TEST REPORT # No. I18D00229-SAR01 ### For Client: Hisense International Co., Ltd. **Production: Mobile Phone** **Brand Name: Hisense** Model Name: KS964 FCC ID: 2ADOBKS964 Hardware Version: V1.00 Software Version: Hisense_KS964_MX01_L101.06 Issued date: 2019-01-17 #### Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai. #### **Test Laboratory:** ECIT Shanghai, East China Institute of Telecommunications Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn #### **Revision Version** Report No.: I18D00229-SAR01 | Report Number | Revision | Date | Memo | |-----------------|----------|------------|---------------------------------| | I18D00229-SAR01 | 00 | 2019-01-04 | Initial creation of test report | | I18D00229-SAR01 | 01 | 2019-01-17 | Second creation of test report | East China Institute of Telecommunications Page Number : 2 of 118 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Jan. 17, 2019 # Report No.: I18D00229-SAR01 Page Number : 3 of 118 Report Issued Date : Jan. 17, 2019 # **CONTENTS** | 1. | TEST LABORATORY | 6 | |------|---|----| | 1.1. | TESTING LOCATION | 6 | | 1.2. | TESTING ENVIRONMENT | 6 | | 1.3. | PROJECT DATA | 6 | | 1.4. | SIGNATURE | 6 | | 2. | STATEMENT OF COMPLIANCE | 7 | | 3. | CLIENT INFORMATION | 9 | | 3.1. | APPLICANT INFORMATION | 9 | | 3.2. | MANUFACTURER INFORMATION | 9 | | 4. | EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 10 | | 4.1. | ABOUT EUT | 10 | | 4.2. | INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST | 11 | | 4.3. | INTERNAL IDENTIFICATION OF AE USED DURING THE TEST | 11 | | 5. | TEST METHODOLOGY | 12 | | 5.1. | APPLICABLE LIMIT REGULATIONS | 12 | | 5.2. | APPLICABLE MEASUREMENT STANDARDS | 12 | | 6. | SPECIFIC ABSORPTION RATE (SAR) | 13 | | 6.1. | INTRODUCTION | 13 | | 6.2. | SAR DEFINITION | 13 | | 7. | TISSUE SIMULATING LIQUIDS | 14 | | 7.1. | TARGETS FOR TISSUE SIMULATING LIQUID | 14 | | 7.2. | DIELECTRIC PERFORMANCE | 15 | | 8. | SYSTEM VERIFICATION | 16 | | 8.1. | SYSTEM SETUP | 16 | | 8.2. | SYSTEM VERIFICATION | 17 | | 9. | MEASUREMENT PROCEDURES | 19 | Report No.: I18D00229-SAR01 TESTS TO BE PERFORMED19 9.1. GENERAL MEASUREMENT PROCEDURE......19 9.2. WCDMA MEASUREMENT PROCEDURES FOR SAR20 9.3. BLUETOOTH & WIFI MEASUREMENT PROCEDURES FOR SAR......21 9.4. 9.5. 10. AREA SCAN BASED 1-G SAR23 CONDUCTED OUTPUT POWER24 11. MANUFACTURING TOLERANCE.......24 GSM MEASUREMENT RESULT28 11.1. 11.2. WCDMA MEASUREMENT RESULT29 WIFI AND BT MEASUREMENT RESULT30 11.3. 12. SIMULTANEOUS TX SAR CONSIDERATIONS.......33 12.1. INTRODUCTION33 TRANSMIT ANTENNA SEPARATION DISTANCES.......33 12.2. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS34 12.3. 12.4. 13. 14. EVALUATION OF SIMULTANEOUS.......40 SAR MEASUREMENT VARIABILITY......42 15. MEASUREMENT UNCERTAINTY43 16. 17. MAIN TEST INSTRUMENT.......45 ANNEX A. HIGHEST SAR GRAPH RESULTS......46 ANNEX B. SYSTEM VALIDATION RESULTS56 ANNEX C. SAR MEASUREMENT SETUP63 ANNEX D. POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM.............72 ANNEX E. EQUIVALENT MEDIA RECIPES......76 Page Number : 4 of 118 | ANNEX F. | SYSTEM VALIDATION | 77 | |----------|---------------------------------------|-----| | ANNEX G. | PROBE AND DAE CALIBRATION CERTIFICATE | 78 | | ANNEY H | ACCREDITATION CERTIFICATE | 119 | Report No.: I18D00229-SAR01 1. Test Laboratory #### 1.1. Testing Location | Company Name: | ECIT Shanghai, East China Institute of Telecommunications | |----------------------|--| | Addross | 7-8F, G Area,No. 668, Beijing East Road, Huangpu District, | | Address: | Shanghai, P. R. China | | Postal Code: | 200001 | | Telephone: | (+86)-021-63843300 | | Fax: | (+86)-021-63843301 | | FCC registration No: | 958356 | ### 1.2. Testing Environment | Normal Temperature: | 18-25℃ | |-----------------------------|--------------| | Relative Humidity: | 25-75% | | Ambient noise & Reflection: | < 0.012 W/kg | ### 1.3. Project Data | Project Leader: | Zhang Min | |---------------------|------------| | Testing Start Date: | 2018-12-12 | | Testing End Date: | 2018-12-24 | ### 1.4. Signature Yan Hang (Prepared this test report) Fu Erliang Report No.: I18D00229-SAR01 (Reviewed this test report) Page Number : 6 of 118 Report Issued Date: Jan. 17, 2019 Zheng Zhongbin (Approved this test report) 2. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **KS964** are as follows . Table 2.1: Max. Reported SAR (1g) | Dood | SAR 1g(W/Kg) | | | | | |-------------|--------------|-----------------|---------------|--|--| | Band | Head | Body worn(10mm) | Hotspot(10mm) | | | | GSM 850 | 0.414 | 1.106 | 1.106 | | | | GSM 1900 | 0.175 | 1.137 | 1.174 | | | | WCDMA Band2 | 0.262 | 0.647 | 0.658 | | | | WCDMA Band5 | 0.425 | 0.630 | 0.630 | | | | 2.4G WiFi | 0.114 | 0.060 | 0.060 | | | The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue, according to the ANSI C95.1-1999. For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal. Use of other accessories may not ensure compliance with FCC RF exposure guidelines. East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 7 of 118 Report Issued Date : Jan. 17, 2019 Report No.: I18D00229-SAR01 **Table 2.2: Simultaneous SAR** | Simultaneous multi-band transmission | | | | | | | | | |--------------------------------------|---------------|----------|-------|-------|-------|-------|-------|--| | Test | Test Position | | | 3G | ВТ | WiFi | SUM | | | | Left | Cheek | 0.414 | 0.412 | 0.075 | 0.042 | 0.489 | | | 114(4) | Leπ | Tilt 15° | 0.191 | 0.213 | 0.075 | 0.039 | 0.288 | | | Head(1g) | Right | Cheek | 0.407 | 0.425 | 0.075 | 0.114 | 0.539 | | | | | Tilt 15° | 0.257 | 0.283 | 0.075 | 0.098 | 0.381 | | | Hotspot &Body- | Phantom | Side | 0.874 | 0.548 | 0.149 | 0.053 | 1.023 | | | worn 10 mm(1g) | Ground Side | | 1.137 | 0.647 | 0.149 | 0.060 | 1.286 | | | | Left Side | | 0.802 | 0.413 | 0.149 | 0.053 | 0.951 | | | Listen et 40 mar (4 m) | Right Side | | 0.821 | 0.416 | 0.149 | 0.060 | 0.97 | | | Hotspot 10 mm(1g) | Top Side | | | | 0.149 | 0.053 | 0.149 | | | | Bottom Side | | 1.174 | 0.658 | 0.149 | | 1.323 | | According to the above table, the maximum sum of reported SAR values for GSM/WCDMA/LTE/CDMA and BT/WiFi is **1.323 W/kg** (1g). ### 3. Client Information #### 3.1. Applicant Information Company Name: Hisense International Co., Ltd. Address: Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao, 266071, China Report No.: I18D00229-SAR01 Telephone: +86-532-80877742 Postcode: / #### 3.2. Manufacturer Information Company Name: Hisense Communications Co., Ltd. Address: 218 Qianwangang Road, Qingdao Economic & Technological Development Zone, Qingdao, China Telephone: +86-532-55753749 Postcode: / East China Institute of Telecommunications Page Number: 9 of 118 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Jan. 17, 2019 # 4. Equipment Under Test (EUT) and Ancillary Equipment (AE) Report No.: I18D00229-SAR01 : 10 of 118 Report Issued Date: Jan. 17, 2019 Page Number #### 4.1. About EUT | Description: | Mobile Phone | |-------------------------------------|-----------------------------------| | Model name: | KS964 | | Operation Model(s): | GSM850/GSM900/GSM1800/GSM1900 | | | WCDMA Band I/Band II /Band V | | | BT4.2,BLE;WiFi 802.11b,g,n | | | GPS;GLONASS;Beidou; | | Tx Frequency: | 824.2-848.8MHz(GSM850) | | | 1850.2-1909.8MHz (GSM1900) | | | 1852.4-1907.6 MHz (WCDMA Band II) | | | 826.4-846.6MHz (WCDMA Band V) | | | 2412- 2462 MHz (WiFi) | | | 2402 – 2480 MHz (BT) | | Test device Production information: | Production unit | | GPRS/EGPRS Class Mode: | В | | GPRS/ EGPRS Multislot Class: | 12 | | Device type: | Portable device | | UE category: | HSUPA category 6 | | | HSDPA category 21 | | Antenna type: | Inner antenna | | Accessories/Body-worn | Battery | | configurations: | | | Dimensions: | 140x72x10mm | | Hotspot Mode: | Support | ### 4.2. Internal Identification of EUT used during the test | EUT ID* | SN or IMEI | HW Version | SW Version | Receive Date | |---------|-----------------|------------|--------------------------------|--------------| | N14 | 869981040000698 | V1.00 | Hisense_KS964_MX01_L101.
06 | 2018-11-26 | | N18 | 869981040000128 | V1.00 | Hisense_KS964_MX01_L101.
06 | 2018-12-27 | Report No.: I18D00229-SAR01 : 11 of 118 N14 is main supply; N18 is second supply. ### 4.3. Internal Identification of AE used during the test | AE ID* | Description | Model | SN | Manufacturer | |--------|-------------|-------|-----|--------------| | BA11 | Battery | N/A | N/A | N/A | ^{*}AE ID: is used to identify the test sample in the lab internally. ^{*}EUT ID: is used to identify the test sample in the lab internally. #### 5. TEST METHODOLOGY #### 5.1. Applicable Limit Regulations **ANSI C95.1–1999:**IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment. #### 5.2. Applicable Measurement Standards **IEEE 1528–2013:** Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques. **KDB648474 D04 Handset SAR v01r03:**SAR Evaluation Considerations for Wireless Handsets.
