FCC Measurement/Technical Report on # WLAN and Bluetooth module JODY-W164-03A FCC ID: XPYJODYW164 IC: 8595A-JODYW164 Test Report Reference: MDE_UBLOX_1701_FCCc #### **Test Laboratory:** 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany #### Note: The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory. 7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company www.7layers.com # Table of Contents | 1 | Applied Standards and Test Summary | 3 | |-----|---|----| | 1.1 | Applied Standards | 3 | | 1.2 | FCC-IC Correlation Table | 4 | | 1.3 | Measurement Summary / Signatures | 5 | | 2 | Administrative Data | 6 | | 2.1 | Testing Laboratory | 6 | | 2.2 | Project Data | 6 | | 2.3 | Applicant Data | 6 | | 2.4 | Manufacturer Data | 6 | | 3 | Test object Data | 7 | | 3.1 | General EUT Description | 7 | | 3.2 | EUT Main components | 8 | | 3.3 | Ancillary Equipment | 8 | | 3.4 | Auxiliary Equipment | 9 | | 3.5 | EUT Setups | 9 | | 3.6 | Operating Modes | 9 | | 3.7 | Product labelling | 9 | | 4 | Test Results | 10 | | 4.1 | Simultaneous Transmission - Spurious Radiated Emissions | 10 | | 5 | Test Equipment | 15 | | 6 | Antenna Factors, Cable Loss and Sample Calculations | 17 | | 6.1 | LISN R&S ESH3-Z5 (150 kHz - 30 MHz) | 17 | | 6.2 | Antenna R&S HFH2-Z2 (9 kHz – 30 MHz) | 18 | | 6.3 | Antenna R&S HL562 (30 MHz – 1 GHz) | 19 | | 6.4 | Antenna R&S HF907 (1 GHz – 18 GHz) | 20 | | 6.5 | Antenna EMCO 3160-09 (18 GHz – 26.5 GHz) | 21 | | 6.6 | Antenna EMCO 3160-10 (26.5 GHz – 40 GHz) | 22 | | 7 | Setup Drawings | 23 | | 8 | Measurement Uncertainties | 24 | | 9 | Photo Report | 24 | #### 1 APPLIED STANDARDS AND TEST SUMMARY #### 1.1 APPLIED STANDARDS # Type of Authorization Certification for an Intentional Radiator. #### **Applicable FCC Rules** Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report. - Part 2, Subpart J Equipment Authorization Procedures, Certification - Part 15, Subpart C Intentional Radiators - § 15.201 Equipment authorization requirement - § 15.207 Conducted limits - § 15.209 Radiated emission limits; general requirements - § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz #### Note 1: (DTS Equipment) The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v04, 2017-04-05". ANSI C63.10-2013 is applied. #### Note 2: (FHSS Equipment) The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000. Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.10-2013 is applied. # **Summary Test Results:** The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures. # 1.2 FCC-IC CORRELATION TABLE # Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC # **DTS** equipment | Measurement | FCC reference | IC reference | |---|-------------------------------|--| | Conducted emissions on AC
Mains | § 15.207 | RSS-Gen Issue 4: 8.8 | | Occupied bandwidth | § 15.247 (a) (2) | RSS-247 Issue 2: 5.2 (a) | | Peak conducted output power | § 15.247 (b) (3), (4) | RSS-247 Issue 2: 5.4 (d) | | Transmitter spurious RF conducted emissions | § 15.247 (d) | RSS-Gen Issue 4: 6.13 /
8.9/8.10;
RSS-247 Issue 2: 5.5 | | Transmitter spurious radiated emissions | § 15.247 (d);
§ 15.209 (a) | RSS-Gen Issue 4: 6.13 /
8.9/8.10;
RSS-247 Issue 2: 5.5 | | Band edge compliance | § 15.247 (d) | RSS-247 Issue 2: 5.5 | | Power density | § 15.247 (e) | RSS-247 Issue 2: 5.2 (b) | | Antenna requirement | § 15.203 / 15.204 | RSS-Gen Issue 4: 8.3 | | Receiver spurious emissions | _ | _ | # 1.3 MEASUREMENT SUMMARY / SIGNATURES 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247 Simultaneous Transmission - Spurious Radiated Emissions The measurement was performed according to ANSI C63.10 **Final Result** **OP-Mode** Setup FCC IC **Active Transmitters** 2.4 GHz band: Bluetooth hopping, WLAN n mode on 2442 MHz S01_3_AE01 Passed Passed 5 GHz band: WLAN ac mode on 5210 MHz N/A: Not applicable N/P: Not performed (responsible for accreditation scope) Dipl.-Ing. Marco Kullik (responsible for testing and report) Dipl.-Ing. Daniel Gall ers 7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0 #### 2 ADMINISTRATIVE DATA #### 2.1 TESTING LABORATORY Company Name: 7layers GmbH Address: Borsigstr. 11 40880 Ratingen Germany This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1. The test facility is also accredited by the following accreditation organisation: Laboratory accreditation no: DAkkS D-PL-12140-01-00 FCC Designation Number: DE0015 FCC Test Firm Registration: 929146 Responsible for accreditation scope: Dipl.-Ing. Marco Kullik Report Template Version: 2018-01-10 2.2 PROJECT DATA Responsible for testing and report: Dipl.-Ing. Daniel Gall Employees who performed the tests: documented internally at 7Layers Date of Report: 2018-05-18 Testing Period: 2018-02-14 to 2018-02-21 2.3 APPLICANT DATA Company Name: u-blox AG Address: Zürcherstrasse 68 8800 Thalwil Switzerland Contact Person: Mr. Filip Kruzela 2.4 MANUFACTURER DATA Company Name: Please see applicant data Address: Contact Person: # 3 TEST OBJECT DATA # 3.1 GENERAL EUT DESCRIPTION | Kind of Device product description | The EUT is a module supporting WLAN in the 2.4 GHz and 5 GHz bands as well as Bluetooth (BT) 4.2 including Bluetooth Low Energy (BT LE) | | | | | | |--|---|--|--|--|--|--| | Product name | JODY-W164-03A | | | | | | | Туре | JODY-W164-03A | | | | | | | Declared EUT data by | the supplier | | | | | | | Voltage Type | DC | | | | | | | Voltage Level | 3.3 V | | | | | | | Tested Modulation Type | No specific mode set since the test mode firmware did not allow to set simultaneous transmission mode. All technologies were tested in normal application mode with throughput test active. | | | | | | | Specific product description for the EUT | The JODY-W1 is a compact automotive grade module that provides Wi-Fi, Bluetooth, and Bluetooth low energy communication. The JODY-W164-03A module can be operated in the following modes: | | | | | | | | Wi-Fi 2x2 MIMO 802.11n/ac in the 5 GHz band | | | | | | | | Wi-Fi 1x1 802.11ac in 2.4 / 5 GHz real simultaneous dual band | | | | | | | | Dual-mode Bluetooth v4.2, can be operated fully simultaneous with both the Wi-Fi modes | | | | | | | | It is equipped with two antenna pins connected to two SMA antenna connectors on the evaluation board. | | | | | | | | Maximum supported band width in 2.4 GHz WLAN mode: 20 MHz, 5 GHz WLAN mode: 80 MHz | | | | | | | The EUT provides the | DC Power Supply | | | | | | | following ports: | Antenna ports | | | | | | | | Signal ports | | | | | | | Tested datarates | Bluetooth classic (up to 3Mbps), WLAN n mode 2.4 GHz (up to 72.2 Mbps), WLAN ac mode 5 GHz (up to 433.3 Mbps) | | | | | | | Special software used for testing | Scripts to start the throughput test and connect two of the EUTs to each other were provided by the applicant and run on the auxiliary board