TEST REPORT ## No.I20N02376-HAC RF For # Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd Feature phone **Model Name: CP3321AT** With **Hardware Version: P1** Software Version: 3321AT.201014.2S FCC ID: R38YLCP3321AT **Results Summary: M Category = M3** Issued Date: 2020-10-23 **Designation Number: CN1210** Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT. ### **Test Laboratory:** SAICT, Shenzhen Academy of Information and Communications Technology Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000. Tel:+86(0)755-33322000, Fax:+86(0)755-33322001 Email: yewu@caict.ac.cn. www.saict.ac.cn ## **REPORT HISTORY** | Report Number | Revision | Description | Issue Date | |------------------|----------|-------------|------------| | I20N02376-HAC RF | Rev.0 | 1st edition | 2020-10-23 | ## **CONTENTS** | 1. SUMMARY OF TEST REPORT | 5 | |---|----| | 1.1. TEST ITEMS | 5 | | 1.2. TEST STANDARDS | | | 1.3. Test Result | | | 1.4. TESTING LOCATION | | | 1.5. PROJECT DATA | | | 1.6. SIGNATURE | | | 2. CLIENT INFORMATION | | | 2.1. APPLICANT INFORMATION | | | 2.2. MANUFACTURER INFORMATION | | | 3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | | | 3.1. ABOUT EUT | | | 3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST | | | 3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 3.4. AIR INTERFACES / BANDS INDICATING OPERATING MODES | | | 4. REFERENCE DOCUMENTS | | | | | | 5. OPERATIONAL CONDITIONS DURING TEST | | | 5.1. HAC MEASUREMENT SET-UP | | | 5.2. PROBE SPECIFICATION | | | 5.3. TEST ARCH PHANTOM & PHONE POSITIONER | | | 6. EUT ARRANGEMENT | | | | | | 6.1. WD RF EMISSION MEASUREMENTS REFERENCE AND PLANE | | | 7. SYSTEM VALIDATION | 13 | | 7.1. VALIDATION PROCEDURE | 13 | | 7.2. VALIDATION RESULT | 13 | | 8. MODULATION INTERFERENCE FACTOR (MIF) | 14 | | 9. EVALUATION FOR LOW-POWER EXEMPTION | 16 | | 9.1. PRODUCT TESTING THRESHOLD | 16 | | 9.2. CONDUCTED POWER | 16 | | 10. RF TEST PROCEDURES | 17 | | 11. MEASUREMENT RESULTS (E-FIELD) | 18 | | 12. ANSI C 63.19-2011 LIMITS | 19 | | 13. MEASUREMENT UNCERTAINTY | 20 | | 14. MAIN TEST INSTRUMENTS | 21 | |---|----| | ANNEX A: RF EMISSION TEST PLOT | 22 | | ANNEX B: SYSTEM VALIDATION RESULT | 42 | | ANNEX C: PROBE CALIBRATION CERTIFICATE | 45 | | ANNEX D: DIPOLE CALIBRATION CERTIFICATE | 55 | | ANNEX E: UID SPECIFICATION | 70 | | ANNEX E. ACCREDITATION CERTIFICATE | 84 | ## 1. Summary of Test Report ### 1.1. Test Items Description: Feature phone Model Name: CP3321AT Applicant's name: Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd Manufacturer's Name: Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd ### 1.2. Test Standards ANSI C63.19-2011 ### 1.3. Test Result **Pass** ### 1.4. Testing Location Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026 ### 1.5. Project Data Testing Start Date: 2020-09-16 Testing End Date: 2020-09-16 1.6. Signature Li Yongfu (Prepared this test report) Zhang Yunzhuan (Reviewed this test report) Cao Junfei (Approved this test report) ## 2. Client Information ## 2.1. Applicant Information | Company Name: | Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd | |---------------|--| | Address: | Building B, Boton Science Park, Chaguang Road, Xili Town, Nanshan District | | City: | Shenzhen | | Country: | China | | Telephone: | +86 15927320221 | ## 2.2. Manufacturer Information | Company Name: | Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd | |---------------|--| | Address: | Building B, Boton Science Park, Chaguang Road, Xili Town, Nanshan District | | City: | Shenzhen | | Country: | China | | Telephone: | +86 15927320221 | ## 3. Equipment under Test (EUT) and Ancillary Equipment (AE) ### 3.1. About EUT | Description: | Feature phone | |-------------------------------|--| | Mode Name: | CP3321AT | | Condition of EUT as received: | No obvious damage in appearance | | Operating mode(s): | GSM 850/1900, CDMA BC0/BC1/BC10, WCDMA Band 2/4/5 | | Operating mode(s): | LTE Band 2/4/5/12/13/17/25/26/41/66/71, Bluetooth, WLAN 2.4G | ### 3.2. Internal Identification of EUT used during the test | EUT ID* | IMEI | HW Version | SW Version | |---------|-----------------|------------|------------------| | UT04aa | 990016030008435 | P1 | 3321AT.201014.2S | | UT05aa | 990016030004830 | P1 | 3321AT.201014.2S | ^{*}EUT ID: is used to identify the test sample in the lab internally. Note: It is performed to test HAC with the UT04aa & UT05aa. ### 3.3. Internal Identification of AE used during the test | AE ID* | Description Type Manufac | | Manufacturer | |--------|--------------------------|--------|-------------------| | AE1 | Battery | Li-ion | Tianjin Lishen | | AE2 | Battery | Li-ion | Zhongshan Tianmao | ^{*}AE ID: is used to identify the test sample in the lab internally. ### 3.4. Air Interfaces / Bands Indicating Operating Modes | Air-interface | Pand(MUT) | Typo | C63.19 / | Simultaneous | Name of Voice | Power | | |---------------|------------------|------|----------|---------------|---------------|-----------|--| | All-interface | Band(MHz) | Туре | tested | Transmissions | Service | Reduction | | | GSM 850 /1900 | | VO | Yes | BT,WLAN | CMRS Voice | No | | | EDGE | 850 /1900 | VD | Yes | BT,WLAN | NA | INO | | | WCDMA | B2 / B4/ B5 | VO | Yes | BT,WLAN | CMRS Voice | No | | | VVCDIVIA | HSPA | VD | Yes | BT,WLAN | NA | No | | | CDMA | BC0 / BC1 / BC10 | VO | Yes | BT,WLAN | CMRS Voice | No | | | CDIVIA | 1XRTT / EVDO | VD | Yes | BT,WLAN | NA | INO | | | LTE (FDD) | 2/4/5/12/13/17/ | VD | Yes | BT,WLAN | VoLTE | | | | LIL (I DD) | 25/26/66/71 | VD | 163 | DI,WEAN | VOLIL | No | | | LTE (TDD) | 41 | VD | Yes | BT,WLAN | VoLTE | | | | WLAN | 2.4G | VD | Yes | WWAN | VoWIFI | No | | | Bluetooth | 2.4G | DT | No | WWAN | NA | No | | VO: Voice CMRS/PSTN Service Only VD: Voice CMRS/PSTN and Data Service DT: Digital Transport ^{*} HAC Rating was not based on concurrent voice and data modes; Non-current mode was found to represent worst case rating for both M and T rating ## 4. Reference Documents The following document listed in this section is referred for testing. | | - | | |------------------|--|---------| | Reference | Title | Version | | ANSI C63.19-2011 | American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids | 2011 | | KDB 285076 D01 | Equipment Authorization Guidance for Hearing Aid Compatibility | v05 | ## 5. Operational Conditions During Test ### 5.1. HAC Measurement Set-up These measurements are performed using the DASY5 NEO automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Intel Core2 1.86 GHz computer with Windows XP system and HAC Measurement Software DASY5 NEO, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Fig. 1 HAC Test Measurement Set-up The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. ### 5.2. Probe Specification ### E-Field Probe Description Construction One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges PEEK enclosure material Calibration In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%, k=2) Frequency 40 MHz to > 6 GHz (can be extended to < 20 MHz) Linearity: ± 0.2 dB (100 MHz to 3 GHz) Directivity ± 0.2 dB in air (rotation around probe axis) ± 0.4 dB in air (rotation normal to probe axis) Dynamic Range 2 V/m to > 1000 V/m; Linearity: ± 0.2 dB Dimensions Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.5 mm Application General near-field measurements up to 6 GHz Field component measurements Fast automatic scanning in phantoms [ER3DV6] ### 5.3. Test Arch Phantom & Phone Positioner The Test Arch phantom
should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: $370 \times 370 \times 370 \text{ mm}$). The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field $<\pm0.5$ dB. Fig. 2 HAC Phantom & Device Holder ### 5.4. Robotic System Specifications ### **Specifications** Positioner: Stäubli Unimation Corp. Robot Model: RX160XL Repeatability: ±0.02 mm No. of Axis: 6 ### **Data Acquisition Electronic (DAE) System** **Cell Controller** Processor: Intel Core2 Clock Speed: 1.86 GHz Operating System: Windows XP **Data Converter** Features: Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY5 software **Connecting Lines:** Optical downlink for data and status info. Optical uplink for commands and clock ## 6. EUT Arrangement ### 6.1. WD RF Emission Measurements Reference and Plane Figure 4 illustrates the references and reference plane that shall be used in the WD emissions measurement. - The grid is 5 cm by 5 cm area that is divided into 9 evenly sized blocks or sub-grids. - The grid is centered on the audio frequency output transducer of the WD (speaker or T-coil). - The grid is located by reference to a reference plane. This reference plane is the planar area that contains the highest point in the area of the WD that normally rests against the user's ear - The measurement plane is located parallel to the reference plane and 15 mm from it, out from the phone. The grid is located in the measurement plane. Fig. 3 WD reference and plane for RF emission measurements ## 7. System Validation ### 7.1. Validation Procedure Place a dipole antenna meeting the requirements given in ANSI C63.19 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical output. Position the E-field probes so that: - The probes and their cables are parallel to the coaxial feed of the dipole antenna - The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions - The center point of the probe element(s) are 15 mm from the closest surface of the dipole elements. Fig. 4 Dipole Validation Setup ### 7.2. Validation Result | E-Field Scan | | | | | | | |---|-------|------|--------------|--------------|--------|-----| | Frequency Input Power Measured Target Deviation Deviation | | | | | Limit⁴ | | | Mode | (MHz) | (mW) | Value(dBV/m) | Value(dBV/m) | (%) | (%) | | CW | 835 | 100 | 43.32 | 40.72 | 6.4 | ±25 | | CW | 1880 | 100 | 37.45 | 39.06 | -4.1 | ±25 | | CW | 2600 | 100 | 39.87 | 38.71 | 3.0 | ±25 | ### Notes: - 1. Please refer to the attachment for detailed measurement data and plot. - 2. Target value is provided by SPEAD in the calibration certificate of specific dipoles. - 3. Deviation (%) = 100 * (Measured value minus Target value) divided by Target value. - 4. ANSI C63.19 requires values within \pm 25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty. Values independently validated for the dipole actually used in the measurements should be used, when available. ### 8. Modulation Interference Factor (MIF) The HAC Standard ANSI C63.19-2011 defines a new scaling using the Modulation Interference Factor (MIF) which replaces the need for the Articulation Weighting Factor (AWF) during the evaluation and is applicable to any modulation scheme. The Modulation Interference factor (MIF, in dB) is added to the measured average E-field (in dBV/m) and converts it to the RF Audio Interference level (in dBV/m). This level considers the audible amplitude modulation components in the RF E-field. CW fields without amplitude modulation are assumed to not interfere with the hearing aid electronics. Modulations without time slots and low fluctuations at low frequencies have low MIF values, TDMA modulations with narrow transmission and repetition rates of few 100 Hz have high MIF values and give similar classifications as ANSI C63-2007. ### **Definitions** ER3D, E-field probes have a bandwidth <10 kHz and can therefore not evaluate the RF envelope in the full audio band. DASY52 is therefore using the "indirect" measurement method according to ANSI C63.19-2011 which is the primary method. These near field probes read the averaged E-field measurement. Especially for the new high peak-to-average (PAR) signal types, the probes shall be linearized by probe modulation response (PMR) calibration in order to not overestimate the field reading. The evaluation method or the MIF is defined in ANSI C63.19-2011 section D.7. An RMS demodulated RF signal is fed to a spectral filter (similar to an A weighting filter) and forwarded to a temporal filter acting as a quasi-peak detector. The averaged output of these filtering is called to a 1 kHz 80% AM signal as reference. MIF measurement requires additional instrumentation and is not well suited for evaluation by the end user with reasonable uncertainty It may alternatively be determined through analysis and simulation, because it is constraint and characteristic for a communication signal. DASY52 uses well defined signals for PMR calibration. The MIF of these signals has been determined by simulation and is automatically applied. MIF values were not tested by a probe or as specified in the standards but are based on analysis provided by SPEAG for all the air interfaces (GSM, WCDMA, CDMA, LTE). The data included in this report are for the worst case operating modes. The UIDs used are listed below: | UID | Communication System Name | MIF (dB) | |-------|---|----------| | 10021 | GSM-FDD (TDMA, GMSK) | 3.63 | | 10011 | UMTS-FDD (WCDMA) | -27.23 | | 10295 | CDMA2000 (RC1, SO3, 1/8th Rate 25 fr.) | 3.26 | | 10170 | LTE-FDD(SC-FDMA, 1RB, 20MHz, 16-QAM) | -9.76 | | 10176 | LTE-FDD(SC-FDMA, 1RB, 10MHz, 16-QAM) | -9.76 | | 10173 | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16QAM) | -1.44 | | 10061 | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | -2.02 | A PMR calibrated probe is linearized for the selected waveform over the full dynamic range within the uncertainty specified in its calibration certificate. ER3D, EF3D and EU2D E-field probes have a bandwidth <10 kHz and can therefore not evaluate the RF envelope in the full audio band. DASY52 is therefore using the \indirect" measurement method according to ANSI C63.19-2011 which is the primary method. These near field probes read the averaged E-field measurement. Especially for the new high peak-to-average (PAR) signal types, the probes shall be linearized by PMR calibration in order to not overestimate the field reading. The MIF measurement uncertainty is estimated as follows, for modulation frequencies from slotted waveforms with fundamental frequency and at least 2 harmonics within 10 kHz: 0.2 dB for MIF -7 to +5 dB, 0.5 dB for MIF -13 to +11 dB 1 dB for MIF > -20 dB ## 9. Evaluation for low-power exemption ### 9.1. Product testing threshold There are two methods for exempting an RF air interface technology from testing. The first method requires evaluation of the MIF for the worst-case operating mode. An RF air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is \leq 17 dBm for any of its operating modes. The second method does not require determination of the MIF. The RF emissions testing exemption shall be applied to an RF air interface technology in a device whose peak antenna input power, averaged over intervals \leq 50 μ s20, is \leq 23 dBm. An RF air interface technology that is exempted from testing by either method shall be rated as M4. The first method is used to be exempt from testing for the RF air interface technology in this report. ### 9.2. Conducted power | Band | power (dBm) | MIF (dB) | Sum (dBm) | HAC Test | |-------------|-------------|----------|-----------|----------| | GSM 850 | 34.0 | 3.63 | 37.63 | Yes | | GSM 1900 | 32.0 | 3.63 | 35.63 | Yes | | CDMA BC0 | 23.5 | 3.26 | 26.76 | Yes | | CDMA BC1 | 23.5 | 3.26 | 26.76 | Yes | | CDMA BC10 | 23.5 | 3.26 | 26.76 | Yes | | WCDMA B2 | 23.5 | -27.23 | -3.73 | No | | WCDMA B4 | 23.5 | -27.23 | -3.73 | No | | WCDMA B5 | 23.5 | -27.23 | -3.73 | No | | LTE Band 2 | 24.0 | -9.76 | 14.24 | No | | LTE Band 4 | 24.0 | -9.76 | 14.24 | No | | LTE Band 5 | 24.0 | -9.76 | 14.24 | No | | LTE Band 12 | 24.0 | -9.76 | 14.24 | No | | LTE Band 13 | 24.0 | -9.76 | 14.24 | No | | LTE Band 17 | 24.0 | -9.76 | 14.24 | No | | LTE Band 25 | 24.0 | -9.76 | 14.24 | No | | LTE Band 26 | 24.0 | -9.76 | 14.24 | No | | LTE Band 66 | 24.0 | -9.76 | 14.24 | No | | LTE Band 71 | 24.0 | -9.76 | 14.24 | No | | LTE Band 41 | 24.5 | -1.44 | 23.06 | Yes | | WLAN 2.4G | 16.0 | -2.02 | 13.98 | No | ### Note: 1. Power = Max tune-up limit ### 10. RF Test Procedures ### The evaluation was performed with the following procedure: - 1) Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system. - 2) Position the WD in its intended test position. The gauge block can simplify this positioning. - 3) Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters (e.g., test mode), as intended for the test. - 4) The center sub-grid shall centered on the center of the T-Coil mode axial measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception. - 5) Record the reading. - 6) Scan the entire 50 mm by 50 mm region
in equally spaced increments and record the reading at each measurement point. The distance between measurement points shall be sufficient to assure the identification of the maximum reading. - 7) Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is the lowest of all available choices. This eliminates the three sub-grids with the maximum readings. Thus, the six areas to be used to determine the WD's highest emissions are identified. - 8) Identify the maximum field reading within the non-excluded sub-grids identified in Step 7) - 9) Evaluate the MIF and add to the maximum steady-state rms field-strength reading to obtain the RF audio interference level.. - Compare this RF audio interference level with the categories and record the resulting WD category rating. ## 11. Measurement Results (E-Field) | Frequency | | Measured Value | Power Drift | Catamami | | | |-----------|-------------|----------------|-------------|--------------------------|--|--| | MHz | Channel | (dBV/m) | (dB) | Category | | | | | | GSM 85 | 0 | | | | | 848.8 | 251 | 38.51 | 0.04 | M4 (see Fig A.1) | | | | 836.6 | 190 | 36.95 | 0.00 | M4 (see Fig A.2) | | | | 824.2 | 128 | 35.79 | -0.05 | M4 (see Fig A.3) | | | | | | GSM 190 | 00 | | | | | 1909.8 | 810 | 28.43 | 0.06 | M4 (see Fig A.4) | | | | 1880.0 | 661 | 29.55 | 0.06 | M4 (see Fig A.5) | | | | 1850.2 | 512 | 30.75 | 0.01 | M3 (see Fig A.6) | | | | | | CDMA B | C0 | | | | | 848.31 | 777 | 32.02 | 0.02 | M4 (see Fig A.7) | | | | 836.52 | 384 | 30.44 | 0.08 | M4 (see Fig A.8) | | | | 824.70 | 1013 | 31.49 | 0.07 | M4 (see Fig A.9) | | | | | | CDMA B | C1 | | | | | 1908.75 | 1175 | 28.41 | 0.01 | M4 (see Fig A.10) | | | | 1880.00 | 600 | 30.68 | 0.07 | M3 (see Fig A.11) | | | | 1851.25 | 25 | 32.34 | 0.00 | M3 (see Fig A.12) | | | | | | CDMA BO | C10 | | | | | 823.1 | 684 | 34.36 | 0.14 | M4 (see Fig A.13) | | | | 820.5 | 580 | 33.92 | 0.09 | M4 (see Fig A.14) | | | | 817.9 | 476 | 32.14 | 0.07 | M4 (see Fig A.15) | | | | | LTE Band 41 | | | | | | | 2680.0 | 41490 | 20.65 | 0.12 | M4 (see Fig A.16) | | | | 2636.5 | 41055 | 19.60 | 0.08 | M4 (see Fig A.17) | | | | 2593.0 | 40620 | 19.88 | 0.03 | M4 (see Fig A.18) | | | | 2549.5 | 40185 | 19.54 | 0.07 | M4 (see Fig A.19) | | | | 2506.0 | 39750 | 19.03 | 0.04 | M4 (see Fig A.20) | | | ## 12. ANSI C 63.19-2011 Limits ## WD RF audio interference level categories in logarithmic units | Emission categories | < 960 MHz | | | | | |---------------------|-------------------|----------|--|--|--| | 1 | E-field emissions | | | | | | Category M1 | 50 to 55 | dB (V/m) | | | | | Category M2 | 45 to 50 | dB (V/m) | | | | | Category M3 | 40 to 45 | dB (V/m) | | | | | Category M4 | < 40 | dB (V/m) | | | | | Emission categories | > 960 MHz | | | | | | / | E-field en | nissions | | | | | Category M1 | 40 to 45 | dB (V/m) | | | | | Category M2 | 35 to 40 | dB (V/m) | | | | | Category M3 | 30 to 35 | dB (V/m) | | | | | Category M4 | < 30 | dB (V/m) | | | | ## 13. Measurement Uncertainty | No. | Error source | Туре | Uncert
ainty
Value
(%) | Prob.
