

Test Report

Report No. : MTi250213002-0301E2

Date of issue : 2025-03-13

Applicant : Hong Kong Etech Groups Ltd.

Product : Techcellent wireless Mouse

Model(s) : EAA2-240525A, EAA2-240522A

FCC ID : 2A3ZO-240525A

Shenzhen Microtest Co., Ltd.

Report No.: MTi250213002-0301E2

Table of contents

1	Gener	al Description		4
	1.1	Description of the EUT		4
	1.2	Description of test modes		4
	1.3	Environmental Conditions		5
	1.4	Description of support units	((生))	5
	1.5	Measurement uncertainty		5
2		nary of Test Resultacilities and accreditations		
	3.1	Test laboratory		7
4	List of	f test equipment		E
5	Evalua	ation Results (Evaluation)		9
	5.1	Antenna requirement		9
6	Radio	Spectrum Matter Test Results (RF)		9
	6.1	Occupied Bandwidth		9
	6.2	Field strength of fundamental		
	6.3	Band edge emissions (Radiated)		
	6.4	Emissions in frequency bands (below 1GHz)		
	6.5	Emissions in frequency bands (above 1GHz)		. 21
Pho	otogran	ohs of the test setup	~ NC	26
		ohs of the EUT		

Report No.: MTi250213002-0301E2

Test Result Certific	ation		@Mic -	
Applicant	Hong Kong	Etech Groups Ltd.		
Applicant Address		C, 2nd Phase of Central Avenue, aoan, Shenzhen, China	Haihong Industrial Area,	
Manufacturer	Hong Kong	Hong Kong Etech Groups Ltd.		
Manufacturer Address	3			
Product descriptio	n "C	ke.		
Product name	Techcellen	t wireless Mouse	~	
Trademark	N/A			
Model name	EAA2-2405	525A	, est	
Series Model(s)	EAA2-2405	522A	MICIOL	
Standards	47 CFR Pa	rt 15.249		
Test Method	ANSI C63.	10-2020	rest	
Testing Information	n		Micro	
Date of test	2025-03-11	to 2025-03-12		
Test result Pass		, ost		
Prepared by:		Maleah Deng	Maleon Day	
Reviewed b	by:	David Lee	Moderniony Dowid. Cee Lewis lion	
Approved by:		Lewis Lian	lewis lion	
	AC("			

Report No.: MTi250213002-0301E2

1 General Description

1.1 Description of the EUT

Product name:	Techcellent wireless Mouse
Model name:	EAA2-240525A
Series Model(s):	EAA2-240522A
Model difference:	All the models are the same circuit and module, except the model name and color.
Electrical rating:	Input: DC 1.5V
Accessories:	Wireless Keyboard*1 Model: EAA2-240522A FCC: 2A3ZO-240522A Dongle*1
Hardware version:	V1.0
Software version:	V1.0
Test sample(s) number:	MTi250213002-03-R001
RF specification	
Operating frequency range:	2402-2479MHz
Channel number:	16
Modulation type:	GFSK
Antenna(s) type:	PCB Antenna
Antenna(s) gain:	2.34dBi

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2402	5	2421	9	2446	13	2468
2	2408	6	2423	10	2456	14	2474
3	2417	7	2428	11	2460	15	2478
4	2419	8	2437	12	2461	16	2479

Test Channel List

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2402	2437	2479

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Report No.: MTi250213002-0301E2

Test Software:

For power setting, refer to below table.

Test Software:	FCC Test Tool V2.4.3		
Mode	2402MHz	2437MHz	2479MHz
GFSK	Default	Default	Default

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list				
Description	Model	Serial No.	Manufacturer	
/	/	/	/	
Support cable list				
Description	Length (m)	From	То	
/	/	/	/	

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	±5%

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: MTi250213002-0301E2

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.249	47 CFR Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.249	47 CFR 15.207(a)	N/A
3	Occupied Bandwidth	47 CFR Part 15.249	47 CFR 15.215(c)	Pass
4	Field strength of fundamental	47 CFR Part 15.249	47 CFR 15.249(a) 47 CFR 15.249(b)(1)	Pass
5	Band edge emissions (Radiated)	47 CFR Part 15.249	47 CFR 15.249(d)	Pass
6	Emissions in frequency bands (below 1GHz)	47 CFR Part 15.249	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)	Pass
7	Emissions in frequency bands (above 1GHz)	47 CFR Part 15.249	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)	Pass

Note: Since the EUT is the DC input, therefore AC power line conducted emissions test is not required.

