

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202202-0074-1

Page: 1 of 51

Radio Test Report

FCC ID: 2APRB-K8508-MW

Report No. : TBR-C-202202-0074-1

Applicant: Guangzhou Juan Intelligent Tech Co., Ltd

Equipment Under Test (EUT)

EUT Name : Network Video Recorder

Model No. : K8508-MW

Series Model No. : Please see page 5

Brand Name : ----

Sample ID : RW-C-202202-0074-1-1#&RW-C-202202-0074-2-2#

Receipt Date : 2022-02-28

Test Date : 2022-02-28 to 2022-05-10

Issue Date : 2022-05-14

Standards : FCC Part 15 Subpart C 15.247

Test Method : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : WWW SV

Engineer Manager :

Wade. Lv Ivan Su Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	8
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	12
3.	TEST SOFTWARE	12
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	14
	5.3 Test Procedure	14
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	
	5.6 Test Data	15
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	16
	6.1 Test Standard and Limit	16
	6.2 Test Setup	17
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Mode	19
	6.6 Test Data	
7.	RESTRICTED BANDS REQUIREMENT	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	
	7.6 Test Data	
8.	BANDWIDTH TEST	
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	24

Report No.: TBR-C-202202-0074-1 Page: 3 of 51

	8.6 Test Data	24
9.	PEAK OUTPUT POWER	25
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	25
	9.5 EUT Operating Mode	25
	9.6 Test Data	25
10.	POWER SPECTRAL DENSITY	26
	10.1 Test Standard and Limit	26
	10.2 Test Setup	26
	10.3 Test Procedure	26
	10.4 Deviation From Test Standard	26
	10.5 Antenna Connected Construction	26
	10.6 Test Data	26
11.	ANTENNA REQUIREMENT	27
	11.1 Test Standard and Limit	27
	11.2 Deviation From Test Standard	27
	11.3 Antenna Connected Construction	27
	11.4 Test Data	27
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	28
		30

Report No.: TBR-C-202202-0074-1 Page: 4 of 51

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202202-0074-1	Rev.01	Initial issue of report	2022-05-14
TO THE REAL PROPERTY.	man B	MODE	The same of
THE WOLLD	3	CON THE	mS .
mn37	MOBIL	The state of the s	may a
MOBIS TO	10:33		TO DE
		TO STATE OF THE ST	
	1023	3	600
	3 m		
URA LIM			
THE PARTY OF THE P	VIII.		The state of the s
		(103)	
The state of the s		Bis Long	

Page: 5 of 51

1. General Information about EUT

1.1 Client Information

Applicant		Guangzhou Juan Intelligent Tech Co., Ltd
Address	201	No.2 Plant, West of Shanxi country, Dashi street, Panyu District, Guangzhou, China
Manufacturer		Guangzhou Juan Intelligent Tech Co., Ltd
Address		No.2 Plant, West of Shanxi country, Dashi street, Panyu District, Guangzhou, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Network Video Record	er			
Models No.		 K8508-MW, K8508-GW, K8508-W, XF-3714N-K-W, OSX-K8508-MW, OK8508-MW, WE-K8508-MW, NVR-M8108NM-W-MU, NVR-M8128NM-W-MU, NVR-M8158NM-W-MU, NVR-M8158NM-W-2M G4H, 8108, G4R, G4H-2-NVR, D5109HN8-W, A04N9266, A04N9266, A08N9254, A08N9275, CW29, HGWNK-48402, V80, V18, V16, T-DL6003T0, TZ-NVR8A All these models are identical in the same PCB, layout and electrical circuit the only difference is model name. 				
Model Different	:					
URA L	4	Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz			
	102	Number of Channel:	802.11b/g/n(HT20):11 channels			
Product		Antenna Gain:	5.0dBi FPC Antenna(ALTOBEAM) 5.0dBi Dipole Antenna 1&2(REALTEK 8192FC)			
Description		Modulation Type:	802.11b: DSSS (CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM,64QAM)			
		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 72.2Mbps			
Power Rating		Adapter(TEKA012-1201000XX) : Input: 100-240V~50/60Hz 0.35A MAX Output: 12V1A 12.0W				
Software Version	Ú)	: v3.5.0.0				
Hardware Version		v210P1				

Remark:

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: TBR-C-202202-0074-1 Page: 6 of 51

(3)Antenna information p	rovided by	the applicar	nt.	3	and in	Un.

Page: 7 of 51

(4) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Note: CH 01~CH 11 for 802.11b/g/n(HT20)

(5) Antenna information

(REALTEK 8192FC)

Mode		TX Antenna (s)	Remark		
802.11b		2	ANT. 1+ ANT. 2		
802.11g		2	ANT. 1+ ANT. 2		
802.11n(HT20)	2	ANT. 1+ ANT. 2		
Antenna Brand		Model Name	Туре	Antenna Gain (dBi)	
ANT. 1	N/A	N/A	Dipole	5.0	
ANT. 2	N/A	N/A	Dipole	5.0	

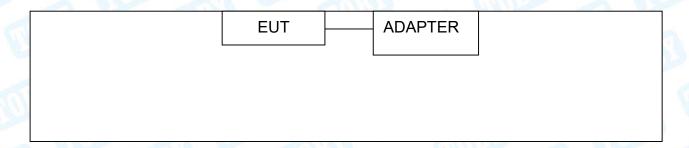
Note:

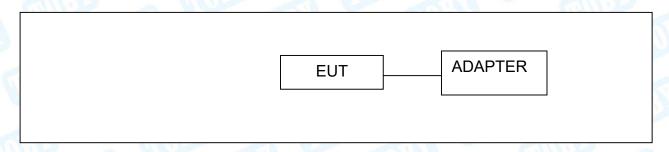
For MIMO mode: Directional Gain=ANT. Gain+10*LOG(NANT) =8.01dBi

2.4G working with 802.11b/g/n has MIMO mode.

