

r

Shenzhen Huatongwei International Inspection Co., Ltd. 1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.en

TE	EST REPOR	Т	
Report No	CHTEW20010066	Report Verification	
Project No	SHT1911084903EW		
FCC ID:	2AVJG-TRACKER-3		Reporters: Christophiles
Applicant's name:	Leanpath, Inc.		
Address	8305 SW Creekside Place,	Suite A, Beaverton	OR 97008
Manufacturer	Leanpath, Inc.		
Address	8305 SW Creekside Place,	Suite A, Beaverton	OR 97008
Test item description	Tracker 3.0		
Trade Mark	Leanpath		
Model/Type reference	T3.0		
Listed Model(s)			
Standard:	FCC CFR Title 47 Part 15 S	Subpart C Section	15.247
Date of receipt of test sample	Dec.03,2019		
Date of testing	Dec.03,2019 ~ Jan.08,2020		
Date of issue	Jan.09,2020		
Result	PASS		
Compiled by (Position+Printed name+Signature):	File administrator Yueming I	_i Yı	coming.li ar konf
Supervised by (Position+Printed name+Signature):	Project Engineer Kiki Kong	K31	ir kong
Approved by (Position+Printed name+Signature):	RF Manager Hans Hu	F	forms HU
Testing Laboratory Name:	Shenzhen Huatongwei Inte	ernational Inspect	ion Co., Ltd.
Address:	1/F, Bldg 3, Hongfa Hi-tech Tianliao, Gongming, Shenzh		nyu Road,
Shenzhen Huatongwei International Insp			
This publication may be reproduced in whol Huatongwei International Inspection Co., Lt Shenzhen Huatongwei International Inspect damages resulting from the reader's interpre- The test report merely correspond to the test	 d. is acknowledged as copyright c tion Co., Ltd. takes no responsibili etation of the reproduced material 	wner and source of t ty for and will not ass	he material. sume liability for

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1. 1.2.	Test Standards Report version	3 3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1. 3.2.	Client Information Product Description	5 5
3.3. 3.4.	Radio Specification Description Testing Laboratory Information	5 6
<u>4.</u>	TEST CONFIGURATION	7
4.1. 4.2.	Test frequency list Descriptions of Test mode	7 7
4.3.	Test mode	7
4.4. 4.5.	Support unit used in test configuration and system Testing environmental condition	8 8
4.5.	Measurement uncertainty	8
4.7.	Equipment Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna Requirement	11
5.2.	AC Conducted Emission	12
5.3.	Peak Output Power	15
5.4. 5.5.	Power Spectral Density 6dB bandwidth	16 17
5.5. 5.6.	99% Occupied Bandwidth	17
5.7.	Duty Cycle	10
5.8.	Conducted Band edge and Spurious Emission	20
5.9.	Radiated Band edge Emission	22
5.10.	Radiated Spurious Emission	26
<u>6.</u>	TEST SETUP PHOTOS	33
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	35
<u>8.</u>	APPENDIX REPORT	35

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- <u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
- ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices
- KDB 558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2020-01-09	Original

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result
5.1	Antenna Requirement	15.203/15.247(c)	PASS
5.2	AC Conducted Emission	15.207	PASS
5.3	Peak Output Power	15.247(b)(3)	PASS
5.4	Power Spectral Density	15.247(e)	PASS
5.5	6dB Bandwidth	15.247(a)(2)	PASS
5.6	99% Occupied Bandwidth	-	PASS ^{*1}
5.7	Duty cycle	-	PASS ^{*1}
5.8	Conducted Band Edge and Spurious Emission	15.247(d)/15.205	PASS
5.9	Radiated Band Edge Emission	15.205/15.209	PASS
5.10	Radiated Spurious Emission	15.247(d)/15.205/15.209	PASS

Note:

- The measurement uncertainty is not included in the test result.
- *1: No requirement on standard, only report these test data.

3. SUMMARY

3.1. Client Information

Applicant:	Leanpath, Inc.	
Address:	8305 SW Creekside Place, Suite A, Beaverton OR 97008	
Manufacturer:	Leanpath, Inc.	
Address:	8305 SW Creekside Place, Suite A, Beaverton OR 97008	

3.2. Product Description

Name of EUT:	Tracker 3.0
Trade Mark:	Leanpath
Model No.:	Т3.0
Listed Model(s):	-
Power supply:	AC 120V
Adapter information:	Model:ZD36W120300D Input:100-240Va.c.50/60Hz 1.0A Input:12Vd.c.3000Ma 36.0W
Hardware version:	YX-M393-VER1.2
Software version:	Tracker.V0.0.1

3.3. Radio Specification Description

Support type ^{*2} :	802.11b, 802.11g, 802.11n(HT20)	
Modulation: DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)		
Operation frequency:	2412MHz~2462MHz for 802.11b/802.11g/802.11n(HT20)	
Channel number:	11 for 802.11b/802.11g/802.11n(HT20)	
Channel separation:	5MHz	
Antenna type:	Built in Antenna	
Antenna gain:	4.65dBi	

Note:

*2: only show the RF function associated with this report.

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
	Туре	Accreditation Number	
Qualifications	CNAS	L1225	
	A2LA	3902.01	
	FCC	762235	
	Canada	5377A	

4. TEST CONFIGURATION

4.1. Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

802.11b/802.11g/802.11n(HT20)		
Channel	Frequency (MHz)	
01	2412	
02	2417	
· :	• :	
06	2437	
· :	• :	
10	2457	
11	2462	

4.2. Descriptions of Test mode

Preliminary tests were performed in different data rates, final test modes are considering the modulation and worse data rates as below table.

Modulation	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(HT20)	MCS0	

4.3. Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Wheth	Whether support unit is used?				
~	No				
Item	Equipement	Trade Name	Model No.	FCC ID	Power cord
1					
2					

4.5. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.6. Measurement uncertainty

Test Item	Measurement Uncertainty
AC Conducted Emission (150kHz~30MHz)	3.02 dB
Radiated Emission (30MHz~1000MHz	4.90 dB
Radiated Emissions (1GHz~25GHz)	4.96 dB
Peak Output Power	0.51 dB
Power Spectral Density	0.51 dB
Conducted Spurious Emission	0.51 dB
6dB Bandwidth	70 Hz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.7. Equipment Used during the Test

•	Conducted Em	ission					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2019/10/26	2020/10/25
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2019/10/23	2020/10/22
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2019/10/23	2020/10/22
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2019/10/23	2020/10/22
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated emiss	sion-6th test site					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2021/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2019/10/26	2020/10/25
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2018/04/02	2021/04/01
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0119	VULB9163	546	2017/04/05	2020/04/04
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2019/11/14	2020/11/13
•	RF Connection Cable	HUBER+SUHNER	HTWE0062- 01	N/A	N/A	2019/08/21	2020/08/20
•	RF Connection Cable	HUBER+SUHNER	HTWE0062- 02	SUCOFLEX 104	501184/4	2019/05/27	2020/05/26
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated emis	sion-7th test site					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2019/10/26	2020/10/25
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2017/04/01	2020/03/31
•	Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	25841	2017/03/27	2020/03/26
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/11	2021/10/10
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2019/11/14	2020/11/13
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2019/05/23	2020/05/22
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-03	6m 3GHz RG Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2019/05/10	2020/05/09
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A

•	RF Conducted Method					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2019/10/26	2020/10/25
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2019/10/26	2020/10/25
•	Power Meter	Anritsu	ML249A	N/A	2019/10/26	2020/10/25
0	Radio communication tester	R&S	CMW500	137688-Lv	2019/10/26	2020/10/25

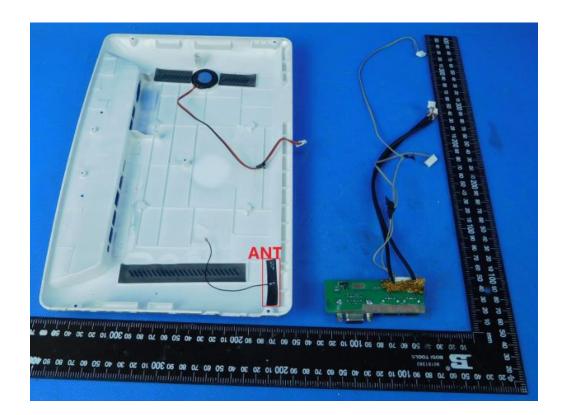
5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

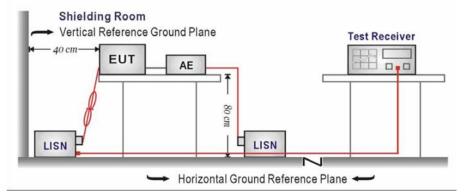
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULT

☑ Passed □ Not Applicable

The antenna type is a PIFA antenna ,the directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. AC Conducted Emission


LIMIT

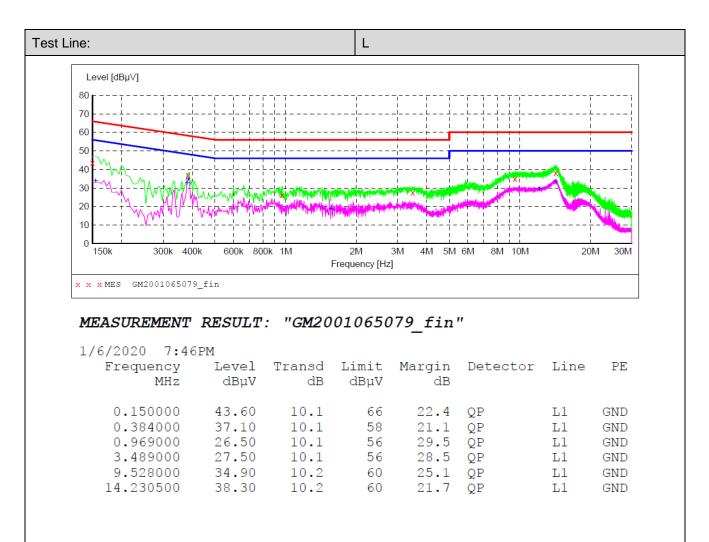
FCC CFR Title 47 Part 15 Subpart C Section 15.207

Frequency range (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

* Decreases with the logarithm of the frequency.