Report No.: MTi250213002-0301E2

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

Report No.: MTi250213002-0301E2

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due			
		Occupied	Bandwidth						
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03- 20	2025-03- 19			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB400512 40	2024-03- 21	2025-03- 20			
3	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2024-03- 21	2025-03- 20			
4	Synthesized Sweeper	Agilent	83752A	3610A019 57	2024-03- 21	2025-03- 20			
5	MXA Signal Analyzer	Agilent	N9020A	MY501434 83	2024-03- 21	2025-03- 20			
6	RF Control Unit	Tonscend	JS0806-1	19D80601 52	2024-03- 21	2025-03- 20			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601 60	2024-03- 21	2025-03- 20			
8	ESG Vector Signal Generator	Agilent	N5182A	MY501437 62	2024-03- 20	2025-03- 19			
9	DC Power Supply	2024-03- 21	2025-03- 20						
Field strength of fundamental Band edge emissions (Radiated) Emissions in frequency bands (above 1GHz)									
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03- 20	2025-03- 19			
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06- 17	2025-06- 16			
3	Amplifier	Agilent	8449B	3008A0112 0	2024-03- 20	2025-03- 19			
4	MXA signal analyzer	Agilent	N9020A	MY544408 59	2024-03- 21	2025-03- 20			
5	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2024-03- 21	2025-03- 20			
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06- 17	2025-06- 16			
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03- 21	2025-03- 20			
	Emissions in frequency bands (below 1GHz)								
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03- 20	2025-03- 19			
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06- 10			
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2025-03- 22			
4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2024-03- 20	2025-03- 19			

Report No.: MTi250213002-0301E2

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

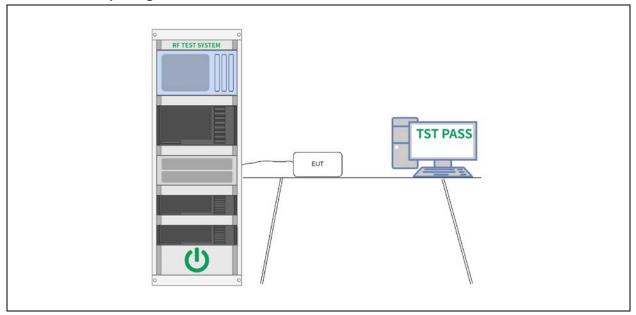
Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

6 Radio Spectrum Matter Test Results (RF)

6.1 Occupied Bandwidth

Test Requirement:	47 CFR 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2020, section 6.9.2
Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the markerdelta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to

Report No.: MTi250213002-0301E2

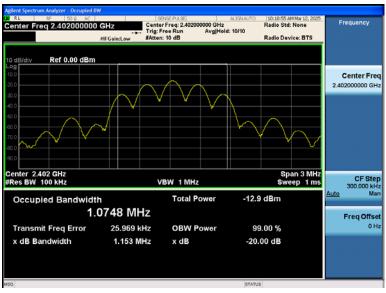

stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

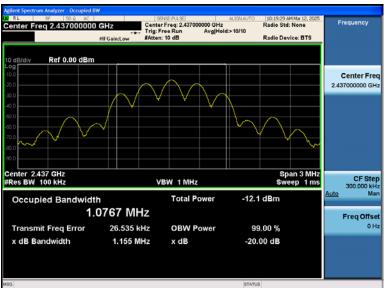
6.1.1 E.U.T. Operation:

Operating Environment:							
Temperature: 25.3 °C Humidity: 55 % Atmospheric Pressure: 101 kPa					101 kPa		
Pre test mode: Mo		Mod	e1				
Final test mode: Mo		Mod	e1				