(ALTOBEAM)

				The the second of	
Mode		Mode TX Antenna (s)		Remark	
802.1	11b	1	A I U	ANT. 1	
802.1	11g	1		ANT. 1	
802.11n((HT20)	1		ANT. 1	
Antenna Brand		Model Name	Туре	Antenna Gain (dBi)	
ANT. 1	N/A	N/A	FPC	5.0	


Note: 2.4G working with 802.11b/g/n has SISO mode.


Page: 8 of 51

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

Page: 9 of 51

1.4 Description of Support Units

Equipment Information							
Name	Model	FCC ID/SDOC	Manufacturer	Used "√"			
Adapter	TEKA012-1201000XX	MO.	TEKA	√			
	Ca	ble Information					
Number	Number Shielded Type Ferrite Core Length Note						
Cable 1	Yes	NO	1.0M	Accessory			

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Emission Test					
Final Test Mode	Description				
Mode 1	TX b Mode Channel 01				
For	Radiated and RF Conducted Test				
Final Test Mode	Description				
Mode 2	TX Mode b Mode Channel 01/06/11				
Mode 3	TX Mode g Mode Channel 01/06/11				
Mode 4	TX Mode n(HT20) Mode Channel 01/06/11				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK 802.11g Mode: OFDM

802.11n (HT20) Mode: MCS 0

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 10 of 51

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

(REALTEK 8192FC)

Test Software: SecureCRT.exe						
Test Mode: Continuously transmitting						
Mode	Data Rate Channel	Channal	Parar	meters		
Wiode		Ant.1	Ant.2			
	CCK/ 1Mbps	01	25	25		
802.11b	CCK/ 1Mbps	06	25	25		
	CCK/ 1Mbps	11	25	25		
A WILL	OFDM/ 6Mbps	01	25	25		
802.11g	OFDM/ 6Mbps	06	25	25		
	OFDM/ 6Mbps	11	25	25		
1 1111	MCS 0	01	25	25		
802.11n(HT20)	MCS 0	06	25	25		
	MCS 0	11	25	25		

(ALTOBEAM)

Test Software: SecureCRT.exe				
WILL STATE	Test Mode: Continuously transmitting			
Mode	Data Rate	Channel	Parameters	
WUB:	CCK/ 1Mbps	01	28	
802.11b	CCK/ 1Mbps	06	28	
	CCK/ 1Mbps	11	28	
MON	OFDM/ 6Mbps	01	28	
802.11g	OFDM/ 6Mbps	06	28	
	OFDM/ 6Mbps	11	28	
802.11n(HT20)	MCS 0	01	28	
	MCS 0	06	28	
	MCS 0	11	28	

Page: 11 of 51

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U_{\tau}$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2_{\tau}$ providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351.

Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202202-0074-1 Page: 12 of 51

2. Test Summary

Standard Section FCC	Test Item	Test Sample(s)	Judgm ent	Remark
FCC 15.207(a)	Conducted Emission	RW-C-202202-0074-1-1#	PASS	N/A
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	RW-C-202202-0074-1-1#	PASS	N/A
FCC 15.203	Antenna Requirement	RW-C-202202-0074-2-2#	PASS	N/A
FCC 15.247(a)(2)	6dB Bandwidth	RW-C-202202-0074-2-2#	PASS	N/A
	99% Occupied bandwidth	RW-C-202202-0074-2-2#	PASS	N/A
FCC 15.247(b)(3)	Peak Output Power and E.I.R.P	RW-C-202202-0074-2-2#	PASS	N/A
FCC 15.247(e)	Power Spectral Density	RW-C-202202-0074-2-2#	PASS	N/A
FCC 15.247(d)	Band Edge Measurements	RW-C-202202-0074-2-2#	PASS	N/A
FCC 15.207	Conducted Unwanted Emissions	RW-C-202202-0074-2-2#	PASS	N/A
FCC 15.247(d)	Emissions in Restricted Bands	RW-C-202202-0074-2-2#	PASS	N/A
1000	On Time and Duty Cycle	RW-C-202202-0074-2-2#		N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TBR-C-202202-0074-1 Page: 13 of 51

4. Test Equipment

Conducted Emission	on Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission	n Test (A Site)		-		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb. 26, 2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb. 25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb. 25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb. 25, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb. 25, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Radiation Emission	n Test (B Site)		1	1	1
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 03, 2021	Sep. 02, 2022
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472	Feb. 26, 2022	Feb. 25, 2023
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	May 20, 2021	May 19, 2022
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb. 25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Antenna Conducte	d Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
Spectrum Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 03, 2021	Sep. 02, 2022
TIME	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 03, 2021	Sep. 02, 2022
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 03, 2021	Sep. 02, 2022

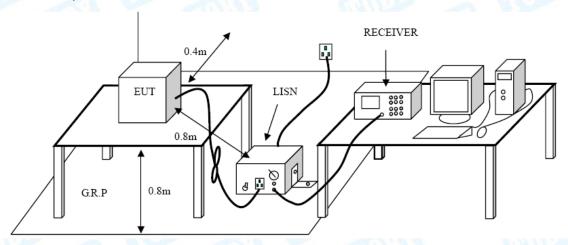
Page: 14 of 51

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Eroguenov	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- ●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- •LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 15 of 51

