In Collaboration with S D E A G CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China FCCID: 2BCQA-10LC1 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. In Collaboration with **CALIBRATION LABORATORY** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China FCCID: 2BCQA-10LC1 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.98 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | | |---------------------------------------------------------|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 14.2 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 56.8 W/kg ± 18.8 % (k=2 | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | | SAR measured | 250 mW input power | 6.36 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 W/kg ± 18.7 % (k=2) | | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) FCCID: 2BCQA-10LC1 #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.6Ω- 6.32 jΩ | | |--------------------------------------|------------------|--| | Return Loss | - 23.7dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.058 ns | |------------------------------------|-----------| | Liectifical Delay (offe direction) | 1.000 119 | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Date: 2023-06-20 FCCID: 2BCQA-10LC1 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### **DASY5** Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1071 Communication System: UID 0, CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 1.98 \text{ S/m}$; $\varepsilon_r = 39.75$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(7.5, 7.5, 7.5) @ 2600 MHz; Calibrated: 2023-01-19 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.06 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.36 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 47.1% Maximum value of SAR (measured) = 24.5 W/kg 0 dB = 24.5 W/kg = 13.89 dBW/kg Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### Impedance Measurement Plot for Head TSL Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client: SHENZHEN LCS Certificate No: Z23-60556 ### **CALIBRATION CERTIFICATE** Object DAE3 - SN: 419 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: June 20, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|------------------------------------------|-----------------------| | Process Calibrator 753 | 1971018 | 14-Jun-23 (CTTL, No.J22X04184) | Jun-24 | | | | <u> </u> | | Calibrated by: Name **Function** Signature Yu Zongying SAR Test Engineer Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Qi Dianyuan SAR Project Leader Issued: June 26, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. In Collaboration with CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China FCCID: 2BCQA-10LC1 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = $6.1\mu V$, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors X | | Υ | Z | |-----------------------|-----------------------|-----------------------|-----------------------| | High Range | 402.650 ± 0.15% (k=2) | 403.236 ± 0.15% (k=2) | 402.697 ± 0.15% (k=2) | | Low Range | 3.92055 ± 0.7% (k=2) | 3.97661 ± 0.7% (k=2) | 3.93420 ± 0.7% (k=2) | ### **Connector Angle** | onnector Angle to be used in DASY system | 293° ± 1 ° | |------------------------------------------|------------| | a a succession of the | 293 ± 1 | CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 FCCID: 2BCQA-10LC1 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: DAE data acquisition electronics information used in DASY system to align probe sensor X Connector angle to the robot coordinate system. **Methods Applied and Interpretation of Parameters:** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Page 42 of 50 中国认可 CAICT 国际互认 CAICT 国际互认 CAICT NAS L0570 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client SHENZHEN LCS Certificate No: J23Z60272 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN: 3805 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: June 21, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Power Meter NRP2 101919 12-Jun-23(CTTL, No.J23X05435) Jun-24 Power sensor NRP-Z91 101547 12-Jun-23(CTTL, No.J23X05435) Jun-24 Power sensor NRP-Z91 101548 12-Jun-23(CTTL, No.J23X005435) Jun-24 