computers. | | | | | | The main components of the EUT are listed and described in chapter 3.2 EUT Main components. # 3.2 EUT MAIN COMPONENTS | Sample Name | Sample Code | Description | | | | | | | |------------------|---|--------------------------------------|--|--|--|--|--|--| | EUT 3E | DE1015081ae01 | Module on evaluation board | | | | | | | | Sample Parameter | | Value | | | | | | | | Serial No. | 005 | | | | | | | | | HW Version | 01 | | | | | | | | | SW Version | P8.1 | P8.1 | | | | | | | | Comment | Tested sample | | | | | | | | | Integral Antenna | Antenna gain used for evalue For the purpose of this test | two devices were connected to each | | | | | | | | | other by use of cables and | other by use of cables and couplers. | | | | | | | | Sample Name | Sample Code | Description | | | | | | |------------------|----------------------------|--|--|--|--|--|--| | EUT 3A | DE1015081aa01 | Module on evaluation board | | | | | | | Sample Parameter | | Value | | | | | | | Serial No. | 001 | | | | | | | | HW Version | 01 | | | | | | | | SW Version | P8.1 | | | | | | | | Comment | | Sample used as companion device, not tested (outside of anechoic chamber for radiated measurements, additional 30 dB att. during conducted tests.) | | | | | | | Integral Antenna | Antenna gain used for eval | n connectors on evaluation board.
luation of test results: 2dBi.
t two devices were connected to each
couplers. | | | | | | NOTE: The short description is used to simplify the identification of the EUT in this test report. # 3.3 ANCILLARY EQUIPMENT For the purposes of this test report, ancillary equipment is defined
as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results. | Device | Details
(Manufacturer, Type Model, OUT
Code) | Description | |------------------|--|---| | Evaluation Board | UBLOX, REV. B, - , - | Board the EUT is mounted to, providing ports to the EUT (DC, Antennas, wired communication) | # 3.4 AUXILIARY EQUIPMENT For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results. | Device | Details
(Manufacturer, HW, SW, S/N) | Description | | | |----------------|--|--|--|--| | Board Computer | | Computer used for setting the test modes | | | # 3.5 EUT SETUPS This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards. | Setup | Combination of EUTs | Description and Rationale | |------------|---|--| | S01_3_AE01 | EUT 3E, Evaluation
Board, Board Computer | Setup for radiated and conducted tests | #### 3.6 OPERATING MODES This chapter describes the operating modes of the EUTs used for testing. #### 3.7 PRODUCT LABELLING #### 3.7.1 FCC ID LABEL Please refer to the documentation of the applicant. # 3.7.2 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant. Page 10 of 24 #### 4 TEST RESULTS #### 4.1 SIMULTANEOUS TRANSMISSION - SPURIOUS RADIATED EMISSIONS Standard FCC Part 15 Subpart C #### The test was performed according to: ANSI C63.10 #### 4.1.1 TEST DESCRIPTION Standard FCC Part 15 Subpart C #### Radiated Emissions (with cable connection between two devices instead of antenna) #### The test was performed according to: ANSI C63.10 The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source. #### 1. Measurement above 1 GHz The following modifications apply to the measurement procedure for the frequency range above 1 GHz: # Step 1: The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber. All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °. The turn table step size (azimuth angle) for the preliminary measurement is 45 °. #### Step 2: Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed. The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by $\pm 45^{\circ}$ EMI receiver settings (for all steps): - Detector: Peak, Average - IF Bandwidth = 1 MHz # Step 3: Spectrum analyser settings for step 3: - Detector: Peak / Average - Measured frequencies: in step 1 determined frequencies - IF Bandwidth: 1 MHzMeasuring time: 1 s # Conducted Emissions at antenna ports (cable connection between two devices, companion device attenuated by 30 dB) The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. A 4 to 1 port combiner was used to connect the 4 antenna ports of the EUT and its companion device to each other to allow simultaneous transmissions in normal mode with cable connection. Analyzer settings: Frequency range: 1000 – 25000 MHz Resolution Bandwidth (RBW): 1000 kHz • Video Bandwidth (VBW): 3000 kHz • Trace: Maxhold • Detector: Peak / Average The conducted emissions limit shown in the plot shows the restricted bands limit converted to dBm according to the description below, as well as, for information purposes only, the FCC15.407 limit of -27 dBm/MHz which is not applicable for the purpose of the simultaneous transmissions test. The measurement result already includes an antenna gain of 2 dBi. The Value measured in dBm can be converted to dBµV/m as given in KDB 558074: - 1. Measure the conducted output power in dBm. - 2. Add the maximum antenna gain in dBi - 3. Add the appropriate ground reflection factor 6 dB for frequencies ≤ 30 MHz; - 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and - 0 dB for frequencies > 1000 MHz). - 4. Convert the resultant EIRP level to an equivalent electric field strength level using the following relationship: E = EIRP - 20 log D + 104.8 Where E is the electric field strength in dBµV/m, EIRP is the equivalent isotropically radiated power in dBm D is the specified measurement distance in m Value [dB μ V/m] = Measured value [dBm] + Maximum Antenna Gain [dBi] + Ground reflection factor – 20 log D + 104.8 The limit was converted accordingly: Limit [dBm] = Limit [dB μ V] + 20 log D - 104.8 (the antenna gain is added to the measured value and the Ground Reflection factor for > 1GHz is 0 thus both values are not considered in the formula) #### 4.1.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.247 (d) ... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 - 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 - 23.0)@30m | | 1.705 - 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|--------------|--------------------------|-----------------| | 30 - 88 | 100@3m | 3 | 40.0@3m | | 88 - 216 | 150@3m | 3 | 43.5@3m | | 216 - 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). $\S15.35(b)$..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit ($dB\mu V/m$) = 20 log (Limit ($\mu V/m$)/1 $\mu V/m$) # 4.1.3 TEST PROTOCOL RADIATED EMISSIONS Ambient temperature: 24 °C Air Pressure: 1010 hPa Humidity: 30 % Remark: Please see next sub-clause for the measurement plot. # 4.1.4 MEASUREMENT PLOT RADIATED EMISSIONS Active Transmitters = BT hopping, WLAN 2.4 GHz on 2442 MHZ, WLAN 5GHz on 5210 MHz $(S01_3_AE01)$ **Critical Freqs** | Frequency
(MHz) | MaxPeak
(dBµV/m) | Average
(dBµV/m) | Limit
(dBµV/m) | Margi
n
(dB) | Meas.
