EMI Test Report

Research In Motion Limited

REPORT NO.: RIM-0024-0302-01

PRODUCT MODEL NO: R6230GE

TYPE NAME: BlackBerry Wireless Handheld

FCC ID: L6AR6230GE **IC**: 2503A-R6230GE

Date: _____07 March 2003_____

Date: 07 March 2003

Report No. RIM-0024-0302-01

Declaration

Statement of Performance:

The BlackBerry Wireless Handheld, model R6230GE ASY-05707-001 Rev.C, tested with the following accessories: Travel Charger model number PSM05R-050Q part number ASY-04078-001, Audio Headset part number HDW-03458-001, USB data cable model number HDW-04162-001 when configured and operated per RIM's operation instructions, performs within the requirements of the test standards.

Declaration:

We hereby certify that:

The test data reported herein is an accurate record of the performance of the sample(s) tested. The test equipment used was suitable for the tests performed and within the manufacturers published specifications and operating parameters.

The test methods were consistent with the methods described in the relevant standards.

Tested by

Maurice Battler

Maurice Battler

Compliance Specialist Date: 07 March 2003

Masud S. Attayi, P.Eng.

M. Lttay

Senior Engineer, Compliance and Certification Date: 07 March 2003

Reviewed and Approved by:

Paul G. Cardinal, Ph.D.

Manager, Compliance and Certification

Table of Contents

A) Scope	Pg. 3
B) Product Identification	Pg. 3
C) Support Equipment Used for Testing of the EUT	Pg. 4
D) Test Voltage	Pg. 4
E) Test Results Chart	Pg. 4
F) Modifications to EUT	Pg. 4
G) Summary of Results	Pg. 4
H) Compliance Test Equipment Used	Pg. 6
Appendix 1 Conducted Emissions Test Data/Plots	
Appendix 2 Conducted RF Output Power Test Data	
Appendix 3 Frequency Stability Test Data	
Appendix 4 Radiated Emissions Test Data	

A) Scope

This report details the results of compliance tests which were performed in accordance to the requirements of:

FCC CFR 47 Part 2, Oct. 1, 2000

FCC CFR 47 Part 24 Subpart E, Broadband PCS, Oct 1. 2000

Industry Canada, RSS-133 Issue 2, Rev. 1 Nov. 6/1999, 2.0 GHz Personal Communications Services

B) Product Identification

The equipment under test (EUT) was tested at the Research In Motion (RIM) EMI test facility, located at:

305 Phillip Street Waterloo, Ontario

Canada, N2L 3W8

Phone: 519 888 7465 Fax: 519 888 6906 Web Site: www.rim.net

The testing began on February 17, 2003 and completed on February 28, 2003. The sample equipment under test (EUT) included:

- 1. BlackBerry Wireless Handheld, model number R6230GE, ASY-05707-001 Rev. C, PIN 2002004, IMEI 001020.00.027096.0, FCC ID L6AR6230GE, IC: 2503A-R6230GE.
- 2. USB data cable, model number HDW-04162-001, 1.4 metres long.
- 3. Travel Charger, model number PSM05R-050Q, part number ASY-04078-001 with an output voltage of 5.0 volts dc.
- 4. Headset, model number HDW-03458-001. The lead length was 1.25 metres long.

The transmit frequency ranges for the BlackBerry Wireless Handheld are: GSM band 880 to 915 MHz, DCS band 1710-1785 MHz and PCS band 1850 to 1910 MHz. Only the PCS band emissions were measured since the GSM 900 and DCS 1800 bands are not licensed bands in North America and therefore not tested.

Report No. RIM-0024-0302-01

C) Support Equipment Used for the Testing of the EUT

- 1) Rohde & Schwarz, Universal Radio Communication Tester, model number CMU 200, serial number 100250
- 2) Rohde & Schwarz, Universal Radio Communication Tester, model number CMU 200, serial number 837493/073
- 3) DC Power Supply, H/P, model 6632B, serial number US37472179

D) Test Voltage

The ac input voltage was 120 volts, 60 Hz. This configuration was per RIM's specifications.

E) Test Results Chart

Specifications	Test Type	Meets Requirements	Performed By
FCC CFR 47 Part 24, Subpart E IC RSS-133	Radiated Spurious/harmonic Emission, EIRP	Yes	Masud Attayi
FCC CFR 47 Part 24, Subpart E IC RSS-133	Conducted Emissions, Occupied Bandwidth, Frequency Stability	Yes	Daoud Attayi Maurice Battler

F) Modifications to EUT

No modifications were required to the EUT.

G) Summary of Results

- 1) The EUT passed the Conducted Spurious Emission requirements in the PCS band as per 47 CFR 2.1057, 47 CFR 24.238 and RSS-133. The EUT was measured on the low, middle and high channels. The frequency range measured was from 10 MHz to 20 GHz. See APPENDIX 1 for the test data.
- 2) The EUT passed the Occupied Bandwidth and channel mask requirements as per 47 CFR 2.202, 47 CFR 24.238 and RSS-133. The channels measured were low, middle and high. See APPENDIX 1 for the test data.

Report No. RIM-0024-0302-01

- 3) The EUT passed the Conducted RF Output Power requirements. The channels measured were low, middle and high.
 See APPENDIX 2 for the test data.
- 4) The EUT passed the Frequency Stability vs. Temperature and Voltage requirements as per 47 CFR 24.135 and RSS-133. The temperature range was from -30°C to +60°C in 10 degree temperature steps. The EUT was measured on low, middle and high channels at each temperature step. The EUT was measured at low (3.5 volts), nominal (3.8 volts) and high (4.1 volts) dc input voltage at each temperature step and channel at maximum output power.

Note: 4.1 volts is the instantaneous turn-on voltage for a fully charged battery. When the device transmits, this voltage drops to the nominal voltage within a few minutes. See APPENDIX 3 for the test data.