6.1.2 Test Setup Diagram:



6.1.3 Test Data:


Test channel	Frequency (MHz)	20dB Bandwidth (MHz)	99% Bandwidth (MHz)
CH1	2402	1.153	1.0748
CH8	2437	1.155	1.0767
CH16	2479	1.156	1.0769

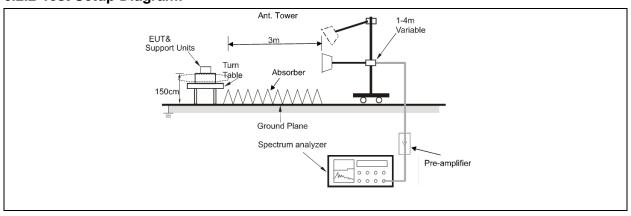
Report No.: MTi250213002-0301E2

CH₁

CH8

CH16

Report No.: MTi250213002-0301E2


6.2 Field strength of fundamental

	Except as provided in paragraph (b)of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:				
	Fundamental	Field strength of	Field strength of		
	frequency	fundamental	harmonics		
T . D		(millivolts/meter)	(microvolts/meter)		
Test Requirement:	902-928 MHz	50	500		
	2400-2483.5 MHz	50	500		
	5725-5875 MHz	50	500		
	24.0-24.25 GHz	250	2500		
	The field strength of emissions in this band shall not exceed 2500 millivolts/meter.				
Test Method:	ANSI C63.10-2020 section 6.6				
Procedure:	ANSI C63.10-2020 section	on 6.6			

6.2.1 E.U.T. Operation:

Operating Environment:							
Temperature: 19 °C Humidity: 46.1 % Atmospheric Pressure: 98 kPa					98 kPa		
Pre test mode: Mod		Mod	e1				
Final test mode: Mod		Mod	e1	_			

6.2.2 Test Setup Diagram:

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1 Page 12 of 28

Report No.: MTi250213002-0301E2

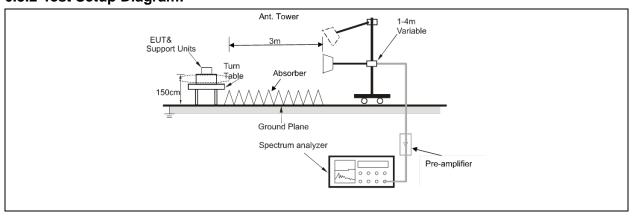
6.2.3 Test Data:

Frequency	Ant. Polarization	Emission level	Limits	Detector	Result
(MHz)	H/V	dBμV/m	dBμV/m	Detector	Nesuit
2402	Н	83.89	114	Peak	Pass
2402	Н	83.79	94	AVG	Pass
2402	V	87.44	114	Peak	Pass
2402	V	87.37	94	AVG	Pass

Frequency	Ant. Polarization	Emission level	Limits	Detector	Result
(MHz)	H/V	dBμV/m	dBμV/m	Detector	Nesun
2437	Н	79.28	114	Peak	Pass
2437	Н	79.20	94	AVG	Pass
2437	V	88.32	114	Peak	Pass
2437	V	88.24	94	AVG	Pass

Frequency	Ant. Polarization	Emission level	Limits	-Detector	Result
(MHz)	H/V	dBμV/m	dBμV/m	Detector	Nesuit
2479	Н	87.53	114	Peak	Pass
2479	Н	87.50	94	AVG	Pass
2479	V	87.85	114	Peak	Pass
2479	V	87.82	94	AVG	Pass

Report No.: MTi250213002-0301E2


6.3 Band edge emissions (Radiated)

Test Requirement:	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.						
Test Limit:	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.						
	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705 24000/F(kHz) 30						
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	intentional radiators operathe frequency bands 54-7806 MHz. However, operapermitted under other second in the emission table about the emission limits shown measurements employing frequency bands 9–90 kH Radiated emission limits in measurements employing	ot as provided in paragraph (g), fundamental emissions from hal radiators operating under this section shall not be located in uency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-z. However, operation within these frequency bands is ad under other sections of this part, e.g., §§ 15.231 and 15.241. The mission table above, the tighter limit applies at the band edges. It is is is is is is important to the above table are based on ements employing a CISPR quasi-peak detector except for the cy bands 9–90 kHz, 110–490 kHz and above 1000 MHz. It is demission limits in these three bands are based on ements employing an average detector.					
Test Method:	ANSI C63.10-2020 section 6.6.4						
Procedure:	ANSI C63.10-2020 section 6.6.4						