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 16 of 51

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

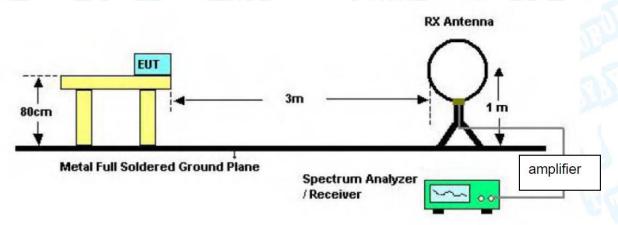
General field strength limits at frequencies Below 30MHz			
Frequency (MHz)	Field Strength (microvolt/meter)**	Measurement Distance (meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

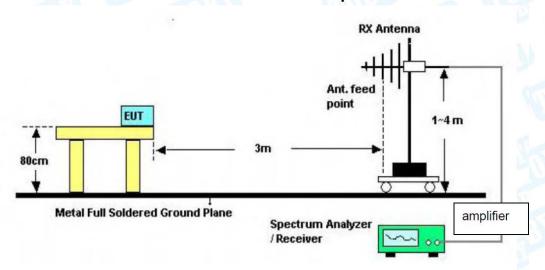
General field strength limits at frequencies above 30 MHz			
Frequency (MHz)	Field strength (μV/m at 3 m)	Measurement Distance (meters)	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

General field strength limits at frequencies Above 1000MHz			
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

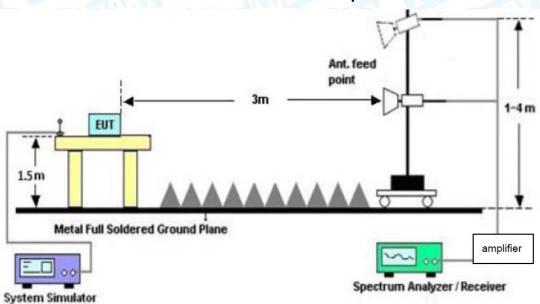
Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

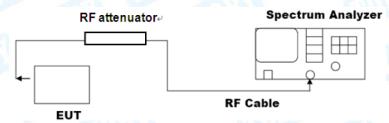


6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Above 1GHz Test Setup

Page: 18 of 51

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 19 of 51

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Conducted measurement please refer to the external appendix report of 2.4G Wi-Fi.

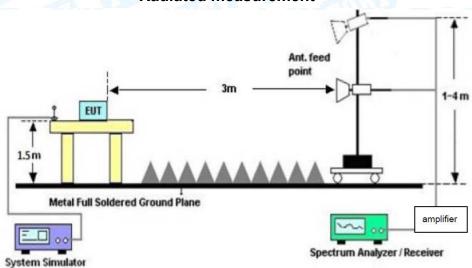
Report No.: TBR-C-202202-0074-1 Page: 20 of 51

7. Restricted Bands Requirement

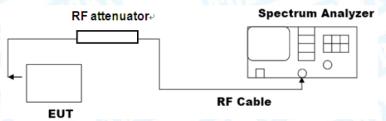
7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)	
2310 ~2390	-21.20	-41.20	
2483.5 ~2500	-21.20	-41.20	


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

Page: 21 of 51

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to

determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies
- \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

Page: 22 of 51

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

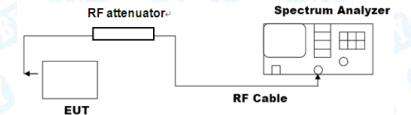
7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Page: 23 of 51

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
-6dB bandwidth (DTS bandwidth)	>=500 KHz	2400~2483.5
99% occupied bandwidth	1	2400~2483.5

8.2 Test Setup

8.3 Test Procedure

---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

Page: 24 of 51

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

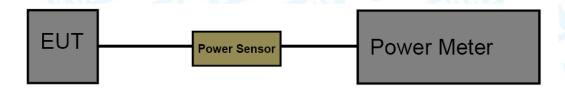
8.5 EUT Operating Mode

Please refer to the description of test mode.

8.6 Test Data

Page: 25 of 51

9. Peak Output Power


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247(b)(3)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	not exceed 1 W or 30dBm	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

● The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

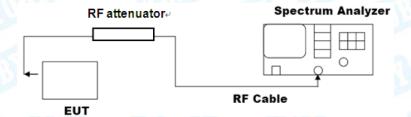
Please refer to the description of test mode.

9.6 Test Data

Page: 26 of 51

10. Power Spectral Density

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(e)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Page: 27 of 51

11. Antenna Requirement

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 5.0dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Test Data

The EUT antenna is a FPC& Dipole Antenna. It complies with the standard requirement.