KDB248227 D01 802 11 WiFi SAR v02r02: SAR measurement procedures for 802.112abg transmitters. **KDB447498 D01 General RF Exposure Guidance v06:**Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies. **KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04:**SAR Measurement Requirements for 100 MHz to 6 GHz **KDB865664 D02 RF Exposure Reporting v01r02:**provides general reporting requirements as well as certain specific information required to support MPE and SAR compliance. KDB941225 D01 3G SAR Procedures v03r01: 3G SAR Measurement Procedures. **KDB941225 D06 hotspot SAR v02r01:**SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities. Page Number : 12 of 118 Report Issued Date: Jan. 17, 2019 NOTE: KDB is not in A2LA Scope List. # 6. Specific Absorption Rate (SAR) #### 6.1. Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. #### 6.2. SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by $$SAR = c(\frac{\delta T}{\delta t})$$ Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. Page Number : 13 of 118 # 7. Tissue Simulating Liquids ### 7.1. Targets for tissue simulating liquid Table 7.1: Targets for tissue simulating liquid | Frequency(MHz) | Liquid Type | Conductivity(σ) | ± 5% Range | Permittivity(ε) | ± 5% Range | |----------------|-------------|-----------------|------------|-----------------|------------| | 835 | Head | 0.90 | 0.86~0.95 | 41.5 | 39.4~43.6 | | 835 | Body | 0.97 | 0.92~1.02 | 55.2 | 52.4~58.0 | | 1800 | Head | 1.40 | 1.33~1.47 | 40.0 | 38.0~42.0 | | 1800 | Body | 1.52 | 1.44~1.60 | 53.3 | 50.6~56.0 | | 1900 | Head | 1.40 | 1.33~1.47 | 40.0 | 38.0~42.0 | | 1900 | Body | 1.52 | 1.44~1.60 | 53.3 | 50.6~56.0 | | 2450 | Head | 1.80 | 1.71~1.89 | 39.2 | 37.2~41.2 | | 2450 | Body | 1.95 | 1.85~2.05 | 52.7 | 50.1~55.3 | | 2600 | Head | 1.96 | 1.86~2.06 | 39.0 | 37.1~40.9 | | 2600 | Body | 2.16 | 2.05~2.27 | 52.5 | 59.9~55.1 | | 5200 | Head | 4.66 | 4.43~4.89 | 36.0 | 34.2~37.8 | | 5200 | Body | 5.30 | 5.04~5.57 | 49.0 | 46.6~51.5 | | 5800 | Head | 5.27 | 5.01~5.53 | 35.3 | 33.5~37.1 | | 5800 | Body | 6.00 | 5.70~6.30 | 48.2 | 45.8~50.6 | #### 7.2. Dielectric Performance **Table 7.2: Dielectric Performance of Tissue Simulating Liquid** Report No.: I18D00229-SAR01 | Measurem | Measurement Value | | | | | | | | | | |------------|---|----------------|-----------|----------------|-----------|------------|--|--|--|--| | Liquid Tem | Liquid Temperature: 22.5 $^{\circ}\mathrm{C}$ | | | | | | | | | | | Туре | Frequency | Permittivity ε | Drift (%) | Conductivity σ | Drift (%) | Test Date | | | | | | Head | 835 MHz | 42.152 | 1.57% | 0.923 | 2.56% | 2018-12-12 | | | | | | Head | 1900 MHz | 41.831 | 4.58% | 1.362 | -2.71% | 2018-12-24 | | | | | | Head | 2450 MHz | 39.541 | 0.87% | 1.814 | 0.78% | 2018-12-13 | | | | | | Body | 835 MHz | 56.664 | 2.65% | 0.998 | -2.89% | 2018-12-12 | | | | | | Body | 1900 MHz | 52.077 | -2.29% | 1.556 | 2.37% | 2018-12-24 | | | | | | Body | 2450 MHz | 54.120 | 2.69% | 1.932 | -0.92% | 2018-12-13 | | | | | | Body | 1900 MHz | 52.151 | -2.53% | 1.549 | 1.91% | 2018-12-29 | | | | | # 8. System verification #### 8.1. System Setup In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: Picture 8.1 System Setup for System Evaluation Page Number : 16 of 118 **Picture 8.2 Photo of Dipole Setup** #### 8.2. System Verification SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. Table 8.1: System Verification of Head | Verification Results | | | | | | | | | | | |-----------------------|-----------|------------|------------|-------------|---------|---------|--------------|--|--|--| | Input power level: 1W | | | | | | | | | | | | | Target va | lue (W/kg) | Measured v | alue (W/kg) | Devi | ation | Toot | | | | | Frequency | 10 g | 1 g | 10 g | 1 g | 10 g | 1 g | Test
date | | | | | | Average | Average | Average | Average | Average | Average | uate | | | | | 835 MHz | 6.25 | 9.63 | 6.48 | 9.76 | 3.68% | 1.35% | 2018-12-12 | | | | | 1900 MHz | 20.7 | 40.1 | 20.8 | 40.8 | 0.48% | 1.75% | 2018-12-24 | | | | | 2450 MHz | 24.4 | 52.4 | 23.48 | 52.4 | -3.77% | 0.00% | 2018-12-13 | | | | Page Number : 17 of 118 **Table 8.2: System Verification of Body** Report No.: I18D00229-SAR01 | Verification Results | |-----------------------| | Input power level: 1W | | input power i | | Target value (W/kg) | | Measured value (W/kg) | | ation | Toot | | |---------------|-----------------|---------------------|-----------------|-----------------------|-----------------|----------------|--------------|--| | Frequency | 10 g
Average | 1 g
Average | 10 g
Average | 1 g
Average | 10 g
Average | 1 g
Average | Test
date | | | 835 MHz | 6.4 | 9.75 | 6.64 | 10 | 3.75% | 2.56% | 2018-12-12 | | | 1900 MHz | 20.8 | 39.5 | 21.76 | 41.4 | 4.62% | 4.81% | 2018-12-24 | | | 2450 MHz | 23.5 | 50.5 | 23.88 | 51.6 | 1.62% | 2.18% | 2018-12-13 | | | 1900 MHz | 20.8 | 39.5 | 21.08 | 41.2 | 1.35% | 4.30% | 2018-12-29 | | East China Institute of Telecommunications Page Number : 18 of 118 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Jan. 17, 2019 #### 9. Measurement Procedures #### 9.1. Tests to be performed According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement The SAR measurement procedures for each of test conditions are as follows: - (a) Make EUT to transm it maximum output power - (b) Measure conducted output power through RF cable - (c) Place the EUT in the specific position of phantom as Appendix D demonstrates. - (d) Measure SAR results for Middle channel or the highest power channel on each testing position. - (e) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg - (f) Record the SAR value #### 9.2. General Measurement Procedure The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied. East China Institute of Telecommunications Page Number : 19 of 118 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Jan. 17, 2019 | | | | ≤ 3 GHz | > 3 GHz | |--|---------------------------------------|--|---|--| | Maximum distance fro
(geometric center of p | | measurement point
rs) to phantom surface | 5 mm ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$ | | Maximum probe angle
surface normal at the r | • | _ | 30° ± 1° | 20° ± 1° | |
| | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz}$: $\leq 12 \text{ mm}$
$4 - 6 \text{ GHz}$: $\leq 10 \text{ mm}$ | | Maximum area scan sp | patial resol | ution: Δx _{Area} , Δy _{Area} | When the x or y dimension
measurement plane orientat
above, the measurement res
corresponding x or y dimen-
at least one measurement po | ion, is smaller than the
olution must be ≤ the
sion of the test device with | | Maximum zoom scan | spatial res | olution: Δx _{Zoom} , Δy _{Zoom} | ≤ 2 GHz: ≤ 8 mm
2 – 3 GHz: ≤ 5 mm* | 3 – 4 GHz: ≤ 5 mm*
4 – 6 GHz: ≤ 4 mm* | | | uniform | grid: ∆z _{Zoom} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | Maximum zoom
scan spatial
resolution, normal to
phantom surface | scan spatial
resolution, normal to | | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | grid ∆z _{Zoom} (n>1): between subsequent points | | $\leq 1.5 \cdot \Delta z_{Z_{\infty}}$ | m(n-1) mm | | | Minimum zoom
scan volume | V V 7 | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Report No.: I18D00229-SAR01 Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details. #### 9.3. WCDMA Measurement Procedures for SAR The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH &DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented Page Number : 20 of 118 ^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply. #### For Release 5 HSDPA Data Devices: | Sub-test | $oldsymbol{eta}_c$ | $oldsymbol{eta}_d$ | β_d (SF) | eta_c / eta_d | $oldsymbol{eta_{hs}}$ | CM/dB | MPR | |----------|--------------------|--------------------|----------------|-------------------|-----------------------|--------|------| | Sub-test | $ ho_c$ | P_d | ρ_d (31) | ρ_c / ρ_d | P_{hs} | CM/ GD | (dB) | | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 1.5 | 0.5 | | 2 | 12/15 | 15/15 | 64 | 12/15 | 24/25 | 2. 0 | 1 | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 2. 0 | 1 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 2. 0 | 1 | Report No.: I18D00229-SAR01 : 21 of 118 Report Issued Date: Jan. 17, 2019 Page Number #### For Release 6 HSUPA Data Devices | Sub- | $oldsymbol{eta}_c$ | $oldsymbol{eta_d}$ | $oldsymbol{eta_d}$ (SF) | $oldsymbol{eta}_c$ / $oldsymbol{eta}_d$ | $oldsymbol{eta_{hs}}$ | $oldsymbol{eta}_{ec}$ | $oldsymbol{eta}_{ed}$ | eta_{ed} | eta_{ed} | CM
(dB) | MPR (dB) | AG
Index | E-TFCI | |------|--------------------|--------------------|-------------------------|---|-----------------------|-----------------------|---------------------------------------|------------|------------|------------|----------|-------------|--------| | 1 | 11/15 | 15/15 | 64 | 11/15 | 22/15 | 209/225 | 1039/225 | 4 | 1 | 2.0 | 1.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 12/15 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | eta_{ed1} :47/15 eta_{ed2} :47/15 | 4 | 2 | 3.0 | 2.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 4/15 | 56/75 | 4 | 1 | 2.0 | 1.0 | 17 | 71 | | 5 | 15/15 | 15/15 | 64 | 15/15 | 24/15 | 30/15 | 134/15 | 4 | 1 | 2.0 | 1.0 | 21 | 81 | #### 9.4. Bluetooth & WiFi Measurement Procedures for SAR Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable. Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements. Report No.: I18D00229-SAR01 : 22 of 118 #### 9.5. Power Drift To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Section 13 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%. 10. Area Scan Based 1-g SAR #### 10.1 Requirement of KDB According to the KDB447498 D01 v06, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is ≤ 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required fo simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans. There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan. Report No.: I18D00229-SAR01 ### 10.2 Fast SAR Algorithms The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale. In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT. In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings. Both algorithms are implemented in DASY software. Page Number : 23 of 118 # 11. Conducted Output Power # **Manufacturing tolerance** Table 11.1: GSM Speech | rabio i i ii Goin opocon | | | | | | | | | | | |----------------------------|-------------|----------------|-------------|--|--|--|--|--|--|--| | | GSM 850 | | | | | | | | | | | Channel | Channel 128 | Channel 190 | Channel 251 | | | | | | | | | Maximum Target Value (dBm) | 33.0 | 33.0 | 33.0 | | | | | | | | | | GSN | / 11900 | | | | | | | | | | Channel | Channel 512 | Channel 661 | Channel 810 | | | | | | | | | Maximum Target Value (dBm) | 28.0 | 28.0 | 28.0 | | | | | | | | **Table 11.2: GPRS (GMSK Modulation)** | | GSM 850 | | | | | | | | |-----------|-------------------------------|----------|------|------|--|--|--|--| | | Channel | 128 | 190 | 251 | | | | | | 1 Txslots | Maximum Target | 33.0 | 33.0 | 33.0 | | | | | | | Value (dBm) | | | | | | | | | 2 Txslots | Maximum Target
