FCC ID: 2AMFC-WS1PL

Report No.: LCSA12034076EA

FCC TEST REPORT

FOR

Dalian Cloud Force Technologies Co., Ltd.

LoRa Smart Sensor WS1 Pro-L

Test Model: WS1 Pro-L

Additional Model No.: Please Refer to Page 6

Prepared for : Dalian Cloud Force Technologies Co., Ltd.

Address Unit1, Block B, 6th Floor, No.23 Honggang Rd. Ganjingzi Distr. Dalian,

Liaoning Province, Dalian, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei,

Shajing Street, Baoan District, Shenzhen, 518000, China

Tel : (+86)755-82591330
Fax : (+86)755-82591332
Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : December 03, 2024

Number of tested samples : 2

Sample No. : A241202076-1, A241202076-2

Serial number : Prototype

Date of Test : December 03, 2024 ~ January 15, 2025

Date of Report : January 16, 2025

FCC ID: 2AMFC-WS1PL

FCC TEST REPORT

FCC CFR 47 PART 15 C (15.249)

Report Reference No.: LCSA12034076EA

Date of Issue.....: January 16, 2025

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd...

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Address....::

Shajing Street, Baoan District, Shenzhen, 518000, China

Full application of Harmonised standards •

Testing Location/ Procedure..... Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: Dalian Cloud Force Technologies Co., Ltd.

Unit1, Block B, 6th Floor, No.23 Honggang Rd. Ganjingzi Distr.

Dalian, Liaoning Province, Dalian, China

Test Specification

Standard.....: FCC CFR 47 PART 15 C(15.249) / ANSI C63.10: 2013

Test Report Form No...... : TRF-4-E-165 A/0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: LoRa Smart Sensor WS1 Pro-L

Trade Mark....: Ubibot

Test Model.....: WS1 Pro-L

Ratings....: Input: 5V=2A

Result: Positive

Compiled by:

Supervised by:

Approved by:

Report No.: LCSA12034076EA

Ling Zhu/ Administrator

Cary Luo/ Technique principal

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No. : LCSA12034076EA January 16, 2025

Date of issue

Report No.: LCSA12034076EA

Test Model..... : WS1 Pro-L : LoRa Smart Sensor WS1 Pro-L Applicant..... : Dalian Cloud Force Technologies Co., Ltd. Unit1, Block B, 6th Floor, No.23 Honggang Rd. Ganjingzi Distr. Address..... Dalian, Liaoning Province, Dalian, China Telephone..... Fax..... Dalian Cloud Force Technologies Co., Ltd. Manufacturer..... Address..... Unit2, Block A, 3rd Floor, No.23 Honggang Road, Ganjingzi District, Dalian, Liaoning Province, China Telephone..... Fax..... : Dalian Cloud Force Technologies Co., Ltd. Factory..... Address..... : Unit2, Block A, 3rd Floor, No.23 Honggang Road, Ganjingzi District, Dalian, Liaoning Province, China Telephone.....

Test Result	Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Shenzhen LCS Compliance Testing Laboratory Ltd.

FCC ID: 2AMFC-WS1PL

Revision History

	18. 等点 · 6. 6. 1		
Report Version	Issue Date	Revision Content	Revised By
000	January 16, 2025	Initial Issue	

打造 TCS Tosting Lab

TEA 立语检测器的

TEL LCS Tosting Lab

Report No.: LCSA12034076EA

医红斑检测胶份 LCS Testing Lab

TST LCS Testing Lab

YEA 立语检测设计

上 Tiffte 测版价

LCS Testing Lab

北京 正常检测版份

NSI Ti形物测度的

ET 立语绘制器的

化工作性测度性 LCS Testing Lab YELCS Testing Lab

Shenzhen LCS Compliance Testing Laboratory Ltd.