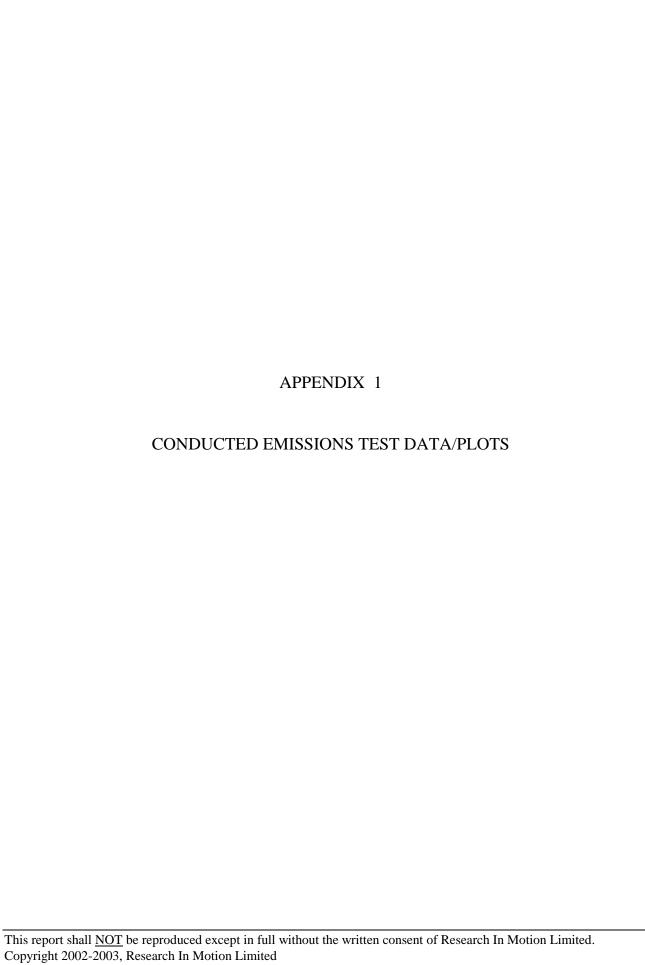
The radiated spurious\harmonic emissions and EIRP for the PCS band passed the limits. The EUT was placed on a nonconductive wooden table, 80 cm high that was positioned on a remotely rotatable turntable. The test distance used between the EUT and the receiving antenna was three metres. The measurements were performed in a semi-anechoic chamber. The semi-anechoic chamber FCC registration number is **778487** and the Industry Canada file number is **IC4240**. The turntable was rotated to determine the azimuth of the peak emissions. At this point the emissions were maximized by elevating the antenna in the range of 1 to 4 metres. The maximum emissions level was recorded. The EUT was measured on the low, middle and high channels.

The radiated harmonics\spurious emissions were measured for the PCS band up to the 10th harmonics for low, middle and high channels. The worst test margin measured was 24.3 dB below the limit at 3819.6 MHz (channel 810).

The highest EIRP in the PCS band measured was 29.69 dBm at 1850.2 MHz (channel 512). To view the test data see APPENDIX 4.

Sample Calculation:

Field Strength ($dB\mu V/M$) is calculated as follows:

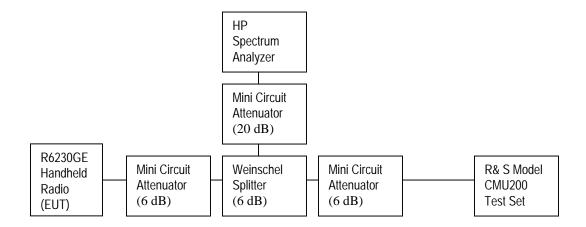

 $FS = Measured Level (dB\mu V) + A.F. (dB/m) + Cable Loss (dB) - Preamp (dB) + Filter Loss (dB)$

Measurement Uncertainty ±4.0 dB

H) Compliance Test Equipment Used

<u>UNIT</u>	MANUFACTURER	MODEL / SE	ERIAL NUMBER	CAL DUE DATE	<u>USE</u>
Preamplifier system	TDK RF Solutions	PA-02	080010	03-10-02	Radiated Emissions
Preamplifier	Sonoma	310N/11909A	185831	03-10-02	Radiated Emissions
EMC Analyzer	Agilent	E7405A	US40240226	03-03-20	Radiated Emissions
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	837493/073	03-03-20	Radiated Emissions
Horn Antenna	TDK	HRN-0118	130092	03-08-14	Radiated Emissions
Horn Antenna	TDK	HRN-0118	030201	03-11-12	Radiated Emissions
Hybrid Log Antenna	TDK	HLP-3003C	17301	03-11-30	Radiated Emissions
Dipole Antenna	Schwarzbeck	VHAP	1006	03-09-12	Radiated Emissions
Dipole Antenna	Schwarzbeck	VHAP	1007	03-09-12	Radiated Emissions
Signal Generator	НР	83630B	3844A00927	04-04-30	Radiated Emissions
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	100251	03-03-27	Conducted Emissions
Spectrum Analyzer	HP	8563E	3745A08112	03-07-31	Conducted Emissions
DC Power Supply	НР	6632B	US37472170	03-07-31	Conducted Emissions
Temperature Probe	Hart Scientific	61161-302	21352860	03-09-10	Conducted Emissions
Environmental Chamber	ESPEC Corp.	SH-240S1	91005607	N/R	Conducted Emissions

Appendix 1 Page 1 of 10


Test Date: Test Date: February 17 to 28, 2003

Report No. RIM-0024-0302-01

Conducted Emission Test Results

This appendix contains measurement data pertaining to conducted spurious emissions, -26 dBc bandwidth, 99% power bandwidth and the channel mask.

Test Setup Diagram

Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	HP	8563E	374A08112	30 Hz – 26.5 GHz
Splitter	Weinschel	1515	ME380	DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S20W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	100250	

Appendix 1 Page 2 of 10

Report No. RIM-0024-0302-01

Test Date: Test Date: February 17 to 28, 2003

Conducted Emission Test Data Con't

The conducted spurious emissions – As per 47 CFR 2.202, 47 CFR 2.1057, 47 CFR 24.238 and RSS-133 were measured from 10 MHz to 20 GHz. No emissions could be seen above the noise floor of the spectrum analyzer.