6.3.1 E.U.T. Operation:

Operating Environment:						
Temperature: 19 °C			Humidity:	46.1 %	Atmospheric Pressure:	98 kPa
Pre test mode: Mod		e1				
Final test mode: Mod		e1				

6.3.2 Test Setup Diagram:

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1 Page 14 of 28

Report No.: MTi250213002-0301E2

6.3.3 Test Data:

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	2	2310.000	48.75	-4.83	43.92	74.00	-30.08	peak
2	2	2310.000	37.87	-4.83	33.04	54.00	-20.96	AVG
3	2	2390.000	48.25	-4.31	43.94	74.00	-30.06	peak
4	2	2390.000	37.99	-4.31	33.68	54.00	-20.32	AVG
5	2	2400.000	51.96	-4.25	47.71	74.00	-26.29	peak
6	2	2400.000	44.05	-4.25	39.80	54.00	-14.20	AVG

No. N	Mk. Free	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	2310.0	00 48.08	-4.83	43.25	74.00	-30.75	peak
2	2310.0	00 37.96	-4.83	33.13	54.00	-20.87	AVG
3	2390.0	00 48.48	-4.31	44.17	74.00	-29.83	peak
4	2390.0	00 38.07	-4.31	33.76	54.00	-20.24	AVG
5	2400.0	00 54.41	-4.25	50.16	74.00	-23.84	peak
6	2400.0	00 47.06	-4.25	42.81	54.00	-11.19	AVG

Report No.: MTi250213002-0301E2

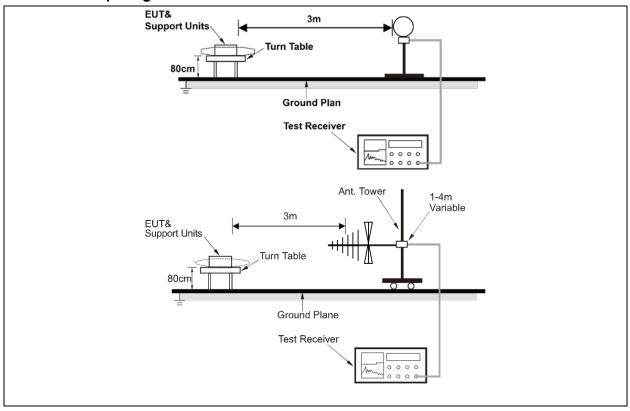
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	48.26	-4.21	44.05	74.00	-29.95	peak
2	*	2483.500	38.46	-4.21	34.25	54.00	-19.75	AVG
3		2500.000	47.84	-4.10	43.74	74.00	-30.26	peak
4		2500.000	37.85	-4.10	33.75	54.00	-20.25	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	48.50	-4.21	44.29	74.00	-29.71	peak
2	*	2483.500	38.18	-4.21	33.97	54.00	-20.03	AVG
3		2500.000	49.26	-4.10	45.16	74.00	-28.84	peak
4		2500.000	37.88	-4.10	33.78	54.00	-20.22	AVG

Report No.: MTi250213002-0301E2

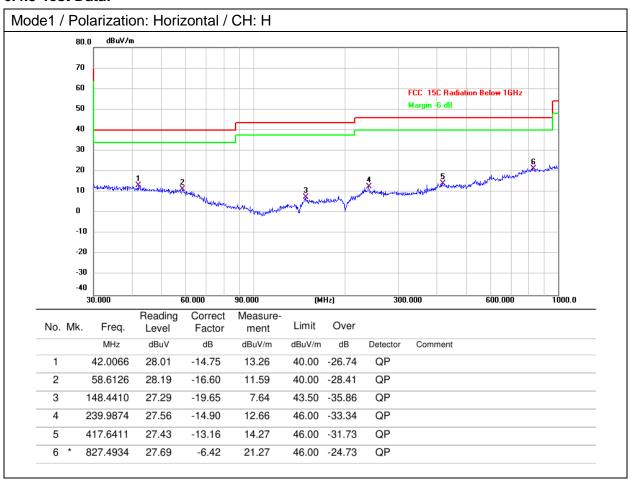
6.4 Emissions in frequency bands (below 1GHz)