Report No.: LCSA12034076EA

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1 Description of Device (EUT)	<i>(</i>
1.2. Support Equipment List	
1.3. External I/O	
1.4. Description of Test Facility	
1.5. Statement of the measurement uncertainty	
1.6. Measurement Uncertainty	
1.7. Description of Test Modes	
2. TEST METHODOLOGY	
2.1. EUT Configuration	9
2.2. EUT Exercise	
2.3. General Test Procedures	
2.4. Test Sample	
3. CONNECTION DIAGRAM OF TEST SYSTEM	
3.1. Justification	
3.2. EUT Exercise Software	
3.4. Block Diagram/Schematics	
3.5. Equipment Modifications	
3.6. Test Setup	
4. SUMMARY OF TEST RESULTS	11
5. ANTENNA REQUIREMENT	
6. POWER LINE CONDUCTED EMISSIONS	, S T 0 5 T T
THE TEST DATA PLEASE REFER TO FOLLOWING PAGE	
7. RADIATED EMISSION MEASUREMENT	
8. RESULTS FOR BAND EDGE TESTING	
9. 99% OCCUPIED BANDWIDTH AND 20 DB BANDWIDTH MEASUREMENT	
10. LIST OF MEASURING EQUIPMENT	4
11. TEST SETUP PHOTOGRAPHS OF THE EUT	5
12. EXTERIOR PHOTOGRAPHS OF THE EUT	5
13. INTERIOR PHOTOGRAPHS OF THE EUT	5

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : LoRa Smart Sensor WS1 Pro-L

Test Model : WS1 Pro-L

Additional Model No. : WS1 Pro-L-A, WS1 Pro-L-B, WS1 Pro-L-C

Model Declaration : PCB board, structure and internal of these model(s) are the same, So no

additional models were tested

Ratings : Input: 5V=2A

Hardware Version : UBIBOT-WS1PL-PCB1-V1.1.4

Software Version : ubibot ws1pl v1.1.7

LoRa :

Frequency Range : 903MHz~927MHz

Channel Spacing : 1MHz

Channel Number : 25 channels

Modulation Type : CSS

Antenna Description : Spring Antenna, -2.45dBi(Max.)

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN TIANYIN ELECTRONICS CO., LTD	Power Adapter	TPA-46050200UU	-	FCC

Note: The adapter is supplied by lab and only use tested.

1.3. External I/O

I/O Port Description	Quantity	Cable
Type-C port	2	N/A

1.4. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

Test Firm Registration Number: 254912.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
SA LOS TOS		9KHz~30MHz	±3.10dB	్ (1)
		30MHz~200MHz	±2.96dB	(1)
Radiation Uncertainty	: [200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Report No.: LCSA12034076EA

1.7. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

All test modes were tested, only the result of the worst case was recorded in the report.

***Note: Using a temporary antenna connector for the EUT when conducted measurements are performed.

Mode of Operations	Transmitting Frequency (MHz)	
	903	
GFSK	915	
一	927	
For Radiated Emission		
Test Mode	TX Mode	

Detail Channel as belows:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	903	15	917
2	904	16	918
3	905	17	919
4	906	18	920
5	907	19	921
105 tin 6	908	20	922
7	909	21	923
8	910	22	924
9	911	23	925
10	912	24	926
11	913	25	927
12	914		
13	915	and MA	Al m
14	916	Call Tabe	

Tiff控測股份 LCS Tosting Lab

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions(N/A)

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz and 1.5 m above ground plane above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

2.4. Test Sample

The application provides 2 samples to meet requirement;

Sample Number	Description
Sample 1(A241202076-1)	Engineer sample – continuous transmit
Sample 2(A241202076-2)	Normal sample – Intermittent transmit

Shenzhen LCS Compliance Testing Laboratory Ltd.

3. CONNECTION DIAGRAM OF TEST SYSTEM

3.1. Justification

The system was configured for testing in a continuous transmit condition. Continuous transmitting was pre-programmed. It'll keep transmitting with modulated signal at the lowest channel by installing the batter. When press the "up" button, it'll move to the next channel. Repeat press "up" button, it'll transmitting at each of the channel used.

3.2. EUT Exercise Software

EUT will Test instruction packet sending

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C §15.249				
FCC Rules	Description Of Test	Result		
§15.203	Antenna Requirement	Compliant		
§15.207(a)	Power Line Conducted Emissions	Compliant		
§15.205(a), §15.209(a), §15.249(a), §15.249(c)	Radiated Emissions Measurement	Compliant		
§15.249 (d)	Band Edges Measurement	Compliant		
§2.1049	99% and 20 dB Bandwidth	Compliant		

立语检测股份 LCS Testing Lab LCS Testing La

LCS Testing Lab

LOS Testing Lab

15 工资检测股份

FCC ID: 2AMFC-WS1PL

Report No.: LCSA12034076EA

5. ANTENNA REQUIREMENT

5.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

5.2. Antenna Connected Construction

The gains of antenna used for transmitting is -2.45dBi(Max.), and the antenna is an Spring Antenna and no consideration of replacement. Please see EUT photo for details.

5.3. Results

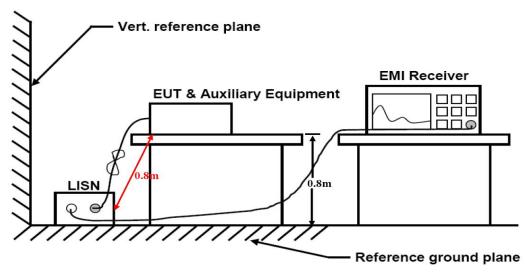
Compliance

工研检测股份 LCS Testing Lab

Report No.: LCSA12034076EA

6. POWER LINE CONDUCTED EMISSIONS

6.1. Standard Applicable


According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

FCC ID: 2AMFC-WS1PL

Frequency Range	Limit	s (dBµV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

^{*} Decreasing linearly with the logarithm of the frequency

6.2. Block Diagram of Test Setup

6.3 Disturbance Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

6.4. Test Results

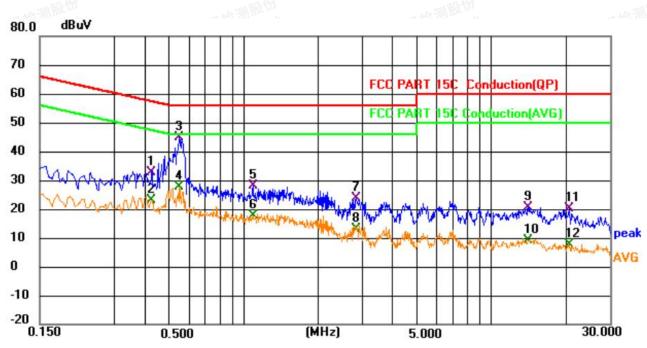
Temperature	Temperature 22.5°C		53.7%	
Test Engineer	Paddi Chen	Configurations	TX	

PASS.

The test data please refer to following page.

AC Conducted Emission @ AC 120V/60Hz @ IEEE 802.11b Mode (Middle Channel) (worst case)

Shenzhen LCS Compliance Testing Laboratory Ltd.

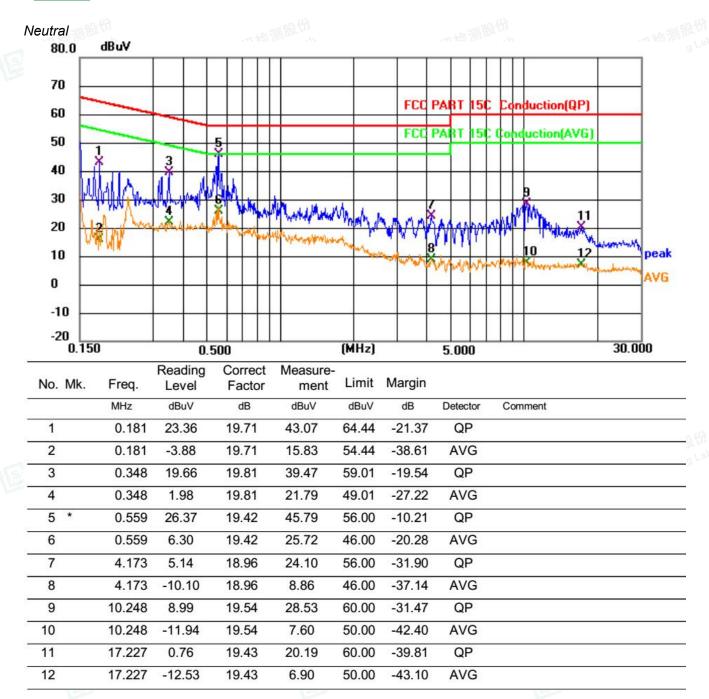

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Report No.: LCSA12034076EA

Line

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.424	12.67	20.00	32.67	57.37	-24.70	QP	
2		0.424	3.05	20.00	23.05	47.37	-24.32	AVG	
3	*	0.550	25.11	19.68	44.79	56.00	-11.21	QP	
4		0.550	8.11	19.68	27.79	46.00	-18.21	AVG	
5		1.091	8.81	19.13	27.94	56.00	-28.06	QP	
6		1.091	-1.51	19.13	17.62	46.00	-28.38	AVG	
7		2.850	4.43	19.19	23.62	56.00	-32.38	QP	
8		2.850	-6.24	19.19	12.95	46.00	-33.05	AVG	
9		13.992	0.76	19.85	20.61	60.00	-39.39	QP	
10		13.992	-10.75	19.85	9.10	50.00	-40.90	AVG	
11		20.535	1.14	19.03	20.17	60.00	-39.83	QP	
12		20.535	-11.49	19.03	7.54	50.00	-42.46	AVG	



^{***}Note: 1). Pre-scan all modes and recorded the worst case results in this report.

Shenzhen LCS Compliance Testing Laboratory Ltd.

^{2).} Measurement = Reading + Correct, Margin = Measurement - Limit. Correct Factor=Lisn Factor+Cable Factor+Insertion loss of Pulse Limiter

7. RADIATED EMISSION MEASUREMENT

7.1. Standard Applicable

According to FCC § 15.249: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.249 limit in the table below has to be followed.

Fundamental Frequency	Field Strength of fundamental (millivolts/meter)	Field Strength of harmonics (microvolts/meter)
902-928MHz	50 - Tosting	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Frequencies	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	All the same of th		
216~960	200	3 1 2 2 2 2		
Above 960	500	3		

According to RSS-210 B.10:

The field strength of fundamental and harmonic emissions, measured at 3 m, shall not exceed 50 mV/m and 0.5 mV/m respectively.

The field strength limits shall be measured using an average detector, except for the fundamental emission in the frequency band 902-928 MHz, which is based on measurements using an International Special Committee on Radio Interference (CISPR) quasi-peak detector.

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

7.2. Instruments Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Setting
Auto
1000 MHz
10 th carrier harmonic
1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Page 17 of 34 FCC ID: 2AMFC-WS1PL Report No.: LCSA12034076EA

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP
Ctart Ctar Francisco	1GHz~10GHz / RB/VB 1MHz/3MHz for PK
Start ~ Stop Frequency	1MHz/10Hz for AV

7.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

TEL LCS Testing Lab

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

FCC ID: 2AMFC-WS1PL

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

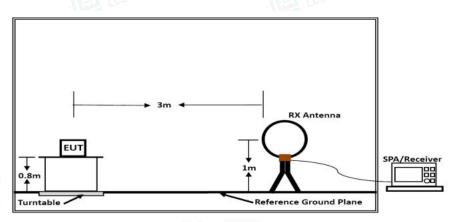
FCC ID: 2AMFC-WS1PL

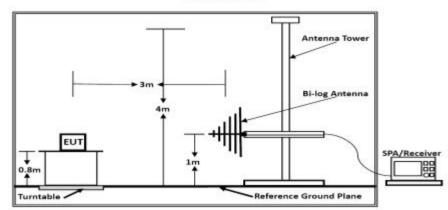
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

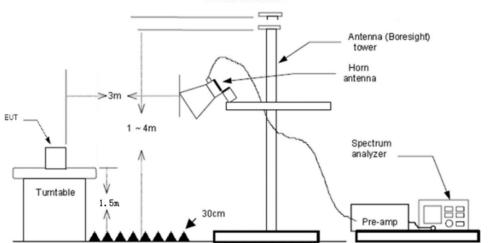
- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:


- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.



Report No.: LCSA12034076EA


7.4. Block Diagram of Test Setup

Below 30MHz

Below 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

7.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 21 of 34 FCC ID: 2AMFC-WS1PL

7.6. EUT Operation during Test

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

Report No.: LCSA12034076EA

FS (dBuV/m) = RA (dBuV) + AF (dB/m) + CL (dB) - AG (dB)

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

7.7. Test Results of Radiated Emissions (9 KHz~30 MHz)

The state of the s	adiated Elimeelelle (e	Mile So IVII 12)	工作测度份
Temperature	23.8℃	Humidity	52.1%
Test Engineer	Paddi Chen		

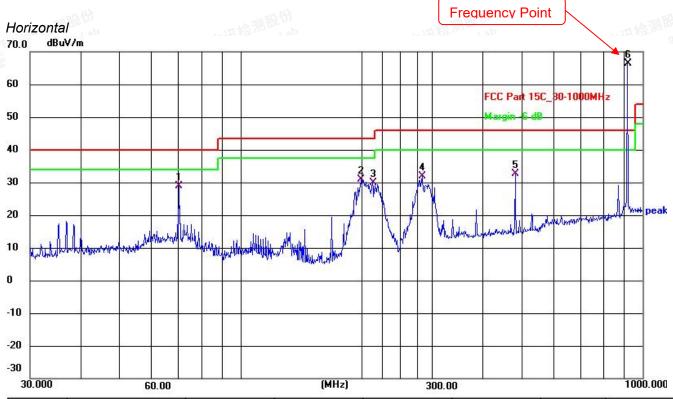
Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Over Limit (dBuV)	Remark
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


7.8. Test Results of Radiated Emissions (30 MHz – 1000 MHz)

Temperature	23.8°C	Humidity	52.1%	
Test Engineer	Paddi Chen			

Shenzhen LCS Compliance Testing Laboratory Ltd.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	70.3365	47.88	-19.10	28.78	40.00	-11.22	QP
2	199.2855	49.54	-18.58	30.96	43.50	-12.54	QP
3	213.0151	48.07	-18.16	29.91	43.50	-13.59	QP
4	282.9852	47.92	-16.12	31.80	46.00	-14.20	QP
5	482.2156	45.52	-12.87	32.65	46.00	-13.35	QP
6	916.0686	73.98	-7.53	66.45	46.00	20.45	peak
15	工资 LCS Testing Lab		LES LOS TOST	ing rap	12	立语检测则 CS Testin	g rap

Shenzhen LCS Compliance Testing Laboratory Ltd.

FCC ID: 2AMFC-WS1PL

Report No.: LCSA12034076EA

Frequency Point Vertical dBuV/m 70.0 60 FCC Part 15C_80-1000MH 50 40 30 20 10 0 -10 -20 -30 (MHz) 1000.000 30.000 60.00 300.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	70.5836	37.42	-19.49	17.93	40.00	-22.07	QP
2	200.6881	54.80	-17.37	37.43	43.50	-6.07	QP
3	289.0021	51.44	-15.51	35.93	46.00	-10.07	QP
4	482.2156	43.47	-14.10	29.37	46.00	-16.63	QP
5	755.3873	30.78	-10.14	20.64	46.00	-25.36	QP
6	916.0686	70.02	-8.07	61.95	46.00	15.95	peak

Note:

- 1). Pre-scan all modes and recorded the worst case results in this report (Low Channel).
- 2). Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3). Level = Reading + Factor, Margin = Level Limit,

Factor = Antenna Factor + Cable Loss - Preamp Factor

LCS Testing Lab

Page 24 of 34

FCC ID: 2AMFC-WS1PL Report No.: LCSA12034076EA

7.9. Results for Radiated Emissions (1 – 10 GHz)

903MHz

7.9.	Results for	or Radiate	ed Emiss	sions (1 ·	– 10 GHz)				
903MHz	Tap		2. 田俊	Tap		2 m 10	III Por		一一
Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
1806.00	56.74	33.06	35.04	3.94	58.70	74.00	-15.30	Peak	Horizontal
1806.00	44.65	33.06	35.04	3.94	46.61	54.00	-7.39	Average	Horizontal
1806.00	58.79	33.06	35.04	3.94	60.75	74.00	-13.25	Peak	Vertical
1806.00	45.92	33.06	35.04	3.94	47.88	54.00	-6.12	Average	Vertical

915MHz

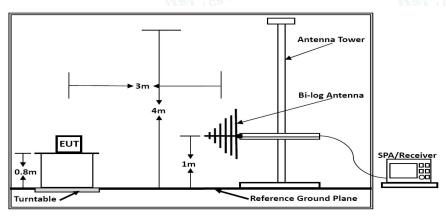
Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
1830.00	58.82	33.16	35.15	3.96	60.79	74.00	-13.21	Peak	Horizontal
1830.00	42.98	33.16	35.15	3.96	44.95	54.00	-9.05	Average	Horizontal
1830.00	59.94	33.16	35.15	3.96	61.91	74.00	-12.09	Peak	Vertical
1830.00	42.49	33.16	35.15	3.96	44.46	54.00	-9.54	Average	Vertical

927MHz

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
1854.00	55.29	33.26	35.14	3.98	57.39	74.00	-16.61	Peak	Horizontal
1854.00	43.23	33.26	35.14	3.98	45.33	54.00	-8.67	Average	Horizontal
1854.00	56.08	33.26	35.14	3.98	58.18	74.00	-15.82	Peak	Vertical
1854.00	40.60	33.26	35.14	3.98	42.70	54.00	-11.30	Average	Vertical

1). Measuring frequencies from 9 KHz - 10th harmonic (ex. 10GHz), No emission found between lowest internal used/generated frequency to 30 MHz.
2). Radiated emissions measured in frequency range from 9 KHz - 10th harmonic (ex. 10GHz) were made

with an instrument using Peak detector mode.
3). Margin=Reading level+Cab loss+Ant Fac-Pre Fac-Limit.


8. RESULTS FOR BAND EDGE TESTING

8.1. Standard Applicable

According to FCC §15.249 (d): Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to RSS-210 B.10 (b): Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

8.2. Test Setup Layout

Below 1GHz

8.3. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

8.4. Test Procedures

3) Sequence of testing 30MHz to 1000 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

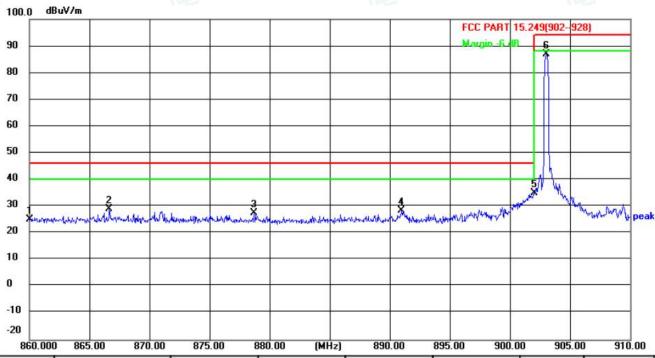
8.5. Measuring Instruments and Setting

Temperature	23.8℃	Humidity	52.5%
Test Engineer	Paddi Chen		

PASS

Remark:

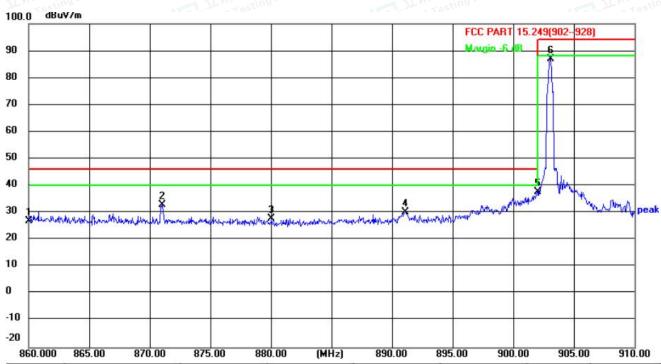
- The other emission levels were very low against the limit.
- 2. Detector PK is setting spectrum/receiver. RBW=100KHz/VBW=300KHz/Sweep time=Auto/Detector=Peak;
- 3. Please refer to following test plots;



