)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733)	Scheduled Calibration Apr-14
Calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A	&TE critical for calibration) ID GB41293874 MY41498087	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733)	Scheduled Calibration Apr-14 Apr-14
Calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	&TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737)	Scheduled Calibration Apr-14 Apr-14 Apr-14
Calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	&TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14
Calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	&TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
Calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	&TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S55277 (20x) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 30-Dec-13 (No. ES3-3013_Dec13)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14
Calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	&TE critical for calibration) ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b) SN: 3013 SN: 660	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-14 Dec-14

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	4F-
Approved by:	Katja Pokovic	Technical Manager	filly
			Issued: February 19, 2014
This calibration certificate	e shall not be reproduced except in ful	I without written approval of the laboratory	<i>t</i> .

Certificate No: EX3-3977_Feb14

Report No.: RXA1412-0289SAR01R3

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GNIS.C

BRP

S

C

S

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

Glossary.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3977_Feb14

Report No.: RXA1412-0289SAR01R3

EX3DV4 - SN:3977

February 17, 2014

Page 121 of 189

Probe EX3DV4

SN:3977

Manufactured: November 5, 2013 Calibrated: February 17, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3977_Feb14

Page 3 of 11

5

Report No.: RXA1412-0289SAR01R3

EX3DV4-SN:3977

February 17, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3977

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.54	0.57	0.54	± 10.1 %
DCP (mV) ⁸	99.5	100.0	99.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^L (k=2)
0	CW	X	0.0	0.0	1.0	0.00	133.3	±3.3 %
		Y	0.0	0.0	1.0		134.9	
		Z	0.0	0.0	1.0		146.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field uncertainty is determined using the max. field value.

EX3DV4- SN:3977

February 17, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3977

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	11.72	11.72	11.72	0.18	1.10	± 13.3 %
750	41.9	0.89	9.98	9.98	9.98	0.36	0.88	± 12.0 %
835	41.5	0.90	9.62	9.62	9.62	0.61	0.69	± 12.0 %
900	41.5	0.97	9.48	9.48	9.48	0.77	0.63	± 12.0 %
1750	40.1	1.37	8.14	8.14	8.14	0.78	0.60	± 12.0 %
1900	40.0	1.40	7.97	7.97	7.97	0.48	0.75	± 12.0 %
2000	40.0	1.40	7.93	7.93	7.93	0.69	0.63	± 12.0 %
2300	39.5	1.67	7.59	7.59	7.59	0.37	0.83	± 12.0 %
2450	39.2	1.80	7.24	7.24	7.24	0.27	1.10	± 12.0 %
2600	39.0	1.96	7.07	7.07	7.07	0.41	0.84	± 12.0 %
5200	36.0	4.66	5.09	5.09	5.09	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.82	4.82	4.82	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.76	4.76	4.76	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.55	4.55	4.55	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.52	4.52	4.52	0.40	1.80	± 13.1 %

Calibration Paramete	r Determined in Head	Tissue Simulating Media
----------------------	----------------------	--------------------------------

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
 ^F At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ^C Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3977_Feb14

Page 5 of 11

EX3DV4-SN:3977

ş

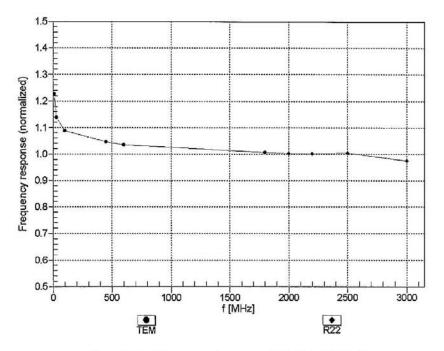
February 17, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3977

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	12.47	12.47	12.47	0.11	1.10	± 13.3 %
750	55.5	0.96	9.78	9.78	9.78	0.45	0.86	± 12.0 %
835	55.2	0.97	9.74	9.74	9.74	0.48	0.83	± 12.0 %
900	55.0	1.05	9.46	9.46	9.46	0.41	0.89	± 12.0 %
1750	53.4	1.49	7.69	7.69	7.69	0.41	0.88	± 12.0 %
1900	53.3	1.52	7.37	7.37	7.37	0.34	0.89	± 12.0 %
2000	53.3	1.52	7.41	7.41	7.41	0.24	1.14	± 12.0 %
2300	52.9	1.81	7.12	7.12	7.12	0.66	0.64	± 12.0 %
2450	52.7	1.95	6.97	6.97	6.97	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.68	6.68	6.68	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.50	4.50	4.50	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.28	4.28	4.28	0.45	1.90	± 13.1 %
5500	48.6	5.65	4.02	4.02	4.02	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.87	3.87	3.87	0.45	1.90	± 13.1 %
5800	48.2	6.00	4.12	4.12	4.12	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
(ε and σ) is restricted to ± 5%. The uncertainty is the RSS of a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

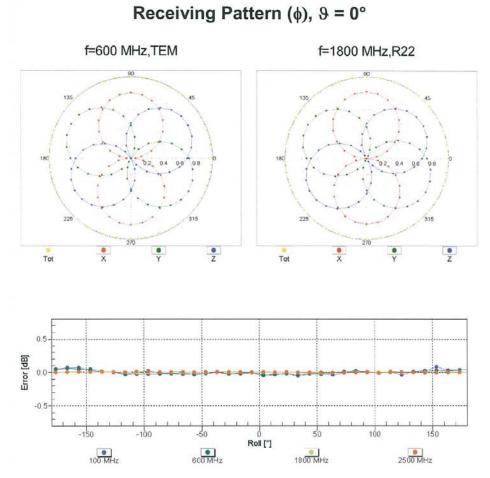

Certificate No: EX3-3977_Feb14

Page 6 of 11

EX3DV4-SN:3977

February 17, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



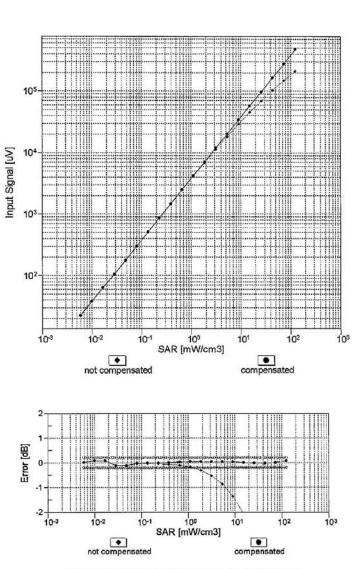
Page 7 of 11

EX3DV4- SN:3977

February 17, 2014

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3977_Feb14


Page 8 of 11

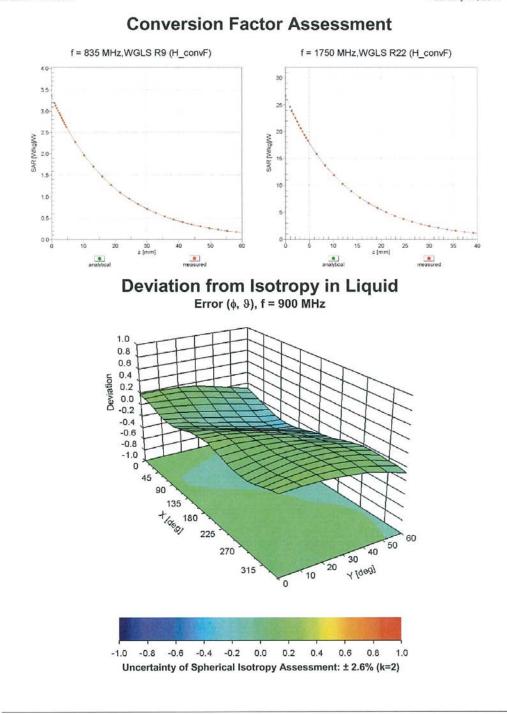
Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Report No.: RXA1412-0289SAR01R3

EX3DV4-SN:3977

February 17, 2014

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3977_Feb14

Page 9 of 11

Report No.: RXA1412-0289SAR01R3

EX3DV4- SN:3977

February 17, 2014

Certificate No: EX3-3977_Feb14

Page 10 of 11

EX3DV4-SN:3977

February 17, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3977

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	23.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

÷.

