<u>RF Exposure / MPE Calculation</u>

No.	14173126Н
Customer	Sony Interactive Entertainment Inc.
Description of EUT	Wireless communication module
Model Number of EUT	J20H104
FCC ID	AK8M21DFD1

Sony Interactive Entertainment Inc. declares that Model: J20H104 complies with FCC radiation exposure requirement specified in the FCC Rule 2.1091 (for mobile).

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided with the "J20H104" as calculated from (B) Limits for General Population / Uncontrolled Exposure of TABLE 1- LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) of §1.1310 Radiofrequency radiation exposure limits.

[WLAN 2.4 GHz band part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm^2 uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P =

15.06 mW (Maximum average output power)

 \Box Time average was used for the above value in consideration of 6-minutes time-averaging

Burst power average was used for the above value in consideration of worst condition.

G = 6.324 Numerical Antenna gain; equal to 8.01dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.01895 \text{ mW/cm}^2$

[WLAN 5 GHz band part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm^2 uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

$$+ \wedge n \wedge r$$

P = 16.43 mW (Maximum average output power) \Box Time average was used for the above value in consideration of 6-minutes time-averaging \blacksquare Burst power average was used for the above value in consideration of worst condition.

G = 7.482 Numerical Antenna gain; equal to 8.74dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.02446 \text{ mW/cm}^2$

[Bluetooth part (BT1)]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm^2 uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P =

1.69 mW (Maximum average output power)

☐ Time average was used for the above value in consideration of 6-minutes time-averaging
✓ Burst power average was used for the above value in consideration of worst condition.

G = 3.802 Numerical Antenna gain; equal to 5.8dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.00128 \text{ mW/cm}^2$

[Bluetooth part (BT2)]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm^2 uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 1.26 mW (Maximum average output power) \Box Time average was used for the above value in consideration of 6-minutes time-averaging \blacksquare Burst power average was used for the above value in consideration of worst condition. G = 3.802 Numerical Antenna gain; equal to 5.8dBi

r = 20 cm (Separation distance)

```
Power Density Result S = 0.00095 \text{ mW/cm}^2
```

Therefore, if WLAN 2.4 GHz, Bluetooth (BR/EDR/LE) (BT1) and Bluetooth (BR/EDR/LE) (BT2) transmit simultaneously,

- S= 0.01895 mW/cm^2 + 0.00128 mW/cm^2 + 0.00095 mW/cm^2
- = 0.02118 mW/cm²

Therefore, if WLAN 5 GHz, Bluetooth (BR/EDR/LE) (BT1) and Bluetooth (BR/EDR/LE) (BT2) transmit simultaneously,

- S= $0.02446 \text{ mW/cm}^2 + 0.00128 \text{ mW/cm}^2 + 0.00095 \text{ mW/cm}^2$
- = 0.02669 mW/cm²