	Antenna Type
	⊠Permanent attached antenna(ALTOBEAM)
1	⊠Unique connector antenna(REALTEK 8192FC)
	☐Professional installation antenna

Page: 28 of 51

Attachment A-- Conducted Emission Test Data

Temperature:	24.5℃		Re	lative Humi	idity:	44%	
Test Voltage:	AC 12	0V/60Hz		1			1
Terminal:	Line	1			2 (U)	The same	
Test Mode:	Mode	1			1		
Remark:	Only v	vorse case i	s reported.	AND			
30 dBuV			(pplovije v 1/4 v	Markey or heap your or heap	- Apply and	QP: AVG:	peal AVG
0.150	0.5	Reading	(MHz) Correct	5 Measure-			30.000
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	-ID-A/	-ID				
	IVIITIZ	dBu∀	dB	dBu∀	dBu∀	dB	Detector
1 (0.2580	33.59	11.62	dBu∨ 45.21		-16.28	Detector QP
					61.49		
2 (0.2580	33.59	11.62	45.21	61.49 51.49	-16.28	QP
2 0	0.2580	33.59 19.81	11.62 11.62	45.21 31.43	61.49 51.49 56.00	-16.28 -20.06	QP AVG QP
2 0 3 0 4 0	0.2580 0.2580 0.5100	33.59 19.81 27.23	11.62 11.62 11.49	45.21 31.43 38.72	61.49 51.49 56.00 46.00	-16.28 -20.06 -17.28	QP AVG QP
2 0 3 0 4 0 5 1	0.2580 0.2580 0.5100 0.5100	33.59 19.81 27.23 17.74	11.62 11.62 11.49 11.49	45.21 31.43 38.72 29.23	61.49 51.49 56.00 46.00 56.00	-16.28 -20.06 -17.28 -16.77	QP AVG QP AVG QP
2 0 3 0 4 0 5 1 6 1	0.2580 0.2580 0.5100 0.5100 1.2300	33.59 19.81 27.23 17.74 20.31	11.62 11.62 11.49 11.49 11.04	45.21 31.43 38.72 29.23 31.35	61.49 51.49 56.00 46.00 56.00 46.00	-16.28 -20.06 -17.28 -16.77 -24.65	QP AVG QP AVG QP
2 0 3 0 4 0 5 1 6 1 7 2	0.2580 0.2580 0.5100 0.5100 1.2300 1.2300 2.1420	33.59 19.81 27.23 17.74 20.31 13.51 25.85	11.62 11.62 11.49 11.49 11.04 11.04 10.50	45.21 31.43 38.72 29.23 31.35 24.55 36.35	61.49 51.49 56.00 46.00 56.00 56.00	-16.28 -20.06 -17.28 -16.77 -24.65 -21.45 -19.65	QP AVG QP AVG QP AVG QP
2 0 3 0 4 0 5 1 6 1 7 2 8 2	0.2580 0.2580 0.5100 0.5100 1.2300 1.2300 2.1420 2.1420	33.59 19.81 27.23 17.74 20.31 13.51 25.85 18.90	11.62 11.62 11.49 11.49 11.04 11.04 10.50	45.21 31.43 38.72 29.23 31.35 24.55 36.35 29.40	61.49 51.49 56.00 46.00 56.00 46.00 46.00	-16.28 -20.06 -17.28 -16.77 -24.65 -21.45 -19.65 -16.60	QP AVG QP AVG QP AVG QP AVG
2 0 3 0 4 0 5 1 6 1 7 2 8 2 9 3	0.2580 0.2580 0.5100 0.5100 1.2300 1.2300 2.1420 2.1420 3.2659	33.59 19.81 27.23 17.74 20.31 13.51 25.85 18.90 31.77	11.62 11.62 11.49 11.49 11.04 11.04 10.50 10.50	45.21 31.43 38.72 29.23 31.35 24.55 36.35 29.40 41.98	61.49 51.49 56.00 46.00 56.00 46.00 56.00	-16.28 -20.06 -17.28 -16.77 -24.65 -21.45 -19.65 -16.60 -14.02	QP AVG QP AVG QP AVG QP AVG
2 0 3 0 4 0 5 1 6 1 7 2 8 2 9 3	0.2580 0.2580 0.5100 0.5100 1.2300 1.2300 2.1420 2.1420	33.59 19.81 27.23 17.74 20.31 13.51 25.85 18.90	11.62 11.62 11.49 11.49 11.04 11.04 10.50	45.21 31.43 38.72 29.23 31.35 24.55 36.35 29.40	61.49 51.49 56.00 46.00 56.00 46.00 56.00 46.00	-16.28 -20.06 -17.28 -16.77 -24.65 -21.45 -19.65 -16.60	QP AVG QP AVG QP AVG QP AVG

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Tempe	rature:	24.5℃			Relative Hu	midity:	44%	
Test Vo	oltage:	AC 12	0V/60Hz		an			CHILL
Termin	al:	Neutra	al					
Test M	ode:	Mode	1			11/1	1111	
Remar	k:	Only v	vorse case	is reported.				
30 dB				phallengh phylosope	Marine of the second	Market Mark	QP: AVG:	peak AVG
-20 0.150	Mk.	o.5	Reading Level	(MHz) Correct Factor	Measure- ment	Limit	Over	30.000
	IVIN.	MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector
	0	.1580	37.19	11.60	48.79		-16.77	QP
			28.01	11.60	39.61			AVG
2		.1580					-15.95	
3		.3620	31.93	11.51	43.44		-15.24	QP
		.3620	27.00	11.51	38.51		-10.17	AVG
5		.7620	20.19	11.39	31.58		-24.42	QP
6		.7620	12.74	11.39	24.13		-21.87	AVG
7	2	.1460	25.91	10.42	36.33	56.00	-19.67	QP
8	2	.1460	19.00	10.42	29.42	46.00	-16.58	AVG
9	3	.2139	31.96	10.16	42.12	56.00	-13.88	QP
10	3	.2139	24.90	10.16	35.06	46.00	-10.94	AVG
11	9	.1140	24.83	10.10	34.93	60.00	-25.07	QP

