
FCC Radio Test Report

FCC ID: 2AMHM-AD00A10055

Report No. Equipment Model Name Brand Name Applicant Address	:	BTL-FCCP-1-1911T165 iTraMS Gen2A CU-303-0403 Bosch Robert Bosch Engineering & Business Solution Pvt. Ltd. 123, Industrial Layout, Hosur Road, Koramangala, Bengaluru, 560095 Bengaluru India
Radio Function	:	Bluetooth EDR
FCC Rule Part(s) Measurement Procedure(s)		FCC Part15, Subpart C (15.247) ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	:	2019/11/27 2019/11/27 ~ 2020/1/7 2020/3/16

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by Peter Chen, Engineer ac-MRA **Testing Laborator** 0659 Approved by Scott Hsu, Manager BTL Inc. No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NIST, A2LA, or any agency of the U.S. Government.

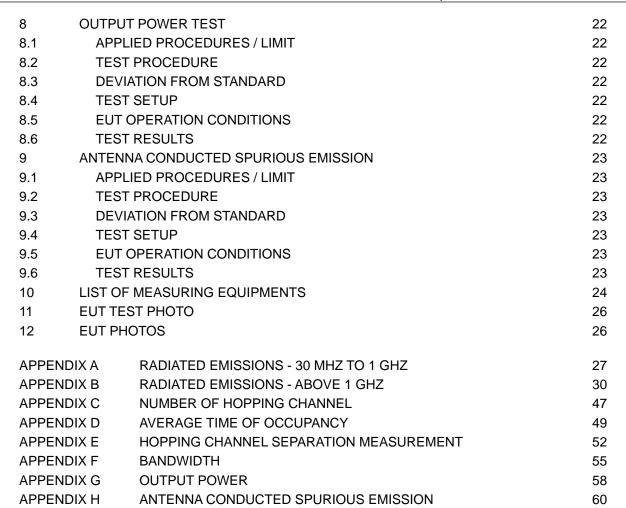
This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation


For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

R	EPORT ISSUED HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.	1 TEST FACILITY	7
1.	2 MEASUREMENT UNCERTAINTY	7
1.	3 TEST ENVIRONMENT CONDITIONS	8
1.	4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	8
1.	5 DUTY CYCLE	9
2	GENERAL INFORMATION	10
2.	1 DESCRIPTION OF EUT	10
2.	2 TEST MODES	12
2.	3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13
2.	4 SUPPORT UNITS	13
3	RADIATED EMISSIONS TEST	14
3.	1 LIMIT	14
3.	2 TEST PROCEDURE	15
3.	3 DEVIATION FROM TEST STANDARD	15
3.	4 TEST SETUP	15
3.	5 EUT OPERATING CONDITIONS	16
3.	6 TEST RESULT – 30 MHZ TO 1 GHZ	17
3.	7 TEST RESULT – ABOVE 1 GHZ	17
4	NUMBER OF HOPPING CHANNEL	18
4.	1 APPLIED PROCEDURES	18
4.	2 TEST PROCEDURE	18
4.		18
4.	4 TEST SETUP	18
4.		18
4.		18
5		19
5.		19
5.		19
5.		19
5.		19
5.		19
5.		19
6		20
6.		20
6.		20
6.		20
6.		20
6.		20
7 7.		21 21
7.		21
7. 7.		21 21
7.		21 21
7.		21
7.		21
7.		<u>د</u> ۱

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue	2020/3/3
R01	Original Issue. Revised report to address TCB's comments.	2020/3/3 2020/3/16
oject No.: 1911T165	Dogo 5 of 64	Donort Varaian, DOA
0,000,000,000,000	5 Page 5 of 64	Report Version: R01

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)						
Standard(s) Section	Description	Test Result	Judgement	Remark		
15.207	AC Power Line Conducted Emissions		N/A	NOTE (1)		
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX A APPENDIX B	Pass			
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX C	Pass			
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX D	Pass			
15.247 (a)(1)	Hopping Channel Separation	APPENDIX E	Pass			
15.247 (a)(1)	Bandwidth	APPENDIX F	Pass			
15.247 (b)(1)	Output Power	APPENDIX G	Pass			
15.247(d)	Antenna conducted Spurious Emission	APPENDIX H	Pass			
15.203	Antenna Requirement		Pass			

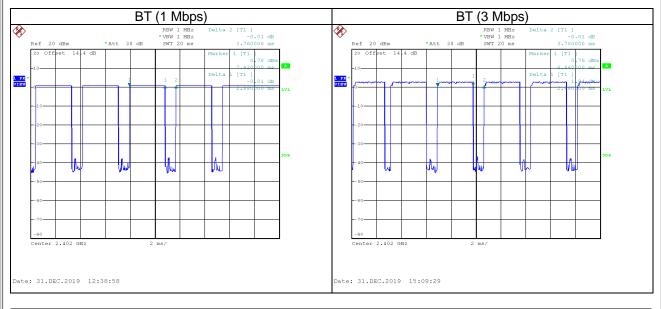
NOTE:

"N/A" denotes test is not applicable in this Test Report.
 The report format version is TP.1.1.1.

1.1 TEST FACILITY The test facilities used to collect the test data in this report: No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 355421 and DN: TW1099. C05 CB08 □ CB11 □ CB15 □ CB16 \boxtimes SR06 No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan The test sites and facilities are covered under FCC RN: 325517 and DN: TW1115. ⊠ CB18 C03 CB19 1.2 MEASUREMENT UNCERTAINTY The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cisor} requirement. A. Radiated emissions below 1 GHz test : Ant. Test Site U,(dB) Method Measurement Frequency Range H/V 30MHz ~ 200MHz V 4.20 30MHz ~ 200MHz Н 3.64 **CB18** CISPR 200MHz ~ 1,000MHz (3m) V 4.56 200MHz ~ 1,000MHz Н 3.90 B. Radiated emissions above 1 GHz test : Ant. Test Site Method U,(dB) Measurement Frequency Range H / V 1GHz ~ 6GHz V 4.46 **CB18** 1GHz ~ 6GHz Η 4.40 CISPR (3m) 6GHz ~ 18GHz V 3.88 6GHz ~ 18GHz Н 4.00 Test Site Method Measurement Frequency Range U,(dB) **CB18** 18 ~ 26.5 GHz 4.62 CISPR (1m) 26.5 ~ 40 GHz 5.12 C. Conducted test : Test Item U,(dB) Number of Hopping Frequency 0.00 Average Time of Occupancy 1.20 Hopping Channel Separation 1.20 1.13 Bandwidth Peak Output Power 1.06 Antenna conducted Spurious Emission 1.14 Conducted Band edges 1.13 NOTE: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Tested by
Radiated emissions below 1 GHz	23 °C, 65 %	Hunter Chiang
Radiated emissions above 1 GHz	23 °C, 65 %	Hunter Chiang
Number of Hopping Frequency	24.7 °C, 53.9 %	Jay Kao
Average Time of Occupancy	24.7 °C, 53.9 %	Jay Kao
Hopping Channel Separation	24.7 °C, 53.9 %	Jay Kao
Bandwidth	24.7 °C, 53.9 %	Jay Kao
Output Power	24.7 °C, 53.9 %	Jay Kao
Antenna conducted Spurious Emission	24.7 °C, 53.9 %	Jay Kao


1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software		DutApi_w888	37_BrdigeEth	
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate
GFSK	10	10	10	1 Mbps
π/4-DQPSK	10	10	10	2 Mbps
8DPSK	10	10	10	3 Mbps

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
wode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.880	1	2.880	3.760	76.60%	1.16
BT (3 Mbps)	2.880	1	2.880	3.780	76.19%	1.18

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	iTraMS Gen2A
Model Name	CU-303-0403
Brand Name	Bosch
Model Difference	N/A
Power Source	Supplied from Battery.
Power Rating	DC 9-32V
Products Covered	N/A
Hardware Version	B2
Software Version	MS8
Frequency Range	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps
	1 Mbps: 1.51 dBm (0.0014 W)
Output Power Max.	2 Mbps: 4.12 dBm (0.0026 W)
	3 Mbps: 4.60 dBm (0.0029 W)
Test Model	CU-303-0403
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

BIL

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

Ant.	Brand	S/N	Antenna Type	Connector	Gain (dBi)
CH0		146153	Internal	N/A	3.0

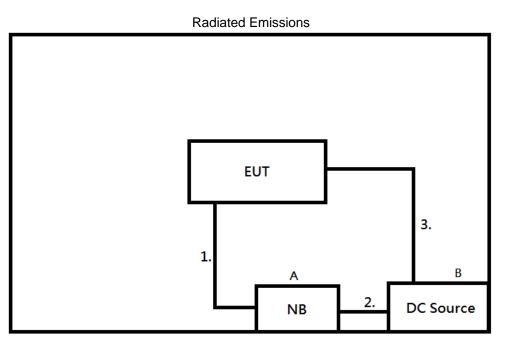
2.2 TEST MODES

Test Items	Test mode	Channel	Note
Transmitter Radiated Emissions (below 1GHz)	3 Mbps	00	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:

(1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.

(2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.


(3) All X, Y and Z axes are evaluated, but only the worst case (Z axis) is recorded.

(4) There were no emissions found below 30 MHz within 20 dB of the limit.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	notebook	hp	TPN-1119	NA	-
В	DC Source	twintex	TP-6010	1616AP051502100	-
Item	Shielded	Forrito Coro	L a ra art la		
	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	NO	NO	Length 1m	Lan to USB	Remarks -
1 2					Remarks - -

3 RADIATED EMISSIONS TEST

3.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

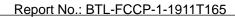
LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated I (dBu	Measurement Distance	
(INIEZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

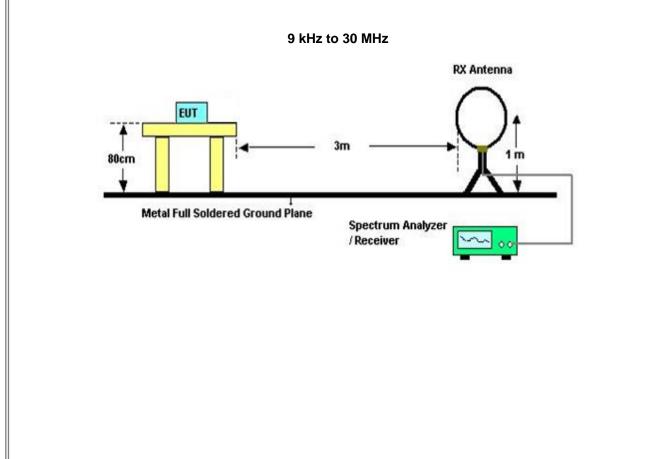

Start ~ Stop Frequency

Calculation example.				
Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	Ш	24.08

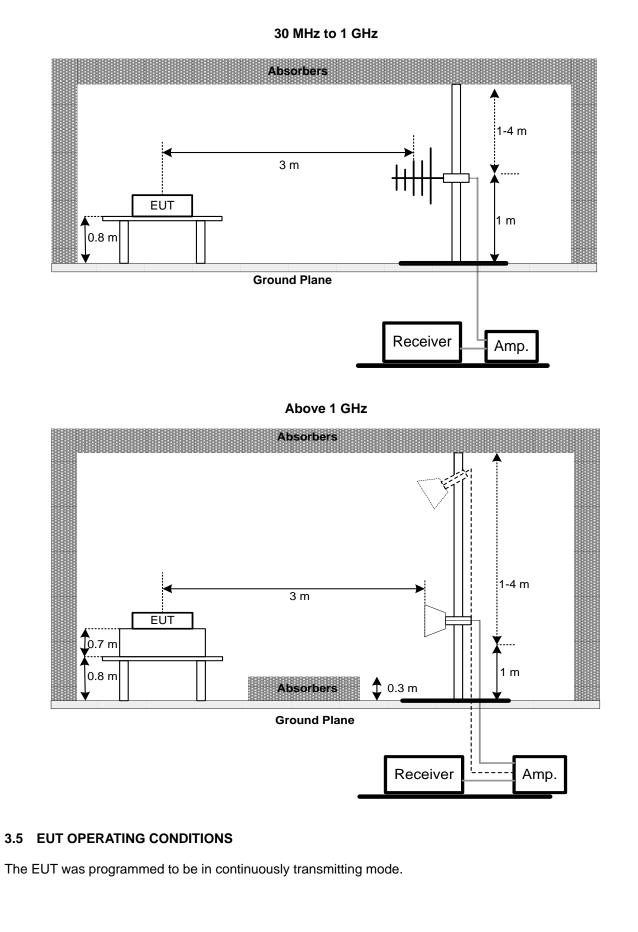
Measurement Value		Limit Value		Margin Level
24.08	1	40	=	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector

30MHz~1000MHz for QP detector


3.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.6 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX A.