ANNEX E: D750V3 Dipole Calibration Certificate

ccredited by the Swiss Accredit		"haladan"	Swiss Calibration Service
	ation Service (SAS)	Accreditatio	n No.: SCS 108
he Swiss Accreditation Servic	·····		
fultilateral Agreement for the r	ecognition of calibration	certificates	
lient TMC-Shangha	i (Auden)	Certificate N	o: D750V3-1045_Sep11
Protection of the state of the			
CALIBRATION	CERTIFICATE		
Object	D750V3 - SN: 10	45	
Calibration procedure(s)	QA CAL-05.v8		
	Calibration proce	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	September 29, 2	011	
		ional standards, which realize the physical un robability are given on the following pages a	
The measurements and the unit	and an and a second and a second as a seco	robability are given on the following pages a	nd are part of the certificate.
The measurements and the unit	and the second of p	robability are given on the following pages a	nd are part of the certificate.
		ry facility: environment temperature $(22 \pm 3)^{\circ}$	
All calibrations have been condu	cted in the closed laborator		
All calibrations have been condu Calibration Equipment used (M&	cted in the closed laborator	ry facility: environment temperature $(22 \pm 3)^{\circ}$	°C and humidity < 70%.
All calibrations have been condu Calibration Equipment used (M& Primary Standards	cted in the closed laborator TE critical for calibration)	ry facility: environment temperature (22 ± 3) ^o Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B	TE critical for calibration)	ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372)	C and humidity < 70%. Scheduled Calibration Apr-12
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	TE critical for calibration)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	Cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	Cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5046 (20b) SN: 5047.2 / 06327	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5086 (20b) SN: S5086 (20b) SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Jul-12
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5046 (3c) SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 - ID #	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: 55086 (20b) SN	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Jul-12 Jul-12 Scheduled Check In house check: Oct-11
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Jul-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: 55086 (20b) SN	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Jul-12 Jul-12 Scheduled Check In house check: Oct-11
	cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Jul-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 55046 (20b) SN: 55046 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 55045 (20b) SN: 55045 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 55045 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Dimce Iliev	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-10) Function Laboratory Technician	C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D750V3-1045_Sep11

Page 1 of 8

Report No.: RXA1412-0289SAR01R3

Page 131 of 189

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D750V3-1045_Sep11

Page 2 of 8

Report No.: RXA1412-0289SAR01R3

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.3 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.14 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	8.36 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.40 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.6 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Bgdy TSL	Condition	
SAR measured	250 mW input power	2.20 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	8.80 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	5.80 mW / g ± 16.5 % (k=2)

Certificate No: D750V3-1045_Sep11

Report No.: RXA1412-0289SAR01R3

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2 Ω - 2.3 jΩ
Return Loss	- 26.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.5 Ω - 4.1 jΩ
Return Loss	- 27.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.036 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 02, 2011

Certificate No: D750V3-1045_Sep11

Page 4 of 8

Report No.: RXA1412-0289SAR01R3

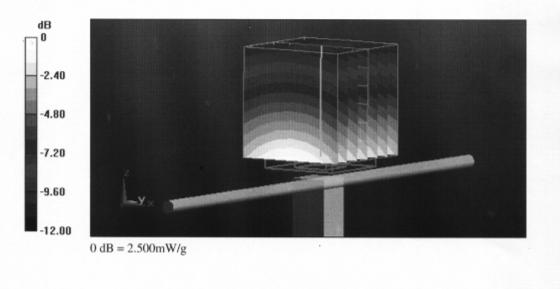
Page 134 of 189

DASY5 Validation Report for Head TSL

Date: 29.09.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1045


Communication System: CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.92 mho/m; ϵ_r = 42.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.33, 6.33, 6.33); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.433 V/m; Power Drift = 0.0062 dB Peak SAR (extrapolated) = 3.216 W/kg SAR(1 g) = 2.14 mW/g; SAR(10 g) = 1.4 mW/g Maximum value of SAR (measured) = 2.501 mW/g

Certificate No: D750V3-1045_Sep11

Page 5 of 8