Reference 10dBAttenuator 18N50W-10dB 19-Jan-23(CTTL, No.J23X00212) Jan-25 Reference 20dBAttenuator 18N50W-20dB 19-Jan-23(CTTL, No.J23X00211) Jan-25 Reference Probe EX3DV4 SN 7517 27-Jan-23(SPEAG, No.EX-7517_Jan23) Jan-24 DAE4 SN 1555 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Aug-23 Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration SignalGenerator MG3700A 6201052605 12-Jun-23(CTTL, No.J23X05434) Jun-24 Network Analyzer E5071C MY46110673 10-Jan-23(CTTL, No.J23X00104) Jan-24 Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 | Primary Standards | ID# (| Cal Date(Calibrated by, Certificate No.) Schedu | led Calibration | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|-------------------------------------------------|-----------------------| | Power sensor NRP-Z91 101548 12-Jun-23(CTTL, No.J23X05435) Jun-24 Reference 10dBAttenuator 18N50W-10dB 19-Jan-23(CTTL, No.J23X00212) Jan-25 Reference 20dBAttenuator 18N50W-20dB 19-Jan-23(CTTL, No.J23X00211) Jan-25 Reference Probe EX3DV4 SN 7517 27-Jan-23(SPEAG, No.EX-7517_Jan23) Jan-24 DAE4 SN 1555 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Aug-23 Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration SignalGenerator MG3700A 6201052605 12-Jun-23(CTTL, No.J23X05434) Jun-24 Network Analyzer E5071C MY46110673 10-Jan-23(CTTL, No.J23X00104) Jan-24 Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 | Power Meter NRP2 | 101919 | 12-Jun-23(CTTL, No.J23X05435) | Jun-24 | | Reference 10dBAttenuator 18N50W-10dB 19-Jan-23(CTTL, No.J23X00212) Jan-25 Reference 20dBAttenuator 18N50W-20dB 19-Jan-23(CTTL, No.J23X00211) Jan-25 Reference Probe EX3DV4 SN 7517 27-Jan-23(SPEAG, No.EX-7517_Jan23) Jan-24 DAE4 SN 1555 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Aug-23 Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator MG3700A 6201052605 12-Jun-23(CTTL, No.J23X05434) Jun-24 Network Analyzer E5071C MY46110673 10-Jan-23(CTTL, No.J23X00104) Jan-24 Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 | Power sensor NRP-Z91 | 101547 | 12-Jun-23(CTTL, No.J23X05435) | Jun-24 | | Reference 20dBAttenuator 18N50W-20dB 19-Jan-23(CTTL, No.J23X00211) Jan-25 Reference Probe EX3DV4 SN 7517 27-Jan-23(SPEAG, No.EX-7517_Jan23) Jan-24 DAE4 SN 1555 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Aug-23 Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration SignalGenerator MG3700A 6201052605 12-Jun-23(CTTL, No.J23X05434) Jun-24 Network Analyzer E5071C MY46110673 10-Jan-23(CTTL, No.J23X00104) Jan-24 Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 | Power sensor NRP-Z91 | 101548 | 12-Jun-23(CTTL, No.J23X05435) | Jun-24 | | Reference Probe EX3DV4 SN 7517 27-Jan-23(SPEAG, No.EX-7517_Jan23) Jan-24 DAE4 SN 1555 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Aug-23 Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration SignalGenerator MG3700A 6201052605 12-Jun-23(CTTL, No.J23X05434) Jun-24 Network Analyzer E5071C MY46110673 10-Jan-23(CTTL, No.J23X00104) Jan-24 Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 | Reference 10dBAttenuator | 18N50W-10dB | 19-Jan-23(CTTL, No.J23X00212) | Jan-25 | | DAE4 SN 1555 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Aug-23 Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration SignalGenerator MG3700A 6201052605 12-Jun-23(CTTL, No.J23X05434) Jun-24 Network Analyzer E5071C MY46110673 10-Jan-23(CTTL, No.J23X00104) Jan-24 Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 | Reference 20dBAttenuator | 18N50W-20dB | 19-Jan-23(CTTL, No.J23X00211) | Jan-25 | | Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration SignalGenerator MG3700A 6201052605 12-Jun-23(CTTL, No.J23X05434) Jun-24 Network Analyzer E5071C MY46110673 10-Jan-23(CTTL, No.J23X00104) Jan-24 Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 | Reference Probe EX3DV4 | SN 7517 | 27-Jan-23(SPEAG, No.EX-7517_Jan23) | Jan-24 | | SignalGenerator MG3700A 6201052605 12-Jun-23(CTTL, No.J23X05434) Jun-24 Network Analyzer E5071C MY46110673 10-Jan-23(CTTL, No.J23X00104) Jan-24 Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 | DAE4 | SN 1555 | 25-Aug-22(SPEAG, No.DAE4-1555_Aug22 |) Aug-23 | | Network Analyzer E5071C MY46110673 