Time
(ms) | Bandwidt
h
(kHz) | Heigh
t
(cm) | Pol | Azimut
h
(deg) | Elevatio
n
(deg) | |--------------------|---------------------|---------------------|-------------------|--------------------|-----------------------|------------------------|--------------------|-----|----------------------|------------------------| | 1244.950000 | 60.35 | | 68.20 | 7.85 | | | 150.0 | V | -87.0 | -15.0 | | 1264.300000 | 54.44 | | 68.20 | 13.76 | | | 150.0 | V | -86.0 | 7.0 | | 1493.982000 | | 34.93 | 54.00 | 19.07 | | | 150.0 | V | -89.0 | 6.0 | | 1494.173500 | 55.04 | | 74.00 | 18.96 | | | 150.0 | V | -89.0 | -2.0 | | 3733.200000 | 61.55 | | 74.00 | 12.45 | | | 150.0 | Н | 100.0 | -15.0 | | 3744.600000 | | 33.33 | 54.00 | 20.67 | | | 150.0 | ٧ | 91.0 | 15.0 | # **Final Result** | Frequency | MaxPeak | CAverage | Limit | Margi | Meas. | Bandwidt | Heigh | Pol | Azimut | Elevatio | |-------------|----------|----------|----------|-------|--------|----------|-------|-----|--------|----------| | (MHz) | (dBµV/m) | (dBµV/m) | (dBµV/m) | n | Time | h | ť | | h | n | | | | | | (dB) | (ms) | (kHz) | (cm) | | (deg) | (deg) | | 1244.950000 | 59.94 | | 68.20 | 8.26 | 1000.0 | 1000.000 | 150.0 | V | -87.0 | -15.0 | | 1264.300000 | 54.33 | | 68.20 | 13.87 | 1000.0 | 1000.000 | 150.0 | V | -86.0 | 7.0 | | 1493.982000 | | 32.88 | 54.00 | 21.12 | 1000.0 | 1000.000 | 150.0 | V | -89.0 | 6.0 | | 1494.173500 |
53.91 | | 74.00 | 20.09 | 1000.0 | 1000.000 | 150.0 | V | -89.0 | -2.0 | | 3733.200000 | 68.34 | | 74.00 | 5.66 | 1000.0 | 1000.000 | 150.0 | Н | 101.0 | -15.0 | | 3744.600000 | | 36.01 | 54.00 | 17.99 | 1000.0 | 1000.000 | 150.0 | ٧ | 91.0 | 15.0 | # 4.1.5 TEST PROTOCOL CONDUCTED EMISSIONS Ambient temperature: 23 °C Air Pressure: 1003 hPa Humidity: 34 % Remark: Please see next sub-clause for the measurement plot. # 4.1.6 MEASUREMENT PLOT CONDUCTED EMISSIONS Note: The -27 dBm limit breached by the 2.4 GHz band transmitters is not applicable for this test. # 4.1.7 TEST EQUIPMENT USED - Radiated Emissions - R&S TS8997 # 5 TEST EQUIPMENT 1 R&S TS8997 EN300328/301893 Test Lab | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last
Calibration | Calibration
Due | |---------|-------------------------|---|--------------------------------------|---------------|---------------------|--------------------| | 1.1 | MFS | Rubidium
Frequency
Standard | Datum-Beverly | 5489/001 | 2017-07 | 2018-07 | | 1.2 | 1515 / 93459 | | Weinschel
Associates | LN673 | | | | 1.3 | FSV30 | Signal
Analyzer 10 Hz
- 30 GHz | Rohde & Schwarz | 103005 | 2016-02 | 2018-02 | | 1.4 | Fluke 177 | Digital
Multimeter 03
(Multimeter) | Fluke Europe B.V. | 86670383 | 2016-02 | 2018-02 | | 1.5 | A8455-4 | 4 Way Power
Divider (SMA) | | - | | | | 1.6 | Opus10 THI
(8152.00) | , , | Lufft Mess- und
Regeltechnik GmbH | 7482 | 2017-03 | 2019-03 | | 1.7 | SMBV100A | Vector Signal
Generator 9
kHz - 6 GHz | Rohde & Schwarz | 259291 | 2016-10 | 2019-10 | | 1.8 | OSP120 | Switching Unit
with
integrated
power meter | Rohde & Schwarz | 101158 | 2016-11 | 2018-11 | # 2 Radiated Emissions Lab to perform radiated emission tests | Ref.No. | Io. Device Name Description | | Manufacturer | Serial Number | Last | Calibration | | |---------|-----------------------------|--|--------------------------------------|------------------------|-------------|-------------|--| | | | | | | Calibration | Due | | | 2.1 | NRV-Z1 | Sensor Head A | Rohde & Schwarz | 827753/005 | 2017-05 | 2018-05 | | | 2.2 | MFS | Rubidium
Frequency | Datum GmbH | 002 | 2017-10 | 2018-10 | | | | | Normal MFS | | | | | | | 2.3 | Opus10 TPR
(8253.00) | | Lufft Mess- und
Regeltechnik GmbH | 13936 | 2017-04 | 2019-04 | | | | Anechoic
Chamber | 10.58 x 6.38 x
6.00 m ³ | Frankonia | none | 2016-05 | 2019-05 | | | 2.5 | HL 562 | Ultralog new
biconicals | Rohde & Schwarz | 830547/003 | 2015-06 | 2018-06 | | | 2.6 | 5HC2700/12750
-1.5-KK | High Pass
Filter | Trilithic | 9942012 | | | | | | ASP 1.2/1.8-10
kg | Antenna Mast | Maturo GmbH | - | | | | | | Room | 8.80m x
4.60m x
4.05m (l x w x
h) | Albatross Projects | P26971-647-001-
PRB | 2015-06 | 2018-06 | | | 2.9 | | Digital
Multimeter 03