Dist. | k | C _i
E | Standard Uncertainty (%) u_i^{\cdot} (%) | Degree
of
freedom
V _{eff} or v _i | source | |-------------|--|----------------|---------------------------------|----------------|------------|---------------------|--|---|--------------| | 1 | System repeatability | Α | 0.24 | N | 1 | 1 | 0.24 | 9 | Measurement | | Meas | surement System | | | | | | | | | | 2 | Probe Calibration | В | 10.1 | N | 1 | 1 | 10.1 | ∞ | Manufacturer | | 3 | Axial Isotropy | В | 0.5 | R | $\sqrt{3}$ | 1 | 0.5 | 8 | Cal report | | 4 | Sensor Displacement | В | 16.5 | R | $\sqrt{3}$ | 1 | 9.5 | 8 | Manufacturer | | 5 | Boundary Effects | В | 2.4 | R | $\sqrt{3}$ | 1 | 1.4 | 8 | Manufacturer | | 6 | Linearity | В | 0.6 | R | $\sqrt{3}$ | 1 | 0.35 | 8 | Cal report | | 7 | Scaling to Peak Envolope Power | В | 2.0 | R | $\sqrt{3}$ | 1 | 1.2 | 8 | Standard | | 8 | System Detection Limit | В | 1.0 | R | $\sqrt{3}$ | 1 | 0.6 | ∞ | Manufacturer | | 9 | Readout Electronics | В | 0.3 | N | 1 | 1 | 0.3 | ∞ | Manufacturer | | 10 | Response Time | В | 0.8 | R | $\sqrt{3}$ | 1 | 0.5 | ∞ | Manufacturer | | 11 | Integration Time | В | 2.6 | R | $\sqrt{3}$ | 1 | 1.5 | ∞ | Manufacturer | | 12 | RF Ambient Conditions | В | 3.0 | R | $\sqrt{3}$ | 1 | 1.7 | ∞ | Measurement | | 13 | RF Reflections | В | 12.0 | R | $\sqrt{3}$ | 1 | 6.9 | ∞ | Measurement | | 14 | Probe Positioner | Α | 1.2 | R | $\sqrt{3}$ | 1 | 0.7 | 8 | Manufacturer | | 15 | Probe Positioning | Α | 4.7 | R | $\sqrt{3}$ | 1 | 2.7 | 8 | Manufacturer | | 16 | Extra. And Interpolation | В | 1.0 | R | $\sqrt{3}$ | 1 | 0.6 | 8 | Manufacturer | | Test | Sample Related | | | | | | | | | | 17 | Device Positioning Vertical | В | 4.7 | R | $\sqrt{3}$ | 1 | 2.7 | ∞ | Manufacturer | | 18 | Device Positioning Lateral | В | 1.0 | R | $\sqrt{3}$ | 1 | 0.6 | ∞ | Manufacturer | | 19 | Device Holder and Phantom | В | 2.4 | R | $\sqrt{3}$ | 1 | 1.4 | ∞ | Manufacturer | | 20 | Power Drift | В | 5.0 | R | $\sqrt{3}$ | 1 | 2.9 | ∞ | Measurement | | Phar | ntom and Setup related | | | | | | | | | | 21 | Phantom Thickness | В | 2.4 | R | $\sqrt{3}$ | 1 | 1.4 | ∞ | Manufacturer | | PMF related | | | | | | | | | | | 22 | Monitor amplitude | В | 3.5 | R | $\sqrt{3}$ | 1 | 2.02 | ∞ | Manufacturer | | 23 | Setup repeatability | Α | 2.3 | N | 1 | 1 | 2.3 | 9 | Manufacturer | | 24 | Sensor amplitude | В | 12 | R | $\sqrt{3}$ | 1 | 6.93 | ∞ | Manufacturer | | | Combined standard uncertaint | y(%) | | | T | | 18.3 | | | | | Expanded uncertainty (confidence interval of 95 %) | u _e | $=2u_c$ | N | k= | =2 | 36.6 | | | ## 14. Main Test Instruments **Table 14-1: List of Main Instruments** | No. | Name | Туре | Serial Number | Calibration Date | Valid
Period | |-----|------------------|----------|---------------|------------------|-----------------| | 01 | Signal Generator | E8257D | MY47461211 | 2020-01-15 | One year | | 02 | Power meter | E4418B | MY50000366 | 2010 12 14 | One year | | 03 | Power sensor | E9304A | MY50000188 | 2019-12-14 | One year | | 04 | Amplifier | VTL5400 | 0404 | / | | | 05 | HAC Test Arch | N/A | 1150 | / | | | 06 | DAE | DAE4 | 1527 | 2019-11-11 | One year | | 07 | E-Field Probe | ER3DV6 | 2424 | 2018-02-23 | Three year | | 80 | HAC Dipole | CD835V3 | 1165 | 2018-07-19 | Three year | | 09 | HAC Dipole | CD1880V3 | 1149 | 2018-07-19 | Three year | | 10 | HAC Dipole | CD2600V3 | 1020 | 2018-10-23 | Three year | | 11 | BTS | CMU500 | 152499 | 2020-07-17 | One year | | 12 | Software | DASY5 | 52.8.8.1222 | / | / | ### **ANNEX A: RF Emission Test Plot** ### HAC RF E-Field GSM 850 High Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, GSM Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 67.47 V/m; Power Drift = 0.04 dB Applied MIF = 3.63 dB RF audio interference level = 38.51 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 36.77 dBV/m | 38.31 dBV/m | 38.25 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 37.17 dBV/m | 38.51 dBV/m | 38.47 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 37.24 dBV/m | 38.37 dBV/m | 38.32 dBV/m | Fig A.1 HAC RF E-Field GSM850 ### HAC RF E-Field GSM 850 Middle Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, GSM Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility **Test (101x101x1):** Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 57.74 V/m; Power Drift = 0.00 dB Applied MIF = 3.63 dB RF audio interference level = 36.95 dBV/m **Emission category: M4** ### MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 35.29 dBV/m | 36.7 dBV/m | 36.67 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 35.81 dBV/m | 36.95 dBV/m | 36.91 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 35.99 dBV/m | 36.87 dBV/m | 36.82 dBV/m | Fig A.2 HAC RF E-Field GSM850 ### HAC RF E-Field GSM 850 Low Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, GSM Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 50.36 V/m; Power Drift = -0.05 dB Applied MIF = 3.63 dB RF audio interference level = 35.79 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 33.97 dBV/m | 35.52 dBV/m | 35.51 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 34.61 dBV/m | 35.79 dBV/m | 35.78 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9
M4 | | 34.84 dBV/m | 35.77 dBV/m | 35.76 dBV/m | Fig A.3 HAC RF E-Field GSM850 ### HAC RF E-Field GSM 1900 High Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, GSM Frequency: 1910 MHz Duty Cycle: 1:8.3 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 16.67 V/m; Power Drift = 0.06 dB Applied MIF = 3.63 dB RF audio interference level = 28.43 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 26.43 dBV/m | 26.63 dBV/m | 27.31 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 24.02 dBV/m | 28.43 dBV/m | 28.81 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 25.59 dBV/m | 28.79 dBV/m | 29.02 dBV/m | Fig A.4 HAC RF E-Field GSM1900 ### HAC RF E-Field GSM 1900 Middle Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, GSM Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 18.72 V/m; Power Drift = 0.06 dB Applied MIF = 3.63 dB RF audio interference level = 29.55 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 26.76 dBV/m | 27.36 dBV/m | 27.82 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 24.79 dBV/m | 29.55 dBV/m | 29.76 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M3 | | 27.35 dBV/m | 29.95 dBV/m | 30.06 dBV/m | Fig A.5 HAC RF E-Field GSM1900 ### HAC RF E-Field GSM 1900 Low Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, GSM Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 22.27 V/m; Power Drift = 0.01 dB Applied MIF = 3.63 dB RF audio interference level = 30.75 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 26.65 dBV/m | 28.42 dBV/m | 28.71 dBV/m | | Grid 4 M4 | Grid 5 M3 | Grid 6 M3 | | 26.43 dBV/m | 30.75 dBV/m | 30.86 dBV/m | | Grid 7 M4 | Grid 8 M3 | Grid 9 M3 | | 28.58 dBV/m | 31.1 dBV/m | 31.15 dBV/m | Fig A.6 HAC RF E-Field GSM1900 ### HAC RF E-Field CDMA BC0 High Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, CDMA Frequency: 848.31 MHz Duty Cycle: 1:1 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility **Test (101x101x1):** Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 31.95 V/m; Power Drift = 0.02 dB Applied MIF = 3.26 dB RF audio interference level = 32.02 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 31.05 dBV/m | 31.24 dBV/m | 30.91 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 32.08 dBV/m | 32.02 dBV/m | 31.24 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 32.35 dBV/m | 32.19 dBV/m | 31.25 dBV/m | Fig A.7 HAC RF E-Field CDMA BC0 ### **HAC RF E-Field CDMA BC0 Middle** Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, CDMA Frequency: 836.52 MHz Duty Cycle: 1:1 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility **Test (101x101x1):** Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 27.21 V/m; Power Drift = 0.08 dB Applied MIF = 3.26 dB RF audio interference level = 30.44 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 29.66 dBV/m | 29.87 dBV/m | 29.58 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 30.36 dBV/m | 30.44 dBV/m | 29.98 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 30.96 dBV/m | 30.92 dBV/m | 30.01 dBV/m | Fig A.8 HAC RF E-Field CDMA BC0 ### HAC RF E-Field CDMA BC0 Low Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, CDMA Frequency: 824.7 MHz Duty Cycle: 1:1 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 30.07 V/m; Power Drift = 0.07 dB Applied MIF = 3.26 dB RF audio interference level = 31.49 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 30.54 dBV/m | 30.76 dBV/m | 30.39 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 31.42 dBV/m | 31.49 dBV/m | 30.98 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 32.17 dBV/m | 32.13 dBV/m | 31.07 dBV/m | Fig A.9 HAC RF E-Field CDMA BC0 ### **HAC RF E-Field CDMA BC1 High** Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, CDMA Frequency: 1908.75 MHz Duty Cycle: 1:1 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 16.56 V/m; Power Drift = 0.01 dB Applied MIF = 3.26 dB RF audio interference level = 28.41 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 27.73 dBV/m | 27.18 dBV/m | 28.23 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 25.14 dBV/m | 28.41 dBV/m | 29.06 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 24.97 dBV/m | 28.67 dBV/m | 29.15 dBV/m | Fig A.10 HAC RF E-Field CDMA BC1 ### HAC RF E-Field CDMA BC1 Middle Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, CDMA Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility **Test (101x101x1):** Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 21.43 V/m; Power Drift = 0.07 dB Applied MIF = 3.26 dB RF audio interference level = 30.68 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 29.4 dBV/m | 29.06 dBV/m | 29.92 dBV/m | | Grid 4 M4 | Grid 5 M3 | Grid 6 M3 | | 26.21 dBV/m | 30.68 dBV/m | 31.14 dBV/m | | Grid 7 M4 | Grid 8 M3 | Grid 9 M3 | | 27.9 dBV/m | 30.98 dBV/m | 31.27 dBV/m | Fig A.11 HAC RF E-Field CDMA BC1 ### HAC RF E-Field CDMA BC1 Low Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, CDMA Frequency: 1851.25 MHz Duty Cycle: 1:8.3 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 27.21 V/m; Power Drift = 0.00 dB Applied MIF = 3.26 dB RF audio interference level = 32.34 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M3 | Grid 3 M3 | |------------------|------------------|------------------| | 29.43 dBV/m | 30.34 dBV/m | 30.9 dBV/m | | Grid 4 M4 | Grid 5 M3 | Grid 6 M3 | | 27.22 dBV/m | 32.34 dBV/m | 32.6 dBV/m | | Grid 7 M4 | Grid 8 M3 | Grid 9 M3 | | 29.68 dBV/m | 32.63 dBV/m | 32.77 dBV/m | Fig A.12 HAC RF E-Field CDMA BC1 ### HAC RF E-Field CDMA BC10 High Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, CDMA Frequency: 823.1 MHz Duty Cycle: 1:1 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 41.58 V/m; Power