Value (dBm) | 32.0 | 32.0 | 32.0 | | | | | | 3 Txslots | Maximum Target
Value (dBm) | 30.0 | 30.0 | 30.0 | | | | | | 4 Txslots | Maximum Target
Value (dBm) | 29.0 | 29.0 | 29.0 | | | | | | | | GSM 1900 | | | | | | | | | Channel | 512 | 661 | 810 | | | | | | 1 Txslots | Maximum Target
Value (dBm) | 28.0 | 28.0 | 28.0 | | | | | | 2 Txslots | Maximum Target
Value (dBm) | 27.0 | 27.0 | 27.0 | | | | | | 3 Txslots | Maximum Target
Value (dBm) | 25.0 | 25.0 | 25.0 | | | | | | 4 Txslots | Maximum Target
Value (dBm) | 23.5 | 23.5 | 23.5 | | | | | East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21
63843301 Page Number : 24 of 118 Report Issued Date : Jan. 17, 2019 #### Table 11.3: WCDMA | WCDMA Band II | | | | | | | | | | |--|------|------|------|--|--|--|--|--|--| | Channel Channel 9262 Channel 9400 Channel 9538 | | | | | | | | | | | Maximum Target
Value (dBm) | 22.0 | 22.0 | 22.0 | | | | | | | Report No.: I18D00229-SAR01 Page Number : 25 of 118 Report Issued Date : Jan. 17, 2019 | | WCDMA Band II HSDPA | | | | | | | | |---|-------------------------------|------|------|------|------|--|--|--| | | Channel | 9262 | 9400 | 9538 | (dB) | | | | | 1 | Maximum Target
Value (dBm) | 21.0 | 21.0 | 21.0 | 1 | | | | | 2 | Maximum Target
Value (dBm) | 21.0 | 21.0 | 21.0 | 1 | | | | | 3 | Maximum Target
Value (dBm) | 21.0 | 21.0 | 21.0 | 1 | | | | | 4 | Maximum Target
Value (dBm) | 21.0 | 21.0 | 21.0 | 1 | | | | | | WCDMA Band II HSUPA | | | | | | | | | | Channel | 9262 | 9400 | 9538 | (dB) | | | | | 1 | Maximum Target
Value (dBm) | 21.0 | 21.0 | 21.0 | 1 | | | | | 2 | Maximum Target
Value (dBm) | 21.0 | 21.0 | 21.0 | 1 | | | | | 3 | Maximum Target
Value (dBm) | 21.0 | 21.0 | 21.0 | 1 | | | | | 4 | Maximum Target
Value (dBm) | 21.0 | 21.0 | 21.0 | 1 | | | | | 5 | Maximum Target
Value (dBm) | 20.0 | 20.0 | 20.0 | 1 | | | | #### Table 11.4: WCDMA | WCDMA Band V | | | | | | | | | |-------------------------------|------|------|------|--|--|--|--|--| | Channel 4132 4183 4233 | | | | | | | | | | Maximum Target
Value (dBm) | 24.0 | 24.0 | 24.0 | | | | | | Report No.: I18D00229-SAR01 Page Number : 26 of 118 Report Issued Date : Jan. 17, 2019 | | W | CDMA Band V HS |)PA | | MPR | |---|-------------------------------|-----------------------|------|------|------| | | Channel | 4132 | 4183 | 4233 | (dB) | | 1 | Maximum Target
Value (dBm) | 23.0 | 23.0 | 23.0 | 1 | | 2 | Maximum Target
Value (dBm) | 23.0 | 23.0 | 23.0 | 1 | | 3 | Maximum Target
Value (dBm) | 23.0 | 23.0 | 23.0 | 1 | | 4 | Maximum Target
Value (dBm) | 23.0 | 23.0 | 23.0 | 1 | | | | WCDMA Band V H | SUPA | | MPR | | | Channel | 4132 | 4183 | 4233 | (dB) | | 1 | Maximum Target
Value (dBm) | 23.0 | 23.0 | 23.0 | 1 | | 2 | Maximum Target
Value (dBm) | 23.0 | 23.0 | 23.0 | 1 | | 3 | Maximum Target
Value (dBm) | 23.0 | 23.0 | 23.0 | 1 | | 4 | Maximum Target
Value (dBm) | 23.0 | 23.0 | 23.0 | 1 | | 5 | Maximum Target
Value (dBm) | 23.0 | 23.0 | 23.0 | 1 | #### Table 11.5: WiFi Report No.: I18D00229-SAR01 | WiFi 802.11b 2.4G | | | | | | | | |-------------------------------|-----------------------|------------|------------|--|--|--|--| | Channel | Channel 1 | Channel 6 | Channel 11 | | | | | | Maximum Target
Value (dBm) | 15.0 | 15.0 | 15.0 | | | | | | | WiFi 802 | .11g 2.4G | | | | | | | Channel | Channel 1 | Channel 6 | Channel 11 | | | | | | Maximum Target
Value (dBm) | 14.0 | 14.0 | 14.0 | | | | | | | WiFi 802.11 | n 20M 2.4G | | | | | | | Channel | Channel 1 | Channel 6 | Channel 11 | | | | | | Maximum Target Value (dBm) | 13.0 | | 13.0 | | | | | | | WiFi 802.11n 40M 2.4G | | | | | | | #### Table 11.6: Bluetooth | Bluetooth | | | | | | | |---|-----|--|-----|--|--|--| | Channel Channel 0 Channel 39 Channel 78 | | | | | | | | Maximum Target Value (dBm) | 5.5 | | 5.5 | | | | #### **Table 11.7: BLE** | Bluetooth | | | | | | | |---|------|------|------|--|--|--| | Channel Channel 0 Channel 19 Channel 39 | | | | | | | | Maximum Target Value (dBm) | -1.5 | -1.5 | -1.5 | | | | Page Number : 27 of 118 11.1. GSM Measurement result During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement. Table 11.8: The conducted power measurement results for GSM | GSM | Conducted Power (dBm) | | | | | | | |----------------|------------------------|-----------------------|------------------------|--|--|--|--| | 850MHZ | Channel 128(824.2MHz) | Channel 190(836.6MHz) | Channel 251(848.8MHz) | | | | | | | 32.97 | 32.88 | 32.87 | | | | | | CCM | Conducted Power(dBm) | | | | | | | | GSM
1000MHZ | Channel 512(1850.2MHz) | Channel 661(1880 MHz) | Channel 810(1909.8MHz) | | | | | | 1900MHZ | 27.9 | 27.98 | 27.93 | | | | | Report No.: I18D00229-SAR01 Table 11.9: The conducted power measurement results for GPRS/EGPRS | GSM 850 | Measured Power (dBm) | | | calculation | Averaged Power (dBm) | | | |-----------|----------------------|-----------|-------|-------------|----------------------|-------|-------| | GMSK | 128 | 190 | 251 | | 128 | 190 | 251 | | 1 Txslot | 32.98 | 32.85 | 32.83 | -9.03dB | 23.95 | 23.82 | 23.8 | | 2 Txslots | 31.41 | 31.36 | 31.28 | -6.02dB | 25.39 | 25.34 | 25.26 | | 3 Txslots | 29.84 | 29.8 | 29.78 | -4.26dB | 25.58 | 25.54 | 25.52 | | 4 Txslots | 28.68 | 28.69 | 28.67 | -3.01dB | 25.67 | 25.68 | 25.66 | | GSM 1900 | Measu | red Power | (dBm) | calculation | Averaged Power (dBm) | | | | GMSK | 512 | 661 | 810 | | 512 | 661 | 810 | | 1 Txslot | 27.32 | 27.35 | 27.31 | -9.03dB | 18.29 | 18.32 | 18.28 | | 2 Txslots | 26.48 | 26.42 | 26.43 | -6.02dB | 20.46 | 20.4 | 20.41 | | 3 Txslots | 24.63 | 24.64 | 24.64 | -4.26dB | 20.37 | 20.38 | 20.38 | | 4 Txslots | 23.45 | 23.44 | 23.44 | -3.01dB | 20.44 | 20.43 | 20.43 | #### NOTES: 1) Division Factors To average the power, the division factor is as follows: 1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) = -4.26 dB 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB According to the conducted power as above, the body measurements are performed with 4Txslots for 850MHz; 2Txslots for1900MHz; East China Institute of Telecommunications Page Number : 28 of 118 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Jan. 17, 2019 11.2. WCDMA Measurement result **Table 11.10: The conducted Power for WCDMA** Report No.: I18D00229-SAR01 | | band | WCDN | /IA BAND II result | t(dBm) | | | |------------------------|------------------------------------|---|---|---|--|--| | Item | ADEON | 9262 | 9400 | 9538 | | | | | ARFCN | (1852.4MHz) | (1880.0MHz) | (1907.6MHz) | | | | WCDMA | ١ | 21.48 | 21.52 | 21.36 | | | | | 1 | 20.73 | 20.78 | 20.64 | | | | HSDPA | 2 | 20.53 | 20.6 | 20.4 | | | | ПЭДРА | 3 | 20.26 | 20.29 | 20.15 | | | | | 4 | 20.16 | 20.22 | 20.05 | | | | | 1 | 20.71 | 20.75 | 20.62 | | | | DC-HSDPA | 2 | 20.51 | 20.59 | 20.4 | | | | DC-HSDPA | 3 | 20.24 | 20.28 | 20.14 | | | | | 4 | 20.14 | 20.20 | 20.04 | | | | | 1 | 20.16 | 20.19 | 19.98 | | | | | 2 | 20.13 | 20.2 | 18.99 | | | | HSUPA | 3 | 20.13 | 19.25 | 19.03 | | | | | 4 | 20.06 | 20.02 | 19.91 | | | | | 5 | 19.77 | 19.85 | 19.74 | | | | | band | WCDMA BAND V result(dBm) | | | | | | Item | | 11001 | IA BAILD VICSUI | () | | | | Item | | Channel 4132 | Channel 4183 | Channel 4233 | | | | Item | ARFCN | - | I | · | | | | ltem
WCDMA | | Channel 4132 | Channel 4183 | Channel 4233 | | | | | ARFCN | Channel 4132
(826.4MHz) | Channel 4183
(836.6MHz) | Channel 4233
(846.6MHz) | | | | WCDMA | ARFCN | Channel 4132
(826.4MHz)
23.81 | Channel 4183
(836.6MHz)
23.53 | Channel 4233
(846.6MHz)
23.61 | | | | | ARFCN
\
1 | Channel 4132
(826.4MHz)
23.81
22.89 | Channel 4183
(836.6MHz)
23.53
22.8 | Channel 4233
(846.6MHz)
23.61
22.87 | | | | WCDMA | ARFCN \ \ 1 2 | Channel 4132
(826.4MHz)
23.81
22.89
22.87 | Channel 4183
(836.6MHz)
23.53
22.8
22.6 | Channel 4233
(846.6MHz)
23.61
22.87
22.69 | | | | WCDMA | ARFCN \ \ 1 2 3 | Channel 4132
(826.4MHz)
23.81
22.89
22.87
22.54 | Channel 4183
(836.6MHz)
23.53
22.8
22.6
22.3 | Channel 4233
(846.6MHz)
23.61
22.87
22.69
22.4 | | | | WCDMA
HSDPA | ARFCN \ \ 1 2 3 4 | Channel 4132
(826.4MHz)
23.81
22.89
22.87
22.54
22.46 | Channel 4183
(836.6MHz)
23.53
22.8
22.6
22.3
22.2 | Channel 4233
(846.6MHz)
23.61
22.87
22.69
22.4
22.27 | | | | WCDMA | ARFCN \ \ 1 2 3 4 1 | Channel 4132
(826.4MHz)
23.81
22.89
22.87
22.54
22.46
22.87 | Channel 4183
(836.6MHz)
23.53
22.8
22.6
22.3
22.2
22.78 | Channel 4233
(846.6MHz)
23.61
22.87
22.69
22.4
22.27
22.87 | | | | WCDMA
HSDPA | ARFCN \ \ 1 2 3 4 1 2 | Channel 4132
(826.4MHz)
23.81
22.89
22.87
22.54
22.46
22.87
22.85 | Channel 4183
(836.6MHz)
23.53
22.8
22.6
22.3
22.2
22.78
22.59 | Channel 4233
(846.6MHz)
23.61
22.87
22.69
22.4
22.27
22.87
22.67 | | | | WCDMA
HSDPA | ARFCN 1 2 3 4 1 2 3 | Channel 4132
(826.4MHz)
23.81
22.89
22.87
22.54
22.46
22.87
22.85
22.52 | Channel 4183
(836.6MHz)
23.53
22.8
22.6
22.3
22.2
22.78
22.59
22.3 | Channel 4233
(846.6MHz)
23.61
22.87
22.69
22.4
22.27
22.87
22.67
22.40 | | | | WCDMA
HSDPA | ARFCN 1 2 3 4 1 2 3 4 | Channel 4132
(826.4MHz)
23.81
22.89
22.87
22.54
22.46
22.87
22.85
22.52
22.44 | Channel
4183
(836.6MHz)
23.53
22.8
22.6
22.3
22.2
22.78
22.59
22.3
22.19 | Channel 4233
(846.6MHz)
23.61
22.87
22.69
22.4
22.27
22.87
22.67
22.40
22.16 | | | | WCDMA
HSDPA | ARFCN 1 2 3 4 1 2 3 4 1 1 2 | Channel 4132
(826.4MHz)
23.81
22.89
22.87
22.54
22.46
22.87
22.85
22.52
22.44
22.44 | Channel 4183
(836.6MHz)
23.53
22.8
22.6
22.3
22.2
22.78
22.59
22.3
22.19
22.2 | Channel 4233
(846.6MHz)
23.61
22.87
22.69
22.4
22.27
22.87
22.67
22.40
22.16
22.26 | | | | WCDMA HSDPA DC-HSDPA | ARFCN \ \ 1 2 3 4 1 2 3 4 1 2 2 3 | Channel 4132
(826.4MHz)
23.81
22.89
22.87
22.54
22.46
22.87
22.85
22.52
22.44
22.44
22.49 | Channel 4183
(836.6MHz)
23.53
22.8
22.6
22.3
22.2
22.78
22.59
22.3
22.19
22.2
22.14 | Channel 4233