(Multimeter) | Fluke Europe B.V. | 86670383 | 2016-02 | 2018-02 | | | Ref.No. Device Name | | Description | Manufacturer | Serial Number | Last
Calibration | Calibration
Due | | |---------------------|---|--|--------------------------------------|--------------------------------|---------------------|--------------------|--| | 2.10 | | Broadband
Amplifier 18
GHz - 26 GHz | Miteq | 849785 | | | | | 2.11 | FSW 43 | Spectrum
Analyzer | Rohde & Schwarz | 103779 | 2016-12 | 2018-12 | | | 2.12 | | / Pyramidal
Horn Antenna
26.5 GHz | EMCO Elektronic
GmbH | 00083069 | | | | | | | Filter | Wainwright | 09 | | | | | 2.14 | 4HC1600/12750
-1.5-KK | High Pass
Filter | Trilithic | 9942011 | | | | | 2.15 | | AC Power
Source | Chroma ATE INC. | 64040001304 | | | | | 2.16 | 42-5A | Broadband
Amplifier 30
MHz - 26 GHz | Miteq | 619368 | | | | | 2.17 | | Turn Table | Maturo GmbH | - | | | | | 2.18 | | Logper.
Antenna | Rohde & Schwarz | 100609 | 2016-04 | 2019-04 | | | 2.19 | | Standard Gain
/ Pyramidal
Horn Antenna
40 GHz | EMCO Elektronic
GmbH | 00086675 | | | | | 2.20 | 5HC3500/18000
-1.2-KK | High Pass
Filter | Trilithic | 200035008 | | | | | 2.21 | HFH2-Z2 | Loop Antenna | Rohde & Schwarz | 829324/006 | 2018-01 | 2021-01 | | | 2.22 | Opus10 THI
(8152.00) | | Lufft Mess- und
Regeltechnik GmbH | 12482 | 2017-03 | 2019-03 | | | 2.23 | | EMI Receiver /
Spectrum
Analyzer | Rohde & Schwarz | 101424 | 2016-11 | 2018-11 | | | 2.24 | JS4-00101800-
35-5P | | Miteq | 896037 | | | | | 2.25 | | Antenna mast | | 620/37 | | | | | 2.26 | | Antrieb TD1.5-
10kg | Maturo GmbH | TD1.5-
10kg/024/37907
09 | | | | | 2.27 | FS-Z90 Harmonic
Mixer 60 - 90
GHz | | Rohde & Schwarz
Memmingen | 101686 | 2017-03 | 2020-03 | | | 2.28 | ESIB 26 | Spectrum
Analyzer | Rohde & Schwarz | 830482/004 | 2018-01 | 2020-01 | | | 2.29 | | | Maturo GmbH | | | | | | | | Antenna mast | | AM4.0/180/1192
0513 | | | | | 2.31 | | Double-ridged
horn | Rohde & Schwarz | 102444 | 2015-05 | 2018-05 | | The calibration interval is the time interval between "Last Calibration" and "Calibration Due" # 6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN. # 6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ) | Frequency | Corr. | Li
inse
lo
ES | |-----------|-------|------------------------| | MHz | dB | (| | 0.15 | 10.1 | | | 5 | 10.3 | | | 7 | 10.5 | | | 10 | 10.5 | | | 12 | 10.7 | | | 14 | 10.7 | | | 16 | 10.8 | | | 18 | 10.9 | | | 20 | 10.9 | | | 22 | 11.1 | | | 24 | 11.1 | | | 26 | 11.2 | | | 28 | 11.2 | | | 30 | 11.3 | | | loss
(incl. 10
dB
atten-
uator) | |---| | dB
atten-
uator) | | atten-
uator) | | uator) | | | | | | dB | | 10.0 | | 10.2 | | 10.3 | | 10.3 | | 10.4 | | 10.4 | | 10.4 | | 10.5 | | 10.5 | | 10.6 | | 10.6 | | 10.7 | | 10.7 | | 10.8 | | | #### Sample calculation U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB) U = Receiver reading LISN Insertion loss = Voltage Division Factor of LISN Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table. # 6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ) | | T | | |-----------|----------|-------| | | | | | | AF | | | Frequency | HFH-Z2) | Corr. | | MHz | dB (1/m) | dB | | 0.009 | 20.50 | -79.6 | | 0.01 | 20.45 | -79.6 | | 0.015 | 20.37 | -79.6 | | 0.02 | 20.36 | -79.6 | | 0.025 | 20.38 | -79.6 | | 0.03 | 20.32 | -79.6 | | 0.05 | 20.35 | -79.6 | | 0.08 | 20.30 | -79.6 | | 0.1 | 20.20 | -79.6 | | 0.2 | 20.17 | -79.6 | | 0.3 | 20.14 | -79.6 | | 0.49 | 20.12 | -79.6 | | 0.490001 | 20.12 | -39.6 | | 0.5 | 20.11 | -39.6 | | 0.8 | 20.10 | -39.6 | | 1 | 20.09 | -39.6 | | 2 | 20.08 | -39.6 | | 3 | 20.06 | -39.6 | | 4 | 20.05 | -39.5 | | 5 | 20.05 | -39.5 | | 6 | 20.02 | -39.5 | | 8 | 19.95 | -39.5 | | 10 | 19.83 | -39.4 | | 12 | 19.71 | -39.4 | | 14 | 19.54 | -39.4 | | 16 | 19.53 | -39.3 | | 18 | 19.50 | -39.3 | | 20 | 19.57 | -39.3 | | 22 | 19.61 | -39.3 | | 24 | 19.61 | -39.3 | | 26 | 19.54 | -39.3 | | 28 | 19.46 | -39.2 | | 30 | 19.73 | -39.1 | | (| | <u></u> | | | | | |----------|----------|---------|-----------|----------|-------------|------------| | cable | cable | cable | cable | distance | d_{Limit} | d_{used} | | loss 1 | loss 2 | loss 3 | loss 4 | corr. | (meas. | (meas. | | (inside | (outside | (switch | (to | (-40 dB/ | distance | distance | | chamber) | chamber) | `unit) | receiver) | decade) | (limit) | (used) | | dB | dB | dB | dB | dB | m | m | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.3 | 0.1 | -40 | 30 | 3 | | 0.4 | 0.1 | 0.3 | 0.1 | -40 | 30 | 3 | | | | | | | | | # Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values # 6.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ) $(d_{Limit} = 3 m)$ | $d_{Limit} = 3 m$ | | | |-------------------|-----------|-------| | _ | AF