3.7 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX B.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

4 NUMBER OF HOPPING CHANNEL

4.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C				
Section	Test Item	Frequency Range (MHz)	Result	
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS	

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

Please refer to the APPENDIX C.

5 AVERAGE TIME OF OCCUPANCY

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

5.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse. A Period Time = (channel number) $^{*}0.4$

For Normal Mode (79 Channel): DH1 Time Solt: Reading * (1600/2)*31.6/(channel number) DH3 Time Solt: Reading * (1600/2)*31.6/(channel number) DH5 Time Solt: Reading * (1600/2)*31.6/(channel number)

For AFH Mode (20 Channel): DH1 Time Solt: Reading * (1600/2)*8/(channel number) DH3 Time Solt: Reading * (1600/4)*8/(channel number) DH5 Time Solt: Reading * (1600/6)*8/(channel number)

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

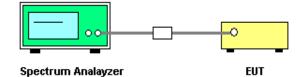
Please refer to the APPENDIX D.

6 Hopping Channel Separation Measurement

6.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RBW	30 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


6.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 TEST RESULTS

Please refer to the APPENDIX E.

7 BANDWIDTH TEST

7.1 APPLIED PROCEDURES

	FCC Part15 (15.247), Subpart C	
Section	Test Item	Frequency Range (MHz)
15.247(a)(2)	Bandwidth	2400-2483.5

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8 OUTPUT POWER TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(b)(1)	15.247(b)(1) Peak Output Power 0.125Watt or 21dBm 2400-2483.5 PASS								

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

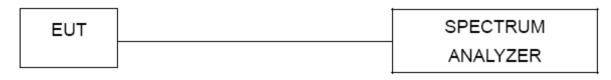
8.6 TEST RESULTS

Please refer to the APPENDIX G.

9 ANTENNA CONDUCTED SPURIOUS EMISSION

9.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10 LIST OF MEASURING EQUIPMENTS

	· · · · ·		Radiated Emissio	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC02325B	980217	2019/4/12	2020/4/11
2	Preamplifier	EMCI	EMC012645B	980267	2019/4/12	2020/4/11
3	Test Cable	EMCI	EMC104-SM-SM- 800 150207		2019/4/12	2020/4/11
4	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2019/4/12	2020/4/11
5	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2019/4/12	2020/4/11
6	MXE EMI Receiver	Agilent	N9038A	MY55420127	2019/3/26	2020/3/25
7	Signal Analyzer	Agilent	N9010A	MY56480554	2019/6/6	2020/6/5
8	Horm Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2019/6/10	2020/6/9
9	Horm Ant	Schwarzbeck	BBHA 9170	187	2018/12/22	2019/12/21
10	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	000992	2019/5/29	2020/5/28
11	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0508	2019/5/29	2020/5/28
		Num	ber of Hopping Fre	equency		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22
		Δια	erage Time of Occ	upapov		
	Kind of	Ave	rage time of Occi	upancy	Calibrated	Calibrated
Item	Equipment	Manufacturer	Type No.	Serial No.	Date	Until
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22
		Hon	ping Channel Sep	paration		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22
	•		Bandwidth			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
	Spectrum					2020/5/22

	Output Power											
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until						
1	Power Meter	Anritsu	ML2495A	1128008	2019/12/6	2020/12/4						
2	Power Sensor	Anritsu	MA2411B	1126001	2019/12/6	2020/12/4						

Antenna conducted Spurious Emission											
ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22					

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

11 EUT TEST PHOTO

Please refer to document Appendix No.: TP-1911T165-FCCP-1 (APPENDIX-TEST PHOTOS).

12 EUT PHOTOS

Please refer to document Appendix No.: EP-1911T165-1 (APPENDIX-EUT PHOTOS).

APPENDIX A RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Test Mod	de	TX Mode	2402MHz	_CH00_3	Mbps			Tested Date	2019/12/29
Test Volt	age	DC 32V			·			Polarization	Vertical
80.0	dBu¥/m								
70									
60									
50									
40									
30	1 X			3 X	4 ×	5 X		6 X	
20		2 X			~				
10									
0.0 30	000 127	.00 224.00) 321.00	418.00	515.00	612.00	709.00	0 806.00	1000.00 MHz
No. Mk	. Freq	Reading	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1 *	75.590		-14.86	27.87	40.00	-12.13	peak		
2	195.870	35.88	-14.18	21.70	43.50	-21.80	peak		
3	397.630	0 35.18	-8.41	26.77	46.00	-19.23	peak		

46.00 -21.95

46.00 -20.15

-14.24

46.00

peak

peak

peak

REMARKS:

4

5

6

508.2100

789.5100

623.6400

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

29.92

29.39

33.03

-5.87

-3.54

-1.27

24.05

25.85

31.76

Test Mo	de	TX Mode 2	402MHz	_CH00_3	Mbps			Tested Date	2019/12/29
Test Vol	tage	DC 32V						Polarization	Horizontal
80.0	dBu¥∕m								
70									
60									
50									
40				4 X	\$			6	
30		2	3 X					6 X	
20	Å	2 X							
10									
0.0				112.00					
31	0.000 127.0		321.00	418.00	515.00	612.00	709.0	0 806.00	1000.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	120.2100	36.54	-13.43	23.11	43.50	-20.39	peak		
2	217.2100		-14.64	26.91	46.00	-19.09	peak		
3	307.4200		-10.22	31.59	46.00	-14.41	peak		
4	397.6300	44.93	-8.41	36.52	46.00	-9.48	peak		

46.00 -8.20

-12.83

46.00

peak

peak

REMARKS:

5 *

6

500.4500

783.6900

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

43.92

34.19

-6.12

-1.02

37.80

33.17

APPENDIX B RADIATED EMISSIONS - ABOVE 1 GHZ

est Mode	€ TX	Mode 240)2MHz _(CH00_1M	lbps			Tested Date	2019/12/29
est Volta	ge DC	32V						Polarization	Horizontal
120.0 110 90 80 70 60 1	dBuV/m	enthemaskuka echaire	b. Num Mar				ender D. Cont M. Cont		
40 30 20									
0.0									
2377	7.000 2382.0		2392.00	2397.00	2402.00	2407.0	0 2412	.00 2417.00	2427.00 MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1 2	2377.450	26.75	31.19	57.94	74.00	-16.06	peak		
2 2	2377.450	14.16	31.19	45.35	54.00	-8.65	AVG		
3 X 2	2402.000	65.99	31.30	97.29	74.00	23.29	peak	No Limit	
4 * 2	2402.000	65.77	31.30	97.07	54.00	43.07	AVG	No Limit	

st Moo	de TX	(Mode 248	BOMHz _(CH78_1M	bps			Tested Date	2019/12/29
st Volt	tage DO	C 32V						Polarization	Horizontal
120.0) dBu∀/m								
110									
100					2 X				
90					$-/\uparrow$				
80					+				
70									
60	an a third heads at a	Marchalleramb	14				3 X	har	
50	handre and a start a start and a start a start a start a start	an shirt wat when a second	*******	****	v	JAN MANANA MANANA	4	<u>han series in Anthreis an Anthreis an An</u> thread an Anthread an Anthread an Anthread an Anthread an Anthread an An	ALT DUTT MANAGER
40							×		
30									
20									
10									
0.0 24	55.000 2460.0	0 2465.00	2470.00	2475.00	2480.00	2485.00) 2490	.00 2495.00	2505.00 MHz
No. Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector		
		65.64	31.65	97.29	74.00	23.29	peak	No Limit	
	2480.000			07.04	54.00	10.01	11/0	N.a. Linsit	
1 X 2 * 3	2480.000 2480.000 2488.600	65.36 27.02	31.65 31.68	97.01 58.70	54.00 74.00	43.01 -15.30	AVG peak	No Limit	

est Mode	TXI	Jode 240)2MHz_(CH00_3M	bps			Tested Date	e 2019/1	12/29
est Voltage								Polarizatior	n Horizo	ontal
120.0 d	Bu∀/m									
110]
100					*					
90										ļ
80					+					
70										
60		1 X	Marganaralla							
50	edual/Alkarkana	managentinedation	Margarenally	angled to be all you and a let		Managala	*Kaylor Catentine*Net*	desperies of problem of second	handreakaninghan provide	
40		2								
30		x								
20										
10										{
0.0	00 2202 00	2207.00	2202.00	2207.00	2402.00	2407.00) 2412	00 2417 00		ัษม-
	00 2382.00	2387.00	2392.00	2397.00	2402.00	2407.00) 2412	.00 2417.00	2427.00	MHz
		2387.00 Reading Level	2392.00 Correct Factor	2397.00 Measure- ment	2402.00 Limit	2407.00 Margin) 2412	.00 2417.00	2427.00	MHz
2377.0 No. Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Margin dB	Detector	.00 2417.00	2427.00	MHz
2377.0 No. Mk.	Freq. MHz 86.400	Reading Level dBuV 26.83	Correct Factor dB 31.23	Measure- ment dBuV/m 58.06	Limit dBuV/m 74.00	Margin dB -15.94	Detector peak		2427.00	MHz
2377.0 No. Mk. 1 233 2 233	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Margin dB	Detector		2427.00	MHz

Mode	TX Mode	2480M	Hz _CH	78_3Mbp	S		Tested Date	2019/12/29
Voltage	DC 32V						Polarization	Horizontal
120.0 dBuV	/m							
110								
100					X			
90					(+)			
80					+			
70				- 1				
60	water and the second						anada an	have a second and a
50	enderen in Land, Kinde A. 141.	ter and a second second of the second se	the department of the second	Alan And Alan Alana	***	MM AND	Al Manual P.C. Markal January Al Markal Analysis of Antonio Antonio Antonio Antonio Antonio Antonio Antonio Ant	an a that a that and a that
40							4	
30							×	
20								
10								
0.0								
2455.000	2460.00 24	65.00 2	470.00	2475.00 2	480.00 2	85.00	2490.00 2495.00	2505.00 MHz

No.	Mk	. Freq.	Level	Factor	ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	Х	2480.000	68.20	31.65	99.85	74.00	25.85	peak	No Limit
2	*	2480.000	64.29	31.65	95.94	54.00	41.94	AVG	No Limit
3		2493.300	26.80	31.70	58.50	74.00	-15.50	peak	
4		2493.300	5.09	31.70	36.79	54.00	-17.21	AVG	

est Mode								Tested Date		2019/12/2
est Voltage	age DC 32V							Polarization		Vertical
120.0 d	Bu∀/m									
110										
100										
90										
80										
70										
60										
50										
40		1 ×								
30		2 X								
20										
10										
0.0	00 3550.00	6100.00	8650.00	11200.00	13750.00	16300	.00 1885	0.00	21400.00	26500.00 MHz
		Reading	Correct	Measure-	1	Manaia				
o. Mk.	Freq. MHz	Level dBuV	Factor dB	ment dBuV/m	Limit dBuV/m	Margin dB	Detector	Con	nment	
1 48	04.000	54.16	-10.58	43.58	74.00	-30.42				
2 * 48	04.000	41.31	-10.58	30.73	54.00	-23.27	AVG			

st Voltag	TX Mode 2402MHz _CH00_1Mbps							Tested Date		2019/12/29	
st voltag	ge DC	DC 32V						Polarization		Horizontal	
120.0 dBu 110 90 80 70 60	dBuV/m										
50 40		1×									
30		2 X									
20 10											
0.0	000 3550.00	6100.00) 8650.00	11200.00	13750.00) 16300	.00 1885	0.00 214	00.00	26500.00 MHz	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	<u>ו</u>				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	nt		
1 48	804.000	54.24	-10.58	43.66	74.00	-30.34	peak				
2 * 48	804.000	41.35	-10.58	30.77	54.00	-23.23	AVG				