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 30 of 51

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

RF module (ALTOBEAM)

Temper	ature:	24.3°C			Relative Hu	umidity:	45%	
Test Vol	ltage:	AC 12	20V/60Hz			All Trees		J W
Ant. Pol	l .	Horizo	Horizontal					
Test Mo	de:	Mode 2(TX Mode b Mode Channel 01)						
Remark		Only v	vorse cas	se is reported				1130
80.0 dB	BuV/m							
70								
60								
						1 1	C 3M Radiatio	ın _
50						Margin -6 d	В	
40				3 *	4 ×	ı X		
30		2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\	M. I. M. A.		$\mathcal{N}_{\mathcal{M}}$	واستهال .	pe.
¥		.n 17"	ነሳሌ ሊ	" " Kara I MANA HAMATIN	Millian Millian		Herland hard hard	~
20	Holy marketines	HAND, youth VIEN	₩ ₩	Jack Mar.				
10	H. Maryer January Maryer and	HAND SAMPLE	W NAME	JaJ/M/v.				
10	Holy region and property	(AM) zmer IA	Why MW	Ja./M/k.				
10	the property and produced	Hay yout of	7/11/ _{1,} y/4// 1	i.yNik.				
10 -10 -10	the property and producer or	MAN JOHN DE	**************************************	ia/Mk.				
10	the property and the house	60.00	W N. WW	(MHz)		1.00		1000.0
10 -10 -20	Frequ (Mł	60.00 Hency	Readin (dBuV	(MHz)		Limit	Margin (dB)	
10 0 -10 -20 30.000	Frequ	iency Hz)	l .	g Factor) (dB/m)	Level	Limit	_	Detector peak
10 0 -10 -20 30.000	Frequ (Mł	60.00 Hency Hz)	(dBuV	g Factor (dB/m) -23.18	Level (dBuV/m)	Limit (dBuV/m)	(dB)	Detector
10 0 -10 -20 30.000 No.	Frequ (Mł 32.5	60.00 Hency Hz) 1197	(dBuV 46.29	(MHz) g Factor) (dB/m) -23.18 -24.04	Level (dBuV/m) 23.11	Limit (dBuV/m) 40.00	(dB) -16.89	Detecto
10 0 -10 -20 30.000 No.	Frequ (MH 32.5 66.2	60.00 Hency Hz) 197 1660 7587	(dBuV 46.29 53.09	g Factor (dB/m) -23.18 -24.04 -24.60	Level (dBuV/m) 23.11 29.05	Limit (dBuV/m) 40.00 40.00	(dB) -16.89 -10.95	Detector peak peak
10 0 -10 -20 30.000 No.	Frequ (MH 32.5 66.2 106.7	197 660 7587 2855	(dBuV 46.29 53.09 58.05	g Factor (dB/m) -23.18 -24.04 -24.60 -24.07	Level (dBuV/m) 23.11 29.05 33.45	Limit (dBuV/m) 40.00 40.00 43.50	(dB) -16.89 -10.95 -10.05	peak peak peak

Remark:

*:Maximum data

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

x:Over limit !:over margin

- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

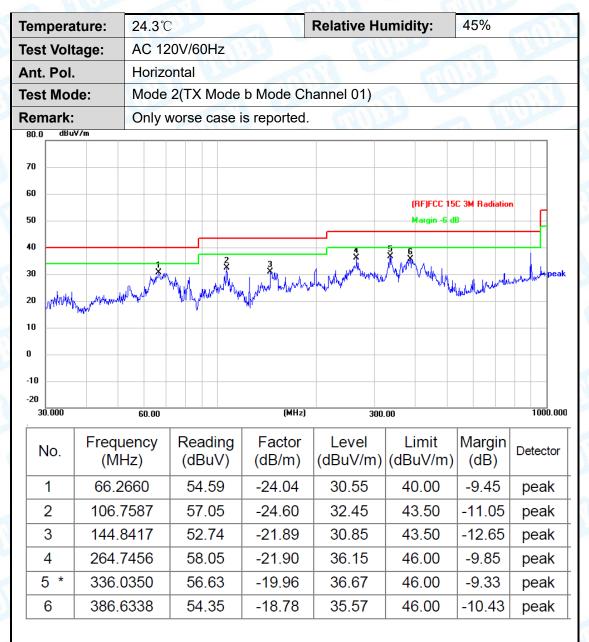
31 of 51 Page:

Tempera	ture:	24.3°C			R	elative Hur	nidity:	45%	
Test Volta	age:	AC 12	20V/6	0Hz		C.III	137		
Ant. Pol.		Vertic	al	BHO)		av			100
Test Mod	le:	Mode	2(TX	Mode	b Mode Ch	annel 01)	J AM	A CASE	
Cemark: Only worse case is reported.						13			
80.0 dBu	V/m								
70									
60									
							1 1	3M Radiation	
50							Margin -6 dB		
40 ×			2 Ş		3 X		, \$	6	
30 MANAN	M.M	ЫҢ <i>Ы</i> Л₽М	Muh.	WYWWYW.	Margaritages 1	1 mularuh	MIMANUL	Ja Marken	linuluiu peak
1 1	West maked	ן דורקאועי	א יקעון עו	MINE IT TO					
20	Property man	do technia	יען וועף א	all Marian se	JMK	May the total	/ Vr	Multi-Own.	
20	May man	A MAIL .	iti ilah. M	**************************************	JMK.	MAN AN TON	/ Vi milwh	APP CAP	
10	Market Roll	γ (γ') (· · ·)	ult und. M	WINT * * * *	John C.	May 191 West	/ V TOWN	WY VW	
10	Walter Wall	, I.A.	il lide v	W14117 V	Net .	Aug are are long	, v		
10		,	N HOP V	W1 W 1 7 V	Net .		V Comm		
10		60.00	M ndt. A	711	(MHz)	300.1	00		1000.000
10 0 -10 -20 30.000	Frequ		Re	ading	(MHz)	300.0	Limit	Margin	
10	Frequ (MI	iency		ading BuV)	T .	Level	1	Margin (dB)	1000.000
10 0 -10 -20 30.000		iency Hz)	(dl	_	Factor	Level	Limit	_	
10 0 -10 -20 30.000 No.	(MI	iency Hz) 5172	(dl	BuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	(dB)	Detecto
10 0 -10 -20 30.000 No.	(MI 34.5	iency Hz) 5172 5568	(dl 59	BuV) 9.06	Factor (dB/m) -23.08	Level (dBuV/m) 35.98	Limit (dBuV/m) 40.00	(dB) -4.02	Detecto peak
10 0 -10 -20 30.000 No. 1 * 2 !	34.5 74.6 146.8	iency Hz) 5172 5568	59 59 59	BuV) 9.06 9.66	Factor (dB/m) -23.08 -25.44	Level (dBuV/m) 35.98 34.22	Limit (dBuV/m) 40.00 40.00	(dB) -4.02 -5.78	Detecto peak peak
10 0 -10 -20 30.000 No. 1 * 2 !	34.5 74.6 146.8	iency Hz) 5172 5568 8874 8926	(dl 59 59 59 62	9.06 9.66 5.76	Factor (dB/m) -23.08 -25.44 -21.83	Level (dBuV/m) 35.98 34.22 33.93	Limit (dBuV/m) 40.00 40.00 43.50	(dB) -4.02 -5.78 -9.57	Detecto peak peak peak

Remark:

*:Maximum data

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)


x:Over limit !:over margin

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 32 of 51

RF module (REALTEK 8192FC)

^{*:}Maximum data x:Over limit !:over margin

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 33 of 51

empera	ature:	24.3°C			R	elative Hun	nidity:	45%	
est Vol	tage:	AC 12	20V/6	0Hz		6.00			
nt. Pol		Vertic	al	(MI)		au		110	
est Mo	de:	Mode	2(TX	Mode	b Mode Ch	annel 01)	J HII	A CONTRACTOR OF THE PARTY OF TH	1
emark:		Only	worse	e case i	is reported.				Mile
30.0 dBu	V/m								
70									
60									
50							1 1	3M Radiation	, 4
			Ι,				Margin -6 dB		
10	2		3 [5		5	6		
30 //////	Πa .	a A.	da ii.	1 1 7.	1 Muchine	J A. A	A. T	M.L.	Limitary pea
se haddindind	in John Marin	hite Militaria.	J. Mallin.	Jacobin JYO	A SAME PROPERTY.	JU 1994 J. ZHANG JANG	JALLACTU A MULTILI J.	a. a Marke J	The other ball
	Physical and Physical Colonial	MICA HAVA	n ^{ari} llap ^{ille} ty	NAMA MATANAT	Mr. Janes and	had property for	Mahha Landanda	yerlether Talking	lynulium)
"	Planeto podre Proprio Voldina	hjth _{ry} hly"helv _{ry}	nd MayPhray	XPYV ^{APV} VA	Mary Lance and	had mad way I have	/14,60° 14,04° 14,066	AND MANAGE	Igrodicitely and
20	Pr _{and} on Property College	WIN AND AND	k, i ^{r i} lka j ^{elo} taj	NAMA MANAYAY	Maria Lanca and	Luthan Mary Train	/10(₀)/* 1	garateani Mahinta	Igran March
20	Physical Property and Company of the	WITA-AND BANKA	(J ^{A M} ay ^{Ab} ty)	NAMA MATANA	A PART PART NA	had had way have	/U _a bo ^{r T} LAMPINIMANIA	Marie Carl	lance (Lance
10	N. Andrews (Mill)	VI-VIII	(AT May Metay	NYW VIII VIII VIII	Maria Lara Mil	Augh Lead Mary Mary	May No Landy Haral	Andrew Andrew Control	lanotura)
20	Proportion of the Control of the Con	VI ****	u, MuyMuy	NAMA NO NATO	Army Part Call	Augh That May and Than	May be to controlled the	And And Andrews	Tapoutous)
20 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Proportion of the Control of the Con	60.00			(MHz)	300.1	00	Tyleson Anna Tyleson	1000.00
20 10 10 20 30.000	Frequ		Rea	ading	(MHz)	300.1	DO Limit	Margin	1000.00
20	Frequ (MI	iency	1	ading BuV)	· ·	Level		Margin (dB)	1000.00
20 10 10 20 30.000		iency Hz)	(dE	_	Factor	Level	Limit	_	1000.00
20 10 10 20 30.000 No.	(MI	iency Hz) 5172	(dE	BuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	(dB)	1000.00
20 10 20 30.000 No.	(MI 34.5	iency Hz) 5172 5119	(dE 57 56	3uV) 7.06	Factor (dB/m)	Level (dBuV/m) 33.98	Limit (dBuV/m) 40.00	(dB) -6.02	Detecto peak
20 10 0 10 20 30.000 No.	(MI 34.5 43.8	Hz) 172 1119 1953	57 56 59	3uV) 7.06 6.47	Factor (dB/m) -23.08 -22.86	Level (dBuV/m) 33.98 33.61	Limit (dBuV/m) 40.00 40.00	(dB) -6.02 -6.39	Detector peak peak
20 10 10 20 30.000 No. 1 2 3	(MI 34.5 43.8 74.3	uency Hz) 5172 5119 5953 7587	57 56 59 58	7.06 6.47 9.33	Factor (dB/m) -23.08 -22.86 -25.37	Level (dBuV/m) 33.98 33.61 33.96	Limit (dBuV/m) 40.00 40.00 40.00	(dB) -6.02 -6.39 -6.04	Detector peak peak peak

^{*:}Maximum data x:Over limit !:over margin

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 34 of 51

Above 1GHz

RF module (ALTOBEAM)

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		The same
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2412MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.117	54.80	1.42	56.22	74.00	-17.78	peak
2 *	4824.117	42.83	1.42	44.25	54.00	-9.75	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		The same of the sa
Ant. Pol.	Vertical	(1)	
Test Mode:	TX B Mode 2412MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.384	54.06	1.42	55.48	74.00	-18.52	peak
2 *	4824.415	44.24	1.42	45.66	54.00	-8.34	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 35 of 51

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		A VIV
Ant. Pol.	Horizontal		an su
Test Mode:	TX B Mode 2437MHz	U.S. T	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4874.241	44.08	1.53	45.61	54.00	-8.39	AVG
2	4874.381	55.35	1.53	56.88	74.00	-17.12	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	The same of the sa	
Ant. Pol.	Vertical	THU .	
Test Mode:	TX B Mode 2437MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.218	55.31	1.53	56.84	74.00	-17.16	peak
2 *	4874.411	43.09	1.53	44.62	54.00	-9.38	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 36 of 51

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal						
Test Mode:	TX B Mode 2462MHz	TO THE REAL PROPERTY.					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4924.108	55.29	1.67	56.96	74.00	-17.04	peak
2 *	4924.267	43.94	1.67	45.61	54.00	-8.39	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		THUE
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2462MHz	A MILLS	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4924.344	44.07	1.67	45.74	54.00	-8.26	AVG
2	4924.347	53.81	1.67	55.48	74.00	-18.52	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 37 of 51

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	WIND.	A VIV
Ant. Pol.	Horizontal		
Test Mode:	TX G Mode 2412MHz	The same of the sa	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.327	54.86	1.42	56.28	74.00	-17.72	peak
2 *	4824.423	43.60	1.42	45.02	54.00	-8.98	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		THUE
Ant. Pol.	Vertical		
Test Mode:	TX G Mode 2412MHz	A AMERICA	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.109	54.80	1.42	56.22	74.00	-17.78	peak
2 *	4824.331	43.50	1.42	44.92	54.00	-9.08	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 38 of 51

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		A AM
Ant. Pol.	Horizontal		11:30
Test Mode:	TX G Mode 2437MHz	The state of the	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4874.268	55.26	1.53	56.79	74.00	-17.21	peak
2 *	4874.327	43.74	1.53	45.27	54.00	-8.73	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		THUE
Ant. Pol.	Vertical		mn!
Test Mode:	TX G Mode 2437MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4874.346	43.74	1.53	45.27	54.00	-8.73	AVG
2	4874.481	55.18	1.53	56.71	74.00	-17.29	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 39 of 51

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		A VIV
Ant. Pol.	Horizontal		U.S.
Test Mode:	TX G Mode 2462MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4924.255	44.71	1.67	46.38	54.00	-7.62	AVG
2	4924.354	55.25	1.67	56.92	74.00	-17.08	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	The state of the s	San P
Ant. Pol.	Vertical	MAG	
Test Mode:	TX G Mode 2462MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4924.317	44.53	1.67	46.20	54.00	-7.80	AVG
2	4924.338	55.35	1.67	57.02	74.00	-16.98	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 40 of 51

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		7137
Test Mode:	TX n(HT20) Mode 2	2412MHz	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.338	55.50	1.42	56.92	74.00	-17.08	peak
2 *	4824.338	44.79	1.42	46.21	54.00	-7.79	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		THUE
Ant. Pol.	Vertical		MILE
Test Mode:	TX n(HT20) Mode 2412Mi	НZ	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.285	55.92	1.42	57.34	74.00	-16.66	peak
2 *	4824.285	44.88	1.42	46.30	54.00	-7.70	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 41 of 51

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX n(HT20) Mode 2	2437MHz	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4874.288	43.66	1.53	45.19	54.00	-8.81	AVG
2	4874.322	53.95	1.53	55.48	74.00	-18.52	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		THUE
Ant. Pol.	Vertical		and the same
Test Mode:	TX n(HT20) Mode 2437MI	НZ	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.225	55.15	1.53	56.68	74.00	-17.32	peak
2 *	4874.364	45.78	1.53	47.31	54.00	-6.69	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 42 of 51

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	William .	A PINCE
Ant. Pol.	Horizontal		
Test Mode:	TX n(HT20) Mode 2462	MHz	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4924.118	54.29	1.67	55.96	74.00	-18.04	peak
2 *	4924.355	44.61	1.67	46.28	54.00	-7.72	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		THUE
Ant. Pol.	Vertical		and the same
Test Mode:	TX n(HT20) Mode 2462MI	НZ	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4924.306	55.21	1.67	56.88	74.00	-17.12	peak
2 *	4924.422	44.64	1.67	46.31	54.00	-7.69	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 43 of 51