(846.6MHz) 23.61 22.87 22.69 22.4 22.27 22.87 22.67 22.40 22.16 22.26 22.3 | | | Page Number : 29 of 118 11.3. WiFi and BT Measurement result Table 11.11: The average conducted power for Bluetooth Report No.: I18D00229-SAR01 | GFSK | | | | |---------------------------------|----------------|----------------|----------------| | Channel | Ch0 (2402 MHz) | Ch39 (2441MHz) | CH78 (2480MHz) | | Conducted Output
Power (dBm) | 4.26 | 4.77 | 4.65 | | π/4 DQPSK | | | | | Channel | Ch0 (2402 MHz) | Ch39 (2441MHz) | CH78 (2480MHz) | | Conducted Output
Power (dBm) | 4.22 | 4.69 | 4.53 | | 8DPSK | | | | | Channel | Ch0 (2402 MHz) | Ch39 (2441MHz) | CH78 (2480MHz) | | Conducted Output
Power (dBm) | 4.18 | 4.65 | 4.58 | Table 11.12: The average conducted power for BLE | GFSK | | | | | | | | | |---------------------------------|----------------|----------------|----------------|--|--|--|--|--| | Channel | Ch0 (2402 MHz) | Ch19 (2440MHz) | CH39 (2480MHz) | | | | | | | Conducted Output
Power (dBm) | -3.623 | -2.148 | -2.657 | | | | | | **NOTE:** According to KDB447498 D01 BT standalone SAR are not required, because maximum average output power is less than 10mW. When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion: (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. SAR head value of BT is 0.149 W/Kg. SAR body value of BT is 0.066 W/Kg for 1g. #### The default power measurement procedures are: a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band. b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units. Report No.: I18D00229-SAR01 - 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured. - 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power. - c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured. During WLAN SAR testing EUT is configured with the WLAN continuous TX tool, and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting, the duty cycle is 100%. Page Number : 31 of 118 Table 11.13: The average conducted power for WiFi Report No.: I18D00229-SAR01 : 32 of 118 | Mode | Channel | Frequence | Average power(dBm) | |----------|---------|-----------|--------------------| | | 1 | 2412 MHZ | 14.78 | | 802.11 b | 6 | 2437 MHZ | 14.44 | | | 11 | 2462 MHZ | 14.31 | | | 1 | 2412 MHZ | 13.88 | | 802.11 g | 6 | 2437 MHZ | 13.52 | | | 11 | 2462 MHZ | 13.05 | | 802.11 n | 1 | 2412 MHZ | 12.53 | | 20M | 6 | 2437 MHZ | 11.95 | | ZUIVI | 11 | 2462 MHZ | 11.75 | #### 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions. - a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration. - b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. East China Institute of Telecommunications Page Number TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Jan. 17, 2019 : 33 of 118 #### 12. Simultaneous TX SAR Considerations #### 12.1. Introduction The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and WiFi can transmit simultaneous with other transmitters. ### 12.2. Transmit Antenna Separation Distances **Picture 12.1 Antenna Locations** #### 12.3. Standalone SAR Test Exclusion Considerations Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. Report No.: I18D00229-SAR01 The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] · $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW. Based on the above equation, Bluetooth SAR was not required: Evaluation=1.118<3.0 #### 12.4. SAR Measurement Positions According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR. | SAR Measurement Positions | | | | | | | | | |---------------------------|---------|--------|------|-------|-----|--------|--|--| | Antenna | Phantom | Ground | Left | Right | Тор | Bottom | | | | Mode | | | | | | | | | | WWAN | Yes | Yes | Yes | Yes | No | Yes | | | | WLAN | Yes | Yes | No | Yes | Yes | No | | | Page Number : 34 of 118 : 35 of 118 Report Issued Date: Jan. 17, 2019 Page Number ### 13. SAR Test Result Table 13.1: SAR Values(GSM 850 MHz Band-Head) | Frequ | ency | Mode | | Test | Figure | Measured average | Maximum allowed | Scaling | Measured | Reported | Power | |-------|------|--------|-------|--------------|--------|------------------|-----------------|---------|----------|-------------------|---------------| | MHz | Ch. | /Band | Side | Position No. | | power
(dBm) | | factor | SAR(1g) | SAR(1g)
(W/kg) | Drift
(dB) | | 836.6 | 190 | GSM850 | Left | Touch | 1 | 32.88 | 33.0 | 1.028 | 0.403 | 0.414 | -0.12 | | 836.6 | 190 | GSM850 | Left | Tilt | 1 | 32.88 | 33.0 | 1.028 | 0.186 | 0.191 | 0.09 | | 836.6 | 190 | GSM850 | Right | Touch | 1 | 32.88 | 33.0 | 1.028 | 0.396 | 0.407 | 0.12 | | 836.6 | 190 | GSM850 | Right | Tilt | 1 | 32.88 | 33.0 | 1.028 | 0.25 | 0.257 | -0.02 | Table 13.2: SAR Values (GSM 850 MHz Band-Body) | Table 13.2: SAR Values (GSM 850 MHz Band-Body) | | | | | | | | | | | | | |--|---------|---------------|---------------------|-------------------|-----------------|---------------|---------------------------------------|--------------------------------------|-------------------|-------------------------------|-------------------------------|------------------------| | Freque
MHz | Ch. | Mode
/Band | Service
/Headset | Test
Position | Spacing
(mm) | Figure
No. | Measured
average
power
(dBm) | Maximum
allowed
Power
(dBm) | Scaling
factor | Measured
SAR(1g)
(W/kg) | Reported
SAR(1g)
(W/kg) | Power
Drift
(dB) | | Hotspot & Body worn | | | | | | | | | | | | | | 836.6 | 190 | GPRS
4TS | Class12 | Toward
Phantom | 10 | 1 | 28.69 | 29.0 | 1.074 | 0.797 | 0.856 | 0.14 | | 824.2 | 128 | GPRS
4TS | Class12 | Toward
Phantom | 10 | 1 | 28.68 | 29.0 | 1.076 | 0.812 | 0.874 | -0.02 | | 848.8 | 251 | GPRS
4TS | Class12 | Toward
Phantom | 10 | 1 | 28.67 | 29.0 | 1.079 | 0.727 | 0.784 | 0.01 | | 836.6 | 190 | GPRS
4TS | Class12 | Toward
Ground | 10 | 2 | 28.69 | 29.0 | 1.074 | 1.03 | 1.106 | 0.01 | | 824.2 | 128 | GPRS
4TS | Class12 | Toward
Ground | 10 | 1 | 28.68 | 29.0 | 1.076 | 1.01 | 1.087 | -0.01 | | 848.8 | 251 | GPRS
4TS | Class12 | Toward
Ground | 10 | 1 | 28.67 | 29.0 | 1.079 | 0.908 | 0.980 | 0.13 | | | Hotspot | | | | | | | | | | | | | 836.6 | 190 | GPRS
4TS | Class12 | Toward
Left | 10 | 1 | 28.69 | 29.0 | 1.074 | 0.711 | 0.764 | 0.05 | | 824.2 | 128 | GPRS
4TS | Class12 | Toward
Left | 10 | 1 | 28.68 | 29.0 | 1.076 | 0.731 | 0.787 | 0.16 | | 848.8 | 251 | GPRS
4TS | Class12 | Toward
Left | 10 | 1 | 28.67 | 29.0 | 1.079 | 0.743 | 0.802 | 0.17 | | 836.6 | 190 | GPRS
4TS | Class12 | Toward
Right | 10 | 1 | 28.69 | 29.0 | 1.074 |
0.764 | 0.821 | 0.16 | |----------|-----|-------------|---------|------------------|----|---|-------|------|-------|-------|-------|------| | 824.2 | 128 | GPRS
4TS | Class12 | Toward
Right | 10 | 1 | 28.68 | 29.0 | 1.076 | 0.708 | 0.762 | 0.11 | | 848.8 | 251 | GPRS
4TS | Class12 | Toward
Right | 10 | 1 | 28.67 | 29.0 | 1.079 | 0.735 | 0.793 | 0.06 | | 836.6 | 190 | GPRS
4TS | Class12 | Toward
Bottom | 10 | 1 | 28.69 | 29.0 | 1.074 | 0.294 | 0.316 | 0.16 | | Repeated | | | | | | | | | | | | | | 836.6 | 190 | GPRS
4TS | Class12 | Toward
Ground | 10 | 1 | 28.69 | 29.0 | 1.074 | 0.972 | 1.044 | 0.04 | Report No.: I18D00229-SAR01 ### Table 13.3: SAR Values(GSM 1900 MHz Band-Head) | Frequency | | Mode | | Test | Figure | Measured average | Maximum
allowed | Scaling | Measured | Reported | Power | |-----------|-----|---------|-------|----------|--------|------------------|--------------------|---------|-------------------|-------------------|---------------| | MHz | Ch. | /Band | Side | Position | No. | power
(dBm) | Power
(dBm) | factor | SAR(1g)
(W/kg) | SAR(1g)
(W/kg) | Drift
(dB) | | 1880 | 661 | GSM1900 | Left | Touch | 3 | 27.98 | 28.0 | 1.005 | 0.174 | 0.175 | -0.02 | | 1880 | 661 | GSM1900 | Left | Tilt | 1 | 27.98 | 28.0 | 1.005 | 0.0365 | 0.037 | 0.12 | | 1880 | 661 | GSM1900 | Right | Touch | 1 | 27.98 | 28.0 | 1.005 | 0.0977 | 0.098 | 0.06 | | 1880 | 661 | GSM1900 | Right | Tilt | 1 | 27.98 | 28.0 | 1.005 | 0.0527 | 0.053 | 0.13 | #### Table 13.4: SAR Values (GSM 1900 MHz Band-Body) | Frequency | | | | | | | Measured | Maximum | | Maggurad | Papartad | Bower | |---------------------|-----|---------------|---------------------|-------------------|-----------------|---------------|---------------------------|---------------------------|----------------|-------------------------------|-------------------------------|------------------------| | MHz | Ch. | Mode
/Band | Service
/Headset | Test
Position | Spacing
(mm) | Figure
No. | average
power
(dBm) | allowed
Power
(dBm) | Scaling factor | Measured
SAR(1g)
(W/kg) | Reported
SAR(1g)
(W/kg) | Power
Drift
(dB) | | Hotspot & Body worn | | | | | | | | | | | | | | 1880 | 661 | GPRS
2TS | Class12 | Toward
Phantom | 10 | 1 | 26.42 | 27.0 | 1.143 | 0.463 | 0.529 | 0.12 | | 1880 | 661 | GPRS
2TS | Class12 | Toward
Ground | 10 | 1 | 26.42 | 27.0 | 1.143 | 0.735 | 0.840 | -0.03 | | 1850.2 | 512 | GPRS
2TS | Class12 | Toward
Ground | 10 | 1 | 26.48 | 27.0 | 1.127 | 0.496 | 0.559 | -0.05 | | 1909.8 | 810 | GPRS
2TS | Class12 | Toward
Ground | 10 | 1 | 26.43 | 27.0 | 1.140 | 0.997 | 1.137 | -0.09 | | Hotspot | | | | | | | | | | | | | Page Number : 36 of 118 # SAR Test Report | | | | | 1 | 1 | 1 | 1 | 1 | 1 | | | | |--------|-----|------|----------|--------|----|-------|----------|------|-------|--------|-------|------| | 1880 | 661 | GPRS | Class12 | Toward | 10 | 1 | 26.42 | 27.0 | 1.143 | 0.0545 | 0.062 | 0.14 | | | | 2TS | | Left | | | | | | | | | | 1880 | 661 | GPRS | Class12 | Toward | 10 | , | 26.42 | 27.0 | 1.143 | 0.0788 | 0.090 | 0.18 | | 1000 | 001 | 2TS | Olussiz | Right | 10 | , | 20.42 | 27.0 | 1.140 | 0.0700 | 0.000 | 0.10 | | 1880 | 661 | GPRS | Class12 | Toward | 10 | , | 26.42 | 27.0 | 1.143 | 0.802 | 0.917 | 0.12 | | 1000 | 001 | 2TS | Classiz | Bottom | 10 | , | 20.42 | 27.0 | 1.143 | 0.002 | 0.917 | 0.12 | | 1850.2 | 512 | GPRS | Class12 | Toward | 10 | , | 26.48 | 27.0 | 1.127 | 0.686 | 0.773 | 0.19 | | 1650.2 | 312 | 2TS | Glass 12 | Bottom | 10 | , | 20.40 | 27.0 | 1.127 | 0.000 | 0.773 | 0.19 | | 1909.8 | 810 | GPRS | Class12 | Toward | 10 | 4 | 26.43 | 27.0 | 1.140 | 1.03 | 1.174 | 0.13 | | 1909.6 | 010 | 2TS | Classiz | Bottom | 10 | 4 | 20.43 | 27.0 | 1.140 | 1.03 | 1.174 | 0.13 | | | | | | | | Rep | eated | | | | | | | 1909.8 | 810 | GPRS | Class12 | Toward | 10 | , | 26.43 | 27.0 | 1.140 | 1.02 | 1.163 | 0.12 | | 1909.6 | 810 | 2TS | Glass 12 | Bottom | 10 | , | 20.43 | 27.0 | 1.140 | 1.02 | 1.103 | 0.12 | | | | | | | | Secon | d Supply | | | | | | | 1909.8 | 810 | GPRS | Class12 | Toward | 10 | , | 26.43 | 27.0 | 1.140 | 0.906 | 1.033 | 0.13 | | 1909.6 | 010 | 2TS | CIASS IZ | Bottom | 10 | / | 20.43 | 21.0 | 1.140 | 0.900 | 1.033 | 0.13 | Report No.: I18D00229-SAR01 ## Table 13.5: SAR Values(WCDMA Band II-Head) | Freque | ency
Ch. | Mode
/Band | Side | Test
Position | Figure
No. | Measured
average
power
(dBm) | Maximum
allowed
Power
(dBm) | Scaling factor | Measured
SAR(1g)
(W/kg) | Reported
SAR(1g)
(W/kg) | Power
Drift
(dB) | |--------|-------------|---------------|-------|------------------|---------------|---------------------------------------|--------------------------------------|----------------|-------------------------------|-------------------------------|------------------------| | 1880 | 9400 | Band II | Left | Touch | 5 | 21.52 | 22.0 | 1.117 | 0.235 | 0.262 | 0.06 | | 1880 | 9400 | Band II | Left | Tilt | 1 | 21.52 | 22.0 | 1.117 | 0.045 | 0.050 | 0.18 | | 1880 | 9400 | Band II | Right | Touch | 1 | 21.52 | 22.0 | 1.117 | 0.125 | 0.140 | 0.02 | | 1880 | 9400 | Band II | Right | Tilt | 1 | 21.52 | 22.0 | 1.117 | 0.0757 | 0.085 | 0.16 | # Table 13.6: SAR Values (WCDMA Band II-Body) | Frequ | ency | | | 142.0 | 10101 07 111 | Value | Measured | Maximum | -37 | Magazzad | Deported | Dower | |-------|------|---------------|---------------------|-------------------|-----------------|---------------|---------------------------|---------------------------|----------------|-------------------------------|-------------------------------|------------------------| | MHz | Ch. | Mode
/Band | Service
/Headset | Test
Position | Spacing
(mm) | Figure
No. | average
power
(dBm) | allowed
Power
(dBm) | Scaling factor | Measured
SAR(1g)
(W/kg) | Reported
SAR(1g)
(W/kg) | Power
Drift
(dB) | | | | | | | | Hotspot & | Body worn | | | | | | | 1880 | 9400 | Band II | 12.2kbps
RMC | Toward
Phantom | 10 | 1 | 21.52 | 22.0 | 1.117 | 0.298 | 0.333 | 0.06 | | 1880 | 9400 | Band II | 12.2kbps
RMC | Toward
Ground | 10 | 1 | 21.52 | 22.0 | 1.117 | 0.579 | 0.647 | -0.01 | | | | | | | | Hot | spot | | | | | | Page Number : 37 of 118 # SAR Test Report | 1880 | 9400 | Band II | 12.2kbps
RMC | Toward
Left | 10 | 1 | 21.52 | 22.0 | 1.117 | 0.0362 | 0.040 | -0.16 | |------|------|---------|-----------------|------------------|----|---|-------|------|-------|--------|-------|-------| | 1880 | 9400 | Band II | 12.2kbps
RMC | Toward
Right | 10 | 1 | 21.52 | 22.0 | 1.117 | 0.0484 | 0.054 | 0.17 | | 1880 | 9400 | Band II | 12.2kbps
RMC | Toward
Bottom | 10 | 6 | 21.52 | 22.0 | 1.117 | 0.589 | 0.658 | -0.16 | Report No.: I18D00229-SAR01 # Table 13.7: SAR Values (WCDMA Band V-Head) | Frequ | iency | Mode | | Test | Figure | Measured average | Maximum allowed | Scaling | Measured | Reported | Power | |-------|-------|--------|-------|----------|--------|------------------|-----------------|---------|-------------------|-------------------|---------------| | MHz | Ch. | /Band | Side | Position | No. | power
(dBm) | Power
(dBm) | factor | SAR(1g)
(W/kg) | SAR(1g)
(W/kg) | Drift
(dB) | | 836.6 | 4183 | Band V | Left | Touch | 1 | 23.53 | 24.0 | 1.114 | 0.37 | 0.412 | 0.03 | | 836.6 | 4183 | Band V | Left | Tilt | 1 | 23.53 | 24.0 | 1.114 | 0.191 | 0.213 | -0.12 | | 836.6 | 4183 | Band V | Right | Touch | 7 | 23.53 | 24.0 | 1.114 | 0.381 | 0.425 | 0.01 | | 836.6 | 4183 | Band V | Right | Tilt | 1 | 23.53 | 24.0 | 1.114 | 0.254 | 0.283 | -0.01 | #### Table 13.8: SAR Values (WCDMA Band V-Body) | Frequ
MHz | Ch. | Mode
/Band | Service
/Headset | Test
Position | Spacing (mm) | Figure
No. | Measured average power (dBm) | Maximum
allowed
Power
(dBm) | Scaling factor | Measured
SAR(1g)
(W/kg) | Reported
SAR(1g)
(W/kg) | Power
Drift
(dB) | |--------------|------|---------------|---------------------|-------------------|--------------|---------------|------------------------------|--------------------------------------|----------------|-------------------------------|-------------------------------|------------------------| | | | | | | | Hotspot 8 | Body worn | | | | | | | 836.6 | 4183 | Band
V | 12.2kbps
RMC | Toward
Phantom | 10 | 1 | 23.53 | 24.0 | 1.114 | 0.492 | 0.548 | 0.08 | | 836.6 | 4183 | Band
V | 12.2kbps
RMC | Toward
Ground | 10 | 8 | 23.53 | 24.0 | 1.114 | 0.565 | 0.630 | 0.05 | | | | | | | | Но | tspot | | | | | | | 836.6 | 4183 | Band
V | 12.2kbps
RMC | Toward
Left | 10 | 1 | 23.53 | 24.0 | 1.114 | 0.371 | 0.413 | 0.13 | | 836.6 | 4183 | Band
V | 12.2kbps
RMC | Toward
Right | 10 | 1 | 23.53 | 24.0 | 1.114 | 0.373 | 0.416 | -0.12 | | 836.6 | 4183 | Band
V | 12.2kbps
RMC | Toward
Bottom | 10 | 1 | 23.53 | 24.0 | 1.114 | 0.138 | 0.154 | 0.14 | Page Number : 38 of 118 # **SAR Test Report** Report No.: I18D00229-SAR01 Table 13.9: SAR Values (WiFi 802.11b - Head) | Freque | ency | Mode | | Test | Figure | Measured average | Maximum allowed | Scaling | Measured | Reported | Power | |--------|------|--------------|-------|----------|--------|------------------|-----------------|---------|-------------------|-------------------|---------------| | MHz | Ch. | /Band | Side | Position | No. | power
(dBm) | Power
(dBm) | factor | SAR(1g)
(W/kg) | SAR(1g)
(W/kg) | Drift
(dB) | | 2412 | 1 | WiFi
2450 | Left | Touch | 1 | 14.78 | 15.0 | 1.052 | 0.0404 | 0.042 | -0.14 | | 2412 | 1 | WiFi
2450 | Left | Tilt | 1 | 14.78 | 15.0 | 1.052 | 0.0366 | 0.039 | 0.17 | | 2412 | 1 | WiFi
2450 | Right | Touch | 9 | 14.78 | 15.0 | 1.052 | 0.108 | 0.114 | 0.11 | | 2412 | 1 | WiFi
2450 | Right | Tilt | 1 | 14.78 | 15.0 | 1.052 | 0.0929 | 0.098 | 0.15 | **Table 13.10: SAR Values (WiFi 802.11b - Body)** | Freque
MHz | Ch. | Mode
/Band |
Service
/Headset | Test
Position | Spacing
(mm) | Figure
No. | Measured
average
power
(dBm) | Maximum
allowed
Power
(dBm) | Scaling
factor | Measured
SAR(1g)
(W/kg) | Reported
SAR(1g)
(W/kg) | Power
Drift
(dB) | |---------------|-----|---------------|---------------------|-------------------|-----------------|---------------|---------------------------------------|--------------------------------------|-------------------|-------------------------------|-------------------------------|------------------------| | | | | | | | Hotspot | & Body worn | | | | | | | 2412 | 1 | WiFi
2450 | 802.11b | Toward
Phantom | 10 | 1 | 14.78 | 15.0 | 1.052 | 0.05 | 0.053 | 0.12 | | 2412 | 1 | WiFi
2450 | 802.11b | Toward
Ground | 10 | 10 | 14.78 | 15.0 | 1.052 | 0.057 | 0.060 | 0.13 | | | | | | | | Н | otspot | | | | | | | 2412 | 1 | WiFi
2450 | 802.11b | Toward
Left | 10 | 1 | 14.78 | 15.0 | 1.052 | 0.0418 | 0.044 | 0.14 | | 2412 | 1 | WiFi
2450 | 802.11b | Toward
Right | 10 | 1 | 14.78 | 15.0 | 1.052 | 0.0179 | 0.019 | 0.04 | | 2412 | 1 | WiFi
2450 | 802.11b | Toward
Top | 10 | 1 | 14.78 | 15.0 | 1.052 | 0.0414 | 0.044 | 0.19 | Page Number : 39 of 118 # 14. Evaluation of Simultaneous Table14.1 Simultaneous transmission SAR Report No.: I18D00229-SAR01 | : | Standalone SAR for 2G(W/Kg) | | | | | | | | | | |-------------------|-----------------------------|----------|-------|-------|---------|--|--|--|--|--| | | | | GSM | GSM | Highest | | | | | | | lest | Position | | 850 | 1900 | SAR | | | | | | | | Left | Cheek | 0.414 | 0.175 | 0.414 | | | | | | | Head | Leit | Tilt 15° | 0.191 | 0.037 | 0.191 | | | | | | | пеац | Diaht | Cheek | 0.407 | 0.098 | 0.407 | | | | | | | | Right | Tilt 15° | 0.257 | 0.053 | 0.257 | | | | | | | Hotspot &Body- | Phantom | Side | 0.874 | 0.529 | 0.874 | | | | | | | worn 10 mm | Ground | Side | 1.106 | 1.137 | 1.137 | | | | | | | | Left Si | de | 0.802 | 0.062 | 0.802 | | | | | | | Hotspot 10 mm | Right S | Side | 0.821 | 0.090 | 0.821 | | | | | | | Ποιοροί ΤΟ ΙΙΙΙΙΙ | Top Si | de | - | | | | | | | | | | Bottom | Side | 0.316 | 1.174 | 1.174 | | | | | | | | Standalor | ne SAR | for 3G(V | V/Kg) | | |----------------|-----------|-------------|----------|--------|-------------| | Toot | Position | | WCDMA | WCDMA | Highort CAD | | Test | Position | | Band II | Band V | Highest SAR | | | Left | Cheek | 0.262 | 0.412 | 0.412 | | Head | Leit | Tilt 15° | 0.050 | 0.213 | 0.213 | | пеац | Right | Cheek | 0.140 | 0.425 | 0.425 | | | Right | Tilt 15° | 0.085 | 0.283 | 0.283 | | Hotspot &Body- | Phantom | Side | 0.333 | 0.548 | 0.548 | | worn 10 mm | Ground | Side | 0.647 | 0.630 | 0.647 | | | Left Si | de | 0.040 | 0.413 | 0.413 | | Hotopot 10 mm | Right S | Side | 0.054 | 0.416 | 0.416 | | Hotspot 10 mm | Top Side | | | | | | | Bottom | Bottom Side | | 0.154 | 0.658 | Page Number : 40 of 118 Simultaneous multi-band transmission Test Position 2G 3G вт WiFi SUM 0.414 0.412 0.075 0.042 0.489 Cheek Left Tilt 15° 0.191 0.213 0.075 0.039 0.288 Head(1g) Cheek 0.407 0.425 0.075 0.114 0.539 Right Tilt 15° 0.257 0.075 0.381 0.283 0.098 Phantom Side Hotspot &Body-0.874 0.548 0.149 0.053 1.023 worn 10 mm(1g) **Ground Side** 1.137 0.647 0.149 0.060 1.286 Left Side 0.802 0.044 0.413 0.149 0.951 Right Side 0.821 0.416 0.149 0.019 0.97 Hotspot 10 mm(1g) Top Side 0.044 0.149 0.149 Bottom Side 1.174 0.658 0.149 1.323 Report No.: I18D00229-SAR01 According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi/BT is considered with measurement results of GSM/WCDMA/ and WiFi/BT. According to the above table, the sum of reported SAR values for GSM/WCDMA and WiFi<1.6W/kg. So the simultaneous transmission SAR is not required for WiFi/BT transmitter. Page Number : 41 of 118 # 15. SAR Measurement Variability SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required. - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. Table 15.1: SAR Measurement Variability for Body Value (1g) | Frequ | uency | Configuration | Test | Original SAR | First Repeated | The Ratio | |--------|-------|---------------|----------|--------------|----------------|-----------| | MHz | Ch. | Configuration | Position | (W/kg) | SAR (W/kg) | The Ratio | | 836.6 | 190 | GPRS 4TS | Ground | 1.03 | 0.972 | 1.060 | | 1909.8 | 810 | GPRS 2TS | Bottom | 1.03 | 1.02 | 1.010 | **Note:** According to the KDB 865664 D01repeated measurement is not required when the original highest measured SAR is < 0.8 W/kg. East China Institute of Telecommunications Page Number : 42 of 118 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Jan. 17, 2019 : 43 of 118 Report Issued Date: Jan. 17, 2019 Page Number # 16. Measurement Uncertainty # Measurement uncertainty for 750 MHz to 3 GHz averaged over 1 gram | Weasurement und | | 30 WII 12 to 3 | OI IZ a | verageu | Over i gran | | |----------------------------|-------------|----------------|---------|---------------------|--------------------|------------------------| | Uncertainty Component | Uncertainty | Prob. | Div. | C _{i (1g)} | Std.
Unc. (1-g) | V _i or Veff | | Measurement System | | | | | | | | Probe Calibration (k=1) | 5.4 | Normal | 2 | 1 | 5.40 | ∞ | | Probe Isotropy | 4.70 | Rectangular | √3 | 0.7 | 1.90 | ∞ | | Modulation Response | 2.40 | Rectangular | √3 | 1 | 1.39 | ∞ | | Hemispherical Isotropy | 2.60 | Rectangular | √3 | 0.7 | 1.05 | ∞ | | Boundary Effect | 1.00 | Rectangular | √3 | 1 | 0.58 | ∞ | | Linearity | 4.70 | Rectangular | √3 | 1 | 2.71 | ∞ | | System Detection Limit | 1.00 | Rectangular | √3 | 1 | 0.58 | ∞ | | Readout Electronics | 0.30 | Normal | 1 | 1 | 0.30 | ∞ | | Response Time | 0.80 | Rectangular | √3 | 1 | 0.46 | ∞ | | Integration Time | 2.60 | Rectangular | √3 | 1 | 1.50 | ∞ | | RF Ambient Noise | 0.00 | Rectangular | √3 | 1 | 0.00 | ∞ | | RF Ambient Reflections | 0.00 | Rectangular | √3 | 1 | 0.00 | ∞ | | Probe Positioner | 0.40 | Rectangular | √3 | 1 | 0.23 | ∞ | | Probe Positioning | 2.90 | Rectangular | √3 | 1 | 1.67 | ∞ | | Post-processing | 1.00 | Rectangular | √3 | 1 | 0.58 | ∞ | | Test sample Related | | | | • | | • | | Test sample Positioning | 1.2 | Normal | 1 | 1 | 1.2 | 5 | | Device Holder Uncertainty | 3.2 | Normal | 1 | 1 | 3.2 | 71 | | Power drift | 5 | Rectangular | √3 | 1 | 2.89 | ∞ | | Power Scaling | 0 | Rectangular | √3 | 1 | 0.00 | ∞ | | Phantom and Tissue Parame | ters | | | | | | | Phantom Uncertainty | 4 | Rectangular | √3 | 1 | 2.31 | ∞ | | SAR correction | 1.9 | Rectangular | √3 | 1 | 1.10 | ∞ | | Liquid Conductivity (meas) | 4.19 | Rectangular | 1 | 0.78 | 3.27 | ∞ | | Liquid Permittivity (meas) | 4.4 | Rectangular | 1 | 0.26 | 1.14 | ∞ | | Temp. unc Conductivity | 0.18 | Rectangular | √3 | 0.78 | 0.08 | ∞ | | Temp. unc Permittivity | 0.54 | Rectangular | √3 | 0.23 | 0.07 | ∞ | | Combined Std. | | RSS | | | 0.20 | | | Uncertainty | | KSS | | | 9.39 | | | Expanded STD Uncertainty | | <i>k</i> =2 | | | 18. 77% | | # SAR Test Report System check uncertainty for 750 MHz to 3 GHz averaged over 1 gram Report No.: I18D00229-SAR01 | System check uncertainty for 750 MHz to 5 GHz averaged over 1 grain | | | | | | | | | | |---|-------------|-------------|------------|---------------------|--------------------|------------------------|--|--|--| | Uncertainty Component | Uncertainty | Prob. | Div. | C _{i (1g)} | Std.
Unc. (1-g) | V _i or Veff | | | | | Measurement System | | | | | | | | | | | Probe Calibration (k=1) | 5.40 | Normal | 1 | 1 | 5.40 | ∞ | | | | | Probe Isotropy | 4.70 | Rectangular | √3 | 0.7 | 1.90 | ∞ | | | | | Modulation Response | 2.40 | Rectangular | √3 | 1 | 1.39 | ∞ | | | | | Hemispherical Isotropy | 2.60 | Rectangular | √3 | 0.7 | 1.05 | ∞ | | | | | Boundary Effect | 1.00 | Rectangular | √3 | 1 | 0.58 | ∞ | | | | | Linearity | 4.70 | Rectangular | √3 | 1 | 2.71 | 8 | | | | | System Detection Limit | 1.00 | Rectangular | √3 | 1 | 0.58 | ∞ | | | | | Readout Electronics | 0.30 | Normal | 1 | 1 | 0.30 | 8 | | | | | Response Time | 0.80 | Rectangular | √3 | 1 | 0.46 | ∞ | | | | | Integration Time | 2.60 | Rectangular | √3 | 1 | 1.50 | ∞ | | | | | RF Ambient Noise | 0.00 | Rectangular | √3 | 1 | 0.00 | ∞ | | | | | RF Ambient Reflections | 0.00 | Rectangular | √3 | 1 | 0.00 | ∞ | | | | | Probe Positioner | 0.40 | Rectangular | √3 | 1 | 0.23 | ∞ | | | | | Probe Positioning | 2.90 | Rectangular | √3 | 1 | 1.67 | ∞ | | | | | Post-processing | 1.00 | Rectangular | √3 | 1 | 0.58 | ∞ | | | | | Field source | | | | | | | | | | | Deviation of the | | | | | | | | | | | experimental source | 5.5 | Normal | 1 | 1 | 5.5 | ∞ | | | | | from numerical source | | | | | | | | | | | Source to
liquid | 2 | Dootongular | √3 | 4 | 1.15 | 8 | | | | | distance | 2 | Rectangular | V O | 1 | 1.15 | ω | | | | | Power drift | 5 | Rectangular | √3 | 1 | 2.89 | ∞ | | | | | Phantom and Tissue Parame | ters | | | | | | | | | | Phantom Uncertainty | 4 | Rectangular | √3 | 1 | 2.31 | ∞ | | | | | SAR correction | 1.9 | Rectangular | √3 | 1 | 1.10 | ∞ | | | | | Liquid Conductivity (meas) | 4.19 | Normal | 1 | 0.78 | 3.27 | ∞ | | | | | Liquid Permittivity (meas) | 4.4 | Normal | 1 | 0.26 | 1.14 | ∞ | | | | | Temp. unc Conductivity | 0.18 | Rectangular | √3 | 0.78 | 0.08 | ∞ | | | | | Temp. unc Permittivity | 0.54 | Rectangular | √3 | 0.23 | 0.07 | ∞ | | | | | Combined Std. | | DCC | | | 10.20 | | | | | | Uncertainty | | RSS | | | 10.39 | | | | | | Expanded STD Uncertainty | | <i>k</i> =2 | | | 20.79% | | | | | Page Number : 44 of 118 17. Main Test Instrument **Table 17.1: List of Main Instruments** Report No.: I18D00229-SAR01 | No. | Name | Туре | Serial Number | Calibration Date | Valid Period | | |-----------------|-----------------------|----------------|---------------|--------------------------|--------------|--| | 01 | Network analyzer | N5242A | MY51221755 | Dec 25, 2017 | 1 year | | | 02 | Power meter | NRVD | 102257 | | 1 year | | | 03 Power sensor | Dower concer | NRV-Z5 | 100241 | May 11, 2018 | | | | | INRV-Z5 | 100644 | | | | | | 04 | Signal Generator | E4438C | MY49072044 | May 11, 2018 | 1 Year | | | 05 | Amplifier | NTWPA-0086010F | 12023024 | No Calibration Requested | | | | 06 | Coupler | 778D | MY4825551 | May 11, 2018 | 1 year | | | 07 | BTS | E5515C | MY50266468 | Dec 25, 2017 | 1 year | | | 08 | BTS | MT8820C | 6201240338 | May 11, 2018 | 1 year | | | 09 | E-field Probe | ES3DV3 | 3252 | Sep 4,2018 | 1 year | | | 10 | DAE | SPEAG DAE4 | 1244 | Dec 3,2018 | 1 year | | | 11 Dipole | | SPEAG D835V2 | 4d112 | Oct 25, 2018 | 3 year | | | | Dipole Validation Kit | SPEAG D1900V2 | 5d060 | Aug 26,2017 | 3 year | | | | | SPEAG D2450V2 | 858 | Oct 26,2018 | 3 year | | East China Institute of Telecommunications Page Number : 45 of 118 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Jan. 17, 2019 Page Number : 46 of 118 Report Issued Date: Jan. 17, 2019 # ANNEX A. Highest SAR GRAPH RESULTS # Fig.1 GSM850 Left Cheek Middle Date/Time: 2018/12/12 Electronics: DAE4 Sn1244 Medium parameters used: f = 837 MHz; $\sigma = 0.924$ S/m; $\varepsilon_r = 42.148$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: GSM Professional 835MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3252ConvF(6.36, 6.36, 6.36); Calibrated: 9/4/2018 GSM850 Left Cheek Middle/Area Scan (101x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.434 W/kg GSM850 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.010 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.498 W/kg SAR(1 g) = 0.403 W/kg; SAR(10 g) = 0.312 W/kgMaximum value of SAR (measured) = 0.423 W/kg Page Number : 47 of 118 Report Issued Date: Jan. 17, 2019 ## Fig.2 GSM850 4TS Ground Mode Middle Date/Time: 2018/12/12 Electronics: DAE4 Sn1244 Medium parameters used: f = 837 MHz; $\sigma = 1$ S/m; $\varepsilon_r = 56.646$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: GSM 850MHz GPRS 4TS (0); Frequency: 836.6 MHz; Duty Cycle: 1:2 Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018 GSM850 4TS Ground Mode Middle/Area Scan (61x101x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.10 W/kg GSM850 4TS Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 32.64 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.805 W/kgMaximum value of SAR (measured) = 1.08 W/kg : 48 of 118 Report Issued Date: Jan. 17, 2019 Page Number # Fig.3 GSM1900 Left Cheek Middle Date/Time: 2018/12/24 Electronics: DAE4 Sn1244 Medium parameters used: f = 1880 MHz; $\sigma = 1.343 \text{ S/m}$; $\varepsilon_r = 41.918$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: GSM Professional 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3252ConvF(5.18, 5.18, 5.18); Calibrated: 9/4/2018 GSM1900 Left Cheek Middle/Area Scan (101x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.186 W/kg GSM1900 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.686 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.289 W/kg SAR(1 g) = 0.174 W/kg; SAR(10 g) = 0.102 W/kg Page Number : 49 of 118 Report Issued Date: Jan. 17, 2019 # Fig.4 GPRS 2TS Bottom Mode High Date/Time: 2018/12/24 Electronics: DAE4 Sn1244 Medium parameters used: f = 1910 MHz; $\sigma = 1.568 \text{ S/m}$; $\varepsilon_r = 52.038$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: GSM 1900MHz GPRS 2TS (0); Frequency: 1909.8 MHz; Duty Cycle: 1:4 Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018 GPRS 2TS Bottom Mode High /Area Scan (41x71x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.13 W/kg GPRS 2TS Bottom Mode High /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.96 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 1.84 W/kg SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.531 W/kgMaximum value of SAR (measured) = 1.16 W/kg : 50 of 118 Report Issued Date: Jan. 17, 2019 Page Number # Fig.5 WCDMA Band 2 Left Cheek Middle Date/Time: 2018/12/24 Electronics: DAE4 Sn1244 Medium parameters used: f = 1880 MHz; $\sigma = 1.343 \text{ S/m}$; $\varepsilon_r = 41.918$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: WCDMA Professional Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(5.18, 5.18, 5.18); Calibrated: 9/4/2018 #### WCDMA Band 2 Left Cheek Middle/Area Scan (101x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.256 W/kg #### WCDMA Band 2 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.409 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.395 W/kg SAR(1 g) = 0.235 W/kg; SAR(10 g) = 0.136 W/kgMaximum value of SAR (measured) = 0.253 W/kg Page Number : 51 of 118 Report Issued Date: Jan. 17, 2019 # Fig.6 WCDMA Band 2 Bottom Mode Middle Date/Time: 2018/12/24 Electronics: DAE4 Sn1244 Medium parameters used: f = 1880 MHz; $\sigma = 1.536 \text{ S/m}$; $\varepsilon_r = 52.143$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: WCDMA Professional Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018 #### WCDMA Band 2 Bottom Mode Middle/Area Scan (41x71x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.637 W/kg #### WCDMA Band 2 Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.83 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 1.05 W/kg SAR(1 g) = 0.589 W/kg; SAR(10 g) = 0.306 W/kgMaximum value of SAR (measured) = 0.669 W/kg : 52 of 118 Report Issued Date: Jan. 17, 2019 Page Number # Fig.7 WCDMA Band 5 Right Cheek Middle Date/Time: 2018/12/12 Electronics: DAE4 Sn1244 Medium parameters used: f = 837 MHz; $\sigma = 0.924$ S/m; $\varepsilon_r = 42.148$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: WCDMA Professional 835MHz; Frequency: 836.6 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.36, 6.36, 6.36); Calibrated: 9/4/2018 #### WCDMA Band 5 Right Cheek Middle/Area Scan (101x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.402 W/kg ## WCDMA Band 5 Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.611 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.464 W/kg SAR(1 g) = 0.381 W/kg; SAR(10 g) = 0.290 W/kgMaximum of SAR (measured) = 0.401 W/kg Page Number : 53 of 118 Report Issued Date: Jan. 17, 2019 # Fig.8 WCDMA Band 5 Ground Mode Middle Date/Time: 2018/12/12 Electronics: DAE4 Sn1244 Medium parameters used: f = 837 MHz; $\sigma = 1$ S/m; $\varepsilon_r = 56.661$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: WCDMA Professional Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018 #### WCDMA Band 5 Ground Mode Middle/Area Scan (61x101x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.595 W/kg #### WCDMA Band 5 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.75 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.682 W/kg SAR(1 g) = 0.565 W/kg; SAR(10 g) = 0.436 W/kgMaximum value of SAR (measured) = 0.592 W/kg Page Number : 54 of 118 Report Issued Date: Jan. 17, 2019 ## Fig.9 WIFI2450 Right Cheek Low Date/Time: 2018/12/13 Electronics: DAE4 Sn1244 Medium parameters used: f = 2412 MHz; $\sigma = 1.772$ S/m; $\varepsilon_r = 39.678$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: Wifi 2450 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.74, 4.74, 4.74); Calibrated: 9/4/2018 WIFI2450 Right Cheek Low/Area Scan (101x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.121 W/kg WIFI2450 Right Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.237 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.268 W/kg SAR(1 g) = 0.108 W/kg; SAR(10 g) = 0.047 W/kgMaximum
value of SAR (measured) = 0.119 W/kg : 55 of 118 Report Issued Date: Jan. 17, 2019 Page Number # Fig.10 WiFi2450 Ground Mode Low Date/Time: 2018/12/13 Electronics: DAE4 Sn1244 Medium parameters used: f = 2412 MHz; $\sigma = 1.884$ S/m; $\varepsilon_r = 54.219$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: Wifi 2450 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.41, 4.41, 4.41); Calibrated: 9/4/2018 WiFi2450 Ground Mode Low/Area Scan (61x101x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.0812 W/kg W/Fi2450 Cround Mode Law/Zeem Seen (7x7x7)/Cube WiFi2450 Ground Mode Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.373 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.113 W/kg SAR(1 g) = 0.057 W/kg; SAR(10 g) = 0.030 W/kgMaximum of SAR (measured) = 0.0628 W/kg Page Number : 56 of 118 Report Issued Date: Jan. 17, 2019 ## ANNEX B. SYSTEM VALIDATION RESULTS #### Head 835 MHz Date/Time: 2018/12/12 Electronics: DAE4 Sn1244 Medium parameters used: f = 835 MHz; $\sigma = 0.923$ S/m; $\varepsilon_r = 42.152$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: CW 835MHz; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.36, 6.36, 6.36); Calibrated: 9/4/2018 **System Validation/Area Scan (61x131x1):** Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.51 W/kg **System Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 47.72 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.62 W/kg Maximum value of SAR (measured) = 2.62 W/kg : 57 of 118 Report Issued Date: Jan. 17, 2019 Page Number # **Body 835MHz** Date/Time: 2018/12/12 Electronics: DAE4 Sn1244 Medium parameters used: f = 835 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 56.664$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CW 850MHz; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018 System Validation/Area Scan (61x131x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.54 W/kg System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 44.09 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.66 W/kgMaximum value of SAR (measured) = 2.70 W/kg : 58 of 118 Report Issued Date: Jan. 17, 2019 Page Number ## Head 1900MHz Date/Time: 2018/12/24 Electronics: DAE4 Sn1244 Medium parameters used: f = 1900 MHz; $\sigma = 1.362 \text{ S/m}$; $\varepsilon_r = 41.831$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(5.18, 5.18, 5.18); Calibrated: 9/4/2018 System Validation/Area Scan (61x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 11.1 W/kg System Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.95 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 19.6 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.2 W/kg Maximum value of SAR (measured) = 11.5 W/kg : 59 of 118 Report Issued Date: Jan. 17, 2019 Page Number # **Body 1900MHz** Date/Time: 2018/12/24 Electronics: DAE4 Sn1244 Medium parameters used (extrapolated): f = 2000 MHz; $\sigma = 1.663$ S/m; $\varepsilon_r = 51.685$; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CW 1900MHz; Frequency: 2000 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.95, 4.95, 4.95); Calibrated: 9/4/2018 System check Validation/Area Scan (61x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 13.0 W/kg System check Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.64 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 21.1 W/kg SAR(1 g) = 10.35 W/kg; SAR(10 g) = 5.44 W/kg Maximum value of SAR (measured) = 12.3 W/kg : 60 of 118 Report Issued Date: Jan. 17, 2019 Page Number #### Head 2450MHz Date/Time: 2018/12/13 Electronics: DAE4 Sn1244 Medium parameters used: f = 2450 MHz; $\sigma = 1.814 \text{ S/m}$; $\varepsilon_r = 39.541$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: CW 2450MHz; Frequency: 2450 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.74, 4.74, 4.74); Calibrated: 9/4/2018 System Validation/Area Scan (91x71x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 15.3 W/kg System Validation /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.86 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 29.8 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.87 W/kg Maximum value of SAR (measured) = 14.6 W/kg Page Number : 61 of 118 Report Issued Date: Jan. 17, 2019 # **Body 2450MHz** Date/Time: 2018/12/13 Electronics: DAE4 Sn1244 Medium parameters used: f = 2450 MHz; $\sigma = 1.932$ S/m; $\varepsilon_r = 54.12$; $\rho = 1000$ kg/m³ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: CW 2450MHz; Frequency: 2450 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.41, 4.41, 4.41); Calibrated: 9/4/2018 System Validation/Area Scan (91x71x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 15.0 W/kg **System Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.88 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.97 W/kgMaximum value of SAR (measured) = 14.8 W/kg : 62 of 118 Report Issued Date: Jan. 17, 2019 Page Number # **Body 1900MHz** Date/Time: 2018/12/29 Electronics: DAE4 Sn1244 Medium parameters used: f = 1900 MHz; $\sigma = 1.549 \text{ S/m}$; $\varepsilon_r = 52.151$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃ Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.69, 4.69, 4.69); Calibrated: 8/31/2017 System Validation/Area Scan (61x61x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 12.4 W/kg System Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.80 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 19.9 W/kg SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.27 W/kgMaximum value of SAR (measured) = 11.7 W/kg # ANNEX C. SAR Measurement Setup #### C.1. Measurement Set-up The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items: Picture C.1 SAR Lab Test Measurement Set-up - A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. Page Number : 63 of 118 Report Issued Date: Jan. 17, 2019 A computer running WinXP and the DASY5 software. # SAR Test Report Remote control and teach pendant as well as additional circuitry for robot safety such as Report No.: I18D00229-SAR01 - warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. East China Institute of Telecommunications Page Number: 64 of 118 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Jan. 17, 2019 ## C.2. DASY5 E-field Probe System The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum. #### **Probe Specifications:** Model: ES3DV3,EX3DV4 Frequency 10MHz — 6GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3) Calibration: In head and body simulating tissue at Frequencies
from 835 up to 5800MHz Linearity: ± 0.2 dB(30 MHz to 4 GHz) for ES3DV3 ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4 Dynamic Range: 10 mW/kg — 100W/kg **Probe Length:** 330 mm **Probe Tip** Length: 20 mm Body Diameter: 12 mm Tip Diameter: 2.5 mm (3.9 mm for ES3DV3) Tip-Center: 1 mm (2.0mm for ES3DV3) Application: **SAR Dosimetry Testing** > Compliance tests of mobile phones Dosimetry in strong gradient fields Picture 7-2 Near-field Probe Picture 7-3 E-field Probe #### C.3. E-field Probe Calibration Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter. The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm². E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ Where: $\Delta t = Exposure time (30 seconds),$ C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³). #### C.4. Other Test Equipment #### C.4.1. Data Acquisition Electronics(DAE) The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal : 66 of 118 Report Issued Date: Jan. 17, 2019 Page Number #### SAR Test Report Report No.: I18D00229-SAR01 and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. PictureC.4: DAE : 67 of 118 C.4.2. Robot The SPEAG DASY system uses the high precision robots (DASY5: RX90L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application: Report No.: I18D00229-SAR01 : 68 of 118 Report Issued Date: Jan. 17, 2019 Page Number - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchron motors; no stepper motors) - Low ELF interference (motor control fields shielded via the closed metallic construction shields) Picture C.5 DASY 5 ## C.4.3. Measurement Server The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad. The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server. Picture C.6 Server for DASY 5 #### C.4.4. Device Holder for Phantom The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could Page Number : 69 of 118 thus be lowered. <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms. Picture C.7: Device Holder Picture C.8: Laptop Extension Kit Page Number : 