LCS Testing Lab

903MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	860.0000	33.91	-8.86	25.05	46.00	-20.95	QP
2	866.6500	37.69	-8.78	28.91	46.00	-17.09	QP
3	878.7000	36.16	-8.63	27.53	46.00	-18.47	QP
4	890.9500	36.87	-8.44	28.43	46.00	-17.57	QP
5	902.0000	43.45	-8.27	35.18	46.00	-10.82	QP
6	903.0500	95.06	-8.25	86.81	94.00	-7.19	QP
15	T ICS Testing Lo		TEST LOSTO	sting har	. Ve	LCS Test	ud ra-



Shenzhen LCS Compliance Testing Laboratory Ltd.

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	860.0000	35.20	-8.22	26.98	46.00	-19.02	QP
2	871.0500	41.21	-8.27	32.94	46.00	-13.06	QP
3	880.0500	36.00	-8.17	27.83	46.00	-18.17	QP
4	891.1000	38.27	-7.91	30.36	46.00	-15.64	QP
5	902.0000	45.30	-7.67	37.63	46.00	-8.37	QP
6	903.1000	94.57	-7.67	86.90	94.00	-7.10	QP
15	工術衛測度D LCS Testing Lab		TEL LOS TO	tiua rap	To Va	LCS TOST	ua rap

Shenzhen LCS Compliance Testing Laboratory Ltd.

Report No.: LCSA12034076EA

927MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	926.9200	93.72	-7.37	86.35	94.00	-7.65	QP
2	928.0000	44.28	-7.35	36.93	46.00	-9.07	QP
3	938.8900	41.54	-7.06	34.48	46.00	-11.52	QP
4	958.9600	42.02	-6.76	35.26	46.00	-10.74	QP
5	975.0700	38.17	-6.74	31.43	54.00	-22.57	QP
6	1000.0000	34.95	-6.72	28.23	54.00	-25.77	QP

T 立洲拉洲股份

Report No.: LCSA12034076EA

Vertical dBuV/m 100.0 90 80 70 60 FCC PART 15.249(902-928) 50 40 30 20 10 0 -10 -20 910.000 919.00 928.00 937.00 964.00 982.00 991.00 1000.00 946.00 (MHz) 973.00

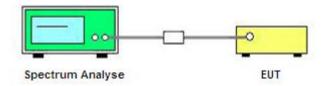
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	927.0100	95.08	-7.94	87.14	94.00	-6.86	QP
2	928.0000	44.05	-7.96	36.09	46.00	-9.91	QP
3	938.8900	38.90	-8.06	30.84	46.00	-15.16	QP
4	951.3100	36.35	-8.14	28.21	46.00	-17.79	QP
5	958.9600	36.67	-8.03	28.64	46.00	-17.36	QP
6	1000.0000	34.30	-7.22	27.08	54.00	-26.92	QP

Notes:

- 1) Level (dBuv/m) =Reading+Factor;
- 2) Margin(dB)=Level-Limit;
- 3) Factor=Ant Fac-Pre Fac+Cab Loss.

Shenzhen LCS Compliance Testing Laboratory Ltd.

9. 99% OCCUPIED BANDWIDTH AND 20 DB BANDWIDTH MEASUREMENT


Report No.: LCSA12034076EA

9.1. Standard Applicable

According to § 2.1049 and RSS-Gen section 6.7 "The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs."