Drift = 0.14 dB Applied MIF = 3.26 dB RF audio interference level = 34.36 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 32.41 dBV/m | 32.95 dBV/m | 32.69 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 33.96 dBV/m | 34.36 dBV/m | 34.11 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 34.73 dBV/m | 34.81 dBV/m | 34.31 dBV/m | Fig A.13 HAC RF E-Field CDMA BC10 ### **HAC RF E-Field CDMA BC10 Middle** Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, CDMA Frequency: 820.5 MHz Duty Cycle: 1:1 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility **Test (101x101x1):** Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 39.23 V/m; Power Drift = 0.09 dB Applied MIF = 3.26 dB RF audio interference level = 33.92 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 31.8 dBV/m | 32.48 dBV/m | 32.23 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 33.4 dBV/m | 33.92 dBV/m | 33.69 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 34.23 dBV/m | 34.38 dBV/m | 33.9 dBV/m | Fig A.14 HAC RF E-Field CDMA BC10 ### **HAC RF E-Field CDMA BC10 Low** Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, CDMA Frequency: 817.9 MHz Duty Cycle: 1:1 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); ### E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility **Test (101x101x1):** Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 30.60 V/m; Power Drift = 0.07 dB Applied MIF = 3.26 dB RF audio interference level = 32.14 dBV/m MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 29.71 dBV/m | 30.26 dBV/m | 30.01 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 31.31 dBV/m | 32.14 dBV/m | 31.52 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 32.15 dBV/m | 32.24 dBV/m | 31.76 dBV/m | Fig A.15 HAC RF E-Field CDMA BC10 # HAC RF E-Field LTE-Band 41 High Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_TDD Frequency: 2680 MHz Duty Cycle: 1:1.58 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); # E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility **Test (101x101x1):** Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 9.376 V/m; Power Drift = 0.12 dB Applied MIF = -1.44 dB RF audio interference level = 20.65 dBV/m **Emission category: M4** MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 16.08 dBV/m | 16.05 dBV/m | 18.42 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 17.74 dBV/m | 20.61 dBV/m | 20.65 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 21.01 dBV/m | 22.38 dBV/m | 22.14 dBV/m | Fig A.16 HAC RF E-Field LTE-Band 41 High ### HAC RF E-Field LTE-Band 41 Middle-1 Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_TDD Frequency: 2636.5 MHz Duty Cycle: 1:1.58 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); # E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 8.941 V/m; Power Drift = 0.08 dB Applied MIF = -1.44 dB RF audio interference level = 19.60 dBV/m **Emission category: M4** ### MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 15.03 dBV/m | 16.14 dBV/m | 18.59 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 18.18 dBV/m | 19.6 dBV/m | 19.6 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 20.71 dBV/m | 21.6 dBV/m | 21.18 dBV/m | Fig A.17 HAC RF E-Field LTE-Band 41 Middle-1 ### HAC RF E-Field LTE-Band 41 Middle-2 Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_TDD Frequency: 2593 MHz Duty Cycle: 1:1.58 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); # E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility **Test (101x101x1):** Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 9.286 V/m; Power Drift = 0.03 dB Applied MIF = -1.44 dB RF audio interference level = 19.88 dBV/m **Emission category: M4** MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 15.38 dBV/m | 16.45 dBV/m | 18.37 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 18.9 dBV/m | 19.88 dBV/m | 19.62 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 21.32 dBV/m | 22.16 dBV/m | 21.47 dBV/m | Fig A.18 HAC RF E-Field LTE-Band 41 Middle-2 ### HAC RF E-Field LTE-Band 41 Middle-3 Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_TDD Frequency: 2549.5 MHz Duty Cycle: 1:1.58 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); # E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility **Test (101x101x1):** Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 9.489 V/m; Power Drift = 0.07 dB Applied MIF = -1.44 dB RF audio interference level = 19.54 dBV/m **Emission category: M4** ### E-field without scaling | Grid 1 | Grid 2 | Grid 3 | | |-------------|-------------|-------------|--| | 15.55 dBV/m | 17.01 dBV/m | 18.51 dBV/m | | | Grid 4 | Grid 5 | Grid 6 | | | 18.76 dBV/m | 19.54 dBV/m | 19.21 dBV/m | | | Grid 7 | Grid 8 | Grid 9 | | | 20.94 dBV/m | 21 51 dRV/m | 20 67 dBV/m | | Fig A.19 HAC RF E-Field LTE-Band 41 Middle-3 ### **HAC RF E-Field LTE-Band 41 Low** Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_TDD Frequency: 2506 MHz Duty Cycle: 1:1.58 Probe: ER3DV6 - SN2424 ConvF (1, 1, 1); # E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility **Test (101x101x1):** Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 9.053 V/m; Power Drift = 0.04 dB Applied MIF = -1.44 dB RF audio interference level = 19.03 dBV/m **Emission category: M4** ### E-field without scaling | Grid 1 | Grid 2 | Grid 3 | |-------------|-------------|-------------| | 16.1 dBV/m | 16.72 dBV/m | 17.53 dBV/m | | Grid 4 | Grid 5 | Grid 6 | | 18.47 dBV/m | 19.03 dBV/m | 18.19 dBV/m | | Grid 7 | Grid 8 | Grid 9 | | 20.69 dBV/m | 21.14 dBV/m | 20.45 dBV/m | Fig A.20 HAC RF E-Field LTE-Band 41 Low # **ANNEX B: System Validation Result** ### 835 MHz Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 mho/m, ϵ r = 1; ρ = 1000 kg/m3 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: ER3DV6 - SN2424; ConvF (1, 1, 1) E Scan - measurement distance from the probe sensor center to CD835 Dipole = 15mm /Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 122.4V/m; Power Drift = 0.08 dB Applied MIF = 0.00 dB RF audio interference level = 43.32 dBV/m **Emission category: M3** ### MIF scaled E-field | Grid 1 M3 | Grid 2 M3 | Grid 3 M3 | |------------------|------------------|------------------| | 42.73 dBV/m | 43.26 dBV/m | 43.12 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 38.14 dBV/m | 38.52 dBV/m | 38.45 dBV/m | | Grid 7 M3 | Grid 8 M3 | Grid 9 M3 | | 42.85 dBV/m | 43.32 dBV/m | 46.21 dBV/m | 0 dB = 43.32 dBV/m ### 1880 MHz Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air Medium parameters used: σ = 0 mho/m, ε_r = 1; ρ = 1000 kg/m³ Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: ER3DV6 - SN2424; ConvF (1, 1, 1) E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 15mm /Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 128.6 V/m; Power Drift = -0.02 dB Applied MIF = 0.00 dB RF audio interference level = 37.45 dBV/m **Emission category: M2** MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |------------------|------------------|------------------| | 36.98 dBV/m | 37.45 dBV/m | 32.37 dBV/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 35.41 dBV/m | 36.56 dBV/m | 35.48 dBV/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 36.98 dBV/m | 37.37 dB V/m | 32.31 dBV/m | 0 dB = 37.45 dBV/m ### 2600 MHz Date: 2020-9-16 Electronics: DAE4 Sn1527 Medium: Air
Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1000 kg/m³ Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: ER3DV6 - SN2424; ConvF (1, 1, 1) E Scan - measurement distance from the probe sensor center to CD2600 Dipole = 15mm /Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 134.7 V/m; Power Drift = 0.05 dB Applied MIF = 0.00 dB RF audio interference level = 39.87 dBV/m **Emission category: M2** MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |------------------|------------------|------------------| | 39.41 dBV/m | 39.68 dBV/m | 39.61 dBV/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 39.01 dBV/m | 39.24 dBV/m | 39.18 dBV/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 39.69 dBV/m | 39.87 dB V/m | 39.72 dBV/m | 0 dB = 39.87 dBV/m # **ANNEX C: Probe Calibration Certificate** # E_Probe ER3DV6 Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 41, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst s Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service S Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL-SZ (Auden) Certificate No: ER3-2424_Feb18 **CALIBRATION CERTIFICATE** Object ER3DV6 - SN:2424 QA CAL-02.v8, QA CAL-25.v6 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date: February 23, 2018 This calibration certificate documents the traceability to national standards, which resize the physical units of measurements (Bi). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | (D) | Cal Date (Certificate No.) | Scheduled Californion | |----------------------------|------------------|-------------------------------------|------------------------| | Power meter NRP | SN: 104778 | 64-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-291 | SN 103244 | 04-Apr-17 (No. 217-02521) | Apr.18 | | Power pensor NRP-Z91 | SN 103245 | 64-Apr-17 (No. 217-02525) | Apr-18 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 07-Apr-17 (No. 217-02526) | Apr-18 | | Reference Probe ER3DVB | SN: 2328 | 10-Oct-17 (No. ER3-2328, Oct17) | Oct-18 | | DAE4 | SN: 789 | 2-Aug-17 (No. DAE4-789_Aug17) | Aug-18 | | Secondary Standards | ID . | Check Date (in house) | Scheduled Chack | | Power meter E44198 | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check, Jun-18 | | Power sensor E4412A | SN: MY41498067 | 06-Apri-16 (in house check Juri-16) | In house check: Jun-18 | | Power sensor E4412A | 5N: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 6648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | Calibrated by Laboratory Technician Approved by: Technical Manager fesued February 23, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: ER3-2424_Feb18 Page 1 of 10 Calibration Laboratory of Schmid & Partner Engineering AG lughausstrasse 43, 9864 Zurich, Switzerland S C S Service suisse d'étalonnage Servizio avizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Ewitz Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: NORMX,y.z. sensitivity in free space DOP diade compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A. B. C. D Polarization e q rotation around probe axis Polarization 3 3 rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., I) = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system. Connector Angle Calibration is Performed According to the Following Standards: IEEE Std 1309-2005, * IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz*, December 2005 b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.0, November 2013 Methods Applied and Interpretation of Parameters: MORMx.y.z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency-Response Chart). - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor modia. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal - Ax.y.z; Bx.y.z; Cx.y.z; Dx.y.z; VRx.y.z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup. - Senzor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMs (no uncertainty required). Certificate No: ER3-2424_Feb18 Page 2 of 10 ER30V6 - SN:2424 February 23, 2018 # Probe ER3DV6 SN:2424 Calibrated: Manufactured: November 12, 2007 February 23, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ER3-2424_Feb18 Page 3 of 10 ER3DV6 - SN:2424 February 23, 2018 # DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²)
DCP (mV) ⁸ | 1.46 | 1.51 | 1.82 | ±10.1 % | | DCP (mV) th | 100.0 | 98.3 | 100.6 | 2 10.1 10 | Modulation Calibratian Bassact | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ¹
(k=2) | |---------------|--|---|---------|------------|------|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 189.6 | 13.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 204.8 | - | | | | 2 | 0.0 | 0.0 | 1.0 | | 200.6 | | | 10021-
DAC | GSM-FDD (TDMA, GMSK) | × | 21.68 | 99.9 | 28.7 | 9.39 | 106.2 | ±2,2 % | | | | Y | 19.41 | 99.7 | 28.8 | | 111.3 | | | | 100 | Z | 24.71 | 99.5 | 28.2 | | 119.2 | | | 10061-
CAB | IEEE 802.11b W/Fi 2.4 GHz (DSSS, 11 Mbps) | Х | 8.35 | 84.6 | 25.4 | 3.60 | 146.9 | ±1.9 % | | | | Y | 4.81 | 74.8 | 21.7 | | 112.9 | | | | | Z | 6.43 | 78.8 | 22.9 | | 111.9 | | | 10077-
CAB | (DSSS/OFDM, 54 Mbps) | Х | 13.28 | 77.7 | 29.3 | 11.00 | 139.0 | ±3.8 % | | | | Y | 11.65 | 73.4 | 26.9 | | 100.8 | | | | | Z | 11.41 | 72.1 | 25.6 | | 99.2 | | | 10172-
CAD | LTE-TDD (SC-FDMA, 1 R8, 20 MHz,
QPSK) | X | 9.48 | 80.8 | 29.7 | 9.21 | 125.2 | ±3.8 % | | | | Y | 9.49 | 81.9 | 30.6 | | 134.1 | | | | | Z | 10.82 | 83.6 | 30.5 | | 136.8 | | | 10173-
CAD | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,
16-QAM) | Х | 9.87 | 81.2 | 29.9 | 9.48 | 125.1 | 12.5 % | | | | Y | 10.11 | 83.1 | 31.3 | | 134.2 | | | | | Z | 11.30 | 84.2 | 30.8 | | 136.9 | | | 10295-
AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | Х | 16.69 | 99.5 | 40.3 | 12.49 | 96.6 | 12.5 % | | | | Y | 15.42 | 99.3 | 41.1 | | 100.6 | | | | | Z | 17.91 | 99.9 | 39.8 | | 104.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ER3-2424_Feb18 Page 4 of 10 ^{*} Numerical linearization parameter: uncertainty not required. ** Uncertainty is determined using the max, deviation from linear sequence applying rectangular distribution and is expressed for the square of the field value. ER30V6 - SN:2424 February 23, 2016 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ER3-2424_Feb18 Page 5 of 10 ER3DV6 - SN:2424 February 23, 2018 # Receiving Pattern (4), 9 = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Receiving Pattern (φ), 9 = 90° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ER3-2424_Feb18 Page 7 of 10 ER3DV6 - SN:2424 February 23, 2018 Dynamic Range f(E-field) (TEM cell , f = 900 MHz) 101 Input Signal [uV] 10 102 101 101 E total [V/m] compensated E total [V/m] not compen Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ER3-2424_Feb18 Page 6 of 10 ER3DV6 - SN:2424 February 23, 2018 # Deviation from Isotropy in Air Error (\$\phi\$, \$\theta\$), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: ER3-2424_Feb18 Page 9 of 10 ER3DV6 - SN:2424 February 23, 2018 # DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424 # Other Probe Parameters | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle (*) | -11.2 | | Mechanical
Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 8 mm | | Probe Tip to Sensor X Calibration Point | 2.5 mm | | Probe Tip to Sensor Y Calibration Point | 2.5 mm | | Probe Tip to Sensor Z Calibration Point | 2.5 mm | Certificate No: ER3-2424_Feb18 Page 10 of 10 # **ANNEX D: Dipole Calibration Certificate** # Dipole 835 MHz # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalihrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: CD835V3-1165_Jul18 | Object | CD835V3 - SN: 1 | 165 | | |--|---|--|--| | Calibration procedure(s) | QA CAL-20.v6
Calibration proces | dure for dipoles in air | | | Calibration date: | July 19, 2018 | | | | The measurements and the uncert | ainties with confidence pr | oral standards, which realize the physical unit
obability are given on the following pages and
y taclity: anvironment temperature (22 ± 3)°C | i are part of the certificate. | | Calibration Equipment used (M&TI | | , | | | Primary Standards | 1D# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NFIP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | | | 12 (B) 10 (B) | 5 2 C C C C C C C C C C C C C C C C C C | | ower sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | | SN: 103244
SN: 103245 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673) | Apr-19
Apr-19 | | ower sensor NRP-Z91 | | | | | ower sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination | SN: 103245
SN: 5058 (20k) | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19
Apr-19 | | Power sensor NRP-291
Reference 20 dB Attenuator
Type-N mismetch combination
Probe EF30V3 | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02873)
04-Apr-18 (No. 217-02882)
04-Apr-18 (No. 217-02883) | Apr-19
Apr-19
Apr-19 | | Power sansor NRP-291
Reference 20 dB Attenuator
Type-N mismesch combination
Probe EF3DV3
Probe H3DV6 | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013 | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
05-Mar-18 (No. EF3-4013_Mar18) | Apr-19
Apr-19
Apr-19
Mur-10 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismasch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065 | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
05-Mar-18 (No. EF3-4013_Mar18)
30-Dec-17 (No. H3-6065, Dec17) | Apr-19
Apr-19
Apr-19
Mur-10
Dec-18 | | Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismesch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065
SN: 781 | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
05-Mar-18 (No. EF3-4013, Mar18)
30-Dec-17 (No. H3-6065, Dec17)
17-Jan-18 (No. DAE4-781_Jan18) | Apr-19 Apr-19 Apr-19 Mur-19 Dec-18 Jan-19 Scheduled Check | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismesch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B | SN: 5058 (20k)
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065
SN: 781 | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
05-Mar-18 (No. EF3-4013, Mar18)
30-Dec-17 (No. H3-6065, Dec17)
17-Jan-18 (No. DAE4-781_Jan18)
Check Diste (In house) | Apr-19 Apr-19 Apr-19 Mar-10 Dec-18 Jan-19 Scheduled Check In house check: Oct-29 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismesch combination Probe EF30V3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065
SN: 781 | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. E17-02683)
05-Mar-18 (No. E73-4013, Mar18)
30-Dec-17 (No. H3-6065, Dec-17)
17-Jan-18 (No. DAE-4-781_Jan18)
Check Date (In house)
09-Oct-09 (In house check Oct-17) | Apr-19 Apr-19 Apr-19 Mur-10 Dec-18 Jan-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismasch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065
SN: 781
ID #
SN: G842420191
SN: US38485102 | 04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. E17-02683)
05-Mar-18 (No. E53-4013, Mar18)
30-Dec-17 (No. H3-6065, Dec17)
17-Jan-18 (No. DAE4-781_Jan18)
Check Diste (In house)
09-Oct-09 (In house check Oct-17)
05-Jan-10 (In house check Oct-17) | Apr-19 Apr-19 Apr-19 Mur-10 Dec-18 Jarr-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-201 Reference 20 dB Attenuator Type-N mismasch combination Probe EF30V3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilem 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065
SN: 781
ID #
SN: G842420191
SN: US38485102
SN: US37295597
SN: 832283/011 | 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013, Mar18) 30-Dec-17 (No. H3-6065, Dec-17) 17-Jan-18 (No. DAE4-781_Jan18) Check Date (In house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) | Apr-19 Apr-19 Apr-19 Mur-10 Dec-18 Jan-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-291
Reference 20 dB Attenuator
Type-N mismatch combination
Probe EF3DV3
Probe H3DV6
DAE4 | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065
SN: 781
ID #
SN: G842420191
SN: US38485102
SN: US37295597
SN: 832283/011 | 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. E73-4013, Mar18) 30-Dec-17 (No. H3-6065, Dec-17) 17-Jan-18 (No. DAE4-781_Jan18) Check Date (In house) 09-Oct-09 (In house check Oct-17) 05-Jan-10 (In house check Oct-17) 27-Aug-12 (In house check Oct-17) | Apr-19 Apr-19 Apr-19 Mur-10 Dec-18 Jarr-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismesch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E835BA | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US37295697
SN: 832283/011