120.0 d8uV/m 110 0 90 0 10 0 100 000 100 000 100 000 100 000 100 000 1000 000 1000 000 1000 000 1000 000 1200 13750.00 <th>120.0 dBuV/m 110 </th> <th>120.0 dBuV/m 110 </th> <th>st Mode</th> <th>TX</th> <th>Mode 24</th> <th>41MHz _</th> <th>CH39_1M</th> <th>lbps</th> <th></th> <th></th> <th>Tested D</th> <th>ate</th> <th>2019/12/29</th>	120.0 dBuV/m 110	120.0 dBuV/m 110	st Mode	TX	Mode 24	41MHz _	CH39_1M	lbps			Tested D	ate	2019/12/29
110	110	110	st Voltage	DC	32V						Polarizat	ion	Vertical
100 90 <t< th=""><th>100 90 <t< th=""><th>100 90 <t< th=""><th></th><th>}uV/m</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<>	100 90 <t< th=""><th>100 90 <t< th=""><th></th><th>}uV/m</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></t<>	100 90 <t< th=""><th></th><th>}uV/m</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		}uV/m									
80	80	80											
70	70	70											
50 1	50 1	50 1											
40 × I	40 × I	40 2	60										
30 2 X	30 2 X Image: constraint of the second	30 2 X Image: constraint of the second			1×								
10 0.	10	10			2 X								
0.0 0	0.0 0	0.0 0	20										
Reading No. Mk.Correct LevelMeasure- mentLimit 	Reading No. Mk.Correct LevelMeasure- mentLimit LimitMarginMHzdBuVdBdBuV/mdBuV/mdBDetectorComment14882.00056.50-10.3946.1174.00-27.89peak	No. Mk.Freq.Reading LevelCorrect FactorMeasure- mentLimit LimitMarginMHzdBuVdBdBuV/mdBuV/mdBDetectorComment14882.00056.50-10.3946.1174.00-27.89peak											
No. Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dB Detector Comment 1 4882.000 56.50 -10.39 46.11 74.00 -27.89 peak	No. Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dB Detector Comment 1 4882.000 56.50 -10.39 46.11 74.00 -27.89 peak	No. Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dB Detector Comment 1 4882.000 56.50 -10.39 46.11 74.00 -27.89 peak	1000.00			0 8650.00	11200.00	13750.00) 16300	.00 1885	0.00 21400).00	26500.00 MHz
1 4882.000 56.50 -10.39 46.11 74.00 -27.89 peak	1 4882.000 56.50 -10.39 46.11 74.00 -27.89 peak	1 4882.000 56.50 -10.39 46.11 74.00 -27.89 peak	No. Mk.					Limit	Margir	n			
•	·	·									Comment		
2 4882.000 41.72 -10.39 51.35 54.00 -22.87 AVG	2 4662.000 41.72 -10.59 51.55 54.00 -22.67 AVG	2 4882.000 41.72 -10.39 31.33 54.00 -22.87 AVG											
			2 400	2.000	41.72	10.00	01.00	04.00	22.07	////0			
			EMARKS										

(2) Margin Level = Measurement Value - Limit Value.

est Mode	TX Mode 24	441MHz _(CH39_1M	bps		Te	sted Date	2019/12/29
st Voltage	DC 32V					Po	larization	Horizontal
120.0 dBu\	V/m							
110								
100								
90								
80								
70								
60								
50	1 X							
40	2 X							
30	^							
20								
10 0.0								
1000.000	3550.00 6100.0	0 8650.00	11200.00	13750.00	16300.00	18850.00	21400.00	26500.00 MHz
lo. Mk. F	Reading Freq. Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz dBuV	dB	dBuV/m	dBuV/m)etector (Comment	
1 4882	2.000 54.64	-10.39	44.25	74.00	-29.75	peak		
2 * 4882	2.000 41.61	-10.39	31.22	54.00	-22.78	AVG		

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

st Mode	TX Mode 24	180MHz _(CH78_1M	bps			Tested	Date	2019/12/2
st Voltage	DC 32V						Polariza	ation	Vertical
120.0 dBuV	-								
120.0 dBuV	///								
110									
100									
90									
80									
70									
60									
50	1 X								
40	2 X								
30	x								
20									
10									
0.0									
1000.000			11200.00	13750.0) 16300	.00 1885	50.00 21	400.00	26500.00 MHz
o. Mk. F	Reading req. Level	Correct Factor	Measure- ment	Limit	Margir	n			
	1Hz dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent	
1 4960.		-10.19	44.47	74.00	-29.53				
2 * 4960.	.000 42.16	-10.19	31.97	54.00	-22.03	AVG			

	TX Mode 2	480MHz _(CH78_1M	bps			Tested	Date	2019/12/2
est Voltage	DC 32V						Polariz	ation	Horizontal
120.0 dBu	N/m								
110									
100									
90									
80									
70 60									
50									
40	1 X								
30	2 X								
20									
10									
0.0									
1000.000	3550.00 6100.0		11200.00	13750.00	0 16300.0	00 1885	0.00 21	400.00	26500.00 MHz
No. Mk. F	Reading Freq. Level	g Correct Factor	Measure- ment	Limit	Margin				
	MHz dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent	
	0.000 55.33	-10.19	45.14	74.00	-28.86	peak			
2 * 4960	0.000 42.05	-10.19	31.86	54.00	-22.14	AVG			

est Mode	TX Mode 2	2402MHz _	CH00_3M	bps			Tested	Date	2019/12/29
est Voltage	DC 32V						Polariz	ation	Vertical
120.0 dBuy 110 100 90 80	//m								
70 60									
50 40	X								
30 20	2 X								
10									
0.0 1000.000	3550.00 6100	.00 8650.00	11200.00	13750.00	16300.	00 1885	0.00 21	400.00	26500.00 MHz
	Readin req. Level	Factor	Measure- ment	Limit	Margin				
1 4804	MHz dBuV .000 55.22	dB -10.58	dBuV/m 44.64	dBuV/m 74.00	dB -29.36	Detector peak	Comm	ent	
2 * 4804			30.95	54.00	-23.05	AVG			

t Mode	TX Mode 2	402MHz _C	H00_3M	bps			Testec	Date	2019/12/29
t Voltage	DC 32V						Polariz	zation	Horizontal
100.0 10.1									
120.0 dBuV	//m								
110									
100									
90									
80									
70									
60									
50									
40	X								
30	2 X								
20									
10									
0.0									
1000.000	3550.00 6100.	00 8650.00	11200.00	13750.00	16300.	.00 1885	50.00 2	1400.00	26500.00 MHz
. Mk. F	Reading req. Level	g Correct Factor	Measure- ment	Limit	Margin	1			
	MHz dBuV	dB		dBuV/m	dB	Detector	Comm	nent	
4804	.000 54.62	-10.58	44.04	74.00	-29.96	peak			
2 * 4804	.000 41.48	-10.58	30.90	54.00	-23.10	AVG			
MADKO				_					
Measurem	nent Value = I				or.				
	nent Value = I evel = Measur				or.				
Measurem					or.				
Measurem					or.				

est Mode	TX Mode 2	2441MHz _	CH39_3M	bps		Т	ested Da	ate	2019/12/29
est Voltage	DC 32V					Ρ	olarizati	on	Vertical
120.0 dBu	//m								
110									
100									
90									
80									
70									
60									
50	1 X								
40									
30	2 X								
20									
10									
0.0	3550.00 6100	.00 8650.00	11200.00	13750.00	16300.00) 18850.	0 21400	.00 2	26500.00 MHz
No. Mk. F	Readin req. Level	g Correct Factor	Measure- ment	Limit	Margin				
	MHz dBuV	dB	dBuV/m	dBuV/m		Detector	Comment		
1 4882		-10.39	44.35	74.00	-29.65	peak			
2 * 4882	.000 41.72	-10.39	31.33	54.00	-22.67	AVG			

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

est Mode	TX Mode 2	441MHz _(CH39_3M	bps			Tested	Date	2019/12/29
est Voltage	DC 32V						Polariz	ation	Horizontal
120.0 dBu	//m								
110									
100									
90									
80									
70									
60									
50	1×								
40 30	2 X								
20									
10									
0.0									
1000.000			11200.00	13750.00	16300.	.00 1885	50.00 21	400.00	26500.00 MHz
No. Mk. F	Reading req. Level	Correct Factor	Measure- ment	Limit	Margin	I			
	MHz dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent	
1 4882 2 * 4882		-10.39	44.12	74.00	-29.88	peak AVG			
Z ~ 488Z	.000 42.05	-10.39	31.66	54.00	-22.34	AVG			

REMARKS:

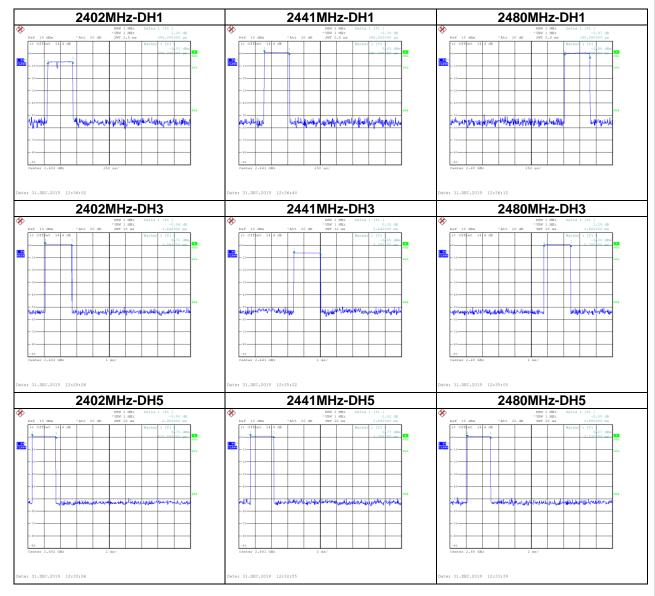
(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

et Voltage	TX Wode Z2	180MHz _	CH78_3N	1bps			Tested	Date	2019/12/29
est Voltage	DC 32V						Polariz	ation	Vertical
	-						-		-
120.0 dBu∀	(/m								
	·/m								
110									
100									
90									
80									
70									
60									
50	1×								
40	2								
30	x								
20									
10									
0.0									
1000.000					0 16300.	00 1885	6.00 21	400.00	26500.00 MHz
lo. Mk. F	Reading req. Level	Correct Factor	Measure- ment	Limit	Margin				
	/Hz dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent	
1 4960.		-10.19	45.25	74.00	-28.75	peak			
2 * 4960.	.000 42.03	-10.19	31.84	54.00	-22.16	AVG			

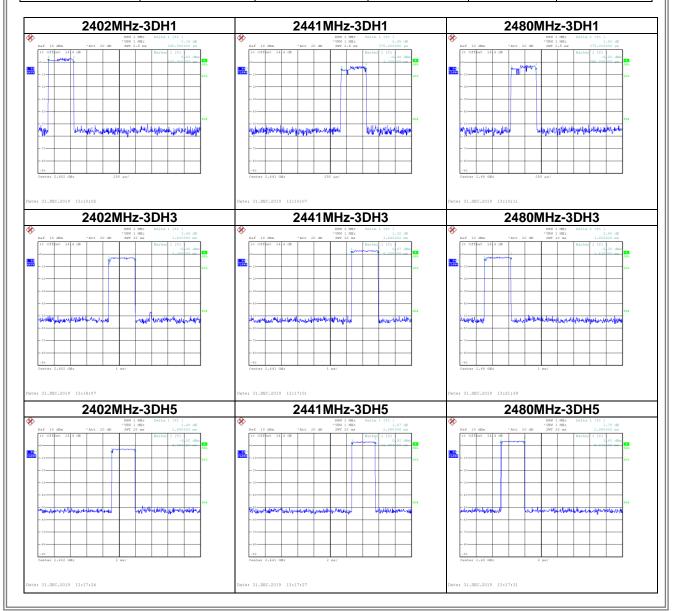
st Mode	TX Mode 2	2480MHz _	CH78_3N	1bps			Tested	Date	2019/12/2
st Voltage	DC 32V						Polariza	ation	Horizontal
120.0 dBu∀	/m								
	<u>,</u>								
110									
100									
90									
80									
70									
60									
50	1 X								
40									
30	2 X								
20									
10									
0.0									
1000.000					0 16300.	.00 1885	50.00 214	100.00	26500.00 MHz
o. Mk. F	Readin req. Level		Measure- ment	Limit	Margin	l			
	1Hz dBuV		dBuV/m	dBuV/m	dB	Detector	Comme	ent	
	.000 54.64	-10.19	44.45	74.00	-29.55	peak			
1 4960.			21.01	54.00	-22.09	AVG			
	.000 42.10	-10.19	31.91	54.00	-22.09	/			
	.000 42.10	-10.19	51.91	54.00	-22.09	7.00			
	.000 42.10	-10.19	51.91	54.00	-22.09	////			
	000 42.10	-10.19	31.91		-22.09				
	000 42.10	-10.19	51.91	34.00	-22.09				
	000 42.10	-10.19	51.91	54.00	-22.09				
	000 42.10	-10.19	31.81	54.00	-22.09				
	000 42.10	-10.19	51.91		-22.09				
2 * 4960.	000 42.10	-10.19	21.91	54.00	-22.09				
2 * 4960. EMARKS: Measurem	nent Value =	Reading Le	evel + Coi	rrect Fac					
2 * 4960. MARKS: Measurem		Reading Le	evel + Coi	rrect Fac					
2 * 4960. MARKS: Measurem	nent Value =	Reading Le	evel + Coi	rrect Fac					