RF module (REALTEK 8192FC)

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal		William I				
Test Mode:	TX B Mode 2412MHz(Antenna1+Antenna2)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.218	55.02	1.42	56.44	74.00	-17.56	peak
2 *	4824.425	45.45	1.42	46.87	54.00	-7.13	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical					
Test Mode:	TX B Mode 2412MHz(Antenna1+Antenna2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4824.177	44.56	1.42	45.98	54.00	-8.02	AVG
2	4824.269	56.18	1.42	57.60	74.00	-16.40	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 44 of 51

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	MILLER	
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2437MHz(Ai	ntenna1+Antenna2)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.216	55.23	1.53	56.76	74.00	-17.24	peak
2 *	4874.425	43.75	1.53	45.28	54.00	-8.72	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz	The same				
Ant. Pol.	Vertical	THU .				
Test Mode:	TX B Mode 2437MHz(Antenna1+Antenna2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.257	53.94	1.53	55.47	74.00	-18.53	peak
2 *	4874.344	44.80	1.53	46.33	54.00	-7.67	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 45 of 51

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal						
Test Mode:	TX B Mode 2462MHz(A	TX B Mode 2462MHz(Antenna1+Antenna2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4924.246	44.38	1.67	46.05	54.00	-7.95	AVG
2	4924.484	54.54	1.67	56.21	74.00	-17.79	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz		THUE				
Ant. Pol.	Vertical						
Test Mode:	TX B Mode 2462MHz(A	TX B Mode 2462MHz(Antenna1+Antenna2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4924.117	44.16	1.67	45.83	54.00	-8.17	AVG
2	4924.384	55.07	1.67	56.74	74.00	-17.26	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 46 of 51

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal						
Test Mode:	TX G Mode 2412MHz(A	ntenna1+Antenna2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4824.247	54.54	1.42	55.96	74.00	-18.04	peak
2 *	4824.340	44.79	1.42	46.21	54.00	-7.79	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz		THUE				
Ant. Pol.	Vertical	Control of the second					
Test Mode:	TX G Mode 2412MHz(Ant	X G Mode 2412MHz(Antenna1+Antenna2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.685	55.79	1.42	57.21	74.00	-16.79	peak
2 *	4823.751	44.48	1.42	45.90	54.00	-8.10	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 47 of 51

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		7133
Test Mode:	TX G Mode 2437M	Hz(Antenna1+Antenna2)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.237	54.41	1.53	55.94	74.00	-18.06	peak
2 *	4874.428	44.58	1.53	46.11	54.00	-7.89	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz		THUE			
Ant. Pol.	Vertical		mn!			
Test Mode:	TX G Mode 2437MHz(Ar	TX G Mode 2437MHz(Antenna1+Antenna2)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.081	54.71	1.53	56.24	74.00	-17.76	peak
2 *	4874.322	43.84	1.53	45.37	54.00	-8.63	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 48 of 51

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal		U:10				
Test Mode:	TX G Mode 2462MHz(Ant	enna1+Antenna2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1	4923.688	54.91	1.67	56.58	74.00	-17.42	peak
2 *	4923.769	44.50	1.67	46.17	54.00	-7.83	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz	Contract of the second				
Ant. Pol.	Vertical	MINUS				
Test Mode:	TX G Mode 2462MHz(Antenna1+Antenna2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4923.629	54.80	1.67	56.47	74.00	-17.53	peak
2 *	4923.739	44.21	1.67	45.88	54.00	-8.12	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 49 of 51

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		11:30
Test Mode:	TX n(HT20) Mode 2412M	Hz(Antenna1+Antenna2	2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.627	45.39	1.42	46.81	54.00	-7.19	AVG
2	4823.841	55.95	1.42	57.37	74.00	-16.63	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz		THURST			
Ant. Pol.	Vertical		MILE			
Test Mode:	TX n(HT20) Mode 2412MHz(Antenna1+Antenna2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.672	44.86	1.42	46.28	54.00	-7.72	AVG
2	4823.744	54.95	1.42	56.37	74.00	-17.63	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 50 of 51

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		A VIV
Ant. Pol.	Horizontal		MIN TO THE REAL PROPERTY.
Test Mode:	TX n(HT20) Mode	2437MHz(Antenna1+Antenna	a2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.288	54.09	1.53	55.62	74.00	-18.38	peak
2 *	4874.384	45.18	1.53	46.71	54.00	-7.29	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz		TUL				
Ant. Pol.	Vertical		and the				
Test Mode:	TX n(HT20) Mode 2437Ml	TX n(HT20) Mode 2437MHz(Antenna1+Antenna2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.694	43.82	1.53	45.35	54.00	-8.65	AVG
2	4873.768	54.09	1.53	55.62	74.00	-18.38	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 51 of 51

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		THE RESERVE TO SERVE
Ant. Pol.	Horizontal		
Test Mode:	TX n(HT20) Mode 24	462MHz(Antenna1+Antenna	a2)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4924.327	55.94	1.67	57.61	74.00	-16.39	peak
2 *	4924.421	44.61	1.67	46.28	54.00	-7.72	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 °C	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz		TUL				
Ant. Pol.	Vertical		and the				
Test Mode:	TX n(HT20) Mode 2462MI	TX n(HT20) Mode 2462MHz(Antenna1+Antenna2)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4924.281	44.61	1.67	46.28	54.00	-7.72	AVG
2	4924.417	54.60	1.67	56.27	74.00	-17.73	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

----END OF REPORT-----