SN: US41080477 | 04-Apr-18 (No. 217-02873) 04-Apr-18 (No. 217-02882) 04-Apr-18 (No. 217-02883) 05-Mar-18 (No. EF3-4013, Mar18) 30-Dec-17 (No. EF3-4013, Mar18) 17-Jan-18 (No. DAE4-781_Jan18) Check Date (In house) 09-Oct-09 (In house check Oct-17) 05-Jan-10 (In house check Oct-17) 09-Oct-09 (In house check Oct-17) 27-Aug-12 (In house check Oct-17) 31-Mar-14 (In house check Oct-17) | Apr-19 Apr-19 Apr-19 Mar-10 Dec-18 Jarr-19 Scheduled Check In house check: Oct-20 | | Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismesch combination Probe EF30V3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US38485102
SN: US37295597
SN: 832283/011
SN: US41080477 | 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. E17-02683) 05-Mar-18 (No. E17-02683) 30-Dec-17 (No. E3-4013, Mar18) 30-Dec-17 (No. E3-4013, Mar18) Check Date (In house) 09-Oct-09 (In house check Oct-17) 05-Jan-10 (In house check Oct-17) 09-Oct-09 (In house check Oct-17) 27-Aug-12 (In house check Oct-17) 31-Mar-14 (In house check Oct-17) | Apr-19 Apr-19 Apr-19 Mar-10 Dec-18 Jarr-19 Scheduled Check In house check: Oct-20 | Certificate No:
CD835V3-1165_Jul18 Page 1 of 5 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. # Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes, in coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD835V3-1165_Jul18 Page 2 of 5 # Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.1 | |------------------------------------|-----------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | # Maximum Field values at 835 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|--------------------------| | Maximum measured above high end | 100 mW input power | 108.7 V/m = 40.72 dBV/m | | Maximum measured above low end | 100 mW input power | 108.6 V/m = 40.72 dBV/m | | Averaged maximum above arm | 100 mW input power | 108.7 V/m ± 12.8 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------------------| | BOO MHz | 16.4 dB | 40.0 Ω - 9.2 jΩ | | 835 MHz | 25.5 dB | $53.7 \Omega + 4.0 j\Omega$ | | 880 MHz | 17.8 dB | 60.3 Ω - 9.8 jΩ | | 900 MHz | 16.5 dB | 51.6 Ω - 15.3 jΩ | | 945 MHz | 21.7 dB | 43.9 Ω + 4.8 jΩ | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD835V3-1165_Jul18 Page 3 of 5 # Impedance Measurement Plot ### **DASY5 E-field Result** Date: 19.07.2018 Test Laboratory: SPEAG Lab2 # DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1165 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: σ = 0 S/m, ε_c = 1; ρ = 0 kg/m² Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IE/ANSI C63,19-2011) #### DASY52 Configuration: - Probe: EF3DV3 5N4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 05.03.2018 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 17.01.2018 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASYS2 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 130.9 V/m; Power Drift = 0.02 dB Applied MHF = 0.00 dB RF audio interference level = 40.73 dBV/m Emission category: M3 MIF scaled E-field | | Grid 2 M3
40.72 dBV/m | Grid 3 M3
40.67 dBV/m | |-------------|--------------------------|--------------------------| | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 35.61 dBV/m | 35.96 dBV/m | 35.94 dBV/m | | Grid 7 M3 | Grid 8 M3 | Grid 9 M3 | | 40.41 dBV/m | 40.73 dBV/m | 40.67 dBV/m | 0 dB = 108.7 V/m = 40.72 dBV/m Certificate No: CD835V3-1165_Jul18 Page 5 of 5 # Dipole 1880 MHz Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) cent CTTL (Auden) Certificate No: CD1880V3-1149_Jul18 | Object | CD1880V3 - SN: 1149 | | | |--
--|---|--| | Calibration procedure(s) | QA CAL-20.v6
Calibration proce | dure for dipoles in air | | | Calibration date: | July 19, 2018 | | | | This calibration certificate docume | nts the traceability to natio | onal standards, which realize the physical unit | ts of measurements (SI). | | | | robability are given on the following pages and | | | | | | | | All calibrations have been conduc | ted in the closed laborator | y facility: environment temperature (22 \pm 3)°C | and humidity < 70%. | | Selfrentian Francisco and ARST | E sulting) for collington's | | | | Calibration Equipment used (M&T | A THE RESIDENCE OF THE PROPERTY OF THE PARTY | | Out of the College Control | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | | | | | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 103244
SN: 103245 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673) | Apr-19
Apr-19 | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103244
SN: 103245
SN: 5058 (20k) | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19
Apr-19
Apr-19 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683) | Apr-19
Apr-19
Apr-19
Apr-19 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
05-Mar-18 (No. EF3-4013_Mar18) | Apr-19
Apr-19
Apr-19
Apr-19
Mar-19 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
05-Mar-18 (No. EF3-4013_Mar18)
30-Dec-17 (No. H3-6065_Dec17) | Apr-19
Apr-19
Apr-19
Apr-19
Mar-19
Dec-18 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
05-Mar-18 (No. EF3-4013_Mar18) | Apr-19
Apr-19
Apr-19
Apr-19
Mar-19 | | Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 Probe H3DV6 DAE4 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065
SN: 781 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
05-Mar-18 (No. EF3-4013_Mar18)
30-Dec-17 (No. H3-6065_Dec17)
17-Jan-18 (No. DAE4-781_Jan18) | Apr-19
Apr-19
Apr-19
Apr-19
Mar-19
Dec-18 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
05-Mar-18 (No. EF3-4013_Mar18)
30-Dec-17 (No. H3-6065_Dec17) | Apr-19
Apr-19
Apr-19
Apr-19
Mar-19
Dec-18
Jan-19 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065
SN: 781 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
05-Mar-18 (No. EF3-4013_Mar18)
30-Dec-17 (No. H3-6065_Dec17)
17-Jan-18 (No. DAE4-781_Jan18)
Check Date (in house) | Apr-19 Apr-19 Apr-19 Apr-19 Mar-19 Dec-18 Jan-19 Scheduled Check In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 4013
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: US38485102 | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013_Mar18) 30-Dec-17 (No. H3-6065_Dec17) 17-Jan-18 (No. DAE4-781_Jan18) Check Date (In house) 09-Oct-09 (In house check Oct-17) 06-Jan-10 (In house check Oct-17) | Apr-19 Apr-19 Apr-19 Apr-19 Mar-19 Dec-18 Jan-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF30V3 Probe H30V6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 08327
SN: 4013
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US37296597 | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013_Mar18) 30-Dec-17 (No. H3-6065_Dec17) 17-Jan-18 (No. DAE4-781_Jan18) Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) | Apr-19 Apr-19 Apr-19 Apr-19 Mar-19 Dec-18 Jan-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 08327
SN: 4013
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US37295597
SN: 832283/011 | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013_Mar18) 30-Dec-17 (No. H3-6065_Dec17) 17-Jan-18 (No. DAE4-781_Jan18) Check Date (In house) 09-Oct-09 (In house check Oct-17) 06-Jan-10 (In house check Oct-17) | Apr-19 Apr-19 Apr-19 Apr-19 Mar-19 Dec-18 Jan-19 Scheduled Check In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 08327
SN: 4013
SN: 6065
SN: 781
IO #
SN: GB42420191
SN: US38485102
SN: US37295597
SN: 832283/011
SN: US41080477 | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18
(No. EF3-4013_Mar18) 30-Dec-17 (No. H3-6065_Dec17) 17-Jan-18 (No. DAE-4-781_Jan18) Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-17) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Jan-19 Schedufed Check In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Atternuator Type-N mismatch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8368A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 08327
SN: 4013
SN: 6065
SN: 781
IO #
SN: GB42420191
SN: US38485102
SN: US37295597
SN: 832283/011
SN: US41080477
Name | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013_Mar18) 30-Dec-17 (No. H3-6065_Dec17) 17-Jan-18 (No. DAE-4-781_Jan18) Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-17) Function | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Mar-19 Dec-18 Jan-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-21 In house check: Oct-21 In house check: Oct-18 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 08327
SN: 4013
SN: 6065
SN: 781
IO #
SN: GB42420191
SN: US38485102
SN: US37295597
SN: 832283/011
SN: US41080477 | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013_Mar18) 30-Dec-17 (No. H3-6065_Dec17) 17-Jan-18 (No. DAE-4-781_Jan18) Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-17) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Mar-19 Dec-18 Jan-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-21 In house check: Oct-21 In house check: Oct-18 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Atternuator Type-N mismatch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8368A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 08327
SN: 4013
SN: 6065
SN: 781
IO #
SN: GB42420191
SN: US38485102
SN: US37295597
SN: 832283/011
SN: US41080477
Name | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013_Mar18) 30-Dec-17 (No. H3-6065_Dec17) 17-Jan-18 (No. DAE-4-781_Jan18) Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-17) Function | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Jan-19 Schedufed Check In house check: Oct-20 | Certificate No: CD1880V3-1149_Jul18 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 #### References ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. ### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASYS Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD1880V3-1149_Jul18 Page 2 of 5 ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.1 | |------------------------------------|------------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx. dy = 5 mm | | | Frequency | 1880 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ### Maximum Field values at 1880 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 89.8 V/m = 39.06 dBV/m | | Maximum measured above low end | 100 mW input power | 89.3 V/m = 39.02 dBV/m | | Averaged maximum above arm | 100 mW input power | 89.5 V/m ± 12.8 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters | Frequency | Return Loss | Impedance | |-----------|-------------|----------------------------| | 1730 MHz | 23,9 dB | 53.9 Ω + 5.4 μΩ | | 1880 MHz | 22.5 dB | 20 + 6.3 إذ | | 1900 MHz | 23.4 dB | 55.6 Ω + 4.5 μΩ | | 1950 MHz | 30.3 dB | 52.9 Ω - 1.3 jΩ | | 2000 MHz | 21.3 dB | $44.2 \Omega + 5.7 \Omega$ | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which feads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD1880V3-1149 Jul18 Page 3 of 5 # Impedance Measurement Plot ### **DASY5 E-field Result** Date: 19.07.2018 Test Laboratory: SPEAG Lab2 # DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1149 Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ S/m, $z_r = 1$; $\rho = 0$ kg/m Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EF3DV3 SN4013;