APPENDIX C NUMBER OF HOPPING CHANNEL

				1					. 1 :	- :4					т.	-4 D		.14
Test Mode 1 Mbps	-	aumb	er of f	10ppir 79	ng Cha	annei		2	Lin 15						Te	st R Pas		lit
3 Mbps	_			79					15							Pas		
0 111000									10				1			1 46		
		1 Mb					Â					3	8 Mb					
10 dBm *At	t 20 dB	* VBW : SWT :	LOO kHz LO ms	2.479	-0.80 dBm 920000 GHz	1		ef 10		4 dB	*Att 2	0 dB	* VBW 1 SWT 1	00 kHz 00 kHz 0 ms	2	1 2.479800	1.60 đ	Bm Hz
	MANAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AADOL AN AA		farker 1 [5	0.56 dBm	•3	-d			h wn	All May	a Mankaa	MMM	<u>MMM</u>	Marker		0 82 Q MM	Bm N z
1999 BAR	A MARKAN AND A	Manaha ta			MMM	LVL	1 PK View	10				0.000			• • • •			LV
							-	20										
							Į	40										
		_				308		50										31
					- W		-	60										-
,								80										
,							-	90 tart 2.										
											5:25							

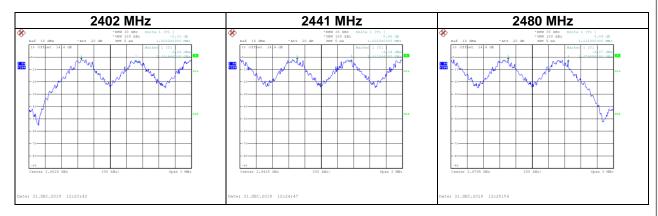


APPENDIX D AVERAGE TIME OF OCCUPANCY

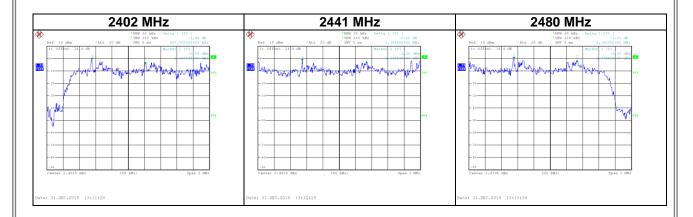

Test Mode :	TX Mode_1Mbps	1
Test Voltage	DC 32V	

Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH1	2402 MHz	2.9200	0.3115	0.4000	Pass
DH3	2402 MHz	1.6400	0.2624	0.4000	Pass
DH5	2402 MHz	0.3850	0.1232	0.4000	Pass
DH1	2441 MHz	2.8800	0.3072	0.4000	Pass
DH3	2441 MHz	1.6400	0.2624	0.4000	Pass
DH5	2441 MHz	0.3850	0.1232	0.4000	Pass
DH1	2480 MHz	2.8800	0.3072	0.4000	Pass
DH3	2480 MHz	1.6600	0.2656	0.4000	Pass
DH5	2480 MHz	0.3900	0.1248	0.4000	Pass

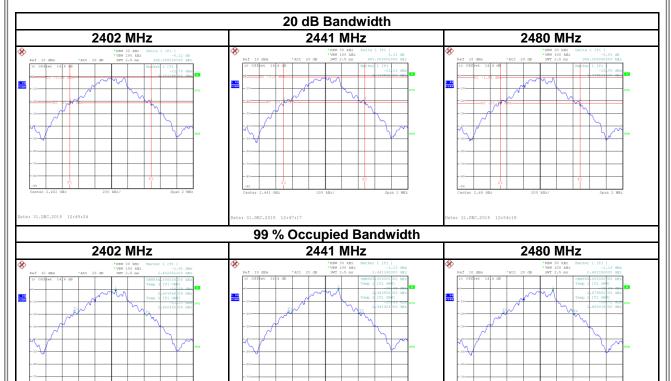
Test Mode :	TX Mode_3Mbps				
Test Voltage	DC 32V				
Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH1	2402 MHz	2.8800	0.3072	0.4000	Pass
3DH3	2402 MHz	1.6200	0.2592	0.4000	Pass
3DH5	2402 MHz	0.3900	0.1248	0.4000	Pass
3DH1	2441 MHz	2.8800	0.3072	0.4000	Pass
3DH3	2441 MHz	1.6400	0.2624	0.4000	Pass
3DH5	2441 MHz	0.3750	0.1200	0.4000	Pass
3DH1	2480 MHz	2.8800	0.3072	0.4000	Pass
3DH3	2480 MHz	1.6200	0.2592	0.4000	Pass
3DH5	2480 MHz	0.3750	0.1200	0.4000	Pass


Project No.: 1911T165

APPENDIX E HOPPING CHANNEL SEPARATION MEASUREMENT

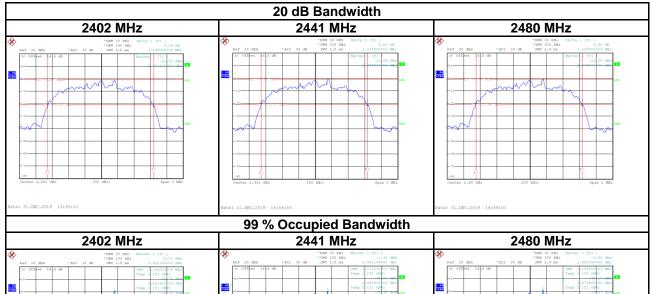


Test Mode :	Hopping on _1Mbps	Hopping on _1Mbps			
Test Voltage	DC 32V				
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result		
2402	1.008	0.661	Pass		
2441	1.002	0.653	Pass		
2480	1.111	0.637	Pass		


Test Mode :	Hopping on _3Mbps				
Test Voltage	tage DC 32V				
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result		
2402	0.987	0.864	Pass		
2441	1.187	0.859	Pass		
2480	1.162	0.859	Pass		

APPENDIX F BANDWIDTH

Test Mode :	TX Mode _1Mbps		
Test Voltage	DC 32V		
Frequency	20dB Bandwidth	99% Occupied BW	
(MHz)	(MHz)	(MHz)	Test Result
2402	0.992	0.884	Pass
2441	0.980	0.868	Pass
2480	0.956	0.856	Pass


Date: 31.DEC.2019 12:50:59

ate: 31.DEC.2019 12:45:50

e: 31.DEC.2019 12:53:11

Test Mode :	TX Mode _3Mbps		
Test Voltage	DC 32V		
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.296	1.168	Pass
2441	1.288	1.172	Pass
2480	1.288	1.168	Pass