70 of 118 C.4.5. Phantom The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm). Report No.: I18D00229-SAR01 : 71 of 118 Report Issued Date: Jan. 17, 2019 Page Number Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters Dimensions: 810 x 1000 x 500 mm (H x L x W) Available: Special **Picture C.9: SAM Twin Phantom** # ANNEX D. Position of the wireless device in relation to the phantom #### D.1. General considerations This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position. W_t Width of the handset at the level of the acoustic W_b Width of the bottom of the handset A Midpoint of the width w_i , of the handset at the level of the acoustic output B Midpoint of the width W_b of the bottom of the handset Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset Picture D.2 Cheek position of the wireless device on the left side of SAM Picture D.3 Tilt position of the wireless device on the left side of SAM ### D.2. Body-worn device A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer. Picture D.4Test positions for body-worn devices ### D.3. Desktop device A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used. The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom. Page Number : 73 of 118 Report Issued Date: Jan. 17, 2019 Picture D.5 Test positions for desktop devices Page Number : 74 of 118 Report Issued Date : Jan. 17, 2019 # **D.4. DUT Setup Photos** Picture D.6 DSY5 system Set-up Page Number : 75 of 118 Report Issued Date: Jan. 17, 2019 ## Note: The photos of test sample and test positions show in additional document. **ANNEX E.** Equivalent Media Recipes The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. Report No.: I18D00229-SAR01 **Table E.1: Composition of the Tissue Equivalent Matter** | Francisco (MIII-) | 835 | 835 | 1900 | 1900 | 2450 | 2450 |
-------------------|---------|--------|------------------|------------------|------------------|------------------| | Frequency (MHz) | Head | Body | Head | Body | Head | Body | | Ingredients (% by | weight) | | | | | | | Water | 41.45 | 52.5 | 55.242 | 69.91 | 58.79 | 72.60 | | Sugar | 56.0 | 45.0 | \ | \ | \ | \ | | Salt | 1.45 | 1.4 | 0.306 | 0.13 | 0.06 | 0.18 | | Preventol | 0.1 | 0.1 | \ | \ | \ | \ | | Cellulose | 1.0 | 1.0 | \ | \ | \ | \ | | Glycol Monobutyl | \ | \ | 44.452 | 29.96 | 41.15 | 27.22 | | Dielectric | ε=41.5 | ε=55.2 | ε=40.0 | ε=53.3 | ε=39.2 | ε=52.7 | | Parameters | σ=0.90 | σ=0.97 | ε=40.0
σ=1.40 | ε=55.5
σ=1.52 | ε=39.2
σ=1.80 | ε=32.7
σ=1.95 | | Target Value | 0-0.90 | 0-0.97 | 0-1.40 | 0-1.52 | 0-1.60 | 0-1.95 | East China Institute of Telecommunications Page Number: 76 of 118 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Jan. 17, 2019 # **ANNEX F.** System Validation The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components. **Table F.1: System Validation Part 1** | System | Probe SN. | Liquid name | Validation | Frequency | Permittivit | Conductivity | |--------|------------|---------------|------------|-----------|-------------|--------------| | No. | Flobe Siv. | Liquid Harrie | date | point | уε | σ (S/m) | | 1 | 3252 | Head 835MHz | 2018-12-12 | 835 MHz | 42.152 | 0.923 | | 2 | 3252 | Head 1900MHz | 2018-12-24 | 1900 MHz | 41.831 | 1.362 | | 3 | 3252 | Head 2450MHz | 2018-12-13 | 2450 MHz | 39.541 | 1.814 | | 4 | 3252 | Body 835MHz | 2018-12-12 | 835 MHz | 56.664 | 0.998 | | 5 | 3252 | Body 1900MHz | 2018-12-24 | 1900 MHz | 52.077 | 1.556 | | 6 | 3252 | Body 2450MHz | 2018-12-13 | 2450 MHz | 54.120 | 1.932 | | 7 | 3252 | Body 1900MHz | 2018-12-29 | 1900 MHz | 52.151 | 1.549 | **Table F.2: System Validation Part 2** | 0111 | Sensitivity | PASS | PASS | |------------------|-----------------|------|------| | CW
Validation | Probe linearity | PASS | PASS | | | Probe Isotropy | PASS | PASS | | | MOD.type | GMSK | GMSK | | Mod | MOD.type | OFDM | OFDM | | Validation | Duty factor | PASS | PASS | | | PAR | PASS | PASS | #### **Probe and DAE Calibration Certificate** ANNEX G. E-mail: cttl@chinattl.com Http://www.chinattl.cn ECIT Client : Certificate No: Z18-60529 ### **CALIBRATION CERTIFICATE** Object DAE4 - SN: 1244 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics Calibration date: December 03, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 20-Jun-18 (CTTL, No.J18X05034) June-19 Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 05, 2018 Page Number : 78 of 118 Report Issued Date: Jan. 17, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z18-60529 Page 1 of 3 Report No.: I18D00229-SAR01 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z18-60529 Page 2 of 3 Page Number Report Issued Date: Jan. 17, : 79 of 118 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.818 ± 0.15% (k=2) | 403.555 ± 0.15% (k=2) | 404.470 ± 0.15% (k=2) | | Low Range | 3.95395 ± 0.7% (k=2) | 3.97087 ± 0.7% (k=2) | 3.97994 ± 0.7% (k=2) | ### **Connector Angle** | onnector Angle to be used in DASY system 22.5° ± 1 ° | |--| |--| Certificate No: Z18-60529 Page 3 of 3 Page Number Report Issued Date: Jan. 17, : 80 of 118 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ECIT Client Certificate No: Z18-60343 # **CALIBRATION CERTIFICATE** Object ES3DV3 - SN:3252 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: September 04, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|-------------|--|--| | Power Meter NRP2 | 101919 | 20-Jun-18 (CTTL, No.J18X05032) | Jun-19 | | Power sensor NRP-Z91 | 101547 | 20-Jun-18 (CTTL, No.J18X05032) | Jun-19 | | Power sensor NRP-Z91 | 101548 | 20-Jun-18 (CTTL, No.J18X05032) | Jun-19 | | Reference10dBAttenuator | 18N50W-10dB | 09-Feb-18(CTTL, No.J18X01133) | Feb-20 | | Reference20dBAttenuator | 18N50W-20dB | 09-Feb-18(CTTL, No.J18X01132) | Feb-20 | | Reference Probe EX3DV4 | SN 3846 | 25-Jan-18(SPEAG,No.EX3-3846_Jan18) | Jan-19 | | DAE4 | SN 777 | 15-Dec-17(SPEAG, No.DAE4-777_Dec17) | Dec -18 | | | | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 21-Jun-18 (CTTL, No.J18X05033) | Jun-19 | | Network Analyzer E5071C | MY46110673 | 14-Jan-18 (CTTL, No.J18X00561) | Jan -19 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | Something . | | Reviewed by: | Lin Hao | SAR Test Engineer | 林松 | | Approved by: | Qi Dianyuan | SAR Project Leader | 20 | | | | | The state of s | Issued: September 06, 2018 Page Number Report Issued Date: Jan. 17, : 81 of 118 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60343 Page 1 of 11 Add: No.51 Xueyuan Road, Haidian
District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 +86-10-62304634-2504 Fax: +86-10-62304634-2504 Fax: +86-10-62304634-2504 Fax: +86-10-62304634-2504 Fax: +86-10-6230464-2504 +86-10-623046-2504 Fax: +86-10-62304-2504 Fax: Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z18-60343 Page Number Report Issued Date: Jan. 17, : 82 of 118 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Probe ES3DV3 SN: 3252 Calibrated: September 04, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z18-60343 Page 3 of 11 Page Number Report Issued Date: Jan. 17, : 83 of 118 : 84 of 118 Page Number Report Issued Date: Jan. 17, Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3252 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 1.29 | 1.35 | 1.33 | ±10.0% | | DCP(mV) ^B | 102.7 | 105.4 | 103.6 | | ### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |------|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------| | 0 CW | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 268.8 | ±2.5% | | | | Υ | 0.0 | 0.0 | 1.0 | | 276.1 | | | | | Z | 0.0 | 0.0 | 1.0 | | 278.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60343 Page 4 of 11 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3252 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 6.51 | 6.51 | 6.51 | 0.40 | 1.42 | ±12.1% | | 835 | 41.5 | 0.90 | 6.36 | 6.36 | 6.36 | 0.40 | 1.56 | ±12.1% | | 900 | 41.5 | 0.97 | 6.31 | 6.31 | 6.31 | 0.45 | 1.48 | ±12.1% | | 1750 | 40.1 | 1.37 | 5.39 | 5.39 | 5.39 | 0.61 | 1.28 | ±12.1% | | 1900 | 40.0 | 1.40 | 5.18 | 5.18 | 5.18 | 0.67 | 1.26 | ±12.1% | | 2000 | 40.0 | 1.40 | 5.17 | 5.17 | 5.17 | 0.71 | 1.20 | ±12.1% | | 2300 | 39.5 | 1.67 | 4.92 | 4.92 | 4.92 | 0.90 | 1.14 | ±12.1% | | 2450 | 39.2 | 1.80 | 4.74 | 4.74 | 4.74 | 0.90 | 1.15 | ±12.1% | | 2600 | 39.0 | 1.96 | 4.46 | 4.46 | 4.46 | 0.72 | 1.37 | ±12.1% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z18-60343 Page 5 of 11 Page Number Report Issued Date: Jan. 17, : 85 of 118 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3252 # Calibration Parameter Determined in Body Tissue Simulating Media | | | | | <u>, → </u> | | | | | | |----------------------|---------------------------------------|-------------------------|---------|-------------|---------|--------------------|----------------------------|----------------|--| | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | | | 750 | 55.5 | 0.96 | 6.53 | 6.53 | 6.53 | 0.40 | 1.50 | ±12.1% | | | 835 | 55.2 | 0.97 | 6.34 | 6.34 | 6.34 | 0.42 | 1.58 | ±12.1% | | | 900 | 55.0 | 1.05 | 6.29 | 6.29 | 6.29 | 0.47 | 1.51 | ±12.1% | | | 1750 | 53.4 | 1.49 | 4.99 | 4.99 | 4.99 | 0.65 | 1.28 | ±12.1% | | | 1900 | 53.3 | 1.52 | 4.77 | 4.77 | 4.77 | 0.75 | 1.23 | ±12.1% | | | 2000 | 53.3 | 1.52 | 4.95 | 4.95 | 4.95 | 0.67 | 1.28 | ±12.1% | | | 2300 | 52.9 | 1.81 | 4.63 | 4.63 | 4.63 | 0.90 | 1.15 | ±12.1% | | | 2450 | 52.7 | 1.95 | 4.41 | 4.41 | 4.41 | 0.90 | 1.17 | ±12.1% | | | 2600 | 52.5 | 2.16 | 4.19 | 4.19 | 4.19 | 0.90 | 1.15 | ±12.1% | | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
Certificate No: Z18-60343 Page 6 of 11 Page Number Report Issued Date: Jan. 17, : 86 of 118 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. $^{^{\}rm G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z18-60343 Page 7 of 11 Page Number Report Issued Date: Jan. 17, : 87 of 118 # Receiving Pattern (Φ), θ =0° Certificate No: Z18-60343 Page 8 of 11 Page Number Report Issued Date: Jan. 17, : 88 of 118 Page Number Report Issued Date: Jan. 17, : 89 of 118 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # **Conversion Factor Assessment** ### f=750 MHz, WGLS R9(H_convF) ### f=1750 MHz, WGLS R22(H convF) Page Number Report Issued Date: Jan. 17, : 90 of 118 # **Deviation from Isotropy in Liquid** -1.0 -0.80 -0.60 -0.40 -0.20 0 0.20 0.40 0.60 0.80 1.0 Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) Certificate No: Z18-60343 Page 10 of 11