R&S | | | Frequency | HL562 | Corr. | | MHz | dB (1/m) | dB | | 30 | 18.6 | 0.6 | | 50 | 6.0 | 0.9 | | 100 | 9.7 | 1.2 | | 150 | 7.9 | 1.6 | | 200 | 7.6 | 1.9 | | 250 | 9.5 | 2.1 | | 300 | 11.0 | 2.3 | | 350 | 12.4 | 2.6 | | 400 | 13.6 | 2.9 | | 450 | 14.7 |
3.1 | | 500 | 15.6 | 3.2 | | 550 | 16.3 | 3.5 | | 600 | 17.2 | 3.5 | | 650 | 18.1 | 3.6 | | 700 | 18.5 | 3.6 | | 750 | 19.1 | 4.1 | | 800 | 19.6 | 4.1 | | 850 | 20.1 | 4.4 | | 900 | 20.8 | 4.7 | | 950 | 21.1 | 4.8 | | 1000 | 21.6 | 4.9 | | cable loss 1 (inside chamber) cable loss 2 (outside chamber) cable loss 3 (switch unit) cable loss 4 (to to chamber) distance decade) distance (limit) distance (meas. distance (used) dB dB dB dB dB m m 0.29 0.04 0.23 0.02 0.0 3 3 0.39 0.09 0.32 0.08 0.0 3 3 0.56 0.14 0.47 0.08 0.0 3 3 0.73 0.20 0.59 0.12 0.0 3 3 0.84 0.21 0.70 0.11 0.0 3 3 0.98 0.24 0.80 0.13 0.0 3 3 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.59 0.43 1.24 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> | | | | | | | | |--|----------|----------|---------|-----------|----------|-------------|------------| | (inside chamber) (outside chamber) (switch unit) (to receiver) (-20 dB/decade) distance (limit) distance (used) dB dB dB dB dB m m 0.29 0.04 0.23 0.02 0.0 3 3 0.39 0.09 0.32 0.08 0.0 3 3 0.56 0.14 0.47 0.08 0.0 3 3 0.73 0.20 0.59 0.12 0.0 3 3 0.84 0.21 0.70 0.11 0.0 3 3 0.98 0.24 0.80 0.13 0.0 3 3 1.04 0.26 0.89 0.15 0.0 3 3 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 | cable | cable | cable | cable | distance | d_{Limit} | d_{used} | | chamber) chamber) unit) receiver) decade) (llimit) (used) dB dB dB dB m m 0.29 0.04 0.23 0.02 0.0 3 3 0.39 0.09 0.32 0.08 0.0 3 3 0.56 0.14 0.47 0.08 0.0 3 3 0.73 0.20 0.59 0.12 0.0 3 3 0.84 0.21 0.70 0.11 0.0 3 3 0.98 0.24 0.80 0.13 0.0 3 3 1.04 0.26 0.89 0.15 0.0 3 3 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 3 1.44 0.39 <td>loss 1</td> <td>loss 2</td> <td>loss 3</td> <td>loss 4</td> <td>corr.</td> <td>(meas.</td> <td>(meas.</td> | loss 1 | loss 2 | loss 3 | loss 4 | corr. | (meas. | (meas. | | dB dB dB dB dB m m 0.29 0.04 0.23 0.02 0.0 3 3 0.39 0.09 0.32 0.08 0.0 3 3 0.56 0.14 0.47 0.08 0.0 3 3 0.73 0.20 0.59 0.12 0.0 3 3 0.84 0.21 0.70 0.11 0.0 3 3 0.98 0.24 0.80 0.13 0.0 3 3 1.04 0.26 0.89 0.15 0.0 3 3 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 | (inside | (outside | (switch | (to | (-20 dB/ | distance | distance | | 0.29 0.04 0.23 0.02 0.0 3 3 0.39 0.09 0.32 0.08 0.0 3 3 0.56 0.14 0.47 0.08 0.0 3 3 0.73 0.20 0.59 0.12 0.0 3 3 0.84 0.21 0.70 0.11 0.0 3 3 0.98 0.24 0.80 0.13 0.0 3 3 1.04 0.26 0.89 0.15 0.0 3 3 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 3 1.44 0.39 1.20 0.19 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.67 0.43 | chamber) | chamber) | unit) | receiver) | decade) | (limit) | (used) | | 0.39 0.09 0.32 0.08 0.0 3 3 0.56 0.14 0.47 0.08 0.0 3 3 0.73 0.20 0.59 0.12 0.0 3 3 0.84 0.21 0.70 0.11 0.0 3 3 0.98 0.24 0.80 0.13 0.0 3 3 1.04 0.26 0.89 0.15 0.0 3 3 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 3 1.44 0.39 1.20 0.19 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 | dB | dB | dB | dB | dB | m | m | | 0.56 0.14 0.47 0.08 0.0 3 3 0.73 0.20 0.59 0.12 0.0 3 3 0.84 0.21 0.70 0.11 0.0 3 3 0.98 0.24 0.80 0.13 0.0 3 3 1.04 0.26 0.89 0.15 0.0 3 3 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 3 1.44 0.39 1.20 0.19 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 1.35 0.22 0.0 3 3 1.87 0.54 | 0.29 | 0.04 | 0.23 | 0.02 | 0.0 | 3 | 3 | | 0.73 0.20 0.59 0.12 0.0 3 3 0.84 0.21 0.70 0.11 0.0 3 3 0.98 0.24 0.80 0.13 0.0 3 3 1.04 0.26 0.89 0.15 0.0 3 3 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 3 1.44 0.39 1.20 0.19 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 1.35 0.22 0.0 3 3 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 | 0.39 | 0.09 | 0.32 | 0.08 | 0.0 | | 3 | | 0.84 0.21 0.70 0.11 0.0 3 3 0.98 0.24 0.80 0.13 0.0 3 3 1.04 0.26 0.89 0.15 0.0 3 3 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 3 1.44 0.39 1.20 0.19 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 1.35 0.22 0.0 3 3 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 1.46 0.25 0.0 3 3 1.99 0.60 | 0.56 | 0.14 | 0.47 | 0.08 | 0.0 | 3 | | | 0.98 0.24 0.80 0.13 0.0 3 3 1.04 0.26 0.89 0.15 0.0 3 3 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 3 1.44 0.39 1.20 0.19 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 1.35 0.22 0.0 3 3 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 1.46 0.25 0.0 3 3 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 | 0.73 | 0.20 | 0.59 | 0.12 | 0.0 | 3 | 3 | | 1.04 0.26 0.89 0.15 0.0 3 3 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 3 1.44 0.39 1.20 0.19 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 1.35 0.22 0.0 3 3 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 1.46 0.25 0.0 3 3 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 0.84 | 0.21 | 0.70 | 0.11 | 0.0 | 3 | 3 | | 1.18 0.31 0.96 0.13 0.0 3 3 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 3 1.44 0.39 1.20 0.19 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 1.35 0.22 0.0 3 3 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 1.46 0.25 0.0 3 3 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 0.98 | 0.24 | 0.80 | 0.13 | 0.0 | | 3 | | 1.28 0.35 1.03 0.19 0.0 3 3 1.39 0.38 1.11 0.22 0.0 3 3 1.44 0.39 1.20 0.19 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 1.35 0.22 0.0 3 3 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 1.46 0.25 0.0 3 3 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 1.04 | 0.26 | 0.89 | 0.15 | 0.0 | 3 | 3 | | 1.39 0.38 1.11 0.22 0.0 3 3 1.44 0.39 1.20 0.19 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 1.35 0.22 0.0 3 3 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 1.46 0.25 0.0 3 3 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 1.18 | 0.31 | 0.96 | 0.13 | 0.0 | | 3 | | 1.44 0.39 1.20 0.19 0.0 3 3 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 1.35 0.22 0.0 3 3 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 1.46 0.25 0.0 3 3 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 1.28 | 0.35 | 1.03 | 0.19 | 0.0 | 3 | 3 | | 1.55 0.46 1.24 0.23 0.0 3 3 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 1.35 0.22 0.0 3 3 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 1.46 0.25 0.0 3 3 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 1.39 | 0.38 | 1.11 | 0.22 | 0.0 | 3 | | | 1.59 0.43 1.29 0.23 0.0 3 3 1.67 0.34 1.35 0.22 0.0 3 3 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 1.46 0.25 0.0 3 3 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 1.44 | 0.39 | 1.20 | 0.19 | 0.0 | | 3 | | 1.67 0.34 1.35 0.22 0.0 3 3 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 1.46 0.25 0.0 3 3 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 1.55 | 0.46 | 1.24 | 0.23 | 0.0 | | 3 | | 1.67 0.42 1.41 0.15 0.0 3 3 1.87 0.54 1.46 0.25 0.0 3 3 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 1.59 | 0.43 | 1.29 | 0.23 | 0.0 | 3 | 3 | | 1.87 0.54 1.46 0.25 0.0 3 3 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 1.67 | 0.34 | 1.35 | 0.22 | 0.0 | | 3 | | 1.90 0.46 1.51 0.25 0.0 3 3 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 1.67 | 0.42 | 1.41 | 0.15 | 0.0 | | 3 | | 1.99 0.60 1.56 0.27 0.0 3 3 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 1.87 | 0.54 | 1.46 | 0.25 | 0.0 | | 3 | | 2.14 0.60 1.63 0.29 0.0 3 3 2.22 0.60 1.66 0.33 0.0 3 3 | 1.90 | 0.46 | 1.51 | 0.25 | 0.0 | 3 | 3 | | 2.22 0.60 1.66 0.33 0.0 3 3 | 1.99 | 0.60 | 1.56 | 0.27 | 0.0 | 3 | 3 | | 2.22 0.60 1.66 0.33 0.0 3 3 | 2.14 | 0.60 | 1.63 | 0.29 | 0.0 | 3 | 3 | | | 2.22 | 0.60 | 1.66 | 0.33 | 0.0 | | 3 | | 2.23 0.61 1.71 0.30 0.0 3 3 | 2.23 | 0.61 | 1.71 | 0.30 | 0.0 | 3 | 3 | $(d_{Limit} = 10 \text{ m})$ | $(d_{Limit} = 10 \text{ m})$ | 1) | | | | | | | | | |------------------------------|------|------|------|------|------|------|-------|----|---| | 30 | 18.6 | -9.9 | 0.29 | 0.04 | 0.23 | 0.02 | -10.5 | 10 | 3 | | 50 | 6.0 | -9.6 | 0.39 | 0.09 | 0.32 | 0.08 | -10.5 | 10 | 3 | | 100 | 9.7 | -9.2 | 0.56 | 0.14 | 0.47 | 0.08 | -10.5 |