APPENDIX G OUTPUT POWER

BIL

Test Mode :	TX Mode _1Mb	ps			
Test Voltage	DC 32V				
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	1.34	0.0014	21.00	0.1250	Pass
2441	1.51	0.0014	21.00	0.1250	Pass
2480	1.09	0.0013	21.00	0.1250	Pass
Test Mode :	TX Mode _2Mb	ps			
Test Voltage	DC 32V				
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
	(ubiii)	()	(abiii)	()	
2402	3.62	0.0023	21.00	0.1250	Pass
2402 2441	. ,	. ,	, ,	. ,	Pass Pass
	3.62	0.0023	21.00	0.1250	
2441 2480	3.62 4.12 3.93	0.0023 0.0026 0.0025	21.00 21.00	0.1250 0.1250	Pass
2441	3.62 4.12	0.0023 0.0026 0.0025	21.00 21.00	0.1250 0.1250	Pass
2441 2480	3.62 4.12 3.93	0.0023 0.0026 0.0025	21.00 21.00	0.1250 0.1250	Pass
2441 2480 Test Mode : Test Voltage	3.62 4.12 3.93 TX Mode _3M DC 32V	0.0023 0.0026 0.0025	21.00 21.00 21.00	0.1250 0.1250 0.1250	Pass
2441 2480 Test Mode :	3.62 4.12 3.93 TX Mode _3M	0.0023 0.0026 0.0025	21.00 21.00	0.1250 0.1250	Pass
2441 2480 Test Mode : Test Voltage Frequency	3.62 4.12 3.93 TX Mode _3MI DC 32V Conducted Power	0.0023 0.0026 0.0025	21.00 21.00 21.00 Max. Limit	0.1250 0.1250 0.1250 Max. Limit	Pass Pass

0.0028

0.0029

21.00

21.00

0.1250

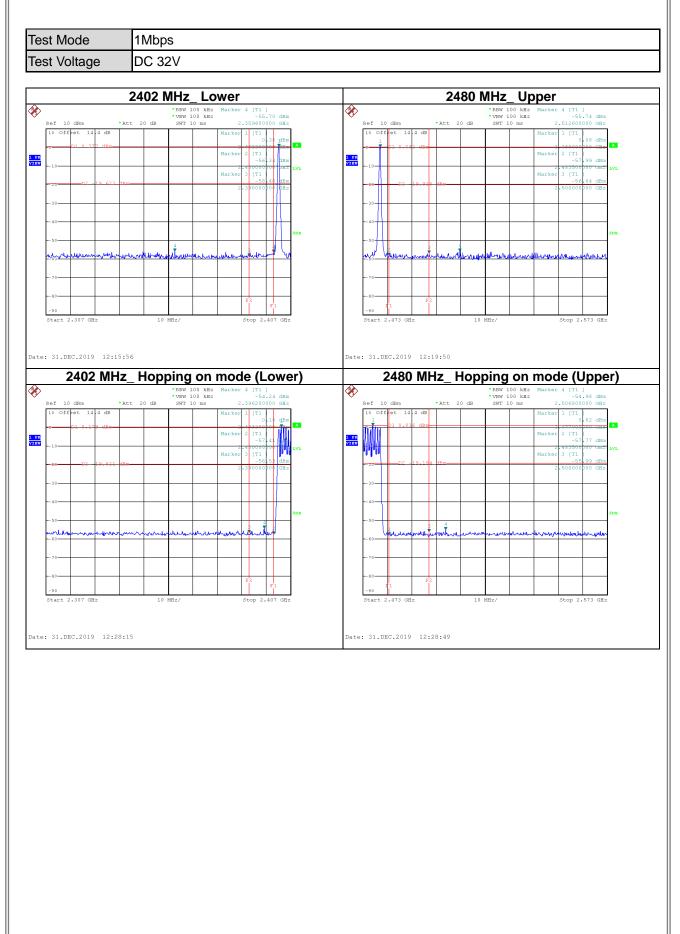
0.1250

Pass

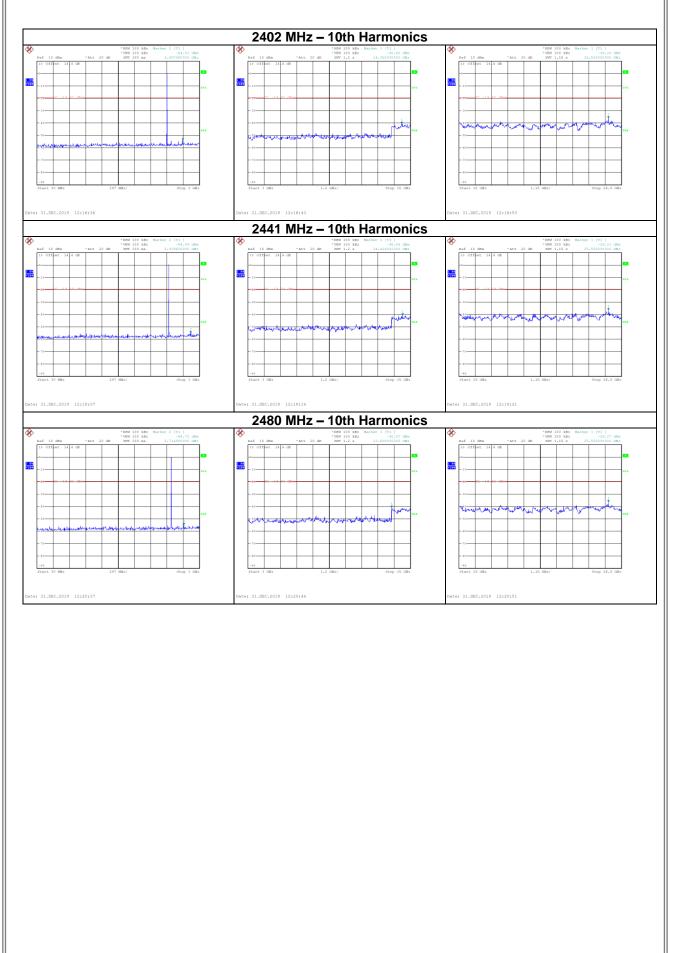
Pass

2441

2480


4.43

4.60



APPENDIX H ANTENNA CONDUCTED SPURIOUS EMISSION