6.4	Emissions in fr	equency bands (below	1GHz)		
	t Requirement:	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)			
Tes	t Limit:		paragraph (b)of this sect nal radiators operated v n the following:		
		Cundom antol	Ciald atrapath of	Tiold o	transith of
		Fundamental	Field strength of fundamental	harmoi	trength of
		frequency	(millivolts/meter)		volts/meter)
		902-928 MHz	50	500	voits/meter)
		2400-2483.5 MHz	50	500	
		5725-5875 MHz	50	500	
		24.0-24.25 GHz	250	2500	
		24.0-24.25 GHZ	250	2300	
		Emissions radiated outs for harmonics, shall be the fundamental or to the whichever is the lesser	attenuated by at least 5 ne general radiated emi	0 dB belo	w the level of
		Frequency (MHz)	Field strength		Measuremen
			(microvolts/meter)		t distance
					(meters)
		0.009-0.490	2400/F(kHz)		300
		0.490-1.705	24000/F(kHz)		30
		1.705-30.0	30		30
		30-88	100 **		3
		88-216	150 **		3
		216-960	200 **		3
		Above 960	500		3
		intentional radiators oper the frequency bands 54 806 MHz. However, oper permitted under other so In the emission table at The emission limits shown measurements employed frequency bands 9–90 Radiated emission limit measurements employed As shown in § 15.35(b) strength limits in paragraverage limits. However not exceed the maximum more than 20 dB under operation under paragrashall not exceed 2500 maximuth.	d-72 MHz, 76-88 MHz, 19 eration within these free dections of this part, e.g. bove, the tighter limit apown in the above table at ang a CISPR quasi-peak kHz, 110–490 kHz and as in these three bands at ang an average detector, for frequencies above raphs (a) and (b) of this str, the peak field strength any condition of modulaph (b) of this section, the millivolts/meter at 3 meters.	on shall no 174-216 M quency bar , §§ 15.23 plies at the are based at detector above 100 are based for any e mits specification. For ne peak fie	of be located in IHz or 470- inds is 31 and 15.241. The band edges. On except for the 100 MHz. On except for the 20 mHz. O
Tes	t Method:	ANSI C63.10-2020 sec	tion 6.5		

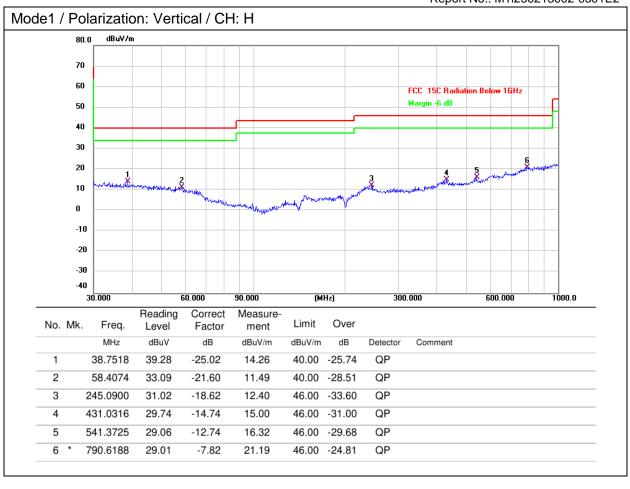

Report No.: MTi250213002-0301E2

Procedure: ANSI C63.10-2020 section 6.5

6.4.1 E.U.T. Operation:


Operating Envi	Operating Environment:									
Temperature:	e: 19 °C		Humidity:	46.1 %	Atmospheric Pressure:	98 kPa				
Pre test mode:		Mod	e1							
Final test mode	Final test mode:									