ConvF(1, 1, 1) @ 1880 MHz; Calibrated: 05.03.2018 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 17.01.2018 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm. dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 160.1 V/m; Power Drift = -0.04 dB Applied MIF = 0.00 dB RF audio interference level = 39.06 dBV/m Emission category: M2 MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |---|--------------------------|--------------------------| | 38.67 dBV/m | 39.06 dBV/m | 39.01 dBV/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 36 dBV/m | 36.15 d8V/m | 36.1 dBV/m | | 220000000000000000000000000000000000000 | Grid 8 M2
39.02 dBV/m | Grid 9 M2
38.91 dBV/m | 0 dB = 89.78 V/m = 39.06 dBV/m Certificate No: CD1880V3-1149_Jul18 # Dipole 2600 MHz Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client C CTTL-SZ (Auden) Certificate No: CD2600V3-1020 Oct18 | Object | CD2600V3 - SN: 1020 | | | |--|--|--|---| | Calibration procedure(s) | QA CAL-20.v6
Calibration proce | dure for dipoles in air | | | Calibration date: | October 23, 2018 | 3 | | | This calibration certificate documer | nts the traceability to nati | onal standards, which realize the physical unit | s of measurements (SI). | | The measurements and the uncert | ainties with confidence p | robability are given on the following pages and | are part of the certificate. | | | | ry facility: environment temperature (22 \pm 3)°C | and humidity < 70%. | | Calibration Equipment used (M&TE | The second secon | | | | Primary Standards | ID.# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02670) | Apr-10 | | ower sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | ower sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | | SN: 5047.2 / 06327 | 94-Apr-18 (No. 217-92683) | Apr-19 | | Type-N mismatch combination | GH. 1041 31 003E1 | ACTUAL CONTRACTOR OF THE PROPERTY. | | | | SN: 4013 | 05-Mar-18 (No. EF3-4013_Mar18) | Mar-19 | | Type-N mismatch combination
Probe EF3DV3
DAE4 | | 얼마나 하게 하다 생각하게 되어야 하고싶어요 이 경우 하고 하는 것이 되었다고? | Mar-19
Jan-19 | | Probe EF3DV3
DAE4 | SN: 4013 | 05-Mar-18 (No. EF3-4013_Mar18)
17-Jan-18 (No. DAE4-781_Jan18) | | | Probe EF3DV3
DAE4
Secondary Standards | 5N: 4013
5N: 781 | 05-Mar-18 (No. EF3-4013_Mar18)
17-Jan-18 (No. DAE4-781_Jan18)
Check Date (in house) | Jan-19 | | Probe EF3DV3 DAE4 Secondary Standards Power meter Agrient 44196 | SN: 4013
SN: 781
ID #
SN: GB42420191 | 05-Mar-18 (No. EF3-4013_Mar18)
17-Jan-18 (No. DAE4-781_Jan18)
Check Date (in house)
08-Oct-09 (in house check Oct-17) | Jan-19 Scheduled Check In house check: Oct-20 | | Probe EF3DV3 DAE4 Secondary Standards Power meter Agrient 4419B Power sensor HP E4412A | SN: 4013
SN: 781
ID #
SN: G842420191
SN: US38485102 | 05-Mar-18 (No. EF3-4013_Mar18)
17-Jan-18 (No. DAE4-781_Jan18)
Check Date (in house)
09-Oct-09 (in house check Oct-17)
05-Jan-10 (in house check Oct-17) | Jan-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A | SN: 4013
SN: 781
ID #
SN: G842420191
SN: US38485102
SN: US37295697 | 05-Mar-18 (No. EF3-4013_Mar18)
17-Jan-18 (No. DAE4-781_Jan18)
Check Date (in house)
09-Oct-09 (in house check Oct-17)
05-Jan-10 (in house check Oct-17)
09-Oct-09 (in house check Oct-17) | Scheduled Check
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20 | | Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | SN: 4013
SN: 781
ID #
SN: G842420191
SN: US38485102 | 05-Mar-18 (No. EF3-4013_Mar18)
17-Jan-18 (No. DAE4-781_Jan18)
Check Date (in house)
09-Oct-09 (in house check Oct-17)
05-Jan-10 (in house check Oct-17) | Jan-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Probe EF3DV3
DAE4 | SN: 4013
SN: 781
ID #
SN: G842420191
SN: US38485102
SN: US37295597
SN: 832283/011 | 05-Mar-18 (No. EF3-4013_Mar18)
17-Jan-18 (No. DAE4-781_Jan18)
Check Date (in house)
08-Oct-09 (in house check Oct-17)
05-Jan-10 (in house check Oct-17)
09-Oct-09 (in house check Oct-17)
27-Aug-12 (in house check Oct-17) | Scheduled Check In house check: Oct-20 | | Probe EF3DV3 DAE4 Secondary Standards Power meter Agaient 4419B Power sensor HP 64412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agaient E8358A | SN: 4013
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US3729597
SN: 832283/011
SN: US41080477 | 05-Mar-18 (No. EF3-4013_Mar18)
17-Jan-18 (No. DAE4-781_Jan18)
Check Date (in house)
08-Oct-09 (in house check Oct-17)
05-Jan-10 (in house check Oct-17)
09-Oct-09 (in house check Oct-17)
27-Aug-12 (in house check Oct-17)
31-Mar-14 (in house check Oct-18) | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 Signature | | Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | SN: 4013
SN: 781
ID #
SN: G842420191
SN: US38485102
SN: US3729597
SN: 832283/011
SN: US41080477
Name | 05-Mar-18 (No. EF3-4013_Mar18) 17-Jan-18 (No. DAE4-781_Jan18) Check Date (in house) 08-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 29-Dct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-18) Function | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 Signature | | Probe EF3DV3 DAE4 Secondary Standards Power meter Agsent 4419B Power sensor HP 64412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agbent E8358A | SN: 4013
SN: 781
ID #
SN: G842420191
SN: US38485102
SN: US3729597
SN: 832283/011
SN: US41080477
Name | 05-Mar-18 (No. EF3-4013_Mar18) 17-Jan-18 (No. DAE4-781_Jan18) Check Date (in house) 08-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 29-Dct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-18) Function | Scheduled Check
in house check: Oct-20
in house check: Oct-19 | Certificate No: CD2600V3-1020 Oct18 Page 1 of 5 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43,
8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications. Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD2600V3-1020_Oct18 Page 2 of 5 # Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.10.2 | |------------------------------------|------------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 2800 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | # Maximum Field values at 2600 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 86.2 V/m = 38.71 dBV/m | | Maximum measured above low end | 100 mW input power | 85.2 V/m = 38.61 dBV/m | | Averaged maximum above arm | 100 mW input power | 85.7 V/m ± 12.8 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters | Frequency | Return Loss | Impedance | | |-----------|-------------|-------------------------|--| | 2450 MHz | 18.6 dB | 42.7 Ω - 8.2 jΩ | | | 2550 MHz | 27.1 dB | 45.9 Ω + 1.2 jΩ | | | 2600 MHz | 32,4 dB | 48.3 Ω + 1.6 jΩ | | | 2650 MHz | 36.6 dB | 36.6 dB 51.2 Ω + 1.0 jΩ | | | 2750 MHz | 19.3 dB | 50.9 Ω - 11.0 μ | | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Gertificate No: CD2600V3-1020_Oct18 Page 3 of 5 # Impedance Measurement Plot Certificate No: CD2600V3-1020_Oct18 Page 4 of 5 ### **DASY5 E-field Result** Date: 23.10.2018 Test Laboratory: SPEAG Lab2 # DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN; 1020 Communication System: UID 0 - CW ; Frequency: 2600 MHz Medium parameters used: $\sigma = 0$ S/m, $z_0 = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section w Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) # DASY52 Configuration: - Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2600 MHz; Calibrated: 05.03.2018 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 17.01.2018 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 64.09 V/m; Power Drift = 0.01 dB Applied MIF = 0.00 dB RF audio interference level = 38.71 dBV/m Emission category: M2 MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |-------------|-------------|-------------| | 38.32 dBV/m | 38.61 dBV/m | 38.53 dBV/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 37.96 dBV/m | 38.19 dBV/m | 38.15 dBV/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 38.48 dBV/m | 38.71 dBV/m | 38.63 dBV/m | 0 d8 = 86.22 V/m = 38.71 dBV/m Certificate No: CD2600V3-1020_Oct18 Page 5 of 5 # **ANNEX E: UID Specification** # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland | Name: | GSM-FDD (TDMA, GMSK) | | |--|--|--| | Group:
UID: | GSM
10021-DAC | | | PAR: 1
MIF: P | 9,39dB
3,63dB | | | Standard Paterence:
Category:
Modulation:
Frequency Band: | ETSI TS 100 909 V8.9.0 (2005-01) FCC OET KDB 941225, D03 and D04 Perrodic pulsed modulation GMSK GSM 450 (400.4 - 457.6 M-tz) GSM 450 (400.4 - 457.6 M-tz) GSM 450 (400.4 - 457.6 M-tz) GSM 750 (747.0 - 763.0 M-tz) GSM 750 (747.0 - 763.0 M-tz) GSM 850 (824.0 - 849.0 M-tz) P-GSM 900 (800.0 - 915.0 M-tz) E-GSM 900 (879.0 - 915.0 M-tz) R-GSM 900 (879.0 - 915.0 M-tz) DC5 1800 (1710.0 - 1785.0 M-tz) PCS 1800 (1550.0 - 110.0 M-tz) ER-GSM 900 (1850.0 - 110.0 M-tz) Validation band (10.0 - 8000.0 M-tz) Validation band (10.0 - 8000.0 M-tz) | | | Detailed Specification: | Active Slot: TN0 Data: PN6 continuous Frame: composed out at 8 Slots Mutificame: 26th (IDLE) Frame set blank | | | Bandwidth:
Integration Time: | Sinttype & 4ming: Normal burst for GMSK
0.2 MHz
120.9 ms. | | UID Specification Sheet UID 10021-DAC page 1/2 16.11.2016 PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)" Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version). Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Complementary Cumulative Distribution Function (CCDF) Frequency Domain Time Domain UID Specification Sheet UID 10021-DAC page 2/2 16.11.2016 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Name: UMTS-FDD (WCDMA) Group: WCDMA UID: 10011-CAB PAR: 1 2.91 dB MIF: 2 -27.23 dB Standard Reference: 3GPP TS 25.141
