7 - SAR TEST RESULTS

This page summarizes the results of the performed dosimetric evaluation. The plots with the corresponding SAR distributions, which reveal information about the location of the maximum SAR with respect to the device could be found in the following pages.

The output power was measured prior to testing and a fresh battery charge was ensured before each test. The modulation characteristics of the EUT are GSM and GPRS, therefore, a crest factor of 8 and 4 were used during the test.

7.1 SAR Body-Worn Worst-Case Test Data

Ambient Temperature (°C): 23.0 Relative Humidity (%): 49.3

Test data for time slot 1 (3/18/03):

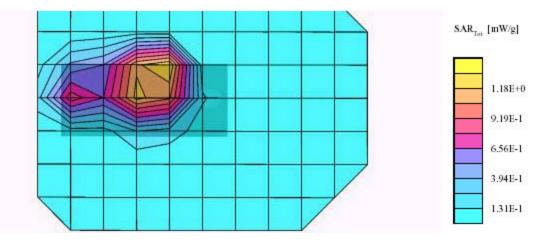
EUT position	Frequenc y (MHz)	Output Power (dBm)	Test Type	Antenna Type	Liquid	Phantom	Notes / Accessories	Measured (mW/g)	Limit (mW/g)	Plot #
back in touch with	1850.20	24.6	Dedury	Built-in	hadr	flat		1 40	1.6	1
phantom back in touch with	1830.20	24.0	Body worn	Duilt-III	body	Hat	none	1.48	1.6	1
phantom	1880	25.3	Body worn	Built-in	body	flat	none	1.51	1.6	2
back in touch with phantom	1909.80	23.0	Body worn	Built-in	body	flat	none	1.20	1.6	3
back in touch with phantom	1850.20	24.6	Body worn	Built-in	body	flat	earphone*	1.51	1.6	4
back in touch with phantom	1880	25.3	Body worn	Built-in	body	flat	earphone*	1.52	1.6	5
back in touch with phantom	1909.80	23.0	Body worn	Built-in	body	flat	earphone*	1.18	1.6	6
Back 1.5cm separation to phantom	1880	25.3	Body worn	Built-in	body	flat	none	0.179	1.6	7
Back 1.5cm separation to phantom	1880	25.3	Body worn	Built-in	body	flat	earphone*	0.614	1.6	8
Face in touch with phantom	1880	25.3	Body worn	Built-in	body	flat	none	0.260	1.6	9
Face in touch with phantom	1880	25.3	Body worn	Built-in	body	flat	earphone*	0.296	1.6	10
Face to phantom at 1.5 cm separation	1880	25.3	Body worn	Built-in	body	flat	none	0.0416	1.6	11
Face to phantom at 1.5 cm separation	1880	25.3	Body worn	Built-in	body	flat	earphone*	0.0417	1.6	12
left side cheek	1880	25.3	Face-held	Built-in	head	flat	none	0.216	1.6	13
left side cheek	1880	25.3	Face-held	Built-in	head	flat	earphone*	0.215	1.6	14
left side cheek tilted	1880	25.3	Face-held	Built-in	head	flat	none	0.307	1.6	15
left side cheek tilted	1880	25.3	Face-held	Built-in	head	flat	earphone*	0.313	1.6	16
right side cheek	1880	25.3	Face-held	Built-in	head	flat	none	0.223	1.6	17
right side cheek	1880	25.3	Face-held	Built-in	head	flat	earphone*	0.222	1.6	18
right side cheek tilted	1880	25.3	Face-held	Built-in	head	flat	none	0.347	1.6	19
right side cheek tilted	1880	25.3	Face-held	Built-in	head	flat	earphone*	0.342	1.6	20

*: Description of earphone please refer to Exhibit D

Report #R0302191S

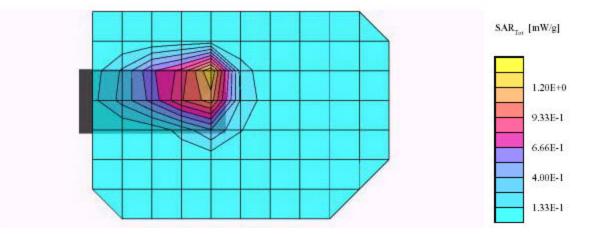
Chi Mei Communication Systems, Inc.

Test data for time slot 2 (7/16/03):


EUT position	Frequenc y (MHz)	Output Power (dBm)	Test Type	Antenna Type	Liquid	Phantom	Notes / Accessories	Measured (mW/g)	Limit (mW/g)	Plot #
Face to phantom at 1.5 cm separation	1880	27.17	Body worn	Built-in	body	flat	none	0.0872	1.6	21
Back to phantom at 1.5 cm separation	1880	27.17	Body worn	Built-in	body	flat	none	0.322	1.6	22

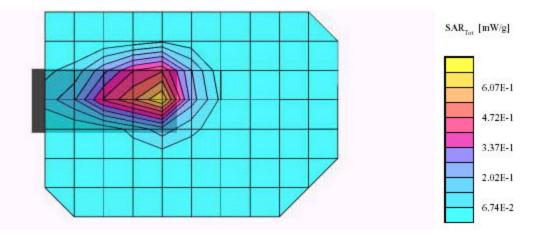
7.2 Plots of Test Result

The plots of test result were attached as reference.

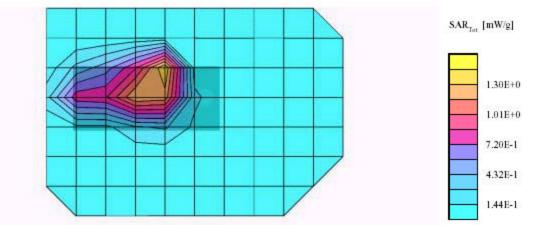

Chai Mei Communication Systems, Amadeus (Bottom touching flat phantom, Ambient Temp

= 23 Deg C, Liquid Temp = 21 Deg C, 3/18/2003) SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1850.20 MHz Probe: ET3DV6 - SN1604; ConvF(490,4.90,4.90); Crest factor: 8.0; (Body) 1900 MHz: σ = 1.53 mho/m ϵ_r = 55.5 ρ = 1.00 g/cm³ Cube 5x5x7; SAR (1g): 1.48 mW/g, SAR (10g): 0.800 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 14.0 Powerdrift: 0.07 dB

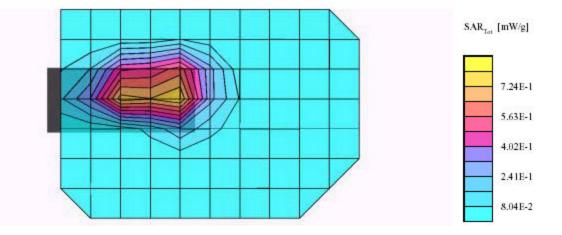
Chi Mei Communication Systems, Amadeus (Bottom touching flat phantom, Ambient Temp =


23 Deg C, Liquid Temp = 21 Deg C, 3/18/2003) SAM Phantom; Flat Sectior; Position: (90°,90°); Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(4.90,4.90,4.90); Crest factor: 8.0; (Body) 1900 MHz: $\sigma = 1.53$ mho/m $\epsilon_r = 55.5 \ \rho = 1.00$ g/cm³ Cubes (2): SAR (1g): 1.51 mW/g ± 0.06 dB, SAR (10g): 0.812 mW/g ± 0.03 dB, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 14.0 Powerdrift: 0.03 dB

FCC ID: QDJ-0302AMD01

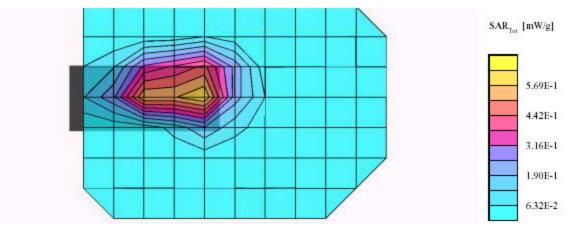

Chi Mei Communication Systems, Amadeus (Bottom touching flat phantom, Ambient Temp =

23 Deg C, Liquid Temp = 21 Deg C, 3/18/2003) SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1909.80 MHz Probe: ET3DV6 - SN1604; ConvF(4.90,4.90,4.90); Crest factor: 8.0; (Body) 1900 MHz: $\sigma = 1.53 \text{ mho/m} \epsilon_r = 55.5 \rho = 1.00 \text{ g/cm}^3$ Cubes (2): SAR (1g): 1.20 mW/g ± 0.09 dB, SAR (10g): 0.629 mW/g ± 0.11 dB, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 14.0 Powerdrift: 0.13 dB


Chi Mei Communication Systems, Amadeus (Bottom touching flat phantom with ear phone,

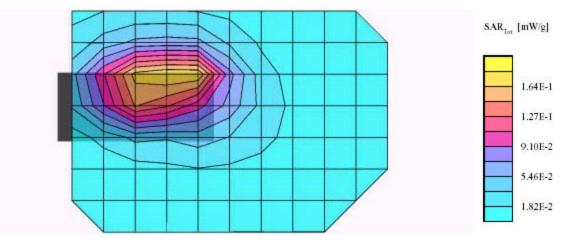
Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/18/2003) SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1850.20MHz Probe: ET3DV6 - SN1604; ConvF(4:90,4:90,4:90); Crest factor: 8.0; (Body) 1900 MHz: $\sigma = 1.53$ mho/m $\epsilon_c = 55.5 \ \rho = 1.00 \ g/cm^3$ Cube Sx5x7: SAR (1g): 1.51 mW/g, SAR (10g): 0.785 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 14.0 Powerdrift: 0.05 dB

Chi Mei Communication Systems, Amadeus (Bottom touching flat phantom with ear phone,


Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/18/2003) SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(4.90,4.90,4.90); Crest factor: 8.0; (Body) 1900 MHz: $\sigma = 1.53 \text{ mbo/m} \epsilon_r = 55.5 \rho = 1.00 \text{ g/cm}^3$ Cubes (2): SAR (1g): 1.52 mW/g ± 0.05 dB, SAR (10g): 0.775 mW/g ± 0.11 dB, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 14.0 Powerdrift: -0.21 dB

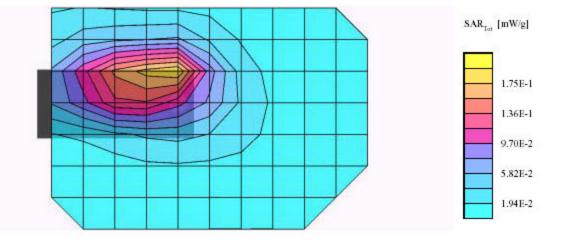
Chi Mei Communication Systems, Inc.

Chi Mei Communication Systems, Amadeus (Bottom touching flat phantom with ear phone,

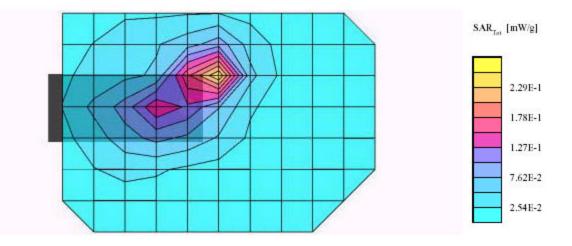

Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/18/2003) SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1909.80 MHz Probe: ET3DV6 - SN1604; ConvF(4.90,4.90,4.90); Crest factor: 8.0; (Body) 1900 MHz: $\sigma = 1.53$ mho/m $\epsilon_r = 55.5 \ \rho = 1.00 \ g/cm^3$ Cubes (2): SAR (1g): 1.18 mW/g ± 0.00 dB, SAR (10g): 0.616 mW/g ± 0.13 dB, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 14.0 Powerdrift: -0.04 dB

Chi Mei Communication Systems, Amadeus (Bottom 1.5 cm separation to flat phantom,

Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/18/2003) SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(4:90,4:90,4:90); Crest factor: 8.0; (Body) 1900 MHz: $\sigma = 1.53 \text{ mho/m } \epsilon_r = 55.5 \rho = 1.00 \text{ g/cm}^3$


Probe: ET3DV6 - SN1604; ConvF(4.90,4.90,4.90); Crest factor: 8.0; (Body) 1900 MHz: $\sigma = 1.53 \text{ mho/m} \epsilon_r = 55.5 \ \rho = 1.00 \ g/cm^3$ Cubes (2): SAR (1g): 0.179 mW/g ± 0.02 dB, SAR (10g): 0.110 mW/g ± 0.13 dB, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 14.0 Powerdrift: 0.02 dB

Chi Mei Communication Systems, Amadeus (Bottom 1.5 cm seperation to flat phantom with


ear phone, Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/18/2003) SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(4.90,4.90,4.90); Crest factor: 8.0; (Body) 1900 MHz: $\sigma = 1.53$ mho/m $\epsilon_r = 55.5 \rho = 1.00$ g/cm³ Cube Sx5x7: SAR (1g): 0.185 mW/g, SAR (10g): 0.111 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 14.0 Powerdrift: -0.13 dB

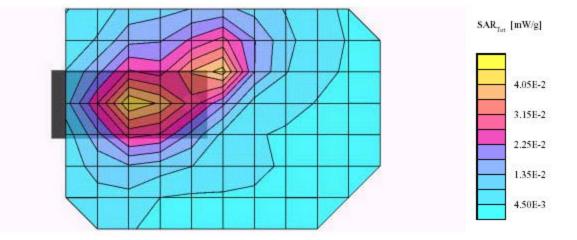
Plot #8

Chi Mei Communication Systems, Amadeus (Face touching flat phantom, Ambient Temp =

 $\begin{array}{l} 23 \ Deg \ C, \ Liquid \ Temp = 21 \ Deg \ C, \ 3/18/2003) \\ sAM \ Phantom; \ Flat Section; \ Position: \ (50^\circ, 90^\circ); \ Frequency: 1880 \ MHz \\ Probe: \ ET3DV6 - \ SN1604; \ ConvF(4.90,4.90,4.90); \ Crest \ factor: \ 8.0; \ (Body) \ 1900 \ MHz: \ \sigma = 1.53 \ mho/m \ \epsilon_r = 55.5 \ \rho = 1.00 \ g/cm^3 \\ Cube \ 5x5x7; \ SAR \ (1g): \ 0.260 \ mW/g, \ SAR \ (10g): \ 0.141 \ mW/g, \ (Worst-case \ extrapolation) \\ Coarse: \ Dx = 20.0, \ Dy = 20.0, \ Dz = 14.0 \\ Powerdrift: -0.01 \ dB \end{array}$

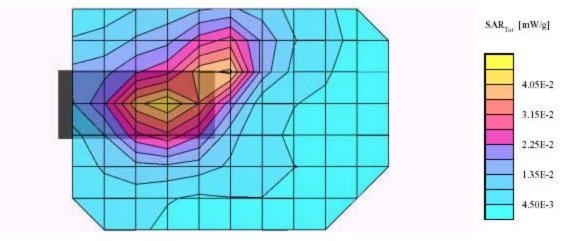
Plot #9

Chi Mei Communication Systems, Amadeus (Face touching flat phantom, Ambient Temp =

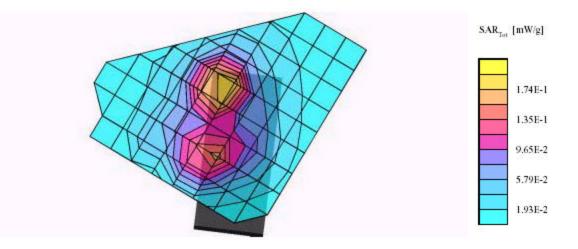

```
23 Deg C, Liquid Temp = 21 Deg C, 3/18/2003)
SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1880 MHz
Probe: ET3DV6 - SN1604; ConvF(4.90,4.90,4.90); Crest factor: 8.0; (Body) 1900 MHz: \sigma = 1.53 mbo/m \epsilon_r = 55.5 \rho = 1.00 g/cm<sup>3</sup>
Cubes (2): SAR (1g): 0.296 mW/g ± 0.04 dB, SAR (10g): 0.158 mW/g ± 0.04 dB, (Worst-case extrapolation)
Coarse: Dx = 20.0, Dy = 20.0, Dz = 14.0
Proversiti: = 0.04 dB
  Powerdrift: -0.04 dB
```

SAR_{Tot} [mW/g] 2.27E-1 1.76E-1 1.26E-1 7.56E-2 2.52E-2

Plot #10

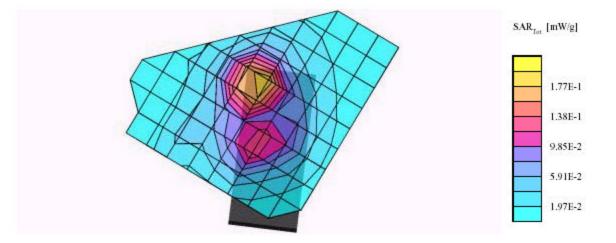

Chi Mei Communication Systems, Amadeus (Face 1.5 cm separation to flat phantom, Ambient

 $\begin{array}{l} Temp = 23 \ Deg \ C, \ Liquid \ Temp = 21 \ Deg \ C, \ 3/18/2003) \\ sAM \ Phantom; \ Flat Section; \ Position; \ (90^\circ, 90^\circ); \ Frequency: \ 1880 \ MHz \\ Probe: \ ET3DV6 - \ SN1604; \ ConvF(4.90, 4.90, 4.90); \ Crest \ factor: \ 8.0; \ (Body) \ 1900 \ MHz: \ \sigma = 1.53 \ mho/m \ s_r = 55.5 \ \rho = 1.00 \ g/cm^3 \end{array}$ Cube 5x5x7: SAR (1g): 0.0416 mW/g, SAR (1gg): 0.0261 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 14.0 Powerdrift: -0.04 dB

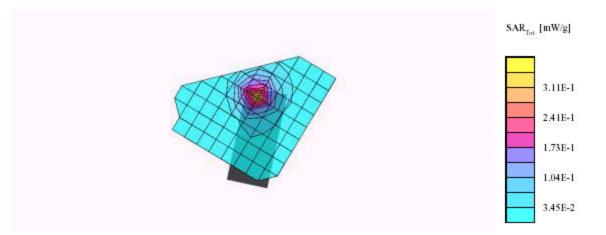

Plot #11

Chi Mei Communication Systems, Amadeus (Face 1.5 cm separation to flat phantom with ear phone, Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/18/2003) SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(4:90,4:90,4:90); Crest factor: 8.0; (Body) 1900 MHz: $\sigma = 1.53 \text{ mho/m} \epsilon_r = 55.5 \rho = 1.00 \text{ g/cm}^3$ Cube Sx5x7: SAR (1g): 0.0417 mW/g, SAR (10g): 0.0261 mW/g, (Worst-case extrapolation) Coarse: Dx = 20.0, Dy = 20.0, Dz = 14.0 Powerdrift: -0.01 dB