6.4.2 Test Setup Diagram:



Report No.: MTi250213002-0301E2

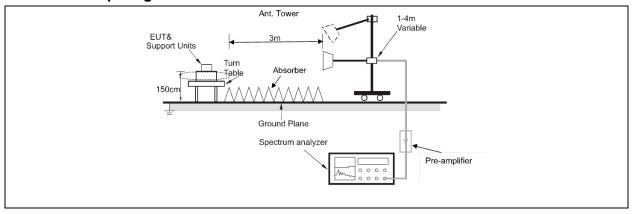
6.4.3 Test Data:

Report No.: MTi250213002-0301E2

Report No.: MTi250213002-0301E2

6.5 Emissions in frequency bands (above 1GHz)

6.5 Emissions in	frequency bands (above	1GHz)			
Test Requirement:	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)				
Test Limit:		onal radiators operated v	tion, the field strength of within these frequency		
	Fundamental	Field strength of	Field strength of		
	frequency	fundamental (millivolts/meter)	harmonics (microvolts/meter)		
	902-928 MHz	50	500		
	2400-2483.5 MHz	50	500		
	5725-5875 MHz	50	500		
	24.0-24.25 GHz	250	2500		
	for harmonics, shall be	he general radiated emi	quency bands, except 50 dB below the level of ssion limits in § 15.209,		
			Magauraman		
	Frequency (MHz)	Field strength	Measuremen t distance		
		(microvolts/meter)			
	0.009-0.490	2400/F(kHz)	(meters) 300		
	0.490-1.705	2400/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
	intentional radiators op the frequency bands 54 806 MHz. However, op permitted under other s In the emission table a The emission limits sho measurements employ frequency bands 9–90 Radiated emission limit measurements employ As shown in § 15.35(b) strength limits in paragaverage limits. However not exceed the maximumore than 20 dB under operation under paragr	4-72 MHz, 76-88 MHz, 76-81 mHz, 76-81 meration within these free sections of this part, e.g. bove, the tighter limit apown in the above table a ring a CISPR quasi-peak kHz, 110-490 kHz and its in these three bands in these three bands in an average detector, for frequencies above raphs (a) and (b) of this ser, the peak field strengt um permitted average lires.	on shall not be located in 174-216 MHz or 470-quency bands is ., §§ 15.231 and 15.241. In the police at the band edges. In the based on a detector except for the above 1000 MHz. In the pare based on the section are based on the fany emission shall mits specified above by ation. For point-to-point the peak field strength		
Test Method:	ANSI C63.10-2020 sed	ction 6.6			
. 550 1115011641					


Report No.: MTi250213002-0301E2

Procedure:	ANSI C63.10-2020 section 6.6

6.5.1 E.U.T. Operation:

Operating Envi	Operating Environment: Temperature: 19 °C Humidity: 46.1 % Atmospheric Pressure: 98 kPa										
Temperature:	Temperature: 19 °C			46.1 %	Atmospheric Pressure:	98 kPa					
Pre test mode: Mo			e1								
Final test mode	e:	Mod	e1								

6.5.2 Test Setup Diagram:

Report No.: MTi250213002-0301E2

6.5.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	60.33	0.53	60.86	74.00	-13.14	peak
2	*	4804.000	50.47	0.53	51.00	54.00	-3.00	AVG
3		7206.000	45.92	7.90	53.82	74.00	-20.18	peak
4		7206.000	40.24	7.90	48.14	54.00	-5.86	AVG
5		9608.000	44.82	8.85	53.67	74.00	-20.33	peak
6		9608.000	39.38	8.85	48.23	54.00	-5.77	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	54.67	0.53	55.20	74.00	-18.80	peak
2	*	4804.000	49.68	0.53	50.21	54.00	-3.79	AVG
3		7206.000	43.33	7.90	51.23	74.00	-22.77	peak
4		7206.000	38.42	7.90	46.32	54.00	-7.68	AVG
5		9608.000	44.28	8.85	53.13	74.00	-20.87	peak
6		9608.000	36.97	8.85	45.82	54.00	-8.18	AVG