10-Jan-23(CTTL, No.J23X00104) Jan-24 Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 | SignalGenerator MG3700A | 6201052605 | 12-Jun-23(CTTL, No.J23X05434) | Jun-24 | | Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 | Network Analyzer E5071C | MY46110673 | 10-Jan-23(CTTL, No.J23X00104) | Jan-24 | | 11 may 25(6112, 116.525), 1 may 25 | Reference 10dBAttenuator | BT0520 | 11-May-23(CTTL, No.J23X04061) | May-25 | | OCP DAK-3.5 SN 1040 18- Jan-23(SPEAG No OCP DAK'S 5 1040 Jan-23) Jan-24 | Reference 20dBAttenuator | BT0267 | 11-May-23(CTTL, No.J23X04062) | May-25 | | 341-24 Jan 25 Jan 24 Jan 25 Jan 25 Jan 24 Jan 25 Ja | OCP DAK-3.5 | SN 1040 | 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_ | Jan23) Jan-24 | Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: June 27, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60272 Page 1 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China FCCID: 2BCQA-10LC1 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A,B,C,D Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). • NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. • DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 FCCID: 2BCQA-10LC1 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3805 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.44 | 0.35 | 0.41 | ±10.0% | | DCP(mV) ^B | 100.5 | 101.6 | 100.6 | | ### **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc ^E | |-----|---------------|---|-----|------|-----|------|-------|------------------| | | System Name | | dB | dBõV | | dB | mV | (k=2) | | 0 | cw | X | 0.0 | 0.0 | 1.0 | 0.00 | 161.9 | ±2.2% | | | | Υ | 0.0 | 0.0 | 1.0 | | 139.0 | | | | | Z | 0.0 | 0.0 | 1.0 | | 149.3 | 7 | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China FCCID: 2BCQA-10LC1 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3805 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alp | oha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-----|------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.02 | 10.02 | 10.02 | 0. | 17 | 1.27 | ±12.7% | | 835 | 41.5 | 0.90 | 9.62 | 9.62 | 9.62 | 0. | 18 | 1.30 | ±12.7% | | 1750 | 40.1 | 1.37 | 8.35 | 8.35 | 8.35 | 0. | 28 | 1.02 | ±12.7% | | 1900 | 40.0 | 1.40 | 8.05 | 8.05 | 8.05 | 0. | 24 | 1.11 | ±12.7% | | 2100 | 39.8 | 1.49 | 8.00 | 8.00 | 8.00 | 0. | 24 | 1.11 | ±12.7% | | 2300 | 39.5 | 1.67 | 7.75 | 7.75 | 7.75 | 0. | 65 | 0.67 | ±12.7% | | 2450 | 39.2 | 1.80 | 7.50 | 7.50 | 7.50 | 0. | 65 | 0.69 | ±12.7% | | 2600 | 39.0 | 1.96 | 7.35 | 7.35 | 7.35 | 0. | 47 | 0.85 | ±12.7% | | 3500 | 37.9 | 2.91 | 6.85 | 6.85 | 6.85 | 0. | 41 | 1.03 | ±13.9% | | 3700 | 37.7 | 3.12 | 6.69 | 6.69 | 6.69 | 0. | 43 | 1.03 | ±13.9% | | 3900 | 37.5 | 3.32 | 6.58 | 6.58 | 6.58 | 0. | 30 | 1.50 | ±13.9% | | 4100 | 37.2 | 3.53 | 6.62 | 6.62 | 6.62 | 0. | 35 | 1.25 | ±13.9% | | 4200 | 37.1 | 3.63 | 6.52 | 6.52 | 6.52 | 0. | 30 | 1.45 | ±13.9% | | 4400 | 36.9 | 3.84 | 6.44 | 6.44 | 6.44 | 0. | 30 | 1.50 | ±13.9% | | 4600 | 36.7 | 4.04 | 6.41 | 6.41 | 6.41 | 0. | 35 | 1.48 | ±13.9% | | 4800 | 36.4 | 4.25 | 6.36 | 6.36 | 6.36 | 0. | 35 | 1.50 | ±13.9% | | 4950 | 36.3 | 4.40 | 5.95 | 5.95 | 5.95 | 0. | 35 | 1.55 | ±13.9% | | 5250 | 35.9 | 4.71 | 5.45 | 5.45 | 5.45 | 0. | 40 | 1.55 | ±13.9% | | 5600 | 35.5 | 5.07 | 4.86 | 4.86 | 4.86 | 0. | 45 | 1.40 | ±13.9% | | 5750 | 35.4 | 5.22 | 4.96 | 4.96 | 4.96 | 0. | 45 | 1.40 | ±13.9% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 FCCID: 2BCQA-10LC1 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Receiving Pattern (Φ), θ =0° ### f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: $\pm 1.2\%$ (k=2) Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) compensated not compensated Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ## **Conversion Factor Assessment** f=750 MHz,WGLS R9(H_convF) f=1750 MHz,WGL\$ R22(H_convF) # Deviation from Isotropy in Liquid Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 FCCID: 2BCQA-10LC1 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3805 ### **Other Probe Parameters** | The state of s | | |--|------------| | Sensor Arrangement | Triangular | | Connector Angle (°) | 83.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm |