

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No.....: TRE1702011101 R/C.....: 25030

FCC ID.....: 2ALAVU800

Applicant's name.....: Haier International Business Corporation Limited

Shan District, Qingdao, Shandong, China

Manufacturer...... Haier International Business Corporation Limited

Shan District, Qingdao, Shandong, China

Test item description: Tablet PC

Trade Mark Ceibal, Ibirapita

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of receipt of test sample...... Feb. 23, 2017

Date of testing...... Feb. 23, 2017 - Mar. 13, 2017

Date of issue...... Mar. 13, 2017

Result...... PASS

Compiled by

(position+printedname+signature)...: File administrators Becky Liang

Supervised by

(position+printedname+signature)....: Project Engineer Lion Cai

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No.: TRE1702011101 Page: 2 of 82 Issued: 2017-03-13

Contents

<u>1.</u>	IEST STANDARDS AND REPORT VERSION	3
1.1.	Applicable Standards	3
1.2.	Report version	3
	•	
<u>2.</u>	TEST DESCRIPTION	4
_		_
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	7
3.5.	Modifications	7
<u>4.</u>	TEST ENVIRONMENT	8
4.1.	Address of the test laboratory	8
4.2.	Test Facility	8
4.3.	Equipments Used during the Test	9
4.4.	Environmental conditions	10
4.5.	Statement of the measurement uncertainty	10
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emission (AC Main)	12
5.3.	Maximum Conducted Output Power	15
5.4.	Maximum Power Spectral Density	17
5.5.	99% Occupied Bandwidth	31
5.6.	6dB&26dB bandwidth	45
5.7.	Radiated Emissions & Bandedge	59
5.8.	Frequency stability	66
5.9.	Dynamic Frequency Selection (DFS).	69
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	78
7.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	79

Report No.: TRE1702011101 Page: 3 of 82 Issued: 2017-03-13

1. Test standards and Report version

1.1. Applicable Standards

The tests were performed according to following standards: FCC Rules Part 15.407: General technical requirements.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB789033 D02 V01R02: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

1.2. Report version

Version No.	Date of issue	Description
00	Mar. 13, 2017	Original

Report No.: TRE1702011101 Page: 4 of 82 Issued: 2017-03-13

2. Test Description

ReportSection	Test Item	FCC Rule	Result
4.1	Antenna Requirement	15.203	Pass
4.2	Line Conducted Emission (AC Main)	15.207	Pass
4.3	Maximum Conducted Output Power	15.407 (a.1)(a.2)(a.3)	Pass
4.4	Maximum Power Spectral Density	15.407 (a.1)(a.2)(a.3)	Pass
4.5	99% Occupied Bandwidth	Part 2.1049	Pass
4.6	26dB Bandwidth	15.407(a.5)	Pass
4.7	Radiated Emissions & Bandedge	15.407(b.1)(b.2)(b.4)	Pass
4.8	Frequency Stability	15.407(g)	Pass
4.9	TPC and DFS	15.407(h)	Pass

Remark: 1.The measurement uncertainty is not included in the test result.

^{2.}The EUT is a client device without radar detection.a TPC mechanism is not required for systems with an e.i.r.p. of less than 500mW.

Report No.: TRE1702011101 Page: 5 of 82 Issued: 2017-03-13

3. **SUMMARY**

3.1. Client Information

Applicant:	Haier International Business Corporation Limited
Address:	Room 1602, 16th Floor, Tower A, No. 1 Ke Yuan Wei Yi Road, Lao Shan District, Qingdao, Shandong, China
Manufacturer:	Haier International Business Corporation Limited
Address:	Room 1602, 16th Floor, Tower A, No. 1 Ke Yuan Wei Yi Road, Lao Shan District, Qingdao, Shandong, China

3.2. Product Description

Name of EUT	Tablet PC			
Trade Mark:	Ceibal,Ibirapita			
Model No.:	U800			
Listed Model(s):	-			
Power supply:	DC 3.8V From internal battery			
Adapter information:	Input: 100-240Va.c., 50/60Hz, 0.4A			
	Output: 5.0Vd.c., 2.0A			
Hardware version:	EM_T8880A_V6.0/U800_8160_V1.1			
Software version: Ceibal.PadU800.GM20170305.SV1.041/lbirapita.PadU800.GM20170303.SV1.04				
5G WIFI	5G WIFI			
Supported type:	802.11a/802.11n			
Modulation:	BPSK /QPSK /16QAM /64QAM			
Operation frequency:	Band 1: 5150MHz-5250MHz			
	Band 2A: 5250MHz-5350MHz(Client device)			
	Band 2C: 5470MHz-5725MHz(Client device)			
	Band 3: 5725MHz-5850MHz			
Channel Bandwidth	802.11a/n(H20): 20MHz			
	802.11n(H40): 40MHz			
Channel separation:	5MHz			
Antenna type:	Integral antenna			
Antenna gain:	1.56 dBi			

Report No.: TRE1702011101 Page: 6 of 82 Issued: 2017-03-13

3.3. Operation state

♦ Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

20MHz				40MHz			
Band	Test Channel	Channel	Frequency (MHz)	Band	Test Channel	Channel	Frequency (MHz)
	Low	36	5180	Dand 1	Low	38	5190
Band 1	Mid	44	5220	Band 1	High	46	(MHz) 5190 5230 5270 5310 5510 5590 5670
	High	48	5240	Dand 2D	Low	54	
	Low	52	5260	Band 2B	High	62	5310
Band 2A	Mid	60	5300		Low	102	5510
	High	64	5320	Band 2C	Mid	118	5590
	Low	100	5500		High	134	5670
Band 2C	Mid	120	5600	Band 3	Low	151	(MHz) 3 5190 5 5230 4 5270 2 5310 2 5510 8 5590 4 5670 1 5755
	High	140	5700	Dallu 3	High	159	5795
	Low	149	5745				
Band 3	Mid	157	5785				
	High	165	5825				

◆ Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	datarate (worst mode)
802.11a	6Mbps
802.11n(H20)	MCS0
802.11n(H40)	MCS0

♦ Test mode

For RF test items:

the engineering test program was provided and enabled to make EUT continuous transmit/receive. The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%. For AC power line conducted emissions:

the EUT was set to connect with the WLAN AP under large package sizes transmission.

Report No.: TRE1702011101 Page: 7 of 82 Issued: 2017-03-13

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

C	Wireless Router	Manufacturer :	Aruba Networks, Inc.
		FCCID:	Q9DAPINR15515P
		Model No. :	APIN0114

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: TRE1702011101 Page: 8 of 82 Issued: 2017-03-13

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until February 27, 2018.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377B

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec. 03, 2014, valid time is until Dec. 03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1702011101 Page: 9 of 82 Issued: 2017-03-13

4.3. Equipments Used during the Test

Radia	Radiated Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal
1	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
2	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	2016/11/13
3	EMI TEST Software	Audix	E3	N/A	N/A
4	TURNTABLE	ETS	2088	2149	N/A
5	ANTENNA MAST	ETS	2075	2346	N/A
6	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A
7	HORNANTENNA	ShwarzBeck	9120D	1011	2016/11/13
8	Amplifer	Sonoma	310N	E009-13	2016/11/13
9	JS amplifer	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2016/11/13
10	High pass filter	Compliance Direction systems	BSU-6	34202	2016/11/13
11	HORNANTENNA	ShwarzBeck	9120D	1012	2016/11/13
12	Amplifer	Compliance Direction systems	PAP1-4060	120	2016/11/13
13	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2016/11/13
14	TURNTABLE	MATURO	TT2.0		N/A
15	ANTENNA MAST	MATURO	TAM-4.0-P		N/A
16	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2016/11/13
17	ULTRA-BROADBAND ANTENNA	Rohde&Schwarz	HL562	100015	2016/11/13

Cond	ucted test				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal
1	Spectrum Analyzer	Rohde&Schwarz	FSV40	100048	2016/11/13
2	OSP	Rohde&Schwarz	OSP120	101317	2016/11/13
3	OSP	Rohde&Schwarz	OSP-B157	100890	2016/11/13
4	Signal generator	Rohde&Schwarz	SMB100A	177956	2016/11/13
5	Vector signal generator	Rohde&Schwarz	SMBV100A	260790	2016/11/13
6	EXA Signal Analyzer	Agilent	N9010A	184247	2016/11/13

The Cal.Interval was one year

Report No.: TRE1702011101 Page: 10 of 82 Issued: 2017-03-13

4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
lative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

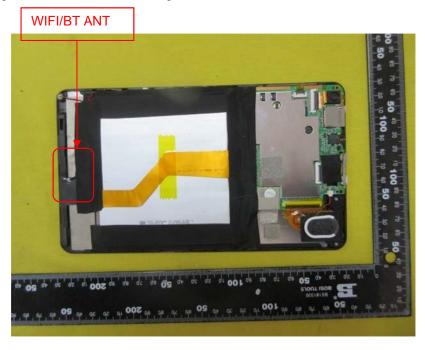
Test Items	MeasurementUncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-40 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: TRE1702011101 Page: 11 of 82 Issued: 2017-03-13

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement


Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

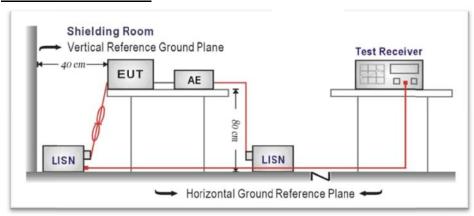
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Result:

The antenna is integral antenna, the best case gain of the antenna is 2.3dBi.

Report No.: TRE1702011101 Page: 12 of 82 Issued: 2017-03-13

5.2. Conducted Emission (AC Main)

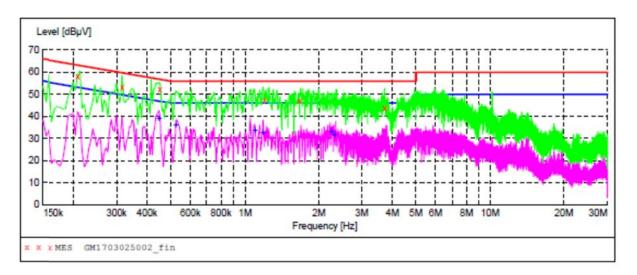

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Frequency range (MHz)	Limit (d	Bu V)
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION


TEST PROCEDURE

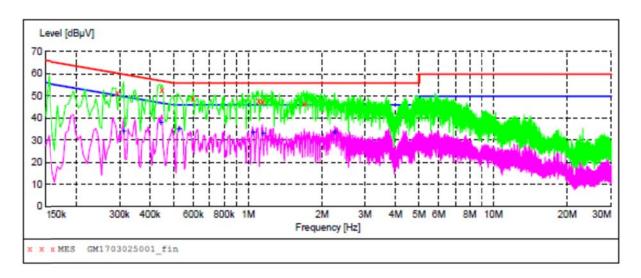
- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above theconducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedancestabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment.
- 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHzusing a receiver bandwidth of 9 kHz.

TEST RESULTS

Report No.: TRE1702011101 Page: 13 of 82 Issued: 2017-03-13

Test mode:AC 120V 5G WIFI Polarization L
--

MEASUREMENT RESULT: "GM1703025002_fin"


3/2/2017	9:35	AM						
Freque	ncy MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.208	500	58.30	10.3	63	5.0	QP	Ll	GND
0.316	500	53.20	10.2	60	6.6	QP	Ll	GND
0.451	500	52.60	10.2	57	4.2	QP	Ll	GND
1.203	000	47.50	10.2	56	8.5	QP	Ll	GND
1.675	500	47.10	10.2	56	8.9	QP	L1	GND
3.732	000	43.50	10.3	56	12.5	QP	Ll	GND

MEASUREMENT RESULT: "GM1703025002_fin2"

3/2/2017 9:35	AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.447000	39.10	10.2	47	7.8	AV	Ll	GND
0.523500	36.20	10.2	46	9.8	AV	Ll	GND
1.095000	33.80	10.2	46	12.2	AV	Ll	GND
1.180500	32.70	10.2	46	13.3	AV	L1	GND
2.242500	33.30	10.2	46	12.7	AV	L1	GND
2 310000	32 00	10.2	46	14.0	VA	T.1	GND

Report No.: TRE1702011101 Page: 14 of 82 Issued: 2017-03-13

Test mode: AC 120V 5G WIFI Polarization N

MEASUREMENT RESULT: "GM1703025001 fin"

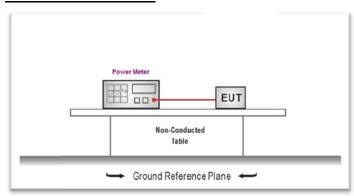
9:32AM						
-		Limit dBµV	Margin dB	Detector	Line	PE
00 51.	.60 10.2	60	8.8	QP	N	GND
00 53.	.00 10.2	57	3.9	QP	N	GND
00 48.	.90 10.2	56	7.1	QP	N	GND
00 47.	.80 10.2	56	8.2	QP	N	GND
00 47.	.60 10.2	56	8.4	QP	N	GND
00 46.	.70 10.2	56	9.3	QP	N	GND
	Hz di 00 51 00 53 00 48 00 47 00 47	cy Level Transd Hz dBμV dB 00 51.60 10.2 00 53.00 10.2 00 48.90 10.2 00 47.80 10.2 00 47.60 10.2	Cy Level Transd Limit Hz dBμV dB dBμV 00 51.60 10.2 60 00 53.00 10.2 57 00 48.90 10.2 56 00 47.80 10.2 56 00 47.60 10.2 56	cy Level dBμV Transd dB dBμV Limit dB dBμV Margin dB 00 51.60 10.2 60 8.8 00 53.00 10.2 57 3.9 00 48.90 10.2 56 7.1 00 47.80 10.2 56 8.2 00 47.60 10.2 56 8.4	cy Level dBμV Transd dB dBμV Limit dB dBμV Margin dB Detector dB 00 51.60 10.2 60 8.8 QP 00 53.00 10.2 57 3.9 QP 00 48.90 10.2 56 7.1 QP 00 47.80 10.2 56 8.2 QP 00 47.60 10.2 56 8.4 QP	cy Level dBμV Transd dBμV Limit dBμV Margin dB Detector Line dBμV 00 51.60 10.2 60 8.8 QP N 00 53.00 10.2 57 3.9 QP N 00 48.90 10.2 56 7.1 QP N 00 47.80 10.2 56 8.2 QP N 00 47.60 10.2 56 8.4 QP N

MEASUREMENT RESULT: "GM1703025001_fin2"

3/2/2017 9	:32AM						
Frequenc MH	-	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.31200	0 34.30	10.2	50	15.6	AV	N	GND
0.44250	0 38.10	10.2	47	8.9	AV	N	GND
0.52350	0 35.20	10.2	46	10.8	AV	N	GND
1.04550	0 33.90	10.2	46	12.1	AV	N	GND
1.14900	0 33.20	10.2	46	12.8	AV	N	GND
2.25600	0 33.70	10.2	46	12.3	AV	N	GND

Remark:Transd=Cable lose+ PULSE LIMITER factor+ ARTIFICIAL MAINS factor; Margin= Limit -Level

Report No.: TRE1702011101 Page: 15 of 82 Issued: 2017-03-13


5.3. Maximum Conducted Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart E Section 15.407:

In the $5.15-5.25 \, \mathrm{GHz}$ band, the maximum permissible conducted output power is $250 \, \mathrm{mW}$ (23.98dBm) In the $5.25-5.35 \, \mathrm{GHz}$ band, the maximum permissible conducted output power is the lesser of $250 \, \mathrm{mW}$ (23.98dBm) and 11 dBm + $10 \, \mathrm{log} 10 (26 \, \mathrm{dB} \, \mathrm{BW}) = 11 \, \mathrm{dBm} + 10 \, \mathrm{log} 10 (18.87) = 23.76 \, \mathrm{dBm}$. In the $5.47-5.725 \, \mathrm{GHz}$ band, the maximum permissible conducted output power is the lesser of $250 \, \mathrm{mW}$ (23.98dBm) and 11 dBm + $10 \, \mathrm{log} 10 (26 \, \mathrm{dB} \, \mathrm{BW}) = 11 \, \mathrm{dBm} + 10 \, \mathrm{log} 10 (18.82) = 23.75 \, \mathrm{dBm}$. In the $5.725-5.850 \, \mathrm{GHz}$ band, the maximum permissible conducted output power is $1 \, \mathrm{W}$ (30dBm).

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was tested according to KDB789033 D02 V01R02 requirements.
- 2. The maximum conducted output power may be measured using a broadband AVG RF power meter.
- 3. Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power
- Record the measurement data.

TEST RESULTS

Report No.: TRE1702011101 Page: 16 of 82 Issued: 2017-03-13

	Туре	Channel	Output power (dBm)	Limit (dBm)	Result
		Low	14.48	•	
	802.11a	Mid	14.15	24.00	Pass
D 14		High	14.25		
Band 1 5150-5250MHz		Low	14.45	04.00	D
5150-5250WITZ	802.11n(H20)	Mid	14.04	24.00	Pass
		High	14.06		
	902 11p/H40)	Low	14.19	24.00	Pass
	802.11n(H40)	High	13.69		F a 5 5
	Туре	Channel	Output power (dBm)	Limit (dBm)	Result
		Low	13.90		
	802.11a	Mid	13.70	24.00	Pass
Band 2A 5250-5350MHz		High	13.46		
	802.11n(H20)	Low	13.80	24.00	
		Mid	13.88		Pass
		High	14.01		
	802.11n(H40)	Low	13.51	24.00	Pass
	002.1111(1140)	High	13.31	24.00	1 455
	_				
	Туре	Channel	Output power (dBm)	Limit (dBm)	Result
Band 2C 5470-5725MHz		Low	15.66		_
	802.11a	Mid	16.20	24.00	Pass
		High	14.99		
		Low	14.92		_
	802.11n(H20)	Mid	15.24	24.00	Pass
		High	14.37		
	802.11n(H40)	Low	15.96	24.00	Pass
	002.1111(1140)	High	15.23		
	Typo	Channel	Output power (dDre)	Limit (dDm)	Dogult
	Туре		Output power (dBm) 12.62	Limit (dBm)	Result
	802.11a	Low Mid	12.02	30.00	Pass
	002.11a	IVIIU	12.22	30.00	Pass

	Туре	Channel	Output power (dBm)	Limit (dBm)	Result
Band 3 5725-5850MHz		Low	12.62		
	802.11a	Mid	12.22	30.00	Pass
		High	10.33		
	802.11n(H20)	Low	12.50	30.00	Pass
		Mid	12.33		
		High	10.90		
	802.11n(H40)	Low	13.53	20.00	Door
		High	12.63	30.00	Pass

Report No.: TRE1702011101 Page: 17 of 82 Issued: 2017-03-13

5.4. Maximum Power Spectral Density


LIMIT

FCC CFR Title 47 Part 15 Subpart E Section 15.407:

In the 5.15 - 5.25 GHz, 5.25 - 5.35 GHz, 5.47 - 5.725 GHz bands, the maximum permissible power spectral density is 11 dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

TEST CONFIGURATION

TEST PROCEDURE

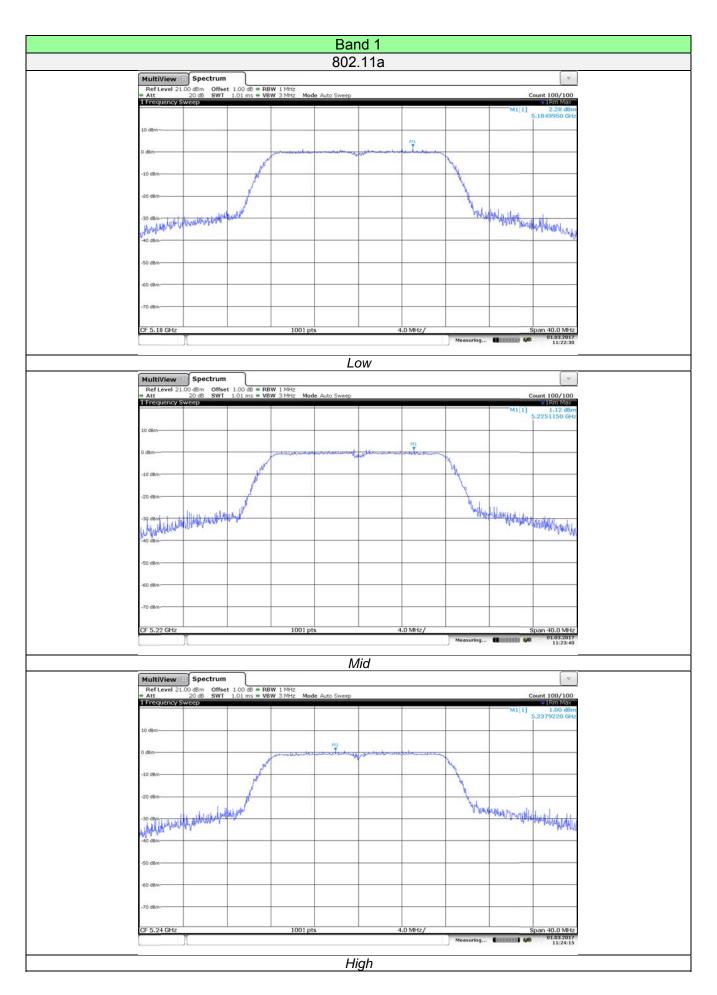
According KDB 789033 D02 v01r02 - Section F

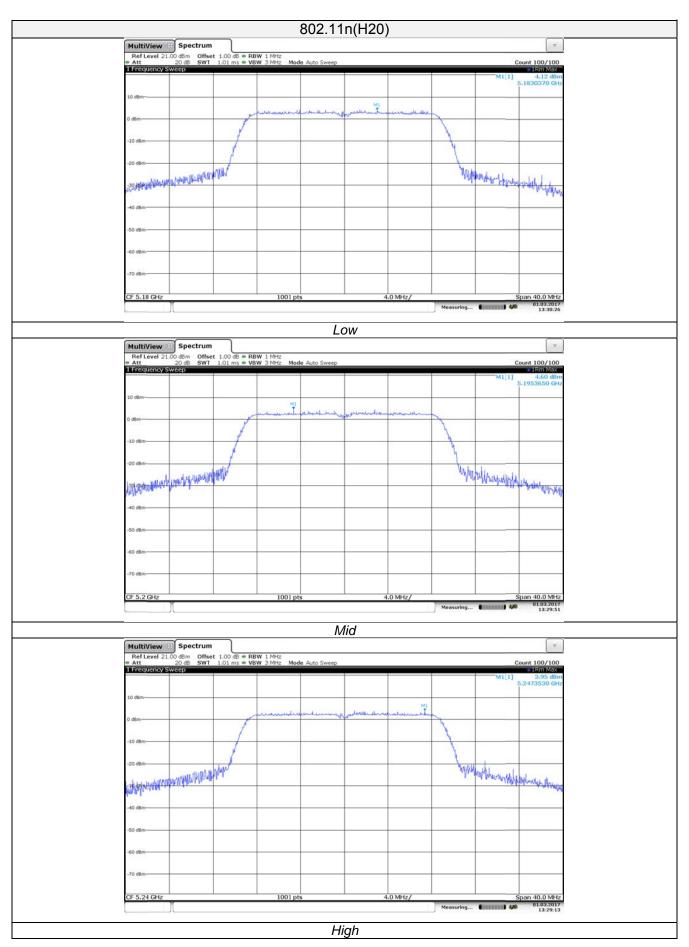
- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz, 4. VBW = 3MHz
- 7. Number of sweep points > 2 x (span/RBW)
- 8. Sweep time = auto
- 6. Detector = power averaging (RMS)
- 7. Trigger was set to free run for all modes
- 8. Trace was averaged over 100 sweeps
- 9. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

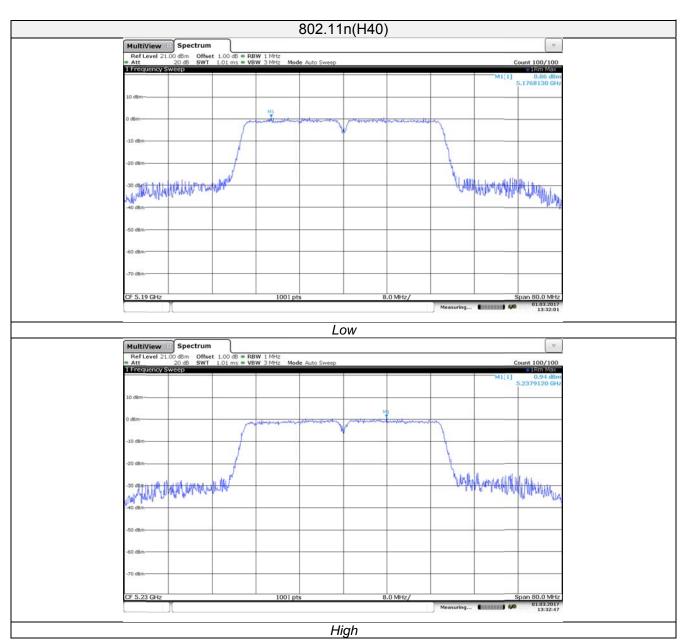
TEST RESULTS

Report No.: TRE1702011101 Page: 18 of 82 Issued: 2017-03-13

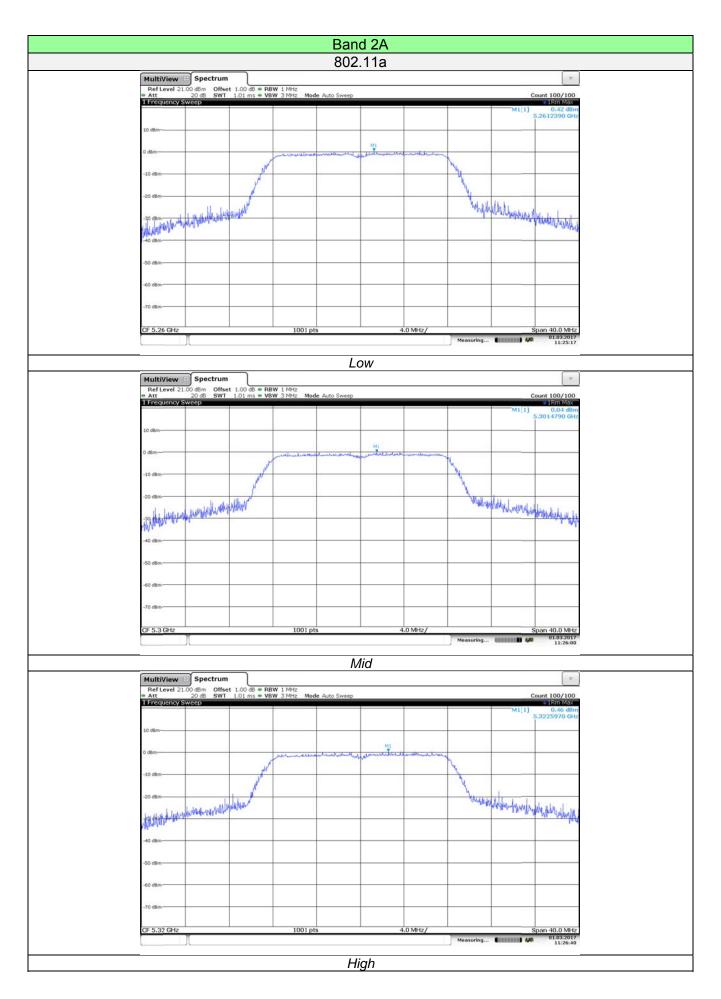
	Туре	Channel	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
		Low	2.28		
	802.11a	Mid	1.12	11.00	Pass
Band 1 5150-5250MHz		High	1.00	1	1
	802.11n(H20) 802.11n(H40)	Low	4.12	11.00	Pass
		Mid	4.60		
		High	3.95		
		Low	0.86		
		High	0.94		Pass
				l impit	


Band 2A 5250-5350MHz	Туре	Channel	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
		Low	0.42		
	802.11a	Mid	0.04	11.00	Pass
		High	0.46	1	
	802.11n(H20)	Low	3.83	11.00	Pass
		Mid	3.12		
		High	2.51		
	902 11p(U40)	Low	0.10	11.00	Pass
	802.11n(H40)	High	-0.40		

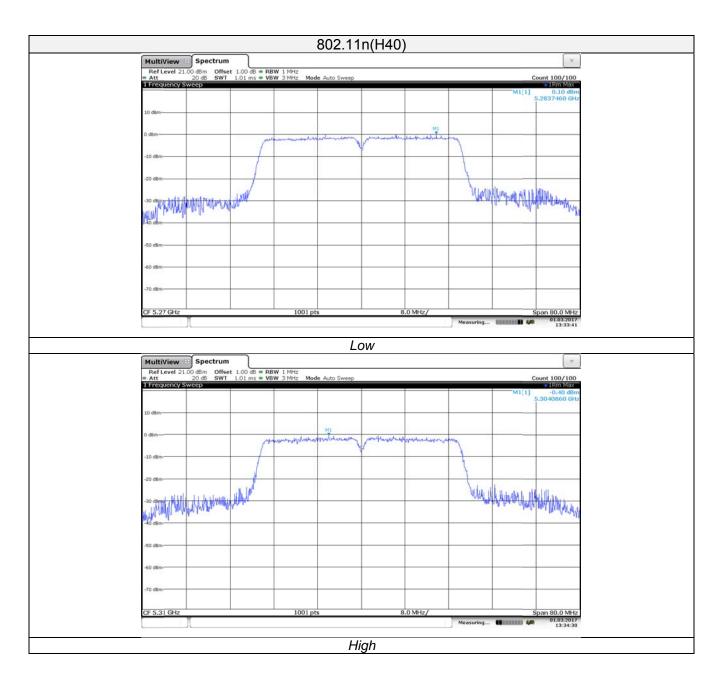

Band 2C 5470-5725MHz	Туре	Channel	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
		Low	1.30		
	802.11a	Mid	0.45	11.00	Pass
		High	-2.07	1	
	802.11n(H20)	Low	0.90	11.00	Pass
		Mid	0.05		
		High	-2.24		
	802.11n(H40)	Low	-2.17	11.00	Pass
		High	-5.04		

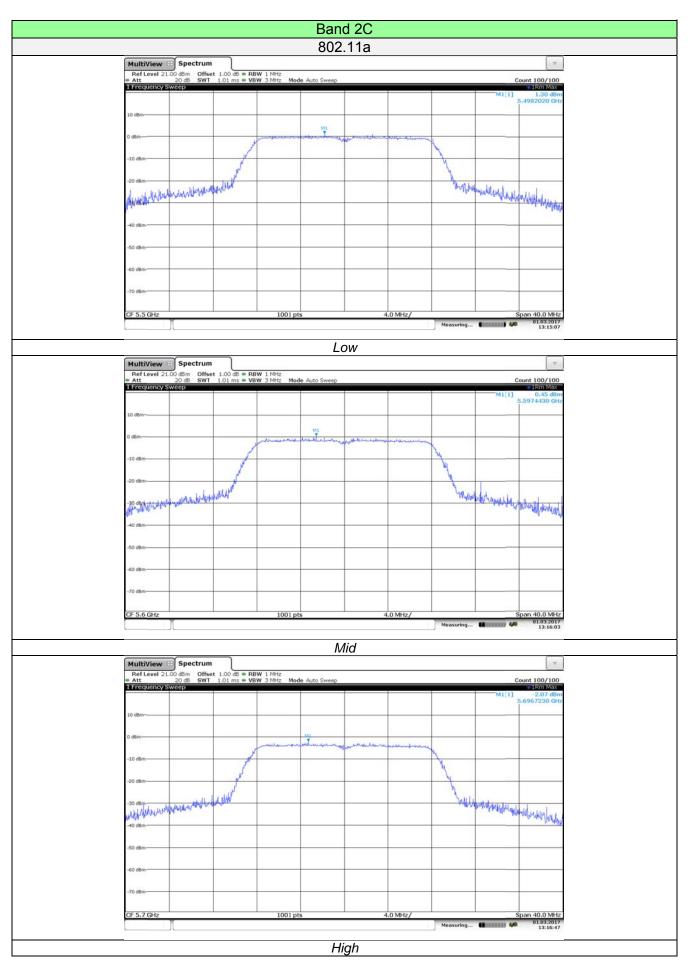

	Туре	Channel	PSD (dBm/500KHz)	Limit (dBm/500KHz)	Result
		Low	-6.00		
Band 3 5725-5850MHz	802.11a	Mid	-5.84	30.00	Pass
		High	-7.12		
	802.11n(H20)	Low	-6.05	30.00	Pass
		Mid	-6.25		
		High	-7.77		
	802.11n(H40)	Low	-9.64	30.00	Pass
		High	-9.61		

Test plot as follows:

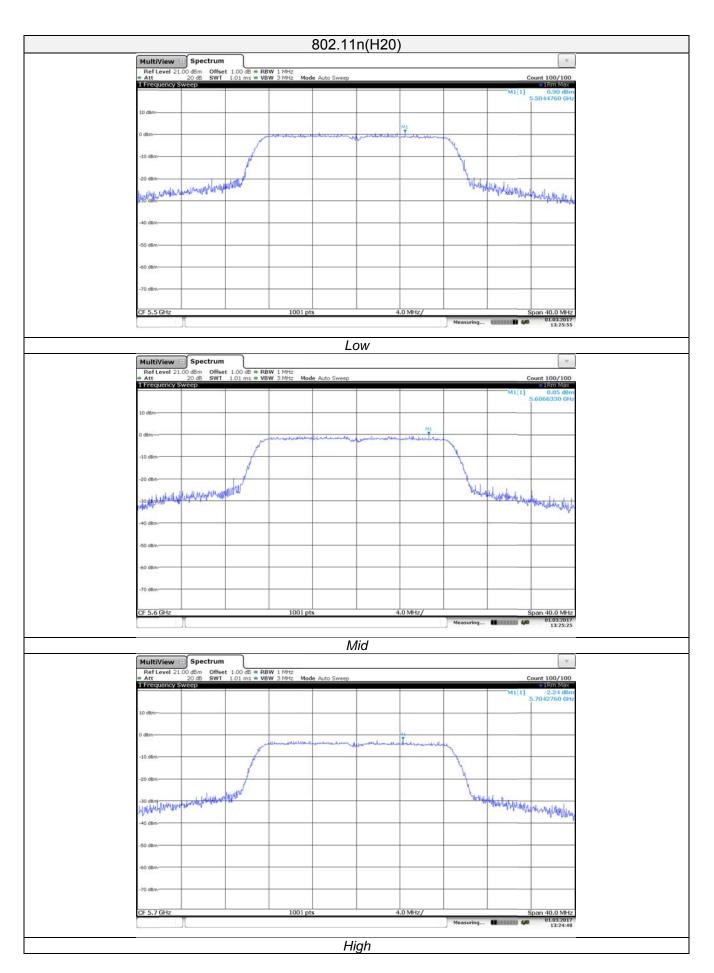

Report No.: TRE1702011101 Page: 19 of 82 Issued: 2017-03-13



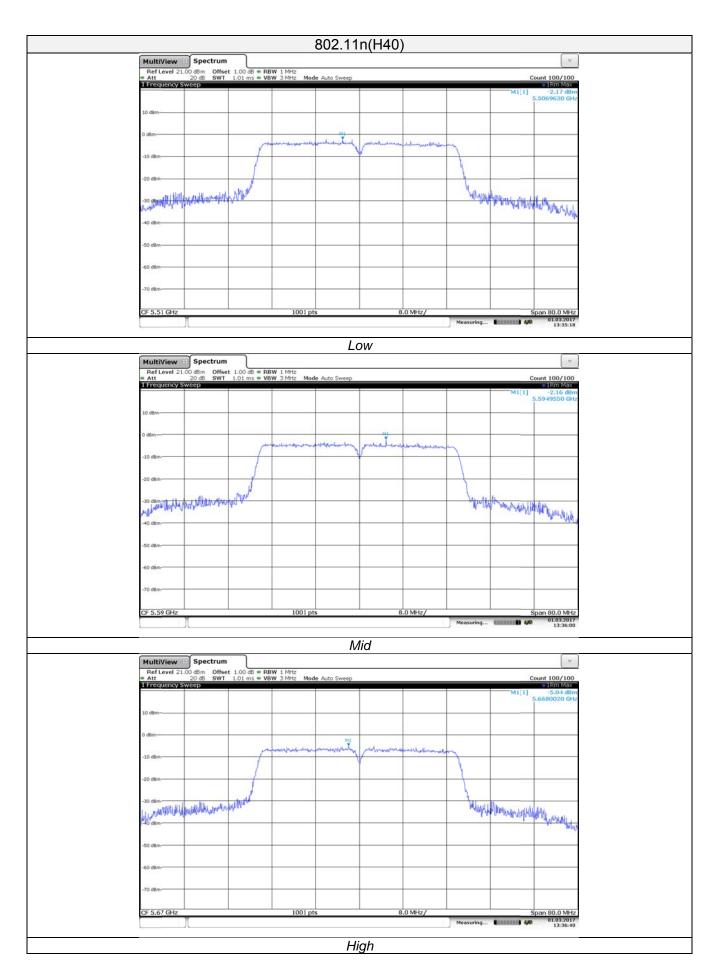

Report No.: TRE1702011101 Page: 22 of 82 Issued: 2017-03-13

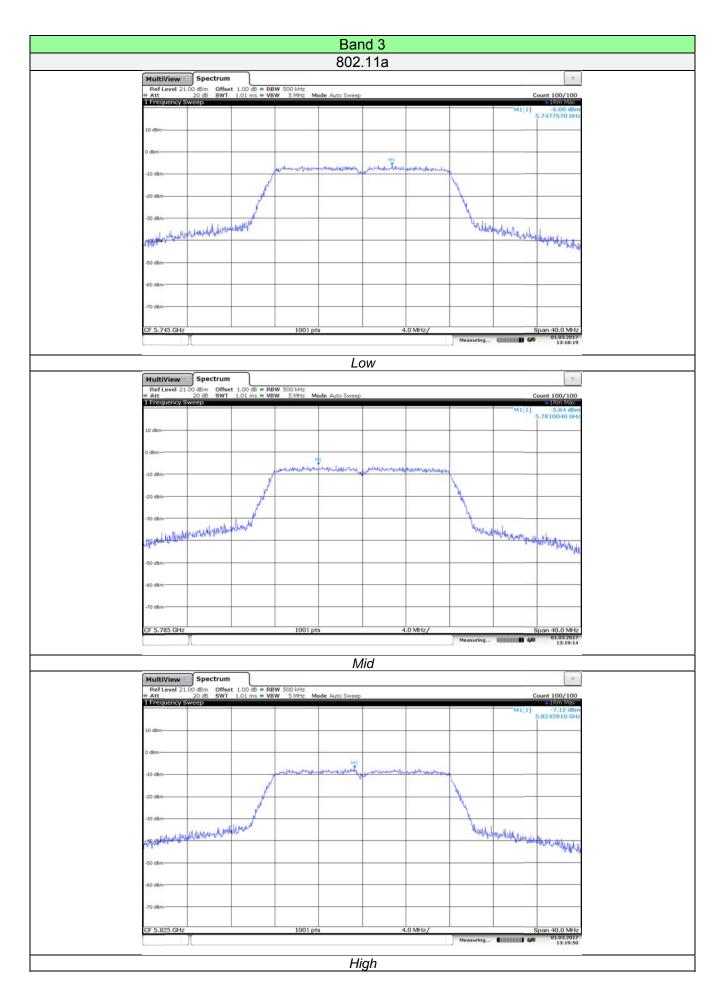


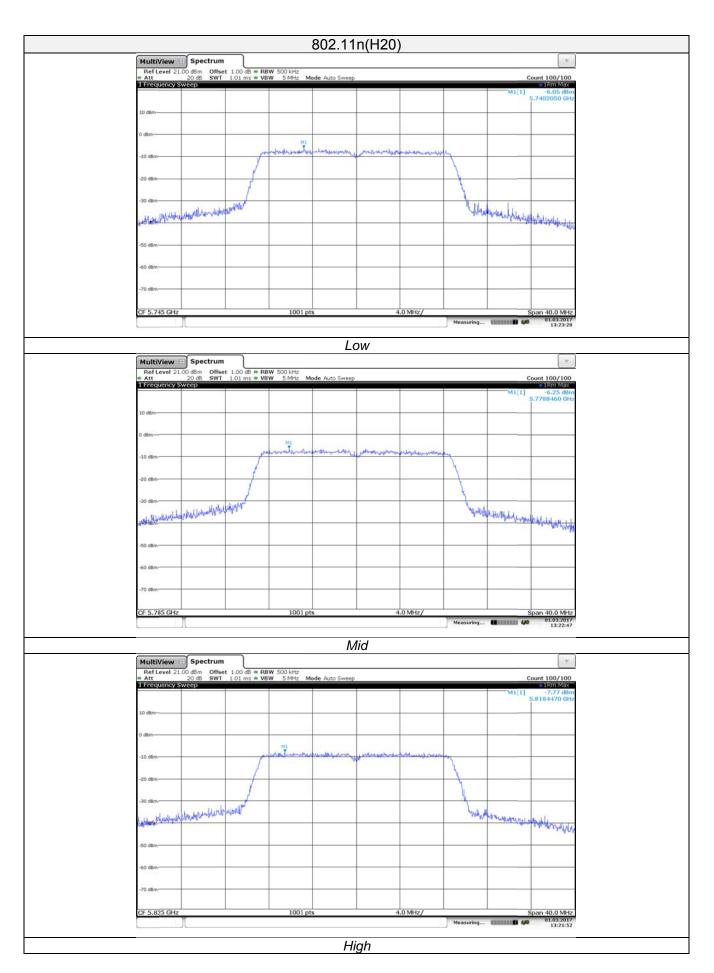
Report No.: TRE1702011101 Page: 23 of 82 Issued: 2017-03-13

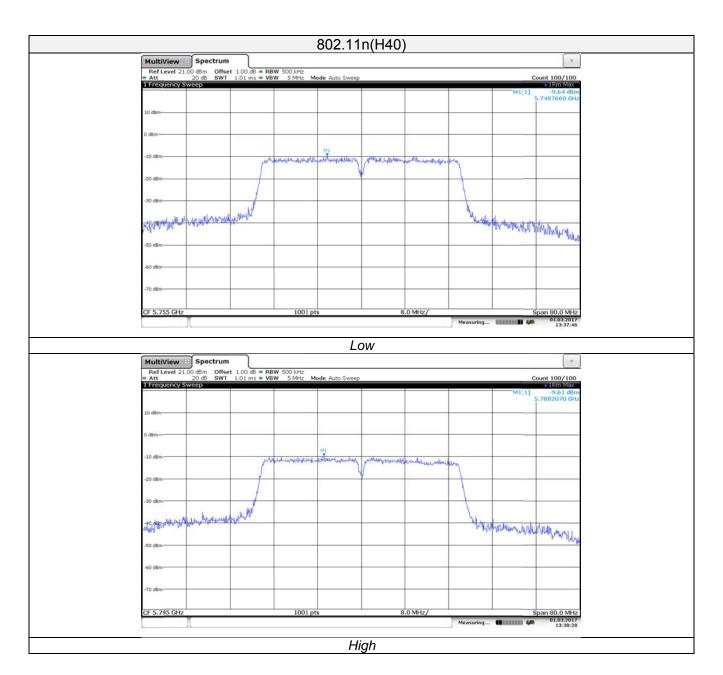


Report No.: TRE1702011101 Page: 24 of 82 Issued: 2017-03-13



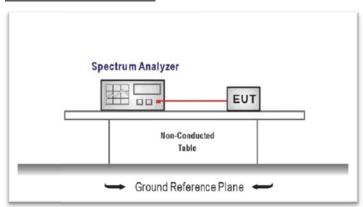

Report No.: TRE1702011101 Page: 26 of 82 Issued: 2017-03-13


Report No.: TRE1702011101 Page: 27 of 82 Issued: 2017-03-13


Report No.: TRE1702011101 Page: 28 of 82 Issued: 2017-03-13

Report No.: TRE1702011101 Page: 29 of 82 Issued: 2017-03-13

Report No.: TRE1702011101 Page: 30 of 82 Issued: 2017-03-13


Report No.: TRE1702011101 Page: 31 of 82 Issued: 2017-03-13

5.5. 99% Occupied Bandwidth

LIMIT

<u>N/A</u>

TEST CONFIGURATION

TEST PROCEDURE

According KDB 789033 D02 v01r02 - Section D

- 1. Set center frequency to the nominal EUT channel center frequency
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. peak detection and max hold mode (until the trace stabilizes)
- 6. Use the 99 % power bandwidth function of the instrument

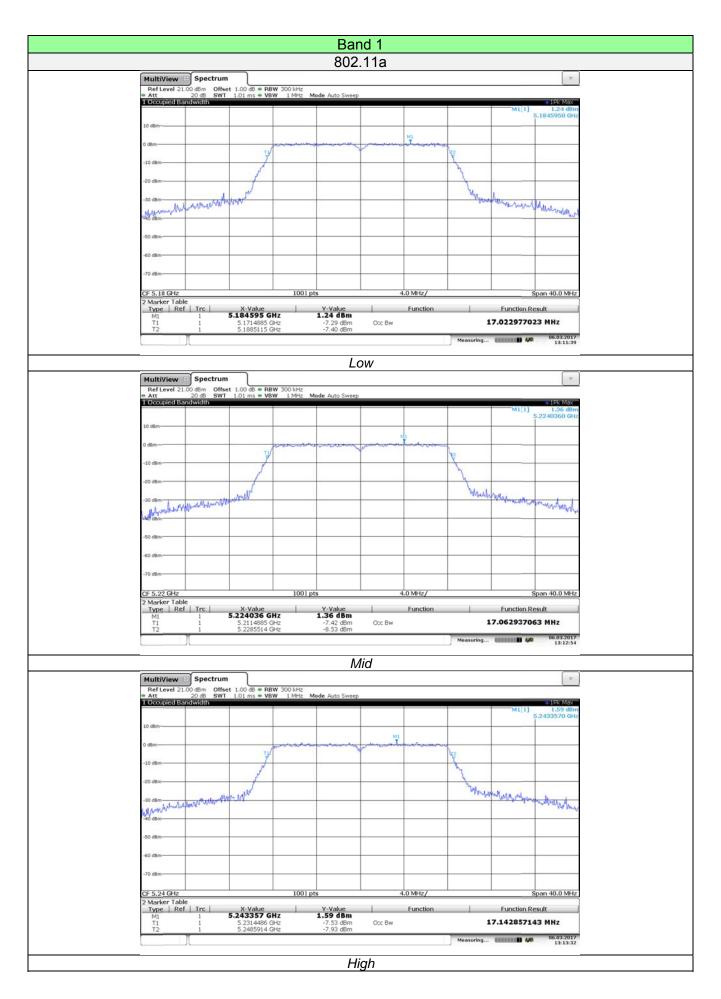
TEST MODE:

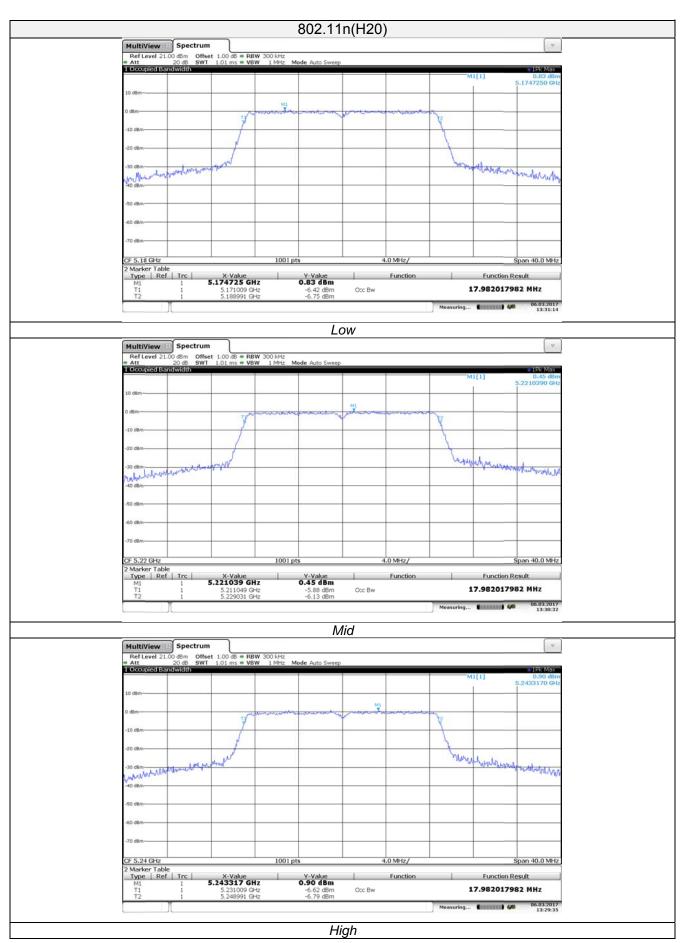
Please refer to the clause 3.3

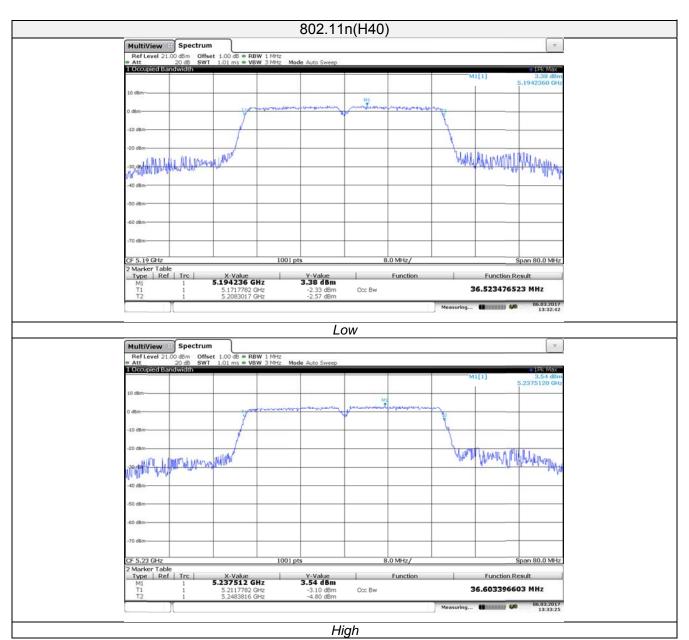
TEST RESULTS

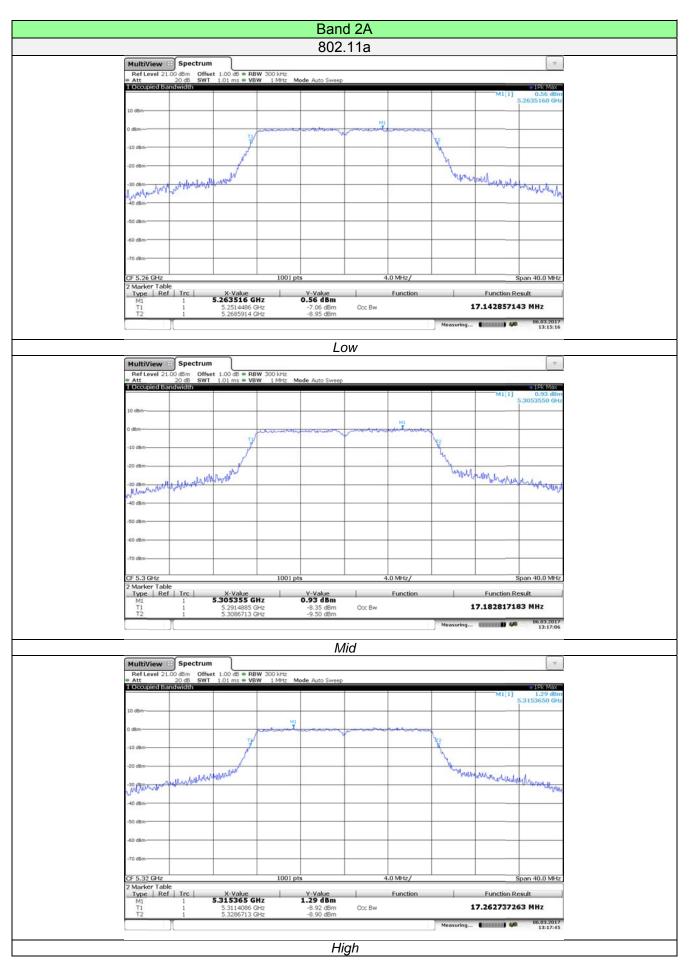
 Report No.: TRE1702011101 Page: 32 of 82 Issued: 2017-03-13

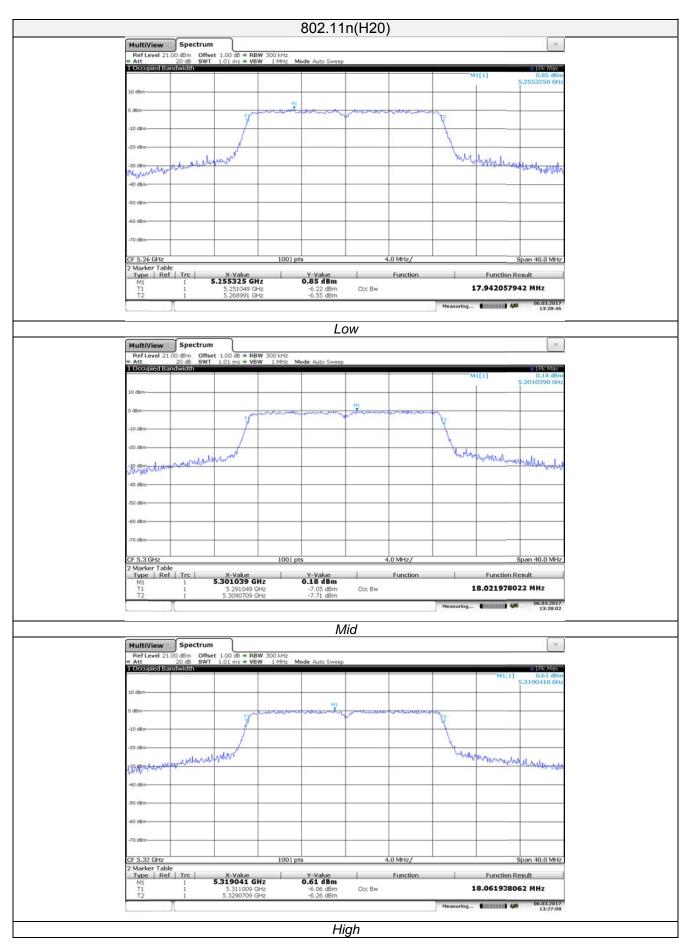
	Туре	Channel	99% Occupied Bandwidth(MHz)	Limit	Result
		Low	17.02		
	802.11a	Mid	17.06	-	Pass
Band 1		High	17.14		
5150-5250MHz	802.11n(H20)	Low	17.98	-	Pass
		Mid	17.98		
		High	17.98		
	802.11n(H40)	Low	36.52	-	Pass
		High	36.60		
		_			
			000/ Occupied		

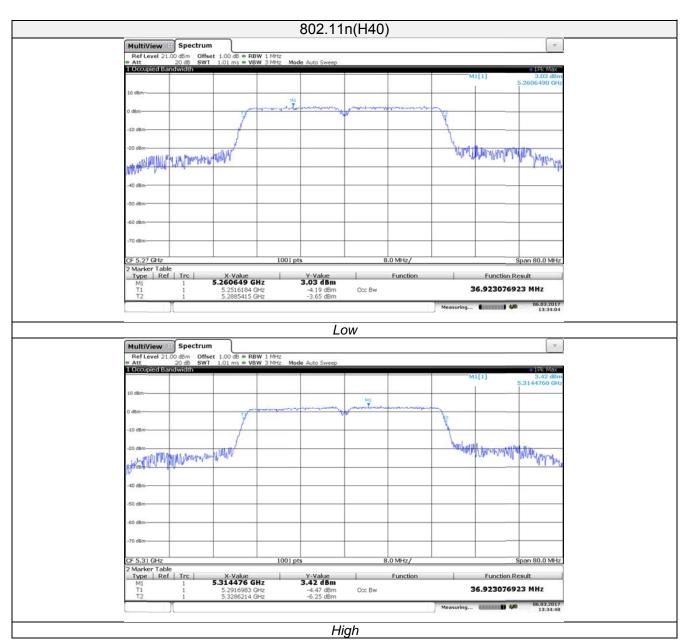

	Туре	Channel	99% Occupied Bandwidth(MHz)	Limit	Result
	802.11a	Low	17.14	-	Pass
		Mid	17.18		
Band 2A 5250-5350MHz		High	17.26		
	802.11n(H20)	Low	17.94	-	Pass
		Mid	18.02		
		High	18.06		
	802.11n(H40)	Low	36.92	-	Pass
		High	36.92		F a S S

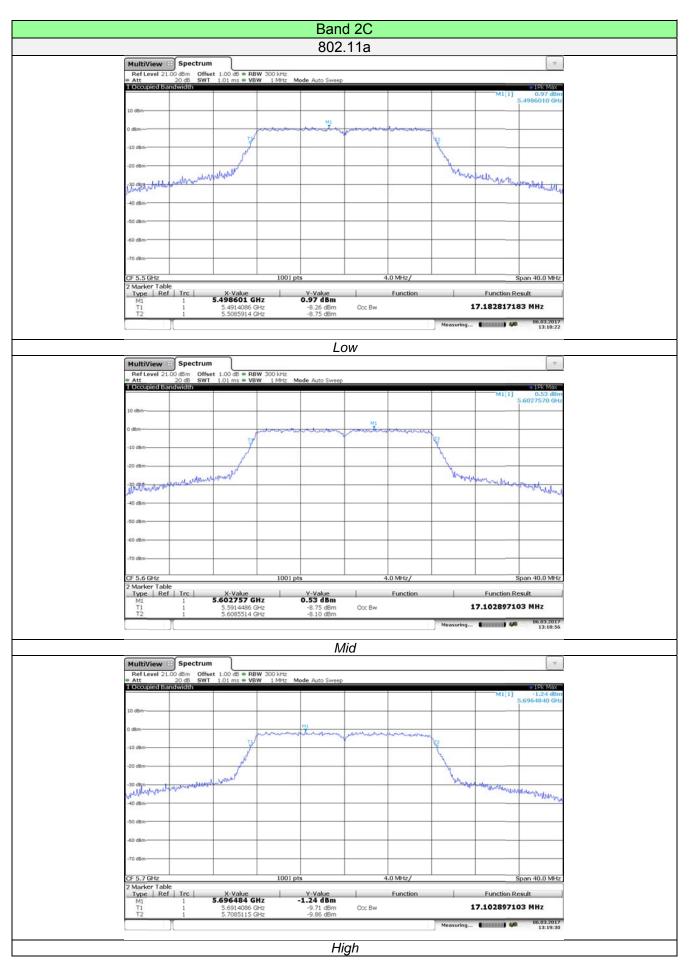

	Туре	Channel	99% Occupied Bandwidth(MHz)	Limit	Result
		Low	17.18		
Band 2C 5470-5725MHz	802.11a	Mid	17.10	-	Pass
		High	17.10		
		Low	18.02		
	802.11n(H20)	Mid	18.02	-	Pass
		High	17.98		
	902 11n/U40)	Low	36.60		Door
	802.11n(H40)	High	36.76	-	Pass

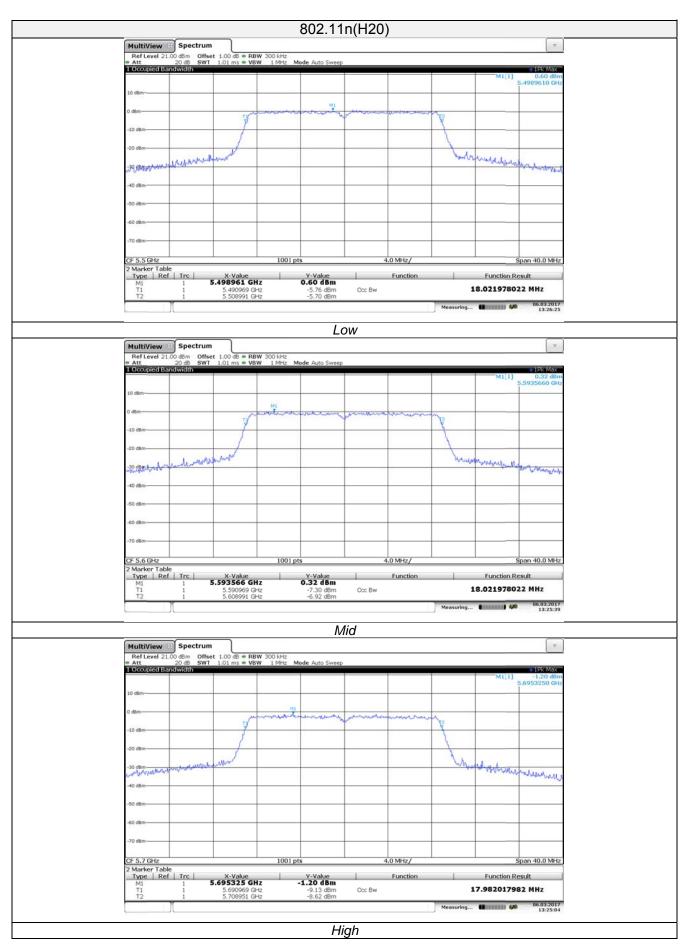

	Туре	Channel	99% Occupied Bandwidth(MHz)	Limit	Result
	802.11a	Low	17.14	-	Pass
		Mid	17.06		
Band 3		High	17.06		
5725-5850MHz	802.11n(H20)	Low	17.98	-	Pass
		Mid	17.98		
		High	17.98		
	802.11n(H40)	Low	36.60	-	Pass
		High	36.68		

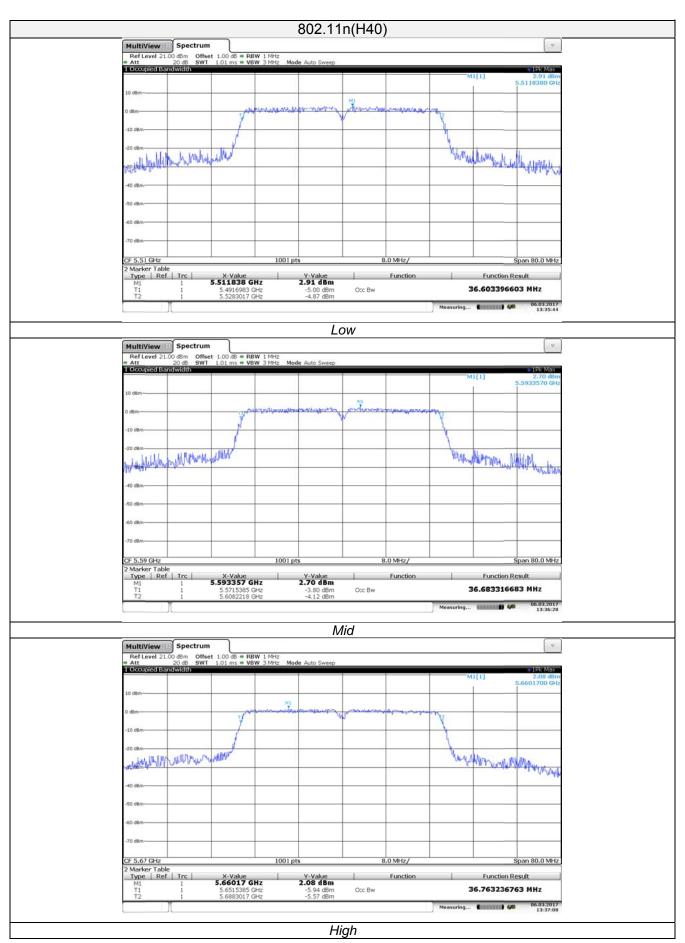

Test plot as follows:

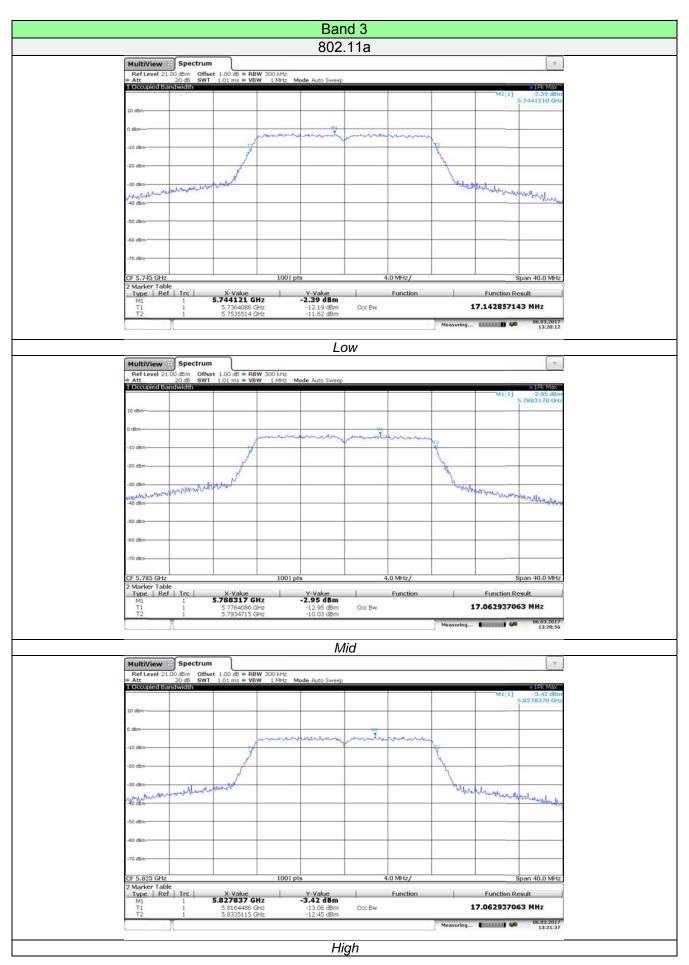

Report No.: TRE1702011101 Page: 33 of 82 Issued: 2017-03-13

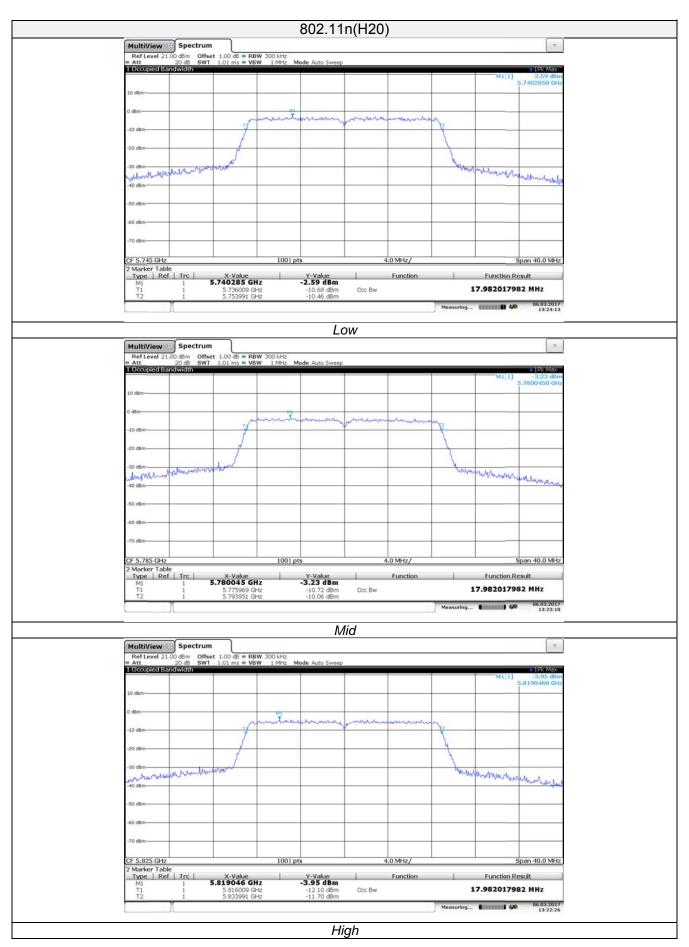


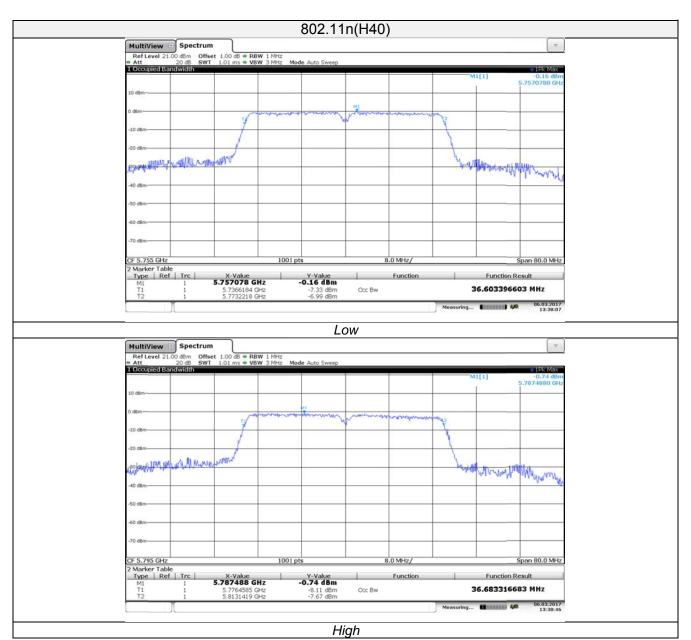


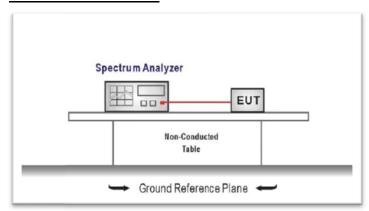











Report No.: TRE1702011101 Page: 45 of 82 Issued: 2017-03-13

5.6. 6dB&26dB bandwidth

LIMIT

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

TEST CONFIGURATION

TEST PROCEDURE

According KDB 789033 D02 v01r02 - Section C

- 1. The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW > 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

TEST RESULTS

Report No.: TRE1702011101 Page: 46 of 82 2017-03-13 Issued:

26dB Bandwidth

	Туре	Channel	26dB Bandwidth (MHz)	Limit	Result
	802.11a	Low	20.031	-	Pass
		Mid	19.907		
Band 1		High	19.993		
5150-5250MHz		Low	20.179	-	Pass
	802.11n(H20)	Mid	20.247		
		High	20.303		
	802.11n(H40)	Low	40.044		Doos
	ου2.1 III(Π 4 0)	High	40.088	-	Pass
	Туре	Channel	26dB Bandwidth	Limit	Result
			(MHz))	Lilling	Tioodit
	802.11a	Low	19.983	-	Pass
		Mid	19.993		
Band 2A		High	19.941		
5250-5350MHz	802.11n(H20)	Low	20.355	-	Pass
		Mid	20.277		
		High	20.257		
	802.11n(H40)	Low	40.289	-	Pass
		High	40.290		
	Туре	Channel	26dB Bandwidth	Limit	Result
			(MHz))		
	802.11a	Low	20.118	-	Pass
		Mid	19.971		
Band 2C		High	19.933		
5470-5725MHz		Low	20.303		
0-770-0720WII IZ	802 11n(H20)	Mid	20 233	_	Pass

	Type	Channel	6dB Bandwidth (MHz))	Limit (MHz)	Result
		Low	16.359		
Band 3 5720-5850MHz	802.11a	Mid	16.368	0.5	Pass
		High	16.360		
		Low	17.619		
	802.11n(H20)	Mid	17.567	0.5	Pass
		High	17.610		
	802.11n(H40)	Low	36.281	0.5	Door
		High	36.059		Pass

Mid

High

Low

Mid

High

20.233

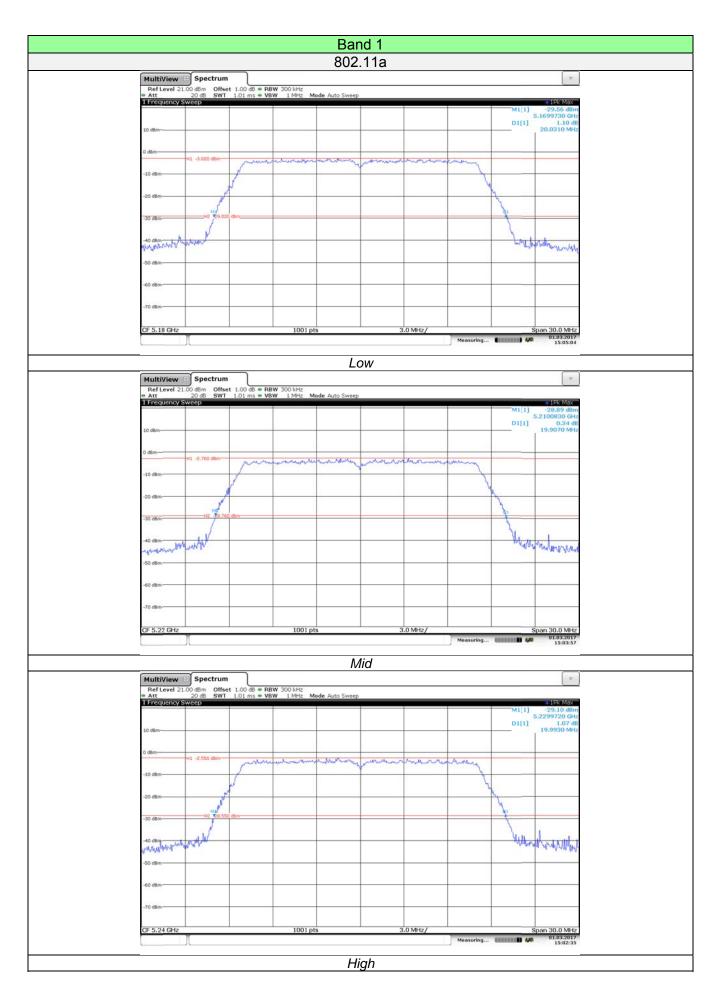
20.178

39.953

20.118

39.995

Test plot as follows:


802.11n(H20)

802.11n(H40)

Pass

Pass

Report No.: TRE1702011101 Page: 47 of 82 Issued: 2017-03-13