Report No.: MTi250213002-0301E2

1 / P	olariz	zation: Horiz	zontal / CH:	N A				
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4874.000	56.05	0.55	56.60	74.00	-17.40	peak
2	*	4874.000	49.68	0.55	50.23	54.00	-3.77	AVG
3		7311.000	45.77	7.46	53.23	74.00	-20.77	peak
4		7311.000	40.81	7.46	48.27	54.00	-5.73	AVG
5		9748.000	43.90	9.32	53.22	74.00	-20.78	peak
6		9748.000	37.00	9.32	46.32	54.00	-7.68	AVG
	1 2 3 4 5	1 2 * 3 4 5	MHz 1 4874.000 2 * 4874.000 3 7311.000 4 7311.000 5 9748.000	No. Mk. Freq. Level MHz dBuV 1 4874.000 56.05 2 * 4874.000 49.68 3 7311.000 45.77 4 7311.000 40.81 5 9748.000 43.90	No. Mk. Freq. Level Factor MHz dBuV dB 1 4874.000 56.05 0.55 2 * 4874.000 49.68 0.55 3 7311.000 45.77 7.46 4 7311.000 40.81 7.46 5 9748.000 43.90 9.32	No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 1 4874.000 56.05 0.55 56.60 2 * 4874.000 49.68 0.55 50.23 3 7311.000 45.77 7.46 53.23 4 7311.000 40.81 7.46 48.27 5 9748.000 43.90 9.32 53.22	No. Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 1 4874.000 56.05 0.55 56.60 74.00 2 * 4874.000 49.68 0.55 50.23 54.00 3 7311.000 45.77 7.46 53.23 74.00 4 7311.000 40.81 7.46 48.27 54.00 5 9748.000 43.90 9.32 53.22 74.00	No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB 1 4874.000 56.05 0.55 56.60 74.00 -17.40 2 * 4874.000 49.68 0.55 50.23 54.00 -3.77 3 7311.000 45.77 7.46 53.23 74.00 -20.77 4 7311.000 40.81 7.46 48.27 54.00 -5.73 5 9748.000 43.90 9.32 53.22 74.00 -20.78

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4874.000	52.25	0.55	52.80	74.00	-21.20	peak
2		4874.000	46.60	0.55	47.15	54.00	-6.85	AVG
3		7311.000	42.70	7.46	50.16	74.00	-23.84	peak
4		7311.000	36.79	7.46	44.25	54.00	-9.75	AVG
5		9748.000	44.03	9.32	53.35	74.00	-20.65	peak
6	*	9748.000	39.92	9.32	49.24	54.00	-4.76	AVG

Report No.: MTi250213002-0301E2

Иode	1 / P	olariz	zation: Horiz	zontal / CH:					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4958.000	54.57	0.65	55.22	74.00	-18.78	peak
	2	*	4958.000	48.59	0.65	49.24	54.00	-4.76	AVG
	3		7437.000	44.36	7.95	52.31	74.00	-21.69	peak
	4		7437.000	37.32	7.95	45.27	54.00	-8.73	AVG
	5		9916.000	43.37	9.68	53.05	74.00	-20.95	peak
	6		9916.000	38.56	9.68	48.24	54.00	-5.76	AVG

No. N	Λk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4958.000	51.75	0.65	52.40	74.00	-21.60	peak
2		4958.000	46.61	0.65	47.26	54.00	-6.74	AVG
3		7437.000	43.21	7.95	51.16	74.00	-22.84	peak
4		7437.000	39.26	7.95	47.21	54.00	-6.79	AVG
5		9916.000	44.32	9.68	54.00	74.00	-20.00	peak
6 *	,	9916.000	38.56	9.68	48.24	54.00	-5.76	AVG

Report No.: MTi250213002-0301E2

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1 Page 26 of 28

Report No.: MTi250213002-0301E2

Photographs of the EUT

Refer to Appendix - EUT Photos

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1 Page 27 of 28

Report No.: MTi250213002-0301E2

Statement

- 1. This report is invalid without the seal and signature of the laboratory.
- The test results of this report are only responsible for the samples submitted. Client shall be responsible for representativeness of the sample and authenticity of the material.
- 3. The report shall not be partially reproduced without the written consent of the Laboratory.
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization.
- 5. The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.
- 6. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

***** END OF REPORT *****