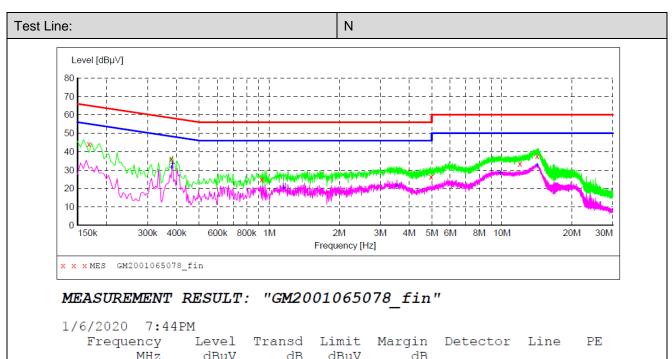
TEST CONFIGURATION

TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.10 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 4.2


TEST RESULT

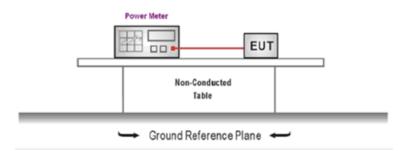
☑ Passed □ Not Applicable

MEASUREMENT RESULT: "GM2001065079 fin2"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154500	33.80	10.1	56	22.0	AV	L1	GND
0.379500	32.50	10.1	48	15.8	AV	L1	GND
0.384000	34.70	10.1	48	13.5	AV	L1	GND
1.558500	18.50	10.1	46	27.5	AV	L1	GND
12.120000	29.40	10.2	50	20.6	AV	L1	GND
14.257500	33.40	10.2	50	16.6	AV	L1	GND

		aв	αΒμν	aв	αΒμν	MHZ
N GND N GND N GND N GND N GND N GND	QP QP QP QP QP	21.1 22.3 31.1 29.7 26.6 22.5	65 58 56 60 60	10.1 10.1 10.1 10.2 10.2	44.00 36.00 24.90 26.30 33.40 37.50	0.168000 0.379500 0.928500 4.969500 11.962500 14.208000

MEASUREMENT RESULT: "GM2001065078 fin2"


1/6/2020 7:44	PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.379500	31.30	10.1	48	17.0	AV	Ν	GND
0.384000	33.40	10.1	48	14.8	AV	Ν	GND
1.153500	20.40	10.1	46	25.6	AV	Ν	GND
3.529500	21.30	10.1	46	24.7	AV	Ν	GND
9.838500	28.40	10.2	50	21.6	AV	Ν	GND
14.176500	32.60	10.2	50	17.4	AV	Ν	GND

5.3. Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10 and KDB 558074 D01 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
- 4. Record the measurement data.

TEST MODE:

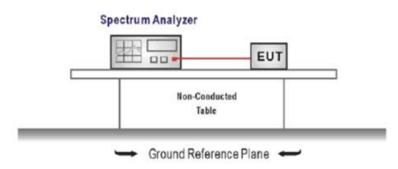
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix A on the appendix report


5.4. Power Spectral Density

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

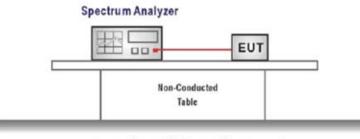
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix B on the appendix report


5.5. 6dB bandwidth

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

➡ Ground Reference Plane

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

 $RBW = 100 kHz, VBW \ge 3 \times RBW$

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

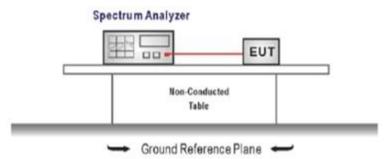
Please refer to the clause 4.2

TEST RESULT

Passed

Not Applicable

TEST Data


Please refer to appendix C on the appendix report

5.6. 99% Occupied Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =channel center frequency Span≥1.5 x OBW RBW = 1%~5%OBW VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

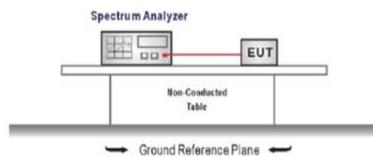
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable


TEST Data

Please refer to appendix D on the appendix report

5.7. Duty Cycle

N/A

TEST CONFIGURATION

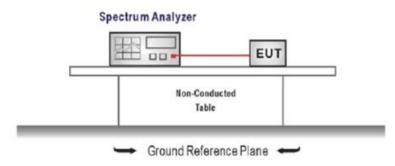
TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span=zero span, Frequency=centered channel, RBW= 1 MHz, VBW ≥ RBW Sweep=as necessary to capture the entire dwell time, Detector function = peak, Trigger mode
- 4. Measure and record the duty cycle data

TEST MODE:

Please refer to the clause 4.2

TEST Data


Please refer to appendix E on the appendix report

5.8. Conducted Band edge and Spurious Emission

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Establish a reference level by using the following procedure Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth.

RBW = 100 kHz, VBW ≥ 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

3. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW \ge 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

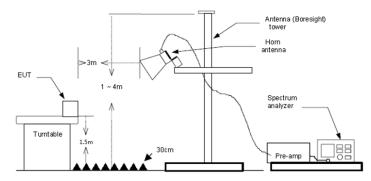
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix F on the appendix report


5.9. Radiated Band edge Emission

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
 - a) Span shall wide enough to fully capture the emission being measured
 - b) Set RBW=100kHz for <1GHz, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
 - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- − VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- 3) Average measurement was not performed if peak level is lower than average limit(54 dBuV/m).

Туре	802.11b		11b	Test channel		CH01		Polarity	Horizonta
	Susp	ected Data	List						
	NO	Freq.	Reading	Factor	Level	Limit	imit Margin		D ()
	NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB	Polarity	Detector
	1	2310.000	26.69	17.66	44.35	54.00	9.6	5 Horizontal	AV
	2	2310.000	31.13	17.66	48.79	74.00	25.2	1 Horizontal	PK
	3	2390.009	32.08	17.59	49.67	74.00	24.3	3 Horizontal	PK
	4	2390.009	26.72	17.59	44.31	54.00	9.6	9 Horizontal	AV

Туре	802.11b		Test cha	Test channel CH01		Pola	Vertical		
	Susp	ected Data	List						
	NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
	1	2310.000	30.04	17.66	47.70	74.00	26.30	Vertical	PK
	2	2310.000	26.97	17.66	44.63	54.00	9.37	Vertical	AV
	3	2390.009	26.82	17.59	44.41	54.00	9.59	Vertical	AV
	4	2390.009	30.14	17.59	47.73	74.00	26.27	Vertical	PK

Туре	802.11b		Test cha	Test channel CH11		Polarity			Horizontal	
Suspected Data List										
	NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Mar [df	-	Polarity	Detector
	1	2483.514	30.83	17.85	48.68	74.00	25.	32	Horizontal	PK
	2	2483.514	27.54	17.85	45.39	54.00	8.6	61	Horizontal	AV
	3	2500.000	27.13	17.90	45.03	54.00	8.9	97	Horizontal	AV
	4	2500.000	30.96	17.90	48.86	74.00	25.	14	Horizontal	PK

Туре		802.11b		Test channel		CH11	Pola	rity	Vertical
	Susp	ected Data	List						
	NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
	1	2483.514	25.17	17.85	43.02	54.00	10.98	Vertical	AV
	2	2483.514	28.77	17.85	46.62	74.00	27.38	Vertical	PK
	3	2500.000	31.08	17.90	48.98	74.00	25.02	Vertical	PK
	4	2500.000	28.10	17.90	46.00	54.00	8.00	Vertical	AV

Туре		802.11g		Test channel		CH01		larity	Horizonta
	Susp	ected Data	List						
	NO.	Freq.	Reading	Factor	Level	Limit	Margin	Delecito	Detector
	NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector
	1	2310.000	30.37	17.66	48.03	74.00	25.97	Horizontal	PK
	2	2310.000	27.63	17.66	45.29	54.00	8.71	Horizontal	AV
	3	2390.009	32.34	17.59	49.93	54.00	4.07	Horizontal	AV
	4	2390.009	36.12	17.59	53.71	74.00	20.29	Horizontal	PK

Туре	802.		l1g	Test channel		CH01	Polar	Polarity	
	Susp	ected Data	List						
	NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
	1	2310.000	25.96	17.66	43.62	54.00	10.38	Vertical	AV
	2	2310.000	29.64	17.66	47.30	74.00	26.70	Vertical	PK
	3	2390.009	30.98	17.59	48.57	74.00	25.43	Vertical	PK
	4	2390.009	27.01	17.59	44.60	54.00	9.40	Vertical	AV

Туре		802.	11g	Test cha	nnel	CH11	Pola	arity	Horizonta
	Susp	ected Data	List						
	NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
	1	2483.514	32.47	17.85	50.32	54.00	3.68	Horizontal	AV
	2	2483.514	39.09	17.85	56.94	74.00	17.06	Horizontal	PK
	3	2500.000	29.99	17.90	47.89	74.00	26.11	Horizontal	PK
	4	2500.000	27.32	17.90	45.22	54.00	8.78	Horizontal	AV

Туре		802.	11g	Test char	nnel	CH11	Pola	rity	Vertical
	Susp	Suspected Data List							
	NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
	1	2483.514	29.71	17.85	47.56	74.00	26.44	Vertical	PK
	2	2483.514	26.46	17.85	44.31	54.00	9.69	Vertical	AV
	3	2500.000	25.66	17.90	43.56	54.00	10.44	Vertical	AV
	4	2500.000	29.98	17.90	47.88	74.00	26.12	Vertical	PK

Гуре		802.2	11n(HT20)	Test char	nnel	CH01	Pola	arity	Horizonta	
	Suspected Data List									
	NO	Freq.	Reading	Factor	Level	Limit	Margin	Delevite	Detector	
	NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector	
	1	2310.000	26.63	17.66	44.29	54.00	9.71	Horizontal	AV	
	2	2310.000	30.35	17.66	48.01	74.00	25.99	Horizontal	PK	
	3	2390.009	37.78	17.59	55.37	74.00	18.63	Horizontal	PK	
	4	2390.009	31.75	17.59	49.34	54.00	4.66	Horizontal	AV	

Туре	Гуре		.11n(HT20)	Test channel		CH01		arity	Vertical
	Suspe	ected Data	List						
	NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
	1	2310.000	32.13	17.66	49.79	74.00	24.21	Vertical	PK
	2	2310.000	28.79	17.66	46.45	54.00	7.55	Vertical	AV
	3	2390.009	28.81	17.59	46.40	54.00	7.60	Vertical	AV
	4	2390.009	34.18	17.59	51.77	74.00	22.23	Vertical	PK

Туре		802.	11n(HT20)	Test channel		CH11	Pola	rity	Horizonta
	Susp	ected Data	List						
	NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
	1	2483.514	38.29	17.85	56.14	74.00	17.86	Horizontal	PK
	2	2483.514	31.90	17.85	49.75	54.00	4.25	Horizontal	AV
	3	2500.000	26.42	17.90	44.32	54.00	9.68	Horizontal	AV
	4	2500.000	30.94	17.90	48.84	74.00	25.16	Horizontal	PK

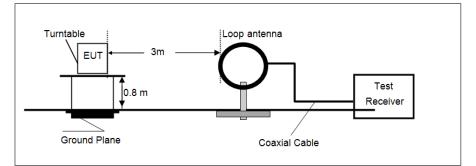
Туре		802.11n(HT20)		Test channel		CH11	Po	arity	Vertica
	Suspected Data List								
	NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
	1	2483.514	26.05	17.85	43.90	54.00	10.10	Vertical	AV
	2	2483.514	29.75	17.85	47.60	74.00	26.40	Vertical	PK
	3	2500.000	29.90	17.90	47.80	74.00	26.20	Vertical	PK
	4	2500.000	26.33	17.90	44.23	54.00	9.77	Vertical	AV

5.10. Radiated Spurious Emission

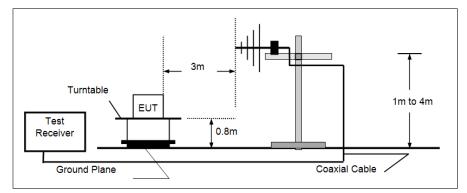
<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak

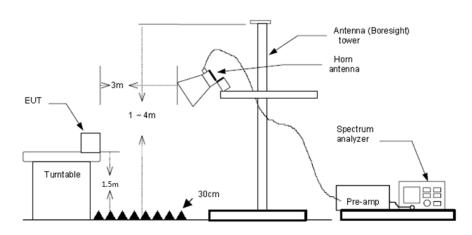

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80,

Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION

➢ 9 kHz ~ 30 MHz



> 30 MHz ~ 1 GHz

> Above 1 GHz

Page: 27 of 35

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10 .
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- − VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

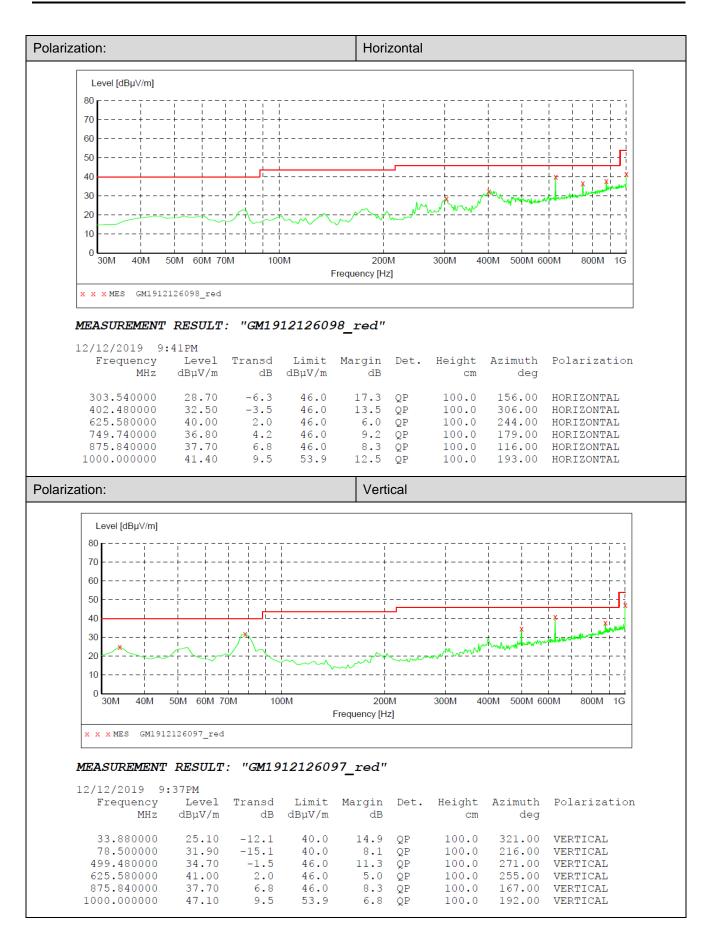
TEST MODE:

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Note:


- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.

TEST DATA FOR 9 kHz ~ 30 MHz

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

TEST DATA FOR 30 MHz ~ 1000 MHz

Have pre-scan all test channel, found CH06 of 802.11B which it was worst case, so only show the worst case's data on this report.

<u> TEST DATA FOR 1 GHz ~ 25 GHz</u>

ре		802.11	lb		Test channe	I	CH00	
Sus	spected Data	List						
NC	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	3508.625	35.18	1.08	36.26	74.00	37.74	Horizontal	PK
2	4314.968	40.47	3.94	44.41	74.00	29.59	Horizontal	PK
3	5393.031	38.40	8.61	47.01	74.00	26.99	Horizontal	PK
4	6471.093	36.12	12.16	48.28	74.00	25.72	Horizontal	PK
Su	spected Data	List						
	Freq.	Reading	Factor	Level	Limit	Margin		
NC). [MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector
1	3185.500	34.25	0.76	35.01	74.00	38.99	Vertical	PK
2	4428.062	35.66	5.04	40.70	74.00	33.30	Vertical	PK
3	5391.562	34.93	8.61	43.54	74.00	30.46	Vertical	PK
4	7499.218	30.59	15.41	46.00	74.00	28.00	Vertical	PK

e		802.11	02.11b		Test channel		CH07	
Sus	pected Data	List						
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	3167.875	33.66	0.67	34.33	74.00	39.67	Horizontal	PK
2	4304.687	39.71	3.82	43.53	74.00	30.47	Horizontal	PK
3	5376.875	38.83	8.58	47.41	74.00	26.59	Horizontal	PK
4	6478.437	35.95	12.25	48.20	74.00	25.80	Horizontal	PK
Sus	pected Data	List						
	Freq.	Reading	Factor	Level	Limit	Margin		_
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector
1	3200.187	34.35	0.84	35.19	74.00	38.81	Vertical	PK
2	4307.625	35.49	3.86	39.35	74.00	34.65	Vertical	PK
3	5378.343	34.73	8.58	43.31	74.00	30.69	Vertical	PK
4	7121.750	30.46	14.55	45.01	74.00	28.99	Vertical	PK

е		802.11	b		Test channel		CH11	CH11	
Sus	pected Data	List							
	Freq.	Reading	Factor	Level	Limit	Margin			
NO	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector	
1	3186.968	33.59	0.77	34.36	74.00	39.64	Horizontal	PK	
2	4312.031	39.78	3.91	43.69	74.00	30.31	Horizontal	PK	
3	5381.281	38.44	8.59	47.03	74.00	26.97	Horizontal	PK	
4	6481.375	35.72	12.29	48.01	74.00	25.99	Horizontal	PK	
Sus	pected Data	List							
	Freq.	Reading	Factor	Level	Limit	Margin			
NO	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector	
1	3170.812	33.05	0.69	33.74	74.00	40.26	Vertical	PK	
2	4307.625	35.60	3.86	39.46	74.00	34.54	Vertical	PK	
3	5376.875	35.50	8.58	44.08	74.00	29.92	Vertical	PK	
4	7367.031	30.72	15.26	45.98	74.00	28.02	Vertical	PK	

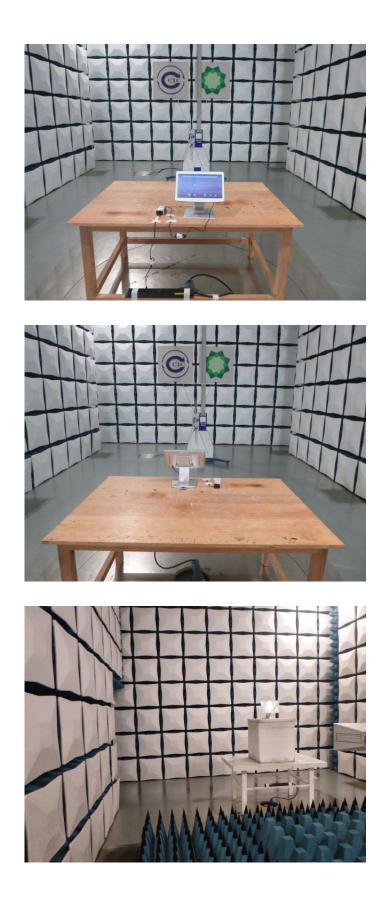
Issued: 2020-01-09

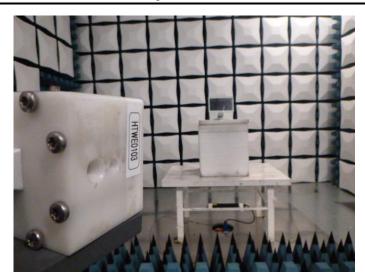
pe			802.11	lg		Test channe	I	CH00	
:	Suspe	ected Data	List						
	NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
	1	3148.781	33.70	0.57	34.27	74.00	39.73	Horizontal	PK
	2	4312.031	39.70	3.91	43.61	74.00	30.39	Horizontal	PK
	3	5378.343	38.41	8.58	46.99	74.00	27.01	Horizontal	PK
	4	6478.437	35.91	12.25	48.16	74.00	25.84	Horizontal	PK
	Suspe	ected Data	List						
	NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
	1	3189.906	34.36	0.79	35.15	74.00	38.85	Vertical	PK
	2	4300.281	37.03	3.77	40.80	74.00	33.20	Vertical	PK
	3	5381.281	35.23	8.59	43.82	74.00	30.18	Vertical	PK
	4	6474.031	32.20	12.20	44.40	74.00	29.60	Vertical	PK

)		802.11	802.11g		Test channel		CH07	CH07	
Sus	pected Data	List							
NO	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector	
1	4319.375	40.12	3.99	44.11	74.00	29.89	Horizontal	PK	
2	5381.281	38.53	8.59	47.12	74.00	26.88	Horizontal	PK	
3	6481.375	35.79	12.29	48.08	74.00	25.92	Horizontal	PK	
4	7306.812	32.10	15.07	47.17	74.00	26.83	Horizontal	PK	
Sus	pected Data	List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector	
1	3216.343	33.69	0.65	34.34	74.00	39.66	Vertical	PK	
2	4313.500	36.36	3.93	40.29	74.00	33.71	Vertical	PK	
3	5385.687	35.63	8.60	44.23	74.00	29.77	Vertical	PK	
4	7165.812	31.56	14.80	46.36	74.00	27.64	Vertical	PK	

ype	802.11			g	Test cha		el CH11		
S	Suspe	ected Data	List						
	NO.	Freq.	Reading	Factor	Level	Limit	Margin	Delevity	Detector
	NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector
	1	3148.781	37.68	0.57	38.25	74.00	35.75	Horizontal	PK
	2	4303.218	39.38	3.81	43.19	74.00	30.81	Horizontal	PK
	3	5375.406	38.63	8.58	47.21	74.00	26.79	Horizontal	PK
	4	6475.500	35.29	12.22	47.51	74.00	26.49	Horizontal	PK
	Suspe	ected Data	List						
		Freq.	Reading	Factor	Level	Limit	Margin	D	
	NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector
	1	3186.968	34.65	0.77	35.42	74.00	38.58	Vertical	PK
	2	4044.718	35.96	3.12	39.08	74.00	34.92	Vertical	PK
	3	5382.750	35.17	8.59	43.76	74.00	30.24	Vertical	PK
	4	6469.625	30.93	12.14	43.07	74.00	30.93	Vertical	PK

Issued: 2020-01-09


e		802.11	n(HT20)		Test channe	I	CH00	
Sus	pected Data	List						
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	3115.000	34.18	0.40	34.58	74.00	39.42	Horizontal	PK
2	4300.281	39.35	3.77	43.12	74.00	30.88	Horizontal	PK
3	5385.687	38.72	8.60	47.32	74.00	26.68	Horizontal	PK
4	6479.906	35.73	12.27	48.00	74.00	26.00	Horizontal	PK
Sus	pected Data	List						
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	3198.718	33.51	0.83	34.34	74.00	39.66	Vertical	PK
2	4046.187	36.86	3.13	39.99	74.00	34.01	Vertical	PK
3	5387.156	35.81	8.60	44.41	74.00	29.59	Vertical	PK
4	7441.937	30.45	15.39	45.84	74.00	28.16	Vertical	PK


'ne		802.11	In(HT20)		Test channel		CH07	CH07	
Su	spected Data	List							
NU	Freq.	Reading	Factor	Level	Limit	Margin	Delevity	Detector	
N	J. [MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector	
1	3147.312	34.70	0.57	35.27	74.00	38.73	Horizontal	PK	
2	4310.562	39.91	3.89	43.80	74.00	30.20	Horizontal	PK	
3	3 5384.218	38.37	8.59	46.96	74.00	27.04	Horizontal	PK	
4	6476.968	35.07	12.23	47.30	74.00	26.70	Horizontal	PK	
Su	spected Data	List							
	Freq.	Reading	Factor	Level	Limit	Margin			
N	O. [MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector	
	1 3147.312	36.87	0.57	37.44	74.00	36.56	Vertical	PK	
	2 4035.906	37.46	3.10	40.56	74.00	33.44	Vertical	PK	
;	3 5375.406	34.88	8.58	43.46	74.00	30.54	Vertical	PK	
4	4 6453.468	31.68	11.94	43.62	74.00	30.38	Vertical	PK	

)		802.11	802.11n(HT20)		Test channel		CH11	CH11	
Sus	pected Data	List							
	Freq.	Reading	Factor	Level	Limit	Margin			
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector	
1	3495.406	35.06	0.99	36.05	74.00	37.95	Horizontal	PK	
2	4313.500	39.48	3.93	43.41	74.00	30.59	Horizontal	PK	
3	5379.812	38.15	8.59	46.74	74.00	27.26	Horizontal	PK	
4	6460.812	35.54	12.03	47.57	74.00	26.43	Horizontal	PK	
Sus	pected Data	List							
	Freq.	Reading	Factor	Level	Limit	Margin			
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector	
1	3200.187	33.79	0.84	34.63	74.00	39.37	Vertical	PK	
2	4059.406	36.34	3.16	39.50	74.00	34.50	Vertical	PK	
3	5393.031	34.82	8.61	43.43	74.00	30.57	Vertical	PK	
4	7443.406	30.66	15.39	46.05	74.00	27.95	Vertical	PK	

6. TEST SETUP PHOTOS

Radiated Emission

AC Conducted Emission

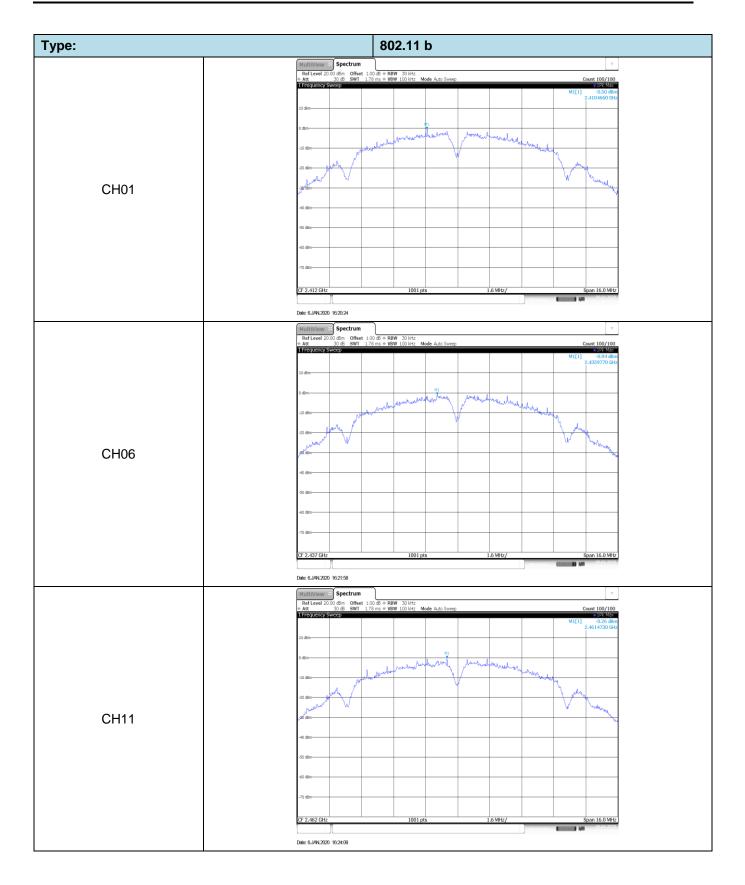
7. EXTERANAL AND INTERNAL PHOTOS

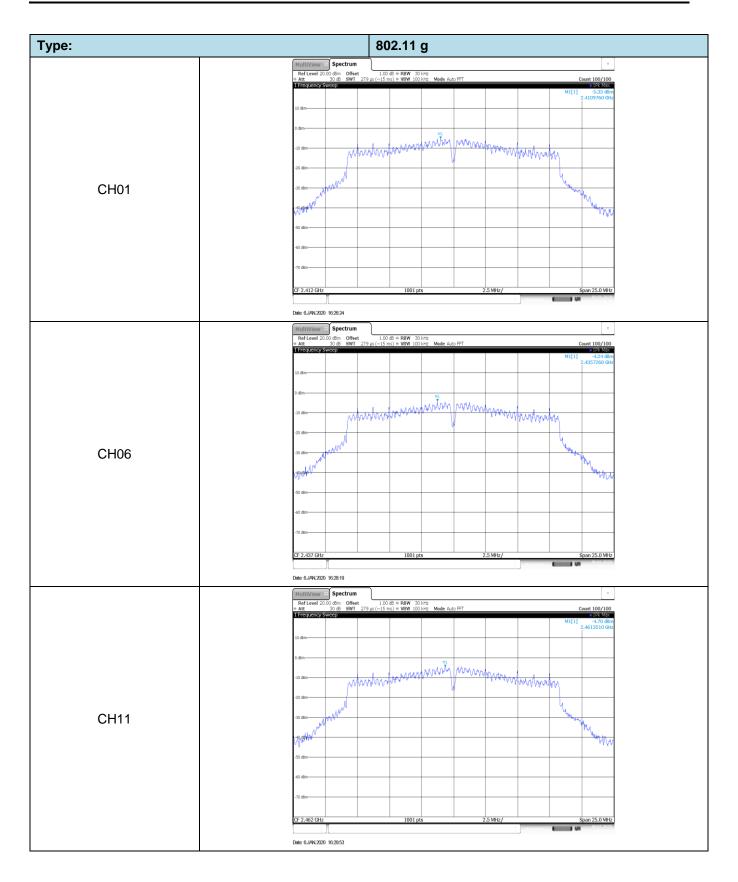
Reference to the test report No. : CHTEW20010065.

8. APPENDIX REPORT

APPENDIX REPORT

Project No.	SHT1911084903EW	Radio Specification	WIFI 2.4G
Test sample No.	YPHT19110849003	Model No.	Т3.0
Start test date	2020/1/6	Finish date	2020/1/6
Temperature	25°C	Humidity	50%
Test Engineer	Ximing Huang	Auditor	William . wang

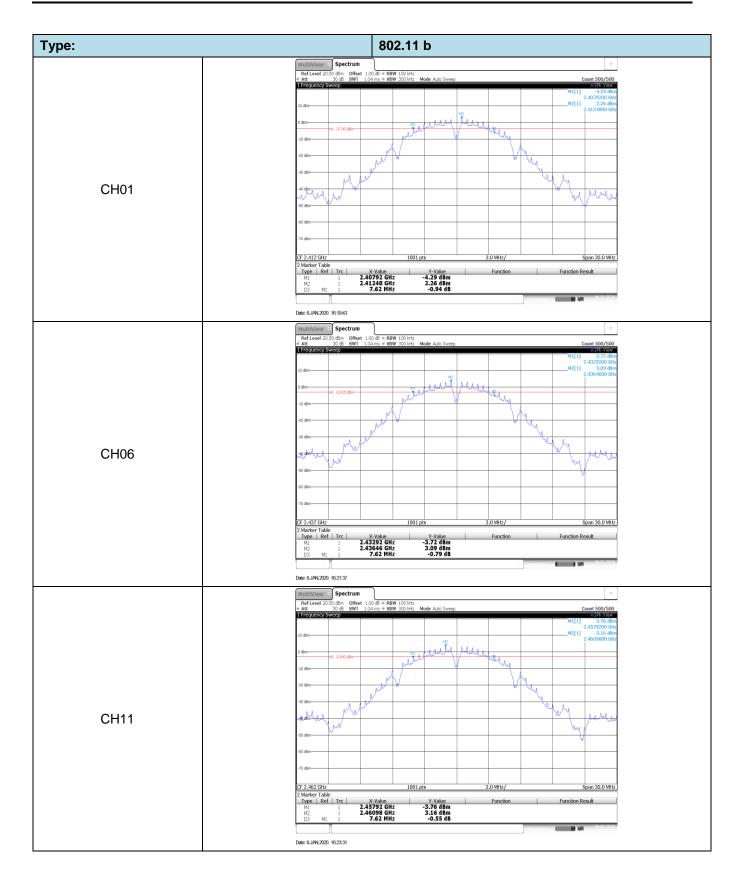

Appendix clause	Test item	Result
A	Conducted Peak Output Power	PASS
В	Power Spectral Density	PASS
С	6 dB Bandwidth	PASS
D	99% Occupied Bandwidth	PASS
E	Duty Cycle	PASS
F	Band edge and Spurious Emissions (conducted)	PASS

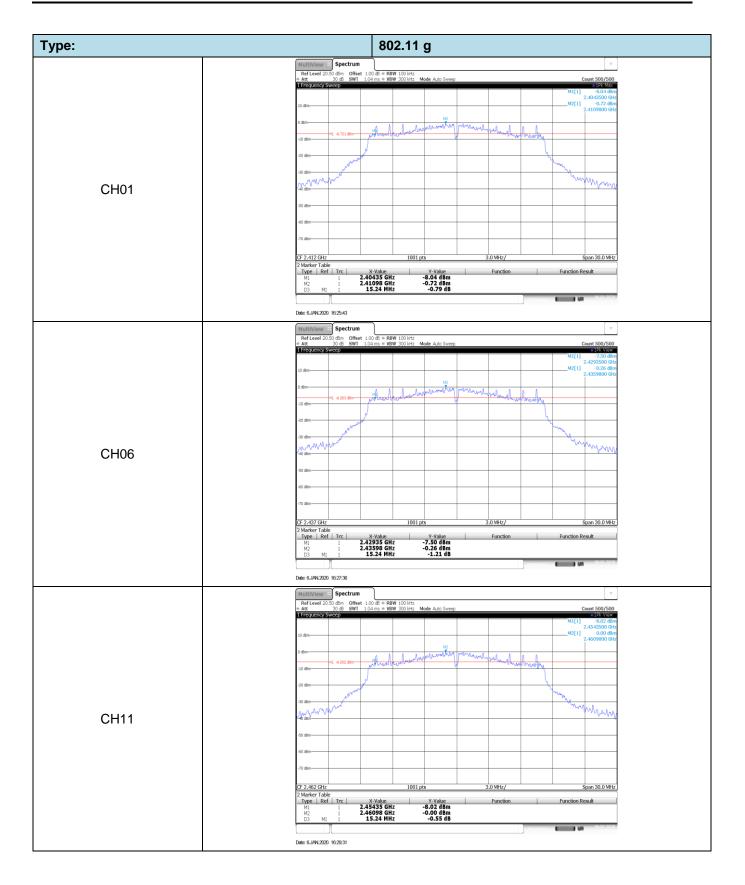

Туре	Channel	Peak Output power (dBm)	Average Output power (dBm)	Limit (dBm)	Result
	01	13.56	11.42		
802.11b	06	13.46	11.25	≤30.00	Pass
	11	13.16	11.00		
	01	18.90	16.25		
802.11g	06	18.99	16.51	≤30.00	Pass
	11	18.75	16.02		
	01	19.47	16.91		
802.11n(HT20)	06	19.51	16.80	≤30.00	Pass
	11	19.26	16.64		

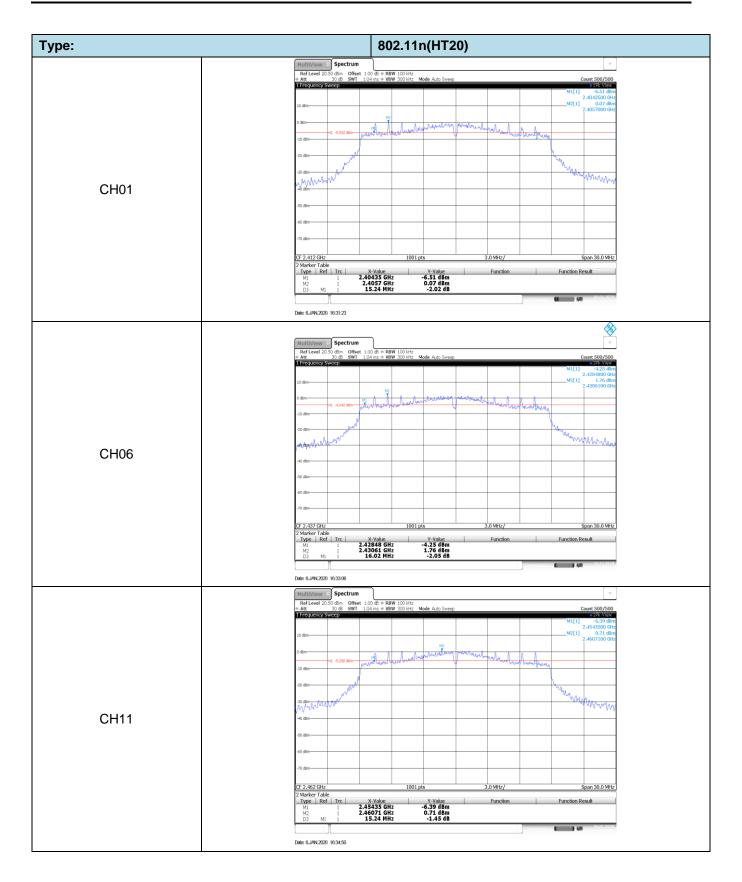
Appendix A: Conducted Peak Output Power

Appendix B: Power Spectral Density

Туре	Channel	Power Spectral Density (dBm/30KHz)	Limit (dBm/3KHz)	Result
	01	-0.50		
802.11b	06	-0.94	≤8.00	Pass
	11	-0.26		
	01	-5.33		
802.11g	06	-4.24	≤8.00	Pass
	11	-4.70		
	01	-4.37		
802.11n(HT20)	06	-4.41	≤8.00	Pass
	11	-3.67		

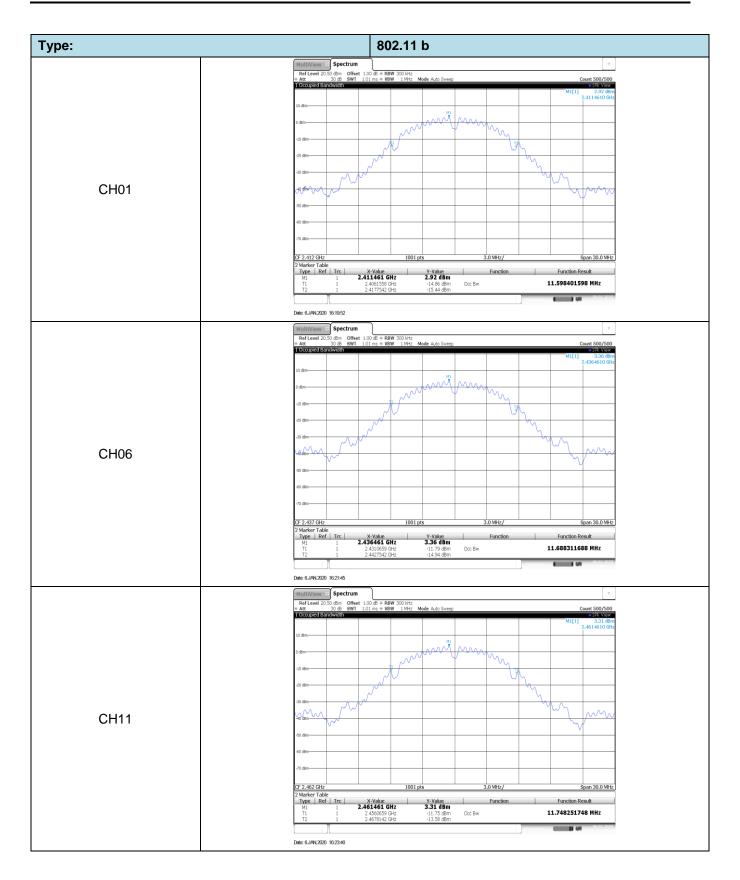


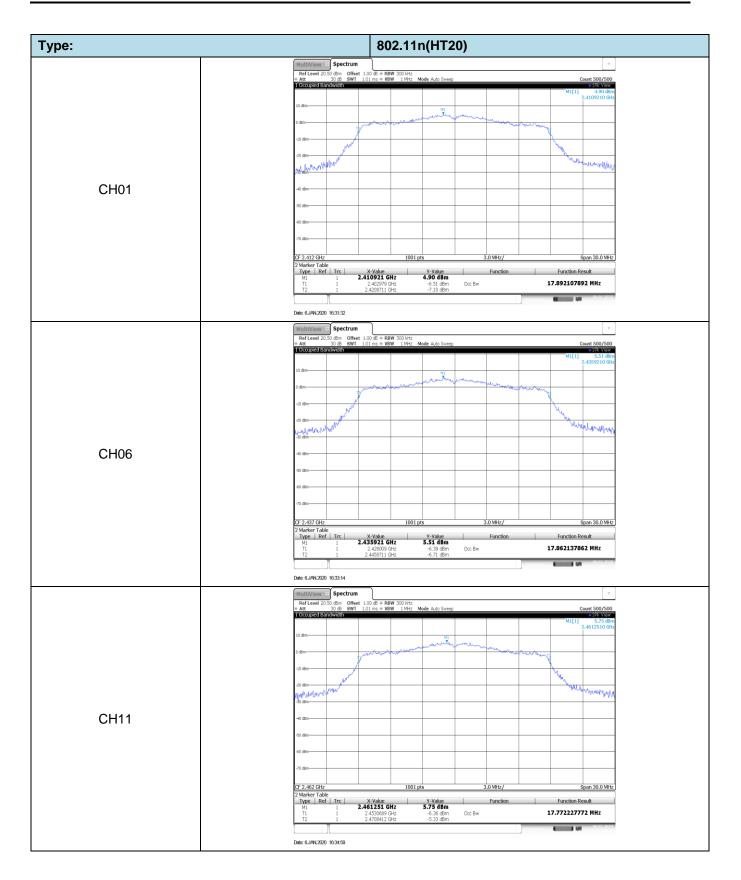



Туре:	802.11n(HT20)
	MultiView # Spectrum
	RefLevel 20.00 dbm Offset 1.00 db # BBW 30 kHz
	1 Frequency Sweep
	10 dam
	0 dim
	10 000 providence with mining many many many many many many many many
	40 dan
CH01	
CHOT	10 da
	1998a
	50 dan
	40 dm
	70 dm
	CF 2.412 GHz 1001 pts 2.5 MHz/ Span 25.0 MHz
	MultiView Spectrum v RefLevel 20.0 dbm Offset 1.00 db = RBW 30 lHz v • Att 3.0db SWT 229 µL (~15 ms) = VBW 100 lHz Mode Auto FFT Count 100/100
	1 Frequency Sweep sitk Max
	10 dm
	10 can www.welling.www.welling.www.welling.com
	10 400 MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
01100	www.
CH06	30 das M
	with a second se
	50 dm
	40 dan
	94.600
	70 dan
	CF 2.437 GHz 1001 pts 2.5 MHz/ Span 25.0 MHz
	Dote: 6J/W12020 163327
	MultiView Spectrum v Reflevel 20.00 dbm Offset 1.00 dB = RBW30 HHz v
	RefLevel 20:00.dbm Offset 1:00.db = BBW 90.Hz # Att 30:db SWI 279 µs (~15 ms) = VBW 100 kHz Mode Auto FFT Count 100/100 I Frequency Sweetb 3:H2W Mbs 3:H2W Mbs 3:H2W Mbs 3:H2W Mbs
	M1[1] -3.67 dBm 2.4625740 GHz
	10 dam-
	10 COM
	20 dkn
CH11	
	North Harrison and H
	50 dan
	40 dm
	70 den
	CF 2.462 GHz 1001 pts 2.5 MHz/ Span 25.0 MHz
	Date: 6.JVNL2020 16:35:26

Appendix C: 6dB bandwidth

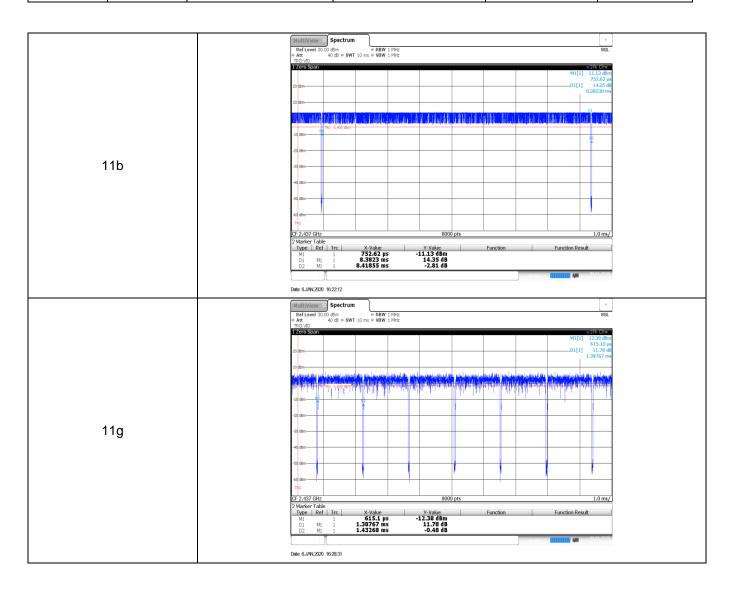
Туре	Channel	6dB Bandwidth (MHz)	Limit (MHz)	Result
	01	7.62		
802.11b	06	7.62	≥0.5	Pass
	11	7.62		
	01	15.24		
802.11g	06	15.24	≥0.5	Pass
	11	15.24		
	01	15.24		
802.11n(HT20)	06	16.02	≥0.5	Pass
	11	15.24		





Appendix D: 99% Occupied Bandwidth

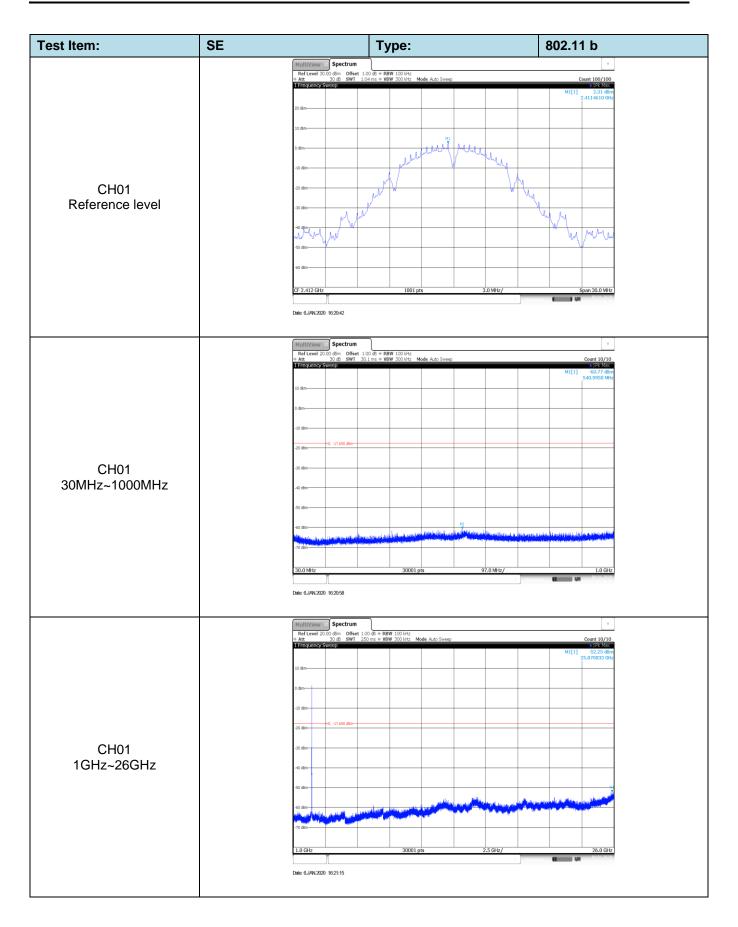
Туре	Channel	99% Bandwidth (MHz)	Limit (MHz)	Result
	01	11.60		
802.11b	06	11.69	-	Pass
	11	11.75		
	01	16.75		
802.11g	06	16.78	-	Pass
	11	16.63		
	01	17.89		
802.11n(HT20)	06	17.86	-	Pass
	11	17.77		

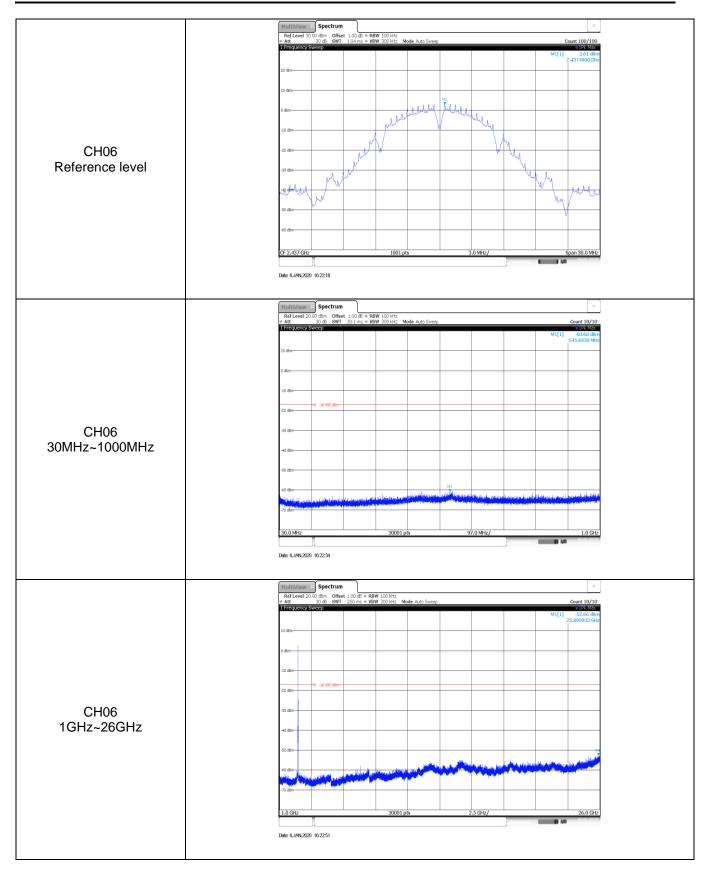


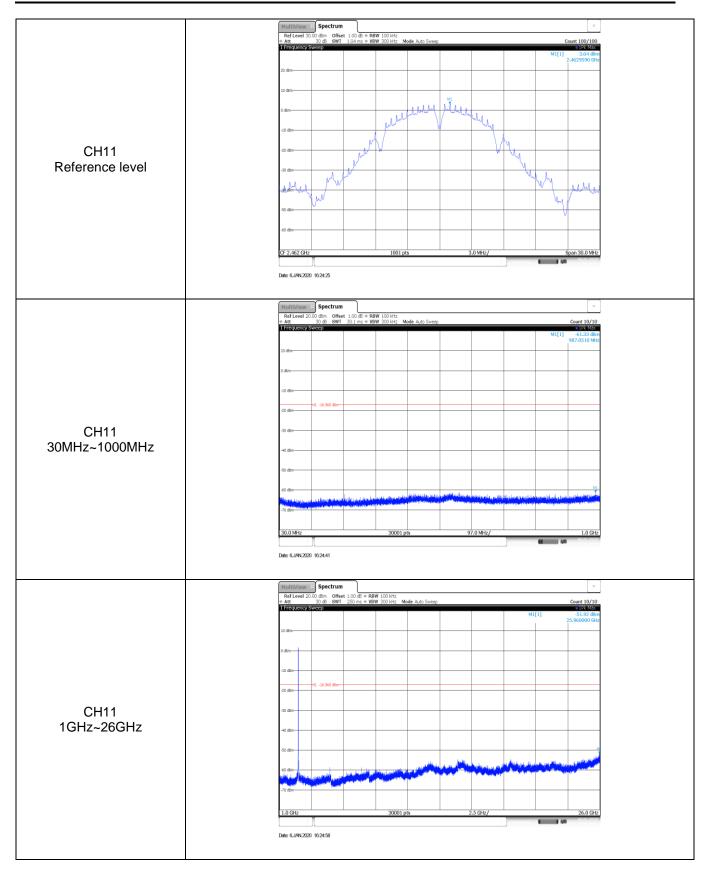
уре:	802.11 g
	MultiView 🗟 Spectrum
	Ref Level 20.50 dbm Offset 1.00 db ≅ PBW 300 kHz Count 500/500 # Att 30 db SWT 1.01 ms ♥ VBW 1.14hz Count 500/500 I Occupied BapyMohit € I/EV Vew
	M1[1] 4.27.10m 2.411910 Gtz
	1 million and a second se
	-11 den
	-20 den
CH01	40 dbn
	50 den
	40 dbn
	70 dan
	OF 2.412 GHz 1001 pts 3.0 MHz/ Span 30.0 MHz
	2 Marker Table Type Ref Trc X-Value Y-Value Function Function Result M1 1 2.411191 GHz 4.27 dBm
	T1 1 2.4034885 GHz -7.67 dBm Oct Bw 16.753246753 MHz T2 1 2.4202418 GHz -7.49 dBm
	Detr 6.JW4.200 162552
	MultiView Spectrum v Ref Level 0.550 dbm Offset 100 db = RBW 300 LHz v a Att 30.68 SWT 101 ms = VBW 10MHz Mode Auto Sweep Count 500/500 1 Occupied Band W6th • 15% View • 15% View
	M1[1] 5.43 dBm
	224361610 GHz
	0.68m
	10 dm
	-20 da
	man have have have have have have have have
CH06	40 dan
01100	50 dan
	40 dan
	70 dan
	CF 2.437 GHz 1001 pts 3.0 MHz/ Span 30.0 MHz 2 Marker Table
	Type Ref Trc. X: Value Y Value Function Function Result M1 1 2.436161 GHz 5.43 dBm Function Result Function Result T1 1 2.435185 GHz -7.10 dBm Occ Bw 16.783216783 MHz
	Ti 1 2.4285185 GHz -7.10 dBm Occ Bw 16.783216783 MHz T2 1 2.4453017 GHz -7.56 dBm Occ Bw 16.783216783 MHz
	Deter 6.JW4.2020 16:27:45
	MultiView 🗟 Spectrum
	Ref Level 20:50 d/m Offset 1:00 d/e # RMV 300 l/H: SVMV Older Count 500/500 # Att Source det and work 0 d/B SVMV 1 MHz Mode Auto Sweep Count 500/500 1 Occupied Bandwolth ● LBE View 1 MHz Node Auto Sweep Count 500/500
	M1[1] 5.49 dBm 2.4611010 GHz
	10 dm
	40 dbs
	40 dan
	Remain Comments and Comments
CH11	40 &0
	50 den
	40 dkm
	72 dan
	CF 2.462 GHz 1001 pts 3.0 MHz/ Span 30.0 MHz
	2 Marker Table Type Ref Trc X-Value Y-Value Function Function Result
	M1 1 2.465101 GHz 5.49 dBm T1 1 2.455068 GHz -5.79 dBm Occ Bw 16.6333666633 MHz T2 1 2.4702418 GHz -7.04 dBm

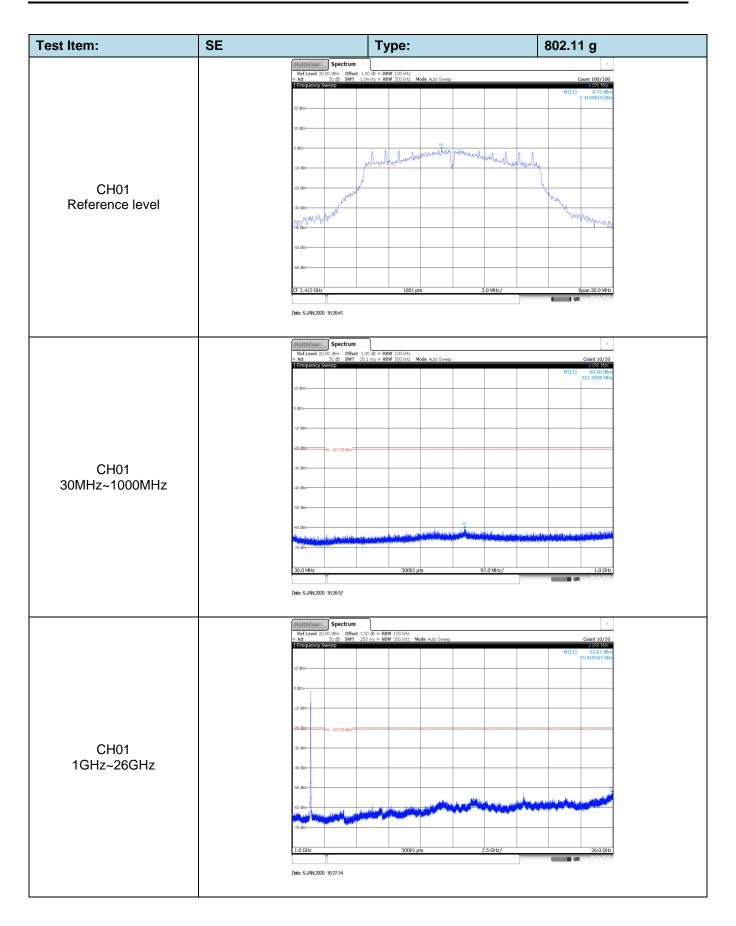
Modulation Type	Test Frequency (MHz)	T _{on time} for single burst (ms)	T _{period} (ms)	Duty cycle	1/T _{on time} (kHz)
11b	2437	8.38	8.42	99.5%	0.1
11g	2437	1.39	1.43	97.2%	0.7
11n20	2437	1.30	1.35	96.3%	0.8

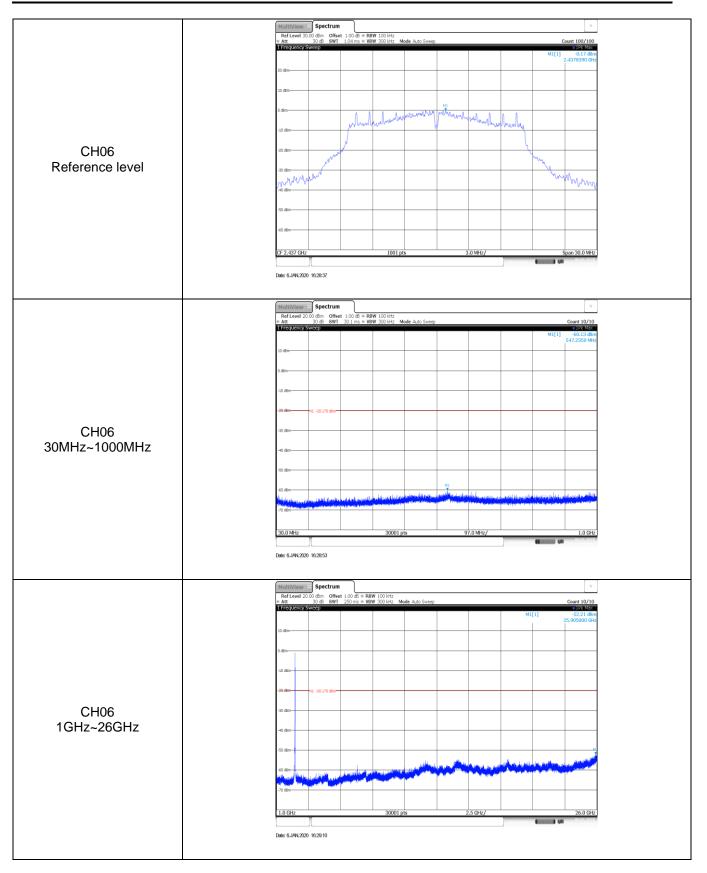
Appendix E: Duty Cycle

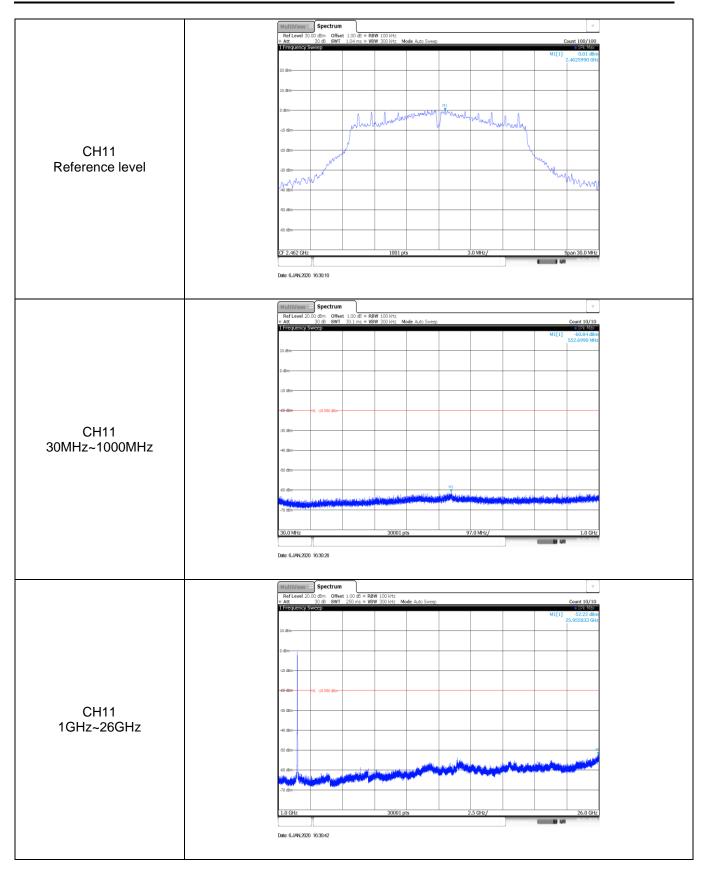

11n20
11n20
40 de a
et de a a a a 65 de a a a a 46 de a a a a 100 de a a a a a 100 de a
40 de 40<
International and the second
101 dec 401 dec 401 dec 1.0 ms/ 101 dec 1.0 ms/ 1.0 ms/ 1.0 ms/ 101 dec 1.1.35 JA µS 1.1.35 dBm 1.0 ms/ 2 Marker Table V-Value Function Result Function Result M1 1 -1.38 JA µS -1.1.35 dBm D1 M1 1 .336 JJ ms 0.20 dB D2 M1 1 .336 JJ ms 0.20 dB
of dem- 795 8000 pts 1.0 ms/ CF 2.437 GHz 8000 pts 1.0 ms/ 2 Marker Table Y-Value Y-Value Type Intervention Function Result MI 1 -138,74 µs OI MI 1 D1 MI 1.30016 ms D2 MI 1.33637 µs O2 NU 1.33637 µs
of dem- 795 8000 pts 1.0 ms/ CF 2.437 GHz 8000 pts 1.0 ms/ 2 Marker Table Y-Value Y-Value Type Intervention Function Result MI 1 -138,74 µs OI MI 1 D1 MI 1.30016 ms D2 MI 1.33637 µs O2 NU 1.33637 µs
Imp 8000 pts 1.0 ms/ Z Marker Table
Imp 8000 pts 1.0 ms/ Z Marker Table
Imp 8000 pts 1.0 ms/ Z Marker Table
CF 2.437 GHz 8000 pts 1.0 ms/ 2 Marker Table Type Ref Trc Y-Value Function Function Result MI 1 -138,74 µs -11.35 68m Function Function Result D1 MI 1 -130016 ms 12.99 dB 2.99 dB D2 MI 1 .33637 ms 0.20 dB 1.00 dB
2 Marker Table V-Value V-Value Function Function Result Type Ref 1 -138,74 µs -11.35 d8m Function Function Result M1 1 -130016 ms 12.99 d8 D1 M1 1 0.20016 ms 0.20 d8 D2 M1 1 3.35071 ms 0.20 d8 D1 D2 D2 D1 D2 D1 D2
Type Ref Tr. X-Value V-Value Function Function Result M1 -138.74 µs -1.35.68 m -1.35.68 m -1.39.68 m -1.29.68 m -1.29.68 m -1.29.68 m -1.29.78 m -0.20 dB -1.29.78 m -1.28.78 m
D1 M1 1 1.30016 ms 12.99 dB D2 M1 1 1.34517 ms 0.20 dB
D1 M1 1 1.30016 ms 12.99 dB D2 M1 1 1.34517 ms 0.20 dB
D2 M1 1 1.34517 ms 0.20 dB
Date: 6JAN2020 16:33:39