Occupied Bandwidth (99%) and -26 dBc Bandwidth

For the low, middle and high channels, the modulation spectrum was measured by both methods of 99% power bandwidth and –26 dBc bandwidth.

The resolution bandwidth required for out-of-band emissions in the 1 MHz bands immediately outside and adjacent to the frequency block, was determined to be at least 1% of the emission bandwidth.

The worst case -26dBc emission bandwidth for the three channels was measured to be 310 kHz which results in 3.0 kHz resolution bandwidth.

On any frequency outside the frequency block and outside the adjacent 1 MHz bands, a resolution bandwidth of at least 1 MHz was employed.

Test Data for selected Frequencies

PCS Frequency (MHz)	99% Occupied Bandwidth (kHz)	-26dBc Bandwidth (kHz)
1850.2	246	310
1880.0	245	302
1909.8	245	300

Measurement Plots for PCS

Refer to the following measurement plots for more detail.

See Figures 1 to 6 for plots of the Spurious Emission results

See Figures 7 to 12 for the plots of the 99% Occupied Bandwidth and –26 dBc Carrier Reference at 0.0 dB corresponds to maximum peak output power.

See Figures 13 to 14 for plots of the channel mask results.

The RF power output was at maximum for all the recorded measurements shown below.

Figure 1: Spurious Conducted Emissions, Low channel

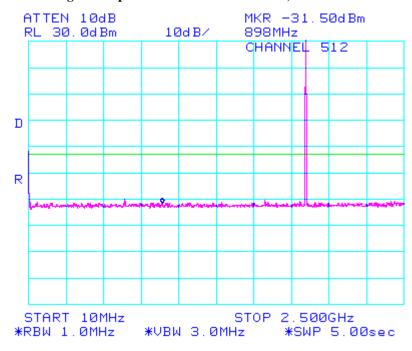


Figure 2: Spurious Conducted Emissions, Low channel

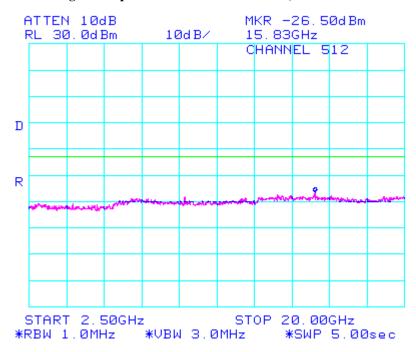


Figure 3: Spurious Conducted Emissions, Middle Channel

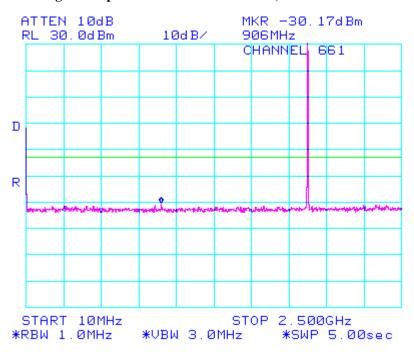


Figure 4: Spurious Conducted Emissions, Middle Channel

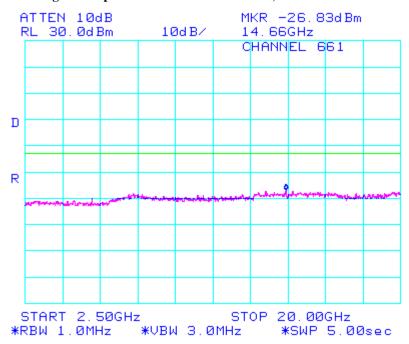


Figure 5: Spurious Conducted Emissions, High Channel

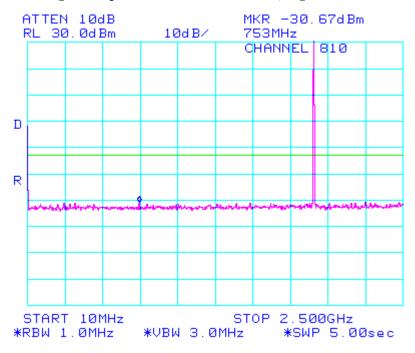


Figure 6: Spurious Conducted Emissions, High Channel

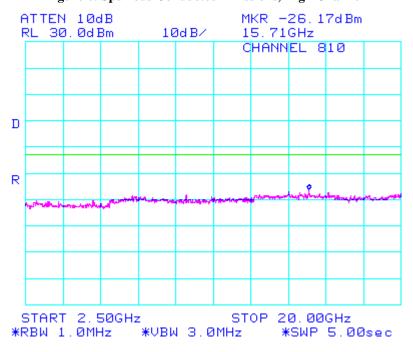


Figure 7: -26dBc bandwidth, Low Channel

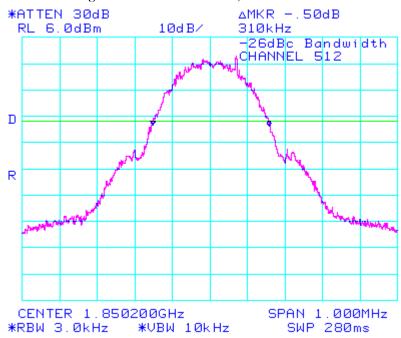


Figure8: Occupied Bandwidth, Low Channel

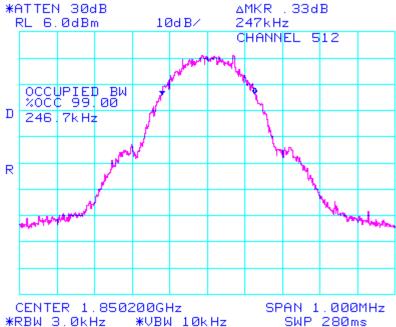


Figure 9: -26dBc bandwidth, Middle Channel

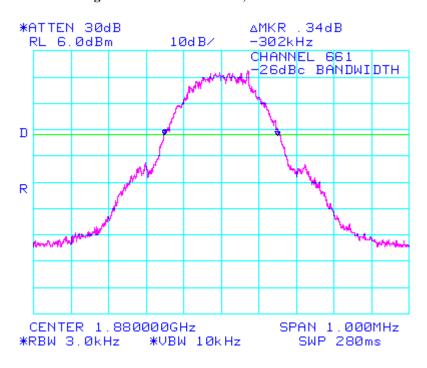


Figure 10: Occupied Bandwidth, Middle Channel

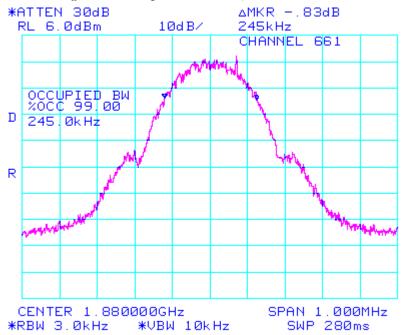


Figure 11: -26dBc bandwidth, High Channel

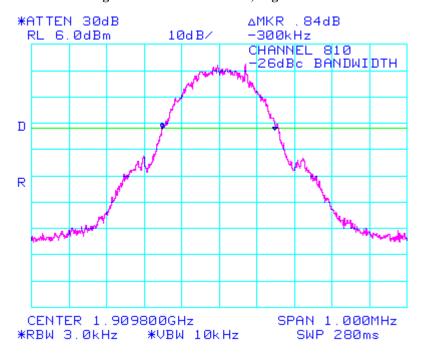


Figure 12: Occupied Bandwidth, High Channel

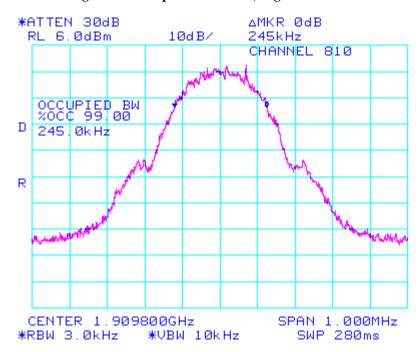


Figure 13: Low Channel Mask

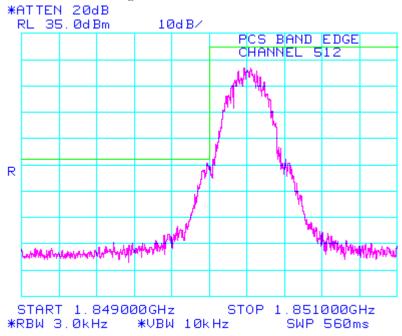
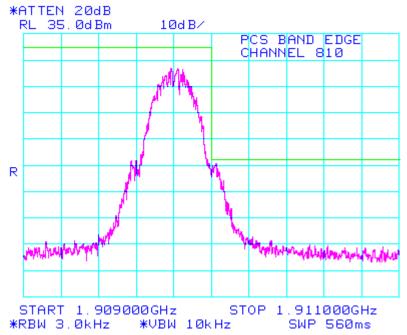
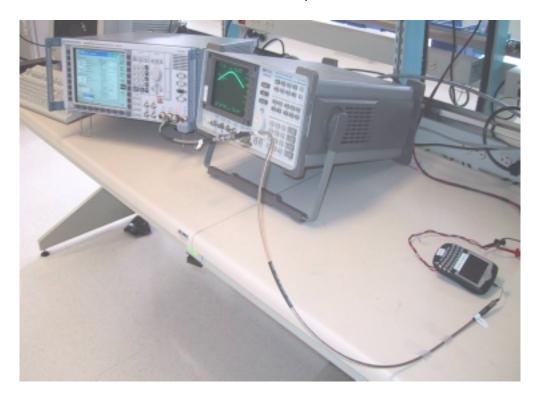
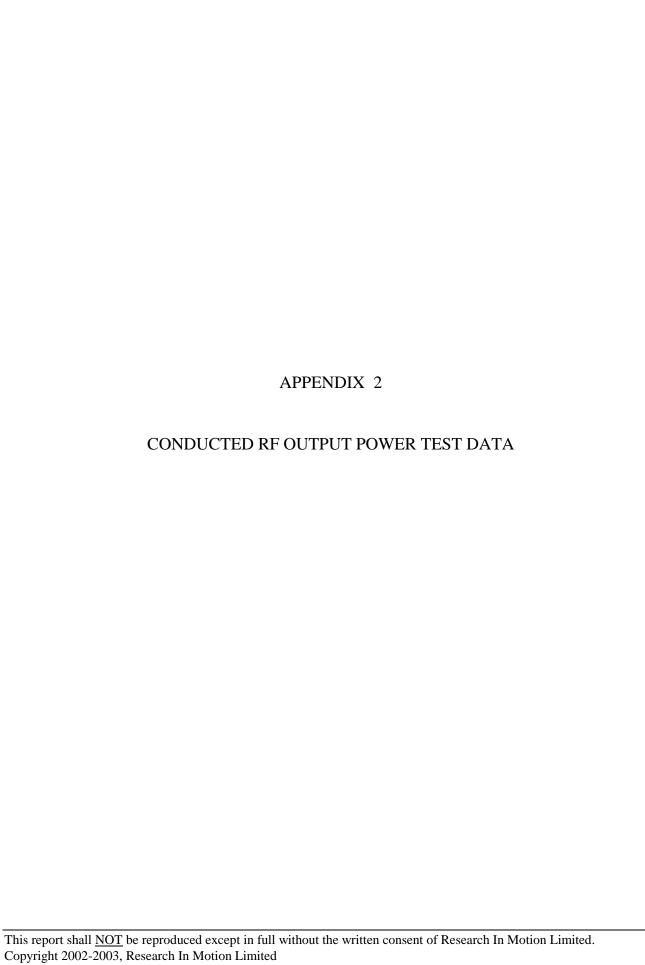



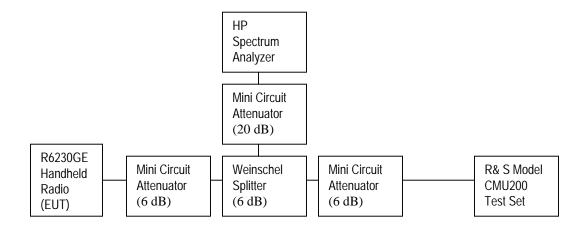
Figure 14: High Channel Mask



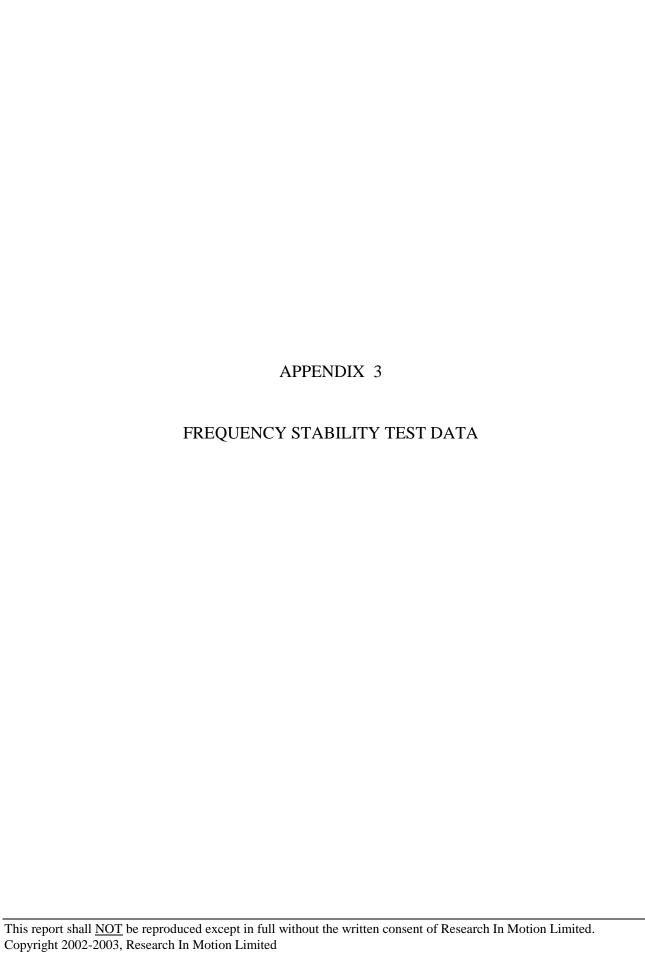


Conducted Emission Test-Setup Photo

FCC CFR 47 Part 24, Subpart E, RSS-133



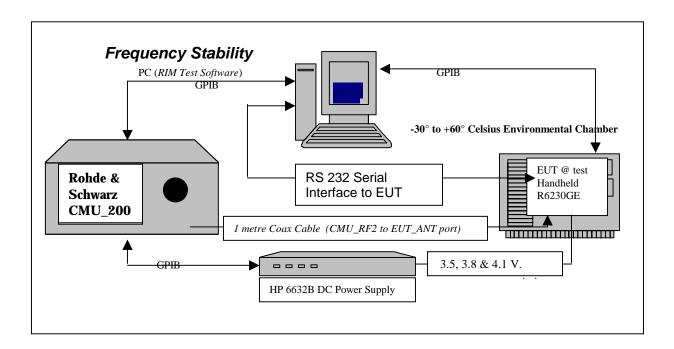
Appendix 2 Page 1 of 1


Test Date: Test Date: February 17 to 28, 2003

Report No. RIM-0024-0302-01

Conducted RF Output Power Test Data

Frequency		Measured Peak	Total Correction	Corrected Peak
Channel	Frequency (MHz)	Conducted Power	Factor	Conducted Power
	(MITIZ)	(dBm)	(dB)	(dBm)
512	1850.2	-3.0	32.8	29.8
661	1880.0	-3.0	32.8	29.8
810	1909.8	-3.0	32.8	29.8



Report No. RIM-0206-03

Appendix 3 Page 1 of 7

Test Date: February 17 to 28, 2003

Frequency Stability Test Data

SYSTEM	Model	Serial Number	Calibration Due Date.
R & S Universal Radio Communication Test Set	CMU200	100250	29-March-2003
HP System DC Power Supply	6632B	US37472170	31-July-2003
Network Analyzer	HP 8753D	20A80400806	12-Aug-2003
Calibration Kit	HP85033D	3423A02787	28-Sept-2003
Espec Environmental Chamber	SH240S1	91005607	N/A
Hart Temperature Probe	61161-302	21352860	10-Sept-2003

CFR 47 Chapter 1 - Federal Communications Commission Rules

24.135 Frequency Stability.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Appendix 3 Page 2 of 7

Report No. RIM-0206-03 Test Date: February 17 to 28, 2003

The R6230GE handheld, (referred as EUT herein and after) transmitted frequencies are less than 0.1 ppm off the received frequency from the Rhode & Schwarz CMU 200 Universal Radio Communication Test Set.

The R6230GE handheld meets the requirements as stated in CFR 47 chapter 1, Section 24.135 and RSS-133 Frequency Stability.

Frequency Stability measurement devices were configured as presented in the block diagram recording frequency, power, data, temperatures, and stepped voltages controlled via a GPIB interface linked to the Environmental chamber, a DC power supply, and the Communications Test Set. A one metre coax cable was calibrated to characterize the insertion loss for the transmitted frequencies between the RF input/output of the CMU 200 and the EUT antenna port; located inside the environmental chamber.

Calibration for the Cable Loss was performed in the RF Laboratory on February 18, 2003.

Procedure:

Full_ Two port Calibration of 8720D using the 85033D was completed.

A one metre long coax cable was used to complete the RF power measurement.

The cable assembly from the RF input to the RF output was measured at the following Frequencies:

PCS Frequency (MHz)	Cable loss (dB)
1850.2	0.6
1880.0	0.6
1909.8	0.6

Procedure:

The EUT was placed in the Temperature chamber and connected to the CMU 200 outside as shown in the figure above. Dry air was pumped inside the temperature chamber to maintain a backpressure during the test. The EUT was kept in the off condition at all times except when the measurements were to be made.

The chamber was switched on and the temperature was set to -30°C.

After the chamber stabilized at -30 °C there was a soak period of one hour to alleviate moisture in the chamber, then the EUT voltage was enabled.

The system software recorded the frequency, power, and associated measurements.

Appendix 3 Page 3 of 7

Test Date: February 17 to 28, 2003

Report No. RIM-0206-03

A Computer system controlled the automated software. This application was given the command of activating all machines intrinsic to the temperature and voltage tests controlling the CMU 200 via the GPIB Bus set to the 1900 PCS band. The Environmental Chamber was instructed through an RS-232 serial line. The EUT dialogue was passed through a serial connection.

The EUT repetitively transmitted 100 bursts for each set of programmed parameters recording temperature, voltage settings, and systematically selected frequencies of 1850.2, 1880.0 & 1909.8 MHz.

The power supply was cycled from the minimum voltage of 3.5 volts, to 3.8 volts, and then to 4.1 volts nominal voltage.

The frequency error was measured at a maximum output power of 30 dBm and recorded by the automated system test software.

The EUT output power and frequency was measured at 3.5V, 3.8V, and 4.1VDC. The transmit frequency was varied in 3 steps consisting of 1850.2 MHz, 1880.0 MHz and 1909.8 MHz. This frequency was recorded in MHz and deviation from nominal, in Parts Per Million.

After the initial one-hour soak at the beginning of the start of the measurement tests, a period of thirty minutes soak was initialized between each ascending temperature step, before proceeding to the next measurement test cycle.

Procedure:

The test system software for commencing the Frequency Stability Tests carried through the following cycle.

- 1. Switch on the HP 6632B power supply; CMU 200 Communications Test Set, and Environmental Chamber.
- 2. Start test program
- 3. Set the Temperature to -30 degrees Celsius and maintain a period of one- hour soak time, with the EUT supply voltage disabled.
- 4. Set power supply voltage to 3.5 Volts
- 5. Set up CMU 200 Radio Communication Tester
- 6. Command the CMU 200 to switch to 1850.2 MHz
- 7. Enable the voltage to the EUT, and connect a link to the CMU 200 test set
- 8. EUT is commanded to Transmit 100 Bursts
- 9. Software logs the following data from the CMU 200, power supply and temperature chamber: Traffic Channel Number, Traffic Channel Frequency, Power Level, Chamber Temperature, Supply Voltage, Power, Frequency Error.
- 10. The CMU 200 commands the EUT to change frequency to 1880.0 and 1909.8 MHz and repeats steps 7, to 9.
- 11. Repeat steps 5, to 10 changing the supply voltage to 3.8 Volts
- 12. Increase temperature by 10°C and soak for 1/2 hour.
- 13. Repeat steps 4 12 for temperatures -30 degrees to 60 degrees Celsius.
- 14. Repeat steps 5, to 10 changing the supply voltage to 4.1 Volts

Procedure 5, to 10 was repeated at room temperature (20°C) with the power supply voltage set to 3.5V, 3.8V, and 4.1 Volts

Appendix 3 Page 4 of 7

Report No. RIM-0206-03 Test Date: February 17 to 28, 2003

PCS Channel results: 512, 661, & 810 @ 20°C maximum transmitted power

Traffic Channel Number	PCS Frequency (MHz	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	3.5	20	1.16	0.0006
661	1880.0	30	3.5	20	-9.75	0.0051
810	1909.8	30	3.5	20	-1.36	0.0007

Traffic Channel Number	PCS Frequency (MHz	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	3.8	20	-2.84	0.0015
661	1880.0	30	3.8	20	19.95	0.0106
810	1909.8	30	3.8	20	-1.49	0.0008

Traffic Channel Number	PCS Frequency (MHz	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	4.1	20	7.75	0.0041
661	1880.0	30	4.1	20	10.46	0.0056
810	1909.8	30	4.1	20	15.69	0.0082

Report No. RIM-0206-03

Appendix 3 Page 5 of 7

Test Date: February 17 to 28, 2003

Channel Results: 512 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	3.5	-30	-4.33	0.0023
512	1850.2	30	3.5	-20	15.3	0.0083
512	1850.2	30	3.5	-10	0.65	0.0003
512	1850.2	30	3.5	0	6.52	0.0035
512	1850.2	30	3.5	10	13.04	0.0070
512	1850.2	30	3.5	20	1.16	0.0006
512	1850.2	30	3.5	30	-23.18	0.0125
512	1850.2	30	3.5	40	-0.84	0.0005
512	1850.2	30	3.5	50	1.74	0.0009
512	1850.2	30	3.5	60	8.98	0.0049

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	3.8	-30	-1.94	0.0010
512	1850.2	30	3.8	-20	28.02	0.0151
512	1850.2	30	3.8	-10	-6.52	0.0035
512	1850.2	30	3.8	0	10.72	0.0058
512	1850.2	30	3.8	10	-1.36	0.0007
512	1850.2	30	3.8	20	-2.84	0.0015
512	1850.2	30	3.8	30	7.68	0.0042
512	1850.2	30	3.8	40	5.23	0.0028
512	1850.2	30	3.8	50	28.67	0.0155
512	1850.2	30	3.8	60	-4.00	0.0022

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	4.1	-30	24.41	0.0013
512	1850.2	30	4.1	-20	10.07	0.0054
512	1850.2	30	4.1	-10	14.21	0.0077
512	1850.2	30	4.1	0	-2.20	0.0012
512	1850.2	30	4.1	10	6.46	0.0035
512	1850.2	30	4.1	20	7.75	0.0042
512	1850.2	30	4.1	30	4.78	0.0026
512	1850.2	30	4.1	40	17.43	0.0094
512	1850.2	30	4.1	50	29.9	0.0162
512	1850.2	30	4.1	60	-0.58	0.0003

Appendix 3 Page 6 of 7

Report No. RIM-0206-03 Test Date: February 17 to 28, 2003

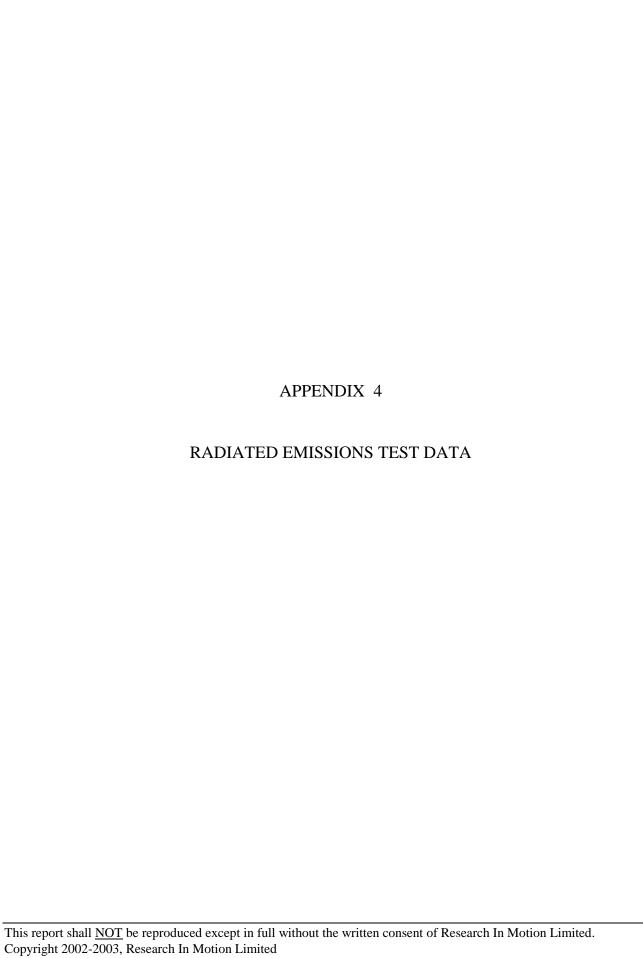
Channel Results: 647 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
661	1880.0	30	3.5	-30	8.52	0.0045
661	1880.0	30	3.5	-20	37.45	0.0200
661	1880.0	30	3.5	-10	-3.10	0.0016
661	1880.0	30	3.5	0	0.26	0.0001
661	1880.0	30	3.5	10	-4.00	0.0021
661	1880.0	30	3.5	20	-9.75	0.0052
661	1880.0	30	3.5	30	5.17	0.0028
661	1880.0	30	3.5	40	-8.65	0.0046
661	1880.0	30	3.5	50	-6.91	0.0037
661	1880.0	30	3.5	60	-9.49	0.0050

Traffic Channel Number	(MHz) (dBm)		Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
661	1880.0	30	3.8	-30	12.72	0.0068
661	1880.0	30	3.8	-20	6.26	0.0033
661	1880.0	30	3.8	-10	4.65	0.0025
661	1880.0	30	3.8	0	5.88	0.0031
661	1880.0	30	3.8	10	-4.33	0.0023
661	1880.0	30	3.8	20	19.95	0.0106
661	1880.0	30	3.8	30	11.62	0.0062
661	1880.0	30	3.8	40	8.27	0.0044
661	1880.0	30	3.8	50	-3.55	0.0019
661	1880.0	30	3.8	60	10.78	0.0057

Traffic Channel Number	Frequency (MHz) PCL (dBm)		Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
661	1880.0	30	4.1	-30	20.6	0.0110
661	1880.0	30	4.1	-20	12.59	0.0067
661	1880.0	30	4.1	-10	-1.29	0.0007
661	1880.0	30	4.1	0	22.99	0.0122
661	1880.0	30	4.1	10	23.25	0.0124
661	1880.0	30	4.1	20	10.46	0.0056
661	1880.0	30	4.1	30	23.12	0.0123
661	1880.0	30	4.1	40	3.68	0.002
661	1880.0	30	4.1	50	-2.71	0.0014
661	1880.0	30	4.1	60	-8.33	0.0044

Appendix 3 Page 7 of 7


Report No. RIM-0206-03 Test Date: February 17 to 28, 2003

Channel Results: 782 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
810	1909.8	30	3.5	-30	14.33	0.0075
810	1909.8	30	3.5	-20	21.7	0.0114
810	1909.8	30	3.5	-10	11.11	0.0058
810	1909.8	30	3.5	0	-1.94	0.0010
810	1909.8	30	3.5	10	7.68	0.0040
810	1909.8	30	3.5	20	1.36	0.0007
810	1909.8	30	3.5	30	9.43	0.0049
810	1909.8	30	3.5	40	1.03	0.0005
810	1909.8	30	3.5	50	-6.26	0.0033
810	1909.8	30	3.5	60	9.23	0.0048

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
810	1909.8	30	3.8	-30	-6.20	-0.0032
810	1909.8	30	3.8	-20	40.23	0.0211
810	1909.8	30	3.8	-10	8.20	0.0043
810	1909.8	30	3.8	0	18.73	0.0098
810	1909.8	30	3.8	10	-9.49	0.0050
810	1909.8	30	3.8	20	-1.49	0.0008
810	1909.8	30	3.8	30	12.40	0.0065
810	1909.8	30	3.8	40	-4.33	0.0023
810	1909.8	30	3.8	50	-37.71	0.0197
810	1909.8	30	3.8	60	-1.49	0.0008

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
810	1909.8	30	4.1	-30	5.36	0.0028
810	1909.8	30	4.1	-20	14.08	0.0074
810	1909.8	30	4.1	-10	-0.65	0.0003
810	1909.8	30	4.1	0	9.81	0.0051
810	1909.8	30	4.1	10	20.21	0.0106
810	1909.8	30	4.1	20	15.69	0.0082
810	1909.8	30	4.1	30	20.15	0.0105
810	1909.8	30	4.1	40	-6.20	0.0032
810	1909.8	30	4.1	50	-30.41	0.0159
810	1909.8	30	4.1	60	-1.49	0.0008