10 | 3 | | 150 | 7.9 | -8.8 | 0.73 | 0.20 | 0.59 | 0.12 | -10.5 | 10 | 3 | | 200 | 7.6 | -8.6 | 0.84 | 0.21 | 0.70 | 0.11 | -10.5 | 10 | 3 | | 250 | 9.5 | -8.3 | 0.98 | 0.24 | 0.80 | 0.13 | -10.5 | 10 | 3 | | 300 | 11.0 | -8.1 | 1.04 | 0.26 | 0.89 | 0.15 | -10.5 | 10 | 3 | | 350 | 12.4 | -7.9 | 1.18 | 0.31 | 0.96 | 0.13 | -10.5 | 10 | 3 | | 400 | 13.6 | -7.6 | 1.28 | 0.35 | 1.03 | 0.19 | -10.5 | 10 | 3 | | 450 | 14.7 | -7.4 | 1.39 | 0.38 | 1.11 | 0.22 | -10.5 | 10 | 3 | | 500 | 15.6 | -7.2 | 1.44 | 0.39 | 1.20 | 0.19 | -10.5 | 10 | 3 | | 550 | 16.3 | -7.0 | 1.55 | 0.46 | 1.24 | 0.23 | -10.5 | 10 | 3 | | 600 | 17.2 | -6.9 | 1.59 | 0.43 | 1.29 | 0.23 | -10.5 | 10 | 3 | | 650 | 18.1 | -6.9 | 1.67 | 0.34 | 1.35 | 0.22 | -10.5 | 10 | 3 | | 700 | 18.5 | -6.8 | 1.67 | 0.42 | 1.41 | 0.15 | -10.5 | 10 | 3 | | 750 | 19.1 | -6.3 | 1.87 | 0.54 | 1.46 | 0.25 | -10.5 | 10 | 3 | | 800 | 19.6 | -6.3 | 1.90 | 0.46 | 1.51 | 0.25 | -10.5 | 10 | 3 | | 850 | 20.1 | -6.0 | 1.99 | 0.60 | 1.56 | 0.27 | -10.5 | 10 | 3 | | 900 | 20.8 | -5.8 | 2.14 | 0.60 | 1.63 | 0.29 | -10.5 | 10 | 3 | | 950 | 21.1 | -5.6 | 2.22 | 0.60 | 1.66 | 0.33 | -10.5 | 10 | 3 | | 1000 | 21.6 | -5.6 | 2.23 | 0.61 | 1.71 | 0.30 | -10.5 | 10 | 3 | # Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit} / d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. # 6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ) | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 1000 | 24.4 | -19.4 | | 2000 | 28.5 | -17.4 | | 3000 | 31.0 | -16.1 | | 4000 | 33.1 | -14.7 | | 5000 | 34.4 | -13.7 | | 6000 | 34.7 | -12.7 | | 7000 | 35.6 | -11.0 | | | | cable | | | |----------|----------|----------|------------|--| | cable | | loss 3 | | | | loss 1 | | (switch | | | | (relay + | cable | unit, | | | | cable | loss 2 | atten- | cable | | | inside | (outside | uator & | loss 4 (to | | | chamber) | chamber) | pre-amp) | receiver) | | | dB | dB | dB | dB | | | 0.99 | 0.31 | -21.51 | 0.79 | | | 1.44 | 0.44 | -20.63 | 1.38 | | | 1.87 | 0.53 | -19.85 | 1.33 | | | 2.41 | 0.67 | -19.13 | 1.31 | | | 2.78 | 0.86 | -18.71 | 1.40 | | | 2.74 | 0.90 | -17.83 | 1.47 | | | 2.82 | 0.86 | -16.19 | 1.46 | | | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 3000 | 31.0 | -23.4 | | 4000 | 33.1 | -23.3 | | 5000 | 34.4 | -21.7 | | 6000 | 34.7 | -21.2 | | 7000 | 35.6 | -19.8 | | cable
loss 1
(relay
inside
chamber) | cable
loss 2
(inside
chamber) | cable
loss 3
(outside
chamber) | cable loss 4 (switch unit, atten- uator & pre-amp) | cable
loss 5 (to
receiver) | used
for
FCC
15,247 | |---|--|---|--|----------------------------------|------------------------------| | dB | dB | dB | dB | dB | | | 0.47 | 1.87 | 0.53 | -27.58 | 1.33 | | | 0.56 | 2.41 | 0.67 | -28.23 | 1.31 | | | 0.61 | 2.78 | 0.86 | -27.35 | 1.40 | | | 0.58 | 2.74 | 0.90 | -26.89 | 1.47 | | | 0.66 | 2.82 | 0.86 | -25.58 | 1.46 | | | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 7000 | 35.6 | -57.3 | | 8000 | 36.3 | -56.3 | | 9000 | 37.1 | -55.3 | | 10000 | 37.5 | -56.2 | | 11000 | 37.5 | -55.3 | | 12000 | 37.6 | -53.7 | | 13000 | 38.2 | -53.5 | | 14000 | 39.9 | -56.3 | | 15000 | 40.9 | -54.1 | | 16000 | 41.3 | -54.1 | | 17000 | 42.8 | -54.4 | | 18000 | 44.2 | -54.7 | | cable | | | | | | |----------|--------|--------|----------|----------|-----------| | loss 1 | cable | cable | cable | cable | cable | | (relay | loss 2 | loss 3 | loss 4 | loss 5 | loss 6 | | inside | (High | (pre- | (inside | (outside | (to | | chamber) | Pass) | amp) | chamber) | chamber) | receiver) | | dB | dB | dB | dB | dB | dB | | 0.56 | 1.28 | -62.72 | 2.66 | 0.94 | 1.46 | | 0.69 | 0.71 | -61.49 | 2.84 | 1.00 | 1.53 | | 0.68 | 0.65 | -60.80 | 3.06 | 1.09 | 1.60 | | 0.70 | 0.54 | -61.91 | 3.28 | 1.20 | 1.67 | | 0.80 | 0.61 | -61.40 | 3.43 | 1.27 | 1.70 | | 0.84 | 0.42 | -59.70 | 3.53 | 1.26 | 1.73 | | 0.83 | 0.44 | -59.81 | 3.75 | 1.32 | 1.83 | | 0.91 | 0.53 | -63.03 | 3.91 | 1.40 | 1.77 | | 0.98 | 0.54 | -61.05 | 4.02 | 1.44 | 1.83 | | 1.23 | 0.49 | -61.51 | 4.17 | 1.51 | 1.85 | | 1.36 | 0.76 | -62.36 | 4.34 | 1.53 | 2.00 | | 1.70 | 0.53 | -62.88 | 4.41 | 1.55 | 1.91 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. # 6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ) | Frequency | AF
EMCO
3160-09 | Corr. | |-----------|-----------------------|-------| | MHz | dB (1/m) | dB | | 18000 | 40.2 | -23.5 | | 18500 | 40.2 | -23.2 | | 19000 | 40.2 | -22.0 | | 19500 | 40.3 | -21.3 | | 20000 | 40.3 | -20.3 | | 20500 | 40.3 | -19.9 | | 21000 | 40.3 | -19.1 | | 21500 | 40.3 | -19.1 | | 22000 | 40.3 | -18.7 | | 22500 | 40.4 | -19.0 | | 23000 | 40.4 | -19.5 | | 23500 | 40.4 | -19.3 | | 24000 | 40.4 | -19.8 | | 24500 | 40.4 | -19.5 | | 25000 | 40.4 | -19.3 | | 25500 | 40.5 | -20.4 | | 26000 | 40.5 | -21.3 | | 26500 | 40.5 | -21.1 | | (10 0 | | O, | | | |----------|--------|----------|---------|-----------| | cable | cable | cable | cable | cable | | loss 1 | loss 2 | loss 3 | loss 4 | loss 5 | | (inside | (pre- | (inside | (switch | (to | | chamber) | amp) | chamber) | unit) | receiver) | | dB | dB | dB | dB | dB | | 0.72 | -35.85 | 6.20 | 2.81 | 2.65 | | 0.69 | -35.71 | 6.46 | 2.76 | 2.59 | | 0.76 | -35.44 | 6.69 | 3.15 | 2.79 | | 0.74 | -35.07 | 7.04 | 3.11 | 2.91 | | 0.72 | -34.49 | 7.30 | 3.07 | 3.05 | | 0.78 | -34.46 | 7.48 | 3.12 | 3.15 | | 0.87 | -34.07 | 7.61 | 3.20 | 3.33 | | 0.90 | -33.96 | 7.47 | 3.28 | 3.19 | | 0.89 | -33.57 | 7.34 | 3.35 | 3.28 | | 0.87 | -33.66 | 7.06 | 3.75 | 2.94 | | 0.88 | -33.75 | 6.92 | 3.77 | 2.70 | | 0.90 | -33.35 | 6.99 | 3.52 | 2.66 | | 0.88 | -33.99 | 6.88 | 3.88 | 2.58 | | 0.91 | -33.89 | 7.01 | 3.93 | 2.51 | | 0.88 | -33.00 | 6.72 | 3.96 | 2.14 | | 0.89 | -34.07 | 6.90 | 3.66 | 2.22 | | 0.86 | -35.11 | 7.02 | 3.69 | 2.28 | | 0.90 | -35.20 | 7.15 | 3.91 | 2.36 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. # 6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ) | Frequency | AF
EMCO
3160-10 | Corr. | |-----------|-----------------------|-------| | GHz | dB (1/m) | dB | | 26.5 | 43.4 | -11.2 | | 27.0 | 43.4 | -11.2 | | 28.0 | 43.4 | -11.1 | | 29.0 | 43.5 | -11.0 | | 30.0 | 43.5 | -10.9 | | 31.0 | 43.5 | -10.8 | | 32.0 | 43.5 | -10.7 | | 33.0 | 43.6 | -10.7 | | 34.0 | 43.6 | -10.6 | | 35.0 | 43.6 | -10.5 | | 36.0 | 43.6 | -10.4 | | 37.0 | 43.7 | -10.3 | | 38.0 | 43.7 | -10.2 | | 39.0 | 43.7 | -10.2 | | 40.0 | 43.8 | -10.1 | | cable
loss 1
(inside
chamber) | cable
loss 2
(outside
chamber) | cable
loss 3
(switch
unit) | cable
loss 4
(to
receiver) | distance
corr.
(-20 dB/
decade) | d _{Limit}
(meas.
distance
(limit) | d _{used}
(meas.
distance
(used) | |--|---|-------------------------------------|-------------------------------------|--|---|---| | dB | dB | dB | dB | dB | m | m | | 4.4 | | | | -15.6 | 3 | 0.5 | | 4.4 | | | | -15.6 | 3 | 0.5 | | 4.5 | | | | -15.6 | 3 | 0.5 | | 4.6 | | | | -15.6 | 3 | 0.5 | | 4.7 | | | | -15.6 | 3 | 0.5 | | 4.7 | | | | -15.6 | 3 | 0.5 | | 4.8 | | | | -15.6 | 3 | 0.5 | | 4.9 | | | | -15.6 | 3 | 0.5 | | 5.0 | | | | -15.6 | 3 | 0.5 | | 5.1 | | | | -15.6 | 3 | 0.5 | | 5.1 | | | | -15.6 | 3 | 0.5 | | 5.2 | | | | -15.6 | 3 | 0.5 | | 5.3 | | | | -15.6 | 3 | 0.5 | | 5.4 | | | | -15.6 | 3 | 0.5 | | 5.5 | | | | -15.6 | 3 | 0.5 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. distance correction = -20 * LOG (d_{Limit} / d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. # 7 SETUP DRAWINGS <u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used. **Drawing 1:** Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane. **Drawing 2:** Setup for conducted radio tests. # 8 MEASUREMENT UNCERTAINTIES | Test Case | Parameter | Uncertainty | |--------------------------------------|--------------------|------------------------| | AC Power Line | Power | ± 3.4 dB | | Field Strength of spurious radiation | Power | ± 5.5 dB | | 6 dB / 26 dB / 99% Bandwidth | Power
Frequency | ± 2.9 dB
± 11.2 kHz | | Conducted Output Power | Power | ± 2.2 dB | | Band Edge Compliance | Power
Frequency | ± 2.2
dB
± 11.2 kHz | | Frequency Stability | Frequency | ± 25 Hz | | Power Spectral Density | Power | ± 2.2 dB | # 9 PHOTO REPORT Please see separate photo report.