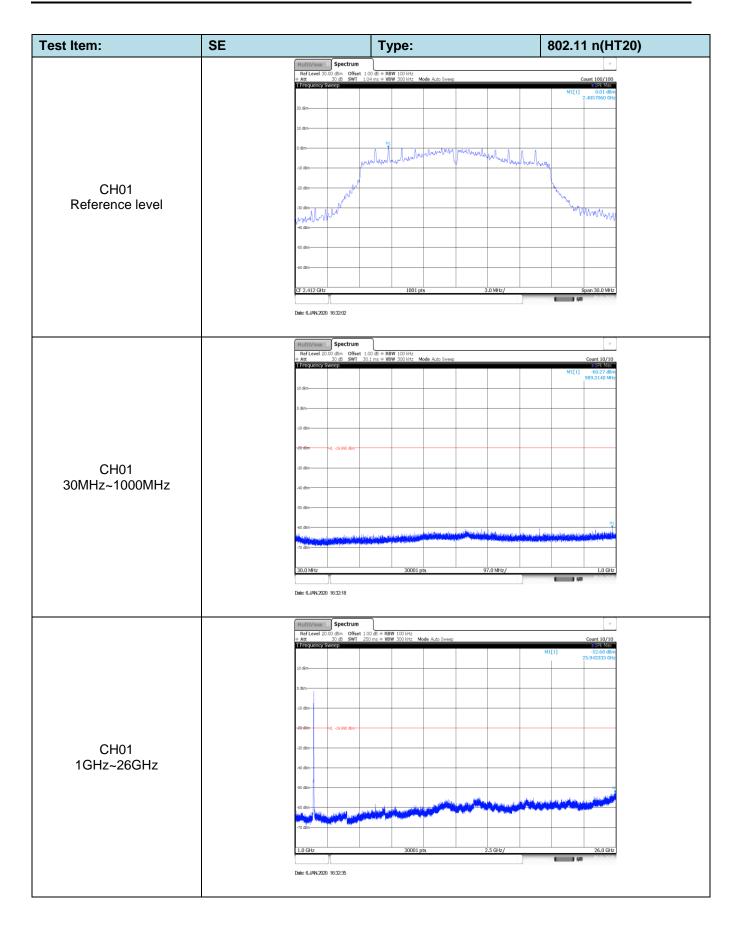

Test Item:	Bandedge		Ту	/pe:				8	02.1 [°]	1 b
		MultiView E Spect Ref Level 20.00 dBm (Att 30 dB 5	rum		le Auto Sween				(Count 300/300
		1 Frequency Sweep							M1[1] M2[1]	 19k Max 2.34 dBm 2.412430 GHz
		0 dBm-							الال	2);400000 GHz
		-10 d8m -20 d8m H1 -17.660 d	IBm						- A	1 N
		-30 dBm							1	J.
CH01		-40 d8m						NS NV g	ĮV.	V
		-50 dBm	u	www.k.w.rake	-entransis	Portoutorestable	manuan	Na N		
		-70 d8m								
		2.31 GHz 2 Marker Table Type Ref Trc	X-Value	1001 pts		11	.2 MHz/		Function R	2.422 GHz
		M1 1 M2 1 M3 1 M4 1	X-Value 2.41243 GH 2.4 GH 2.39 GH 2.31 GH 2.39848 GH	z -4 z -6 z -6	Y-Value 2.34 dBm 6.86 dBm 1.66 dBm 3.44 dBm 9.69 dBm					
		M5 1	2.39848 GH	z -3	9.69 dBm			Newsellog at 1	D 40	06.01.2020
		Date: 6.JAN.2020 16:20:34 MultiView ↔ Spect								Ψ
		Ref Level 20.00 dBm 0 # Att 30 dB 5 1 Frequency Sweep	Offset 1.00 dB ⊕ RB SWT 1.03 ms ⊕ VB	W 100 kHz W 300 kHz Mod	le Auto Sweep				M1[1]	Count 300/300 9 19k Max 2,94 dBm
		10 dBm	M1						M2[1]	2.4624780 GHz -52.84 dBm 2.4835000 GHz
		0 dBm	u Funny	dy .						
		-20 d8m	lêm	Va						
••••		-30 gg/n -40 d8m		N. N.	4 um					
CH11		-50 d8m			- hy / i	A	Ma			
		-60 d8m					W Logo	money	the and the second	ي محمد المستعمل المريس المستاسين المستعمل المستعمل المستعمل المستعمل المستعمل المستعمل المستعمل المستعمل المستع المستعمل المستعمل الم
		2.452 GHz		1001 pts		4.	8 MHz/			2.5 GHz
		Z Marker Table Type Ref Trc M1 1 M2 1	X-Value 2.462478 GF 2.4835 GF 2.5 GF 2.483536 GF	iz -5	Y-Value 2.94 dBm 2.84 dBm 1.56 dBm 4.38 dBm		Function		Function R	esult
		M3 1 M4 1	2.5 G 2.483536 G	1z -6: 1z -5	1.56 dBm 4.38 dBm			Measuring	()	06.01.2020
		Date: 6.JAN.2020 16:24:18								

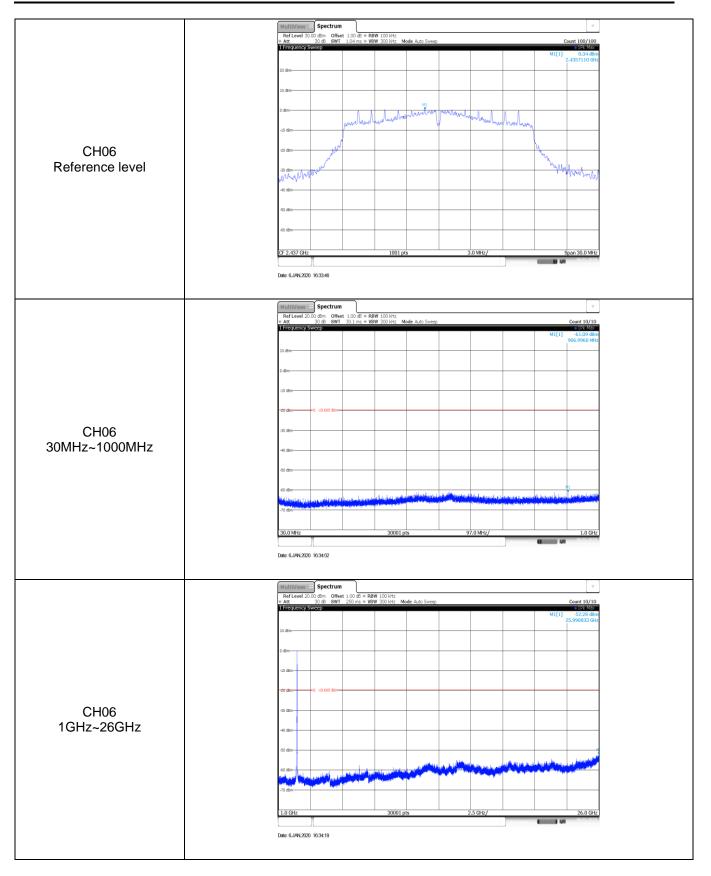

Appendix F: Band edge and Spurious Emissions (conducted)

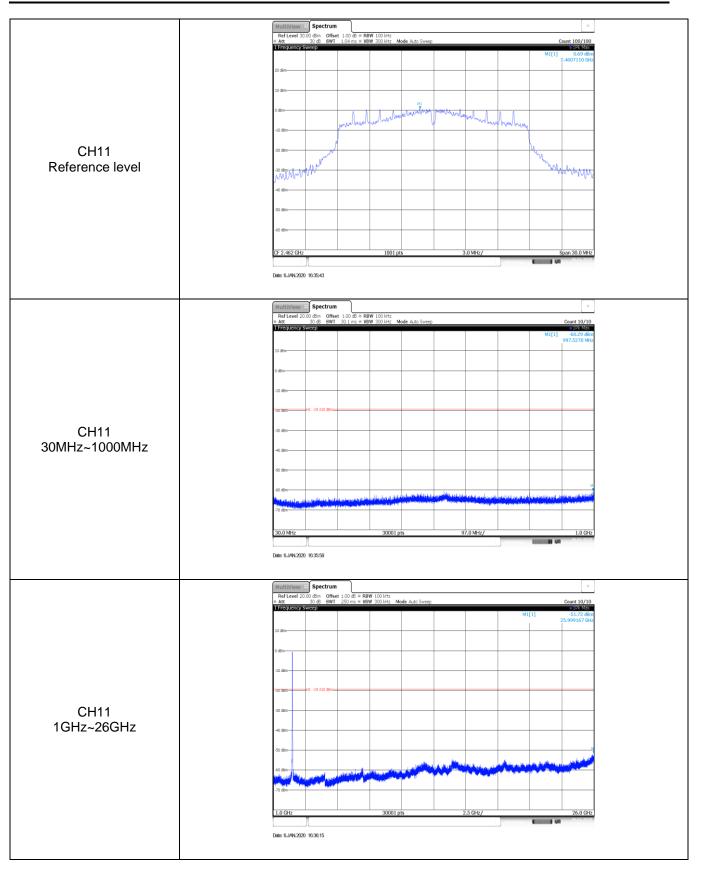

Test Item:	Bandedge	Туре:		802.11 g
		ultiView Spectrum		Ŧ
		tef Level 20.00 dBm Offset 1.00 dB = RBW 100 kHz tt30 dB _SWT _1.12 ms = VBW 300 kHz _ Mode requency Sweep	Auto Sweep	Count 300/300
		d8m		M1[1] -0.97 dBm 2.410980 GHz —M2[1] -33.20 dBm
		im		2.400000 GHz
		d8m		Threadenty
		dBm H1 -20.970 dBm		
		d8m		
CH01		d8m	113 Martin	An Mar
CHUI		d8m	and the state of t	
		Bm- werden werden werden werden werden werden werden werden werden son werden werden werden werden werden werden wer	all the second and the second second	
		d8m		
		31 GHz 1001 pts tarker Table	11.2 MHz/	2.422 GHz
		ype Ref Trc X-Value Y M1 1 2.41098 GHz -0 M2 1 2.4 GHz -33 M3 1 2.39 GHz -42	-Value Function .97 dBm .20 dBm .32 dBm	Function Result
		M3 1 2.39 GHz -42 M4 1 2.31 GHz -63 M5 1 2.398704 GHz -34	.32 dBm .31 dBm .20 dBm	
			Maaca	
		: 6.JAN.2020 16:26:35		
		Spectrum lef Level 20.00 dBm Offset 1.00 dB = RBW 100 kHz utt 30 dB SWT 1.03 ms = VBW 300 kHz Mode	hate Course	©Count 300/300
		requency Sweep	Auto sweep	e 19k Max M1[1] -0.07 dBm
		18m		2.4609430 GHz M2[1] -42.95 dBm 2.4835000 GHz
		m when her warden provident had not and had not and the		
		and with the second sec		
		8m H1 -20.070 d8m		
		d8m-	angenerative a	
CH11		d&m	Man Marken Marken	
		dBm	and the second second second	and warmen when when when the
		dBm-		
		452 GHz 1001 pts farker Table ype Ref Trc X-Value 1	4.8 MHz/	2.5 GHz Function Result
		M1 1 2.460943 GHz -0	/-Value Function	Function Result
		M3 1 2.5 GHz -58 M4 1 2.483824 GHz -42	.58 dBm .13 dBm	en (1111 1) (A) 06.01.2020
		: 6.JAN.2020 16:30:03	- Measer	


Test Item:	Bandedge	Туре:	802.11 n(HT20)
CH01		Iteration Spectrum Iteration Offset 100 db = RBW 100 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 ms = VBW 300 Hz 30 db WT 112 Ms = VBW 300 Hz	Count 300/300 S 124 Mot M1(1) -0.11 dbm 2.406950 dbt M2(1) -32.06 dbm M2 .400000 dbt M4 .40000 dbt M4 .40000 dbt M4 .40000 dbt M4 .40000 dbt
		CLANE 2000 163155 EXVIEW Spectrum JO dB = RBW 100 Hrz JO dB = RBW 100 Hrz JO dB = RBW 100 Hrz JO dB = VBW 200 Hrz Mode Auto Sweep Spectrum Hamiltonia - Hamil	Count 300/300 30/300 30/300 2.464440 086 M2[1] -41.28 dbm 2.4835000 Geb
CH11	2 M	see a second sec	2.5 GHz









-----End of Report------