Annex A FCC OET KDB 941225 D01 SAR test for 3G devices v02 Category: Random amplitude modulation Modulation: QPSK Frequency Band: Band 1, UTRA/FDD (1920.0-1980.0 MHz, 20000) Band 2, UTRA/FDD (1850.0-1910.0 MHz, 20001) Band 3, UTRA/FDD (1710.0-1785.0 MHz, 20002) Band 4, UTRA/FDD (1710.0-1755.0 MHz, 20003) Band 5, UTRA/FDD (824.0-849.0 MHz, 20004) Band 6, UTRA/FDD (830.0-840.0 MHz, 20005) Band 7, UTRA/FDD (2500.0-2570.0 MHz, 20006) Band 8, UTRA/FDD (880.0-915.0 MHz, 20007) Band 9, UTRA/FDD (1749.9-1784.9 MHz, 20008) Band 10, UTRA/FDD (1747.9-1452.9 MHz, 20010) Band 11, UTRA/FDD (1820.0-16.0 MHz, 20011) Band 11, UTRA/FDD (1427.9-1452.9 MHz, 20010) Band 12, UTRA/FDD (698.0-716.0 MHz, 20011) Band 13, UTRA/FDD (777.0-787.0 MHz, 20012) Band 14, UTRA/FDD (788.0-798.0 MHz, 20013) Band 19, UTRA/FDD (830.0-845.0 MHz, 20130) Band 20, UTRA/FDD (832.0-862.0 MHz, 20131) Band 21, UTRA/FDD (1447.9-1462.9 MHz, 20132) Band 22, UTRA/FDD (3410.0-3490.0 MHz, 20217) Band 25, UTRA/FDD (1850.0-1915.0 MHz, 20218) Band 26, UTRA/FDD (814.0-849.0 MHz, 20219) Detailed Specification: Dedicated Channel Type: RMC Bitrate: 12.2 kbps DPDCH: 60 kbps DPCCH: 15 kbps DPCCH/DPDCH power ratio: -5,46 dB Bandwidth: 5.0 MHz Integration Time: 100.0 ms **UID Specification Sheet** UID 10011-CAB page 1/2 16.01.2014 PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)" Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version). Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Complementary Cumulative Distribution Function (CCDF) Frequency Domain Time Domain UID Specification Sheet UID 10011-CAB page 2/2 16.01.2014 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Name: CDMA2000, RC1, SO3, 1/8th Rate 25 fr. Group: CDMA2000 UID: 10295-AAB PAR: 1 12.49 dB MIF: 2 3.26 dB Standard Reference: 3GPP2 C.S0002-C-1, Chapter 2.1.3.9.2.3 FCC OET KDB 941225 D01 SAR test for 3G devices (v02) Category: Random amplitude modulation Modulation: 64-ary orthogonal Frequency Band: Band Class 0 (815.0-849.0 MHz, 20220) Band Class 1 (1850.0-1910.0 MHz, 20040) Band Class 2 (872.0-915.0 MHz, 20041) Band Class 3 (887.0-925.0 MHz, 20042) Band Class 4 (1750.0-1780.0 MHz, 20043) Band Class 5 (411.7-483.5 MHz, 20044) Band Class 6 (1920.0-1980.0 MHz, 20044) Band Class 6 (1920.0-1980.0 MHz, 20045) Band Class 7 (776.0-794.0 MHz, 20046) Band Class 8 (1710.0-1785.0 MHz, 20047) Band Class 9 (880.0-915.0 MHz, 20048) Band Class 10 (806.0-901.0 MHz, 20049) Band Class 11 (410.0-482.5 MHz, 20050) Band Class 10 (806.0-901.0 MHz, 20049) Band Class 11 (410.0-462.5 MHz, 20050) Band Class 12 (870.0-876.0 MHz, 20051) Band Class 13 (2500.0-2570.0 MHz, 20179) Band Class 14 (1850.0-1915.0 MHz, 20180) Band Class 15 (1710.0-1755.0 MHz, 20181) Band Class 16 (2502.0-2568.0 MHz, 20182) Band Class 18 (787.0-799.0 MHz, 20184) Band Class 19 (698.0-716.0 MHz, 20185) Band Class 20 (1626.5-1660.5 MHz, 20186) Band Class 21 (2000.0-2020.0 MHz, 20187) Detailed Specification: Radio Configuration 1 (RC1) Service Option 3 (SO3) Speech codec: 8k EVRC (Enhanced Voice Rate Codec) 1/8th frame rate Bandwidth: 1.2 MHz Integration Time: 500.0 ms **UID Specification Sheet** UID 10295-AAB page 1/2 16.01.2014 PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)" Modulation interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UIID and version). Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Complementary Cumulative Distribution Function (CCDF) Frequency Domain Time Domain UID Specification Sheet UID 10295-AAB page 2/2 16.01.2014 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Name: LTE-FDD (SC-FDMA, 1 R8, 10 MHz, 16-QAM) LTE-FDO Group: UID 10176-CAE PAR: 1 6.52dB -9.76 dB Standard Reference: 3GPP / ETSI TS 136,101 V6.4.0 3GPP / ETSI TS 136,213 VB.4,0 FCC OET KDB 941225 D05 SAR for LTE Devices v01 Random amplitude modulation Category: 16-QAM Frequency Band: 16-QAM Band 1, E-UTRA/FDD (1920.0 - 1980.0 MHz) Band 2, E-UTRA/FDD (1890.0 - 1910.0 MHz) Band 3, E-UTRA/FDD (1710.0 - 1785.0 MHz) Band 4, E-UTRA/FDD (1710.0 - 1785.0 MHz) Band 5, E-UTRA/FDD (824.0 - 849.0 MHz) Band 5, E-UTRA/FDD (830.0 - 840.0 MHz) Band 7, E-UTRA/FDD (2500.0 - 2570.0 MHz) Band 8, E-UTRA/FDD (880.0 - 915.0 MHz) Band 9, E-UTRA/FDD (1749.9 - 1784.9 MHz) Band 10, E-UTRA/FDD (1710.0 - 1770.0 MHz) Band 11, E-UTRA/FDD (1427.9 - 1447.9 MHz) Band 12, E-UTRA/FDD (699.0 - 718.0 MHz) Band 13, E-UTRA/FDD (777.0 - 787.0 MHz) Band 14, E-UTRA/FDD (788.0 - 798.0 MHz) Band 17, E-UTRA/FDD (704.0 - 716.0 MHz) Band 18, E-UTRA/FDD (815.0 - 830.0 MHz) Band 19, E-UTRA/FDD (830.0 - 845.0 MHz) Band 20, E-UTRA/FDD (832.0 - 862.0 MHz) Band 21, E-UTRA/FDD (1447.9 - 1462.9 MHz) Band 22, E-UTRA/FDD (3410.0 - 3490.0 MHz) Band 23, E-UTRA/FDD (2000.0 - 2020.0 MHz) Band 24, E-UTRA/FDD (1626.5 - 1660.5 MHz) Band 25, E-UTRA/FDD (1850.0 - 1915.0 MHz) Band 26 E-UTRA/FDD (814.0 - 849.0 MHz) Band 27 E-UTRA/FDD (807.0 - 824.0 MHz) Band 28 E-UTRA/FDD (703.0 - 748.0 MHz) Band 30, E-UTRA/FDD (2305.0 - 2315.0 MHz) Band 65, E-UTRA/FDD (1920.0 - 2010.0 MHz) Band 66, E-UTRA/FDD (1710.0 - 1780.0 MHz) Band 68, E-UTRA/FDD (698.0 - 728.0 MHz) Band 70, E-UTRA/FDD (1695.0 - 1710.0 MHz) Band 71, E-UTRA/FDD (663.0 - 698.0 MHz) Validation band (0.0 - 6000.0 MHz) Detailed Specification: Modulation Scheme: SC-FDMA Number of PUSCHs: 1 Settings for Subframe #0 to #9: Modulation Scheme: QPSK Data Type: UL-SCH Number RB: 1 Transport Block Size: 258 TBS Index: 14 MCS Index: 15 Data Type: PN9 10.0 MHz Bandwidth: Integration Time: **UID Specification Sheet** UID 10176-CAE page 1/2 PAR (0.1%) in accordance with FGC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)" Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version). Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Complementary Cumulative Distribution Function (CCDF) Frequency Domain Time Domain **UID Specification Sheet** UID 10176-CAE page 2/2 Schmid & Partner Engineering AG Name: Bandwidth: Integration Time: Zeughausstrasse 43, 8004 Zurich, Switzerland LTE-FDD (SC-FDMA, 1 R8, 20 MHz, 16-QAM) Group LTE-FDO UID 10170-CAD PAR: 1 6.52 dB -9.76 dB Standard Reference: 3GPP / ETSI TS 136,101 V6.4.0 SGPP / ETSI TS 136.213 V8.4.0 FCC OET KDB 941225 Dos SAR for LTE Devices v01 Random amplitude modulation Category: Modulation: 16-QAM Frequency Band: 16-QAM Band 1, E-UTRA/FDD (1920.0 - 1980.0 MHz) Band 2, E-UTRA/FDD (1980.0 - 1910.0 MHz) Band 3, E-UTRA/FDD (1710.0 - 1785.0 MHz) Band 4, E-UTRA/FDD (1710.0 - 1795.0 MHz) Band 7, E-UTRA/FDD (2500.0 - 2570.0 MHz) Band 9, E-UTRA/FDD (1749.9 - 1794.9 MHz) Band 10, E-UTRA/FDD (1710.0 - 1770.0 MHz) Band 20, E-UTRA/FDD (332.0 - 862.0 MHz) Band 20, E-UTRA/FDD (332.0 - 862.0 MHz) Band 22, E-UTRA/FDD (3410.0 - 3490.0 MHz) Band 23, E-UTRA/FDD (2000.0 - 2020.0 MHz) Band 25, E-UTRA/FDD (1850.0 - 1915.0 MHz) Band 28 E-UTRA/FDD (203.0 - 748.0 MHz) Band 65, E-UTRA/FDD (1820.0 - 2010.0 MHz) Band 65, E-UTRA/FDD (1710.0 - 1780.0 MHz) Band 70, E-UTRA/FDD (1695.0 - 1710.0 MHz) Band 71, E-UTRA/FDD (963.0 - 698.0 MHz) Validation band (0.0 - 6000.0 MHz) Detailed Specification: Modulation Scheme: SC-FDMA Number of PUSCHs: 1 Settings for Subframe #0 to #9: Modulation Scheme: 16QAM Data Type: UL-SCH Number RB: 1 Transport Block Size: 256 TBS Index: 14 MCS Index: 15 10.0 ma **UID Specification Sheet** UID 10170-CAD page 1/2 PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)" Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version). Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Complementary Cumulative Distribution Function (CCDF) Frequency Domain Time Domain **UID Specification Sheet** UID 10170-CAD page 2/2 Schmid & Partner Name: Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) Group: UID: 10173-CAD PAR: 1 MIF: 2 9.48 dB -1.44 dB Standard Reference: 3GPP / ETSI TS 136,101 V8,4,0 3GPP / ETSI TS 136,213 Ve.4,0 FCC OET KDB 941225 D05 SAR for LTE Devices v02 Handom amplitude modulation Category: 16-QAM Band 33, E-UTRA/TOD (1900.0 - 1920.0 MHz) Frequency Band: Band 38, E-UTRA/TOD (1900.0 - 1920.0 MHz) Band 35, E-UTRA/TOD (1900.0 - 1990.0 MHz) Band 37, E-UTRA/TOD (1910.0 - 1990.0 MHz) Band 38, E-UTRA/TOD (2570.0 - 2620.0 MHz) Band 38, E-UTRA/TOD (2500.0 - 2620.0 MHz) Band 40, E-UTRA/TOD (2500.0 - 2400.0 MHz) Band 40, E-UTRA/TOO (2300.0 - 2400.0 MHz) Band 41, E-UTRA/TOO (2406.0 - 2600.0 MHz) Band 42, E-UTRA/TOO (3400.0 - 3600.0 MHz) Band 43, E-UTRA/TOO (3600.0 - 3600.0 MHz) Band 44, E-UTRA/TOO (703.0 - 800.0 MHz) Band 45, E-UTRA/TOO (1447.0 - 1467.0 MHz) Band 45, E-UTRA/TOO (5800.0 - 5925.0 MHz) Band 47, E-UTRA/TOO (5850.0 - 5925.0 MHz) Band 48, E-UTRA/TDD (3550.0 - 3700.0 MHz) Validation band (0.0 - 6000.0 MHz) Modulation Scheme: SC-FDMA Uplink-downlink configuration: 1 Special Subframe configuration: 4 Number of Frames: 1 Settings for UL Subframe 2,3,7,8: Number of PUSCHs: 1 Modulation Scheme: 16QAM Allocated RB: 1 Start Number of RB: 50 Data Type: PN9fix 20.0 MHz Bandwidth Integration Time: Detailed Specification: **UID Specification Sheet** UID 10173-CAD page 1/2 PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)" Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response
linearization calibration for the same communication system (same UID and version). Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Complementary Cumulative Distribution Function (CCDF) Frequency Domain Time Domain **UID Specification Sheet** UID 10173-CAD page 2/2 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Name: IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) Group: WLAN UID: 10061-CAB PAR; ¹ 3.60 dB MIF; ² -2.02 dB Standard Reference: IEEE 802.11b-1999, Part 11, FCC SAR meas for 802 11 a b g v01r02 (248227 D01) Category: Random amplitude modulation Modulation: DQPSK Frequency Band: WLAN 2.4GHz (2412.0-2484.0 MHz, 20230) Detailed Specification: Data Rate: 11 Mbps Spreading, Coding: CCK PPDU format: Long Preamble & Heading PSDU Length: 1024 PSDU Data: PN9 20.0 MHz Bandwidth: 20.0 MH Integration Time: 1.5 ms **UID Specification Sheet** UID 10061-CAB page 1/2 26.11.2014 PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)" Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version). Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Complementary Cumulative Distribution Function (CCDF) Frequency Domain Time Domain **UID Specification Sheet** UID 10061-CAB page 2/2 26.11.2014 ## **ANNEX F: Accreditation Certificate** ***END OF REPORT***