Appendix 4 Page 1 of 3

Report No. RIM-0024-0302-01

Test Date: Test Date: February 17 to 28, 2003

Radiated Emissions Test Data Results

Test Distance is 3.0 metres

1 est	Dista	nce is 3.0 n	netres								Substitution	an M	lethod	
												ואו ווע	elilou	
	1	EUT	1	Rec	eive Ante	enna	Specti	rum Analyzer	ı	Tracking	Generator			
Туре	Ch	Freq (MHz)	Band	Pol.	Туре	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H) dBuV	Reading (dBm)	Corrected Reading (relative to dipole) (dBm)	Pol.	Limit dBm	Diff to Limit (dB)
PCS	BAN	D (EIRP) -	handh	eld	standa	llone	, upright	position						
F0	512	1850.2	1900	>	Horn	٧	94.9	94.9	94.9	-2.4	29.69	VV	33	-3.31
F0	512	1850.2	1900	>	Horn	Н	88.9	88.6		-2.0		НН		
F0	661	1880.0	1900	>	Horn	٧	91.2	91.2	91.2	-5.1	26.79	VV	33	-6.21
F0	661	1880.0	1900	٧	Horn	Н	85.3	85.3		-4.9		НН		
F0	810	1909.8	1900	٧	Horn	V	92.2	92.2	92.2	-3.7	27.99	VV	33	-5.01
F0	810	1909.8	1900	٧	Horn	Н	85.2	85.2		-3.8		НН		
PCS	BAN	D (EIRP) -	handh	eld	in upri	ght p	osition,	connecte	d to He	eadset				
F0	512	1850.2	1900	V	Horn	V	94.4	94.4	94.4	-2.9	29.19	VV	33	-3.81
F0	512	1850.2	1900	V	Horn	Н	86.0	86.0		-2.5		НН		
F0	661	1880.0	1900	٧	Horn	V	92.4	92.4	92.4	-3.8	27.99	VV	33	-5.01
F0	661	1880.0	1900	V	Horn	Н	85.9	85.9		-3.7		НН		
F0	810	1909.8	1900	V	Horn	V	91.0	91.0	91.0	-4.9	26.79	VV	33	-6.21
F0	810	1909.8	1900	V	Horn	Н	85.3	85.3		-5.1		НН		
USE		D (EIRP) - ernal Batter dset.				-								
F0	512	1850.2	1900	V	Horn	V	92.9	92.9	92.9	-4.4	27.69	VV	33	-5.31
F0	512	1850.2	1900	V	Horn	Н	86.2	86.2		-4.0		НН		
F0	661	1880.0	1900	V	Horn	V	90.9	90.9	90.9	-5.3	26.49	VV	33	-6.51
F0	661	1880.0	1900	V	Horn	Н	83.9	83.9		-5.2		НН		
F0	810	1909.8	1900	V	Horn	V	91.8	91.8	91.8	-4.1	27.59	VV	33	-5.41
F0	810	1909.8	1900	V	Horn	Н	84.2	84.2		-4.3		НН		

Appendix 4 Page 2 of 3

Test Date: Test Date: February 17 to 28, 2003

Report No. RIM-0024-0302-01

Radiated Emissions Test Data Results con't

Test distance is 3.0 metres.

						Substitution	on M	lethod						
	EUT Receive Antenna					enna	Spectrum Analyzer			Tracking	Generator			
Туре	Ch	Freq (MHz)	Band	Pol.	Туре	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H) dBuV	Reading (dBm)	Corrected Reading (relative to dipole) (dBm)	Pol.	Limit dBm	Diff to Limit (dB)
PCS	BAN	D (Harmon	ics) -	han	dheld s	tanc	lalone, u	pright pos	sition (worst co	nfiguratio	n)		
Low	<u>Low Channel</u>													
2nd	512	3700.4	1900	V	Horn	>	44.7	44.7	44.7	-41.9	-37.8	VV	-13	-24.8
2nd	512	3700.4	1900	V	Horn	Н	NF	NF				НН		

The harmonics were investigated up to the 10th harmonic.

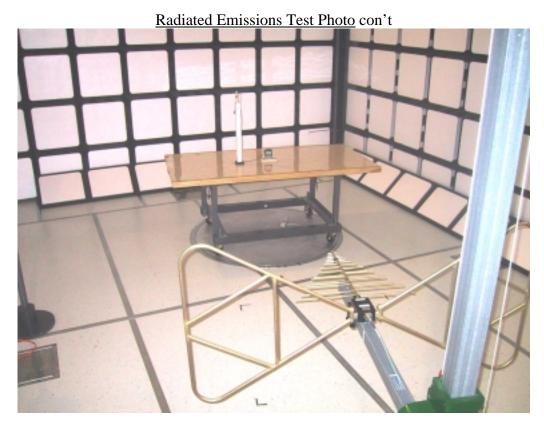
No Emissions above the 2^{nd} harmonic could be seen above the spectrum analyzer noise floor.

Middle Channel

2nd	661	3760.0	1900	٧	Horn	<	44.4	44.4	44.4	-41.0	-37.4	VV	-13	-24.4
2nd	661	3760.0	1900	٧	Horn	Н	38.5	38.5		-41.7		НН		

The harmonics were investigated up to the 10th harmonic.

No Emissions above the 2^{nd} harmonic could be seen above the spectrum analyzer noise floor.


High Channel

2nd	810	3819.6	1900	V	Horn	V	44.9	44.9	44.9	-41.1	-37.3	VV	-13	-24.3
2nd	810	3819.6	1900	>	Horn	Ι	37.8	37.8		-40.9		H		

The harmonics were investigated up to the 10th harmonic.

No Emissions above the 2^{nd} harmonic could be seen above the spectrum analyzer noise floor.

Radiated Emissions at 3.0 metres