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

9.2. Block Diagram of Test Setup

9.3. Test Procedure

Use the following spectrum analyzer settings:

Span = 200 kHz

RBW = 3 KHz

VBW = 10 KHz

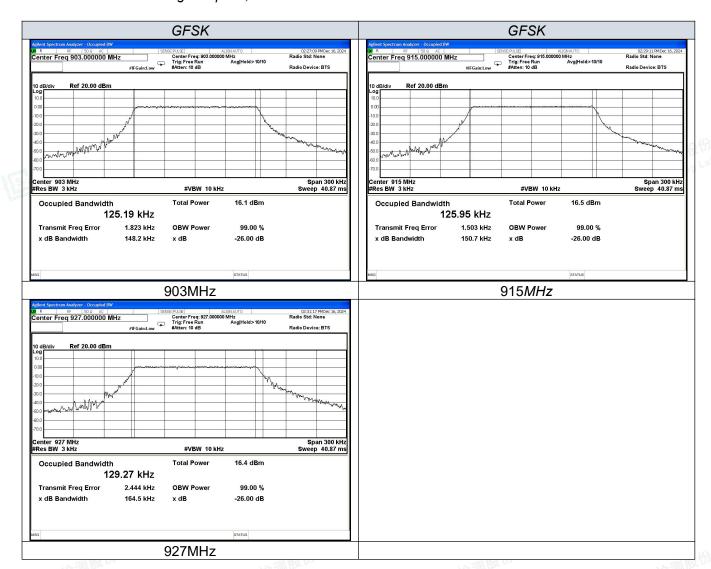
Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

Shenzhen LCS Compliance Testing Laboratory Ltd.


9.4. Test Results

Temperature	24.6°C	Humidity	54.1%
Test Engineer	Paddi Chen		

Tes	st Result of 99% and 200	dB Bandwidth Measure	ement				
Test Frequency 20dB Bandwidth 99% Bandwidth Limit							
(MHz) (KHz) (KHz) (MH							
903	148.2	125.19	Non-Specified				
915	150.7	125.95	Non-Specified				
927	164.5	129.27	Non-Specified				

Remark:

- 1. Test results including cable loss;
- 2. Please refer following test plots;

Shenzhen LCS Compliance Testing Laboratory Ltd.

10. LIST OF MEASURING EQUIPMENT

10.	LIST OF MEASU	IRING EQUIPM	ENT			
Ite m	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	MXA Signal Analyzer	Agilent	N9020A	MY49100060	2024-10-08	2025-10-07
2	DC Power Supply	Agilent	E3642A	N/A	2024-10-08	2025-10-07
3	Temperature & Humidity Chamber	Baro	1	1	2024-06-12	2025-06-11
4	EMI Test Software	AUDIX	E3	1	N/A	N/A
5	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2024-06-06	2025-06-05
6	Positioning Controller	Max-Full	MF7802BS	MF780208586	N/A	N/A
7	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2024-07-13	2027-07-12
8	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2024-08-03	2027-08-02
9	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2024-07-13	2027-07-12
10	EMI Test Receiver	R&S	ESR 7	101181	2024-06-06	2025-06-05
11	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2024-06-06	2025-06-05
12	Low-frequency amplifier	SchwarzZBECK	BBV9745	00253	2024-10-08	2025-10-07
13	High-frequency amplifier	JS Denki Pte	PA0118-43	JSPA21009	2024-10-08	2025-10-07
14	EMI Test Receiver	R&S	ESPI	101940	2024-06-06	2025-06-05
15	Artificial Mains	R&S	ENV216	101288	2024-06-06	2025-06-05
16	10dB Attenuator	SCHWARZBECK	MTS-IMP-13 6	261115-001-0032	2024-06-06	2025-06-05
17	EMI Test Software	Farad	EZ	14/2/17	N/A	N/A
18	Antenna Mast	Max-Full	MFA-515BS N	1308572	N/A	N/A
19	Pulse Limiter	R&S	ESH3-Z2	102750-NB	2024-06-06	2025-06-05
20	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2024-07-13	2027-07-12
21	Broadband Preamplifier	SCHWARZBECK	BBV9719	9719-025	2024-07-30	2025-07-29

Report No.: LCSA12034076EA

11. TEST SETUP PHOTOGRAPHS OF THE EUT

Please refer to separated files for Test Setup Photos of the EUT.

12. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

13. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

on the control of the

LEST LOS Testing Lab

相写 立法性測度的

Report No.: LCSA12034076EA

-----THE END OF REPORT-----

[] ICS Testing Lab

151 LCS Testing Lab

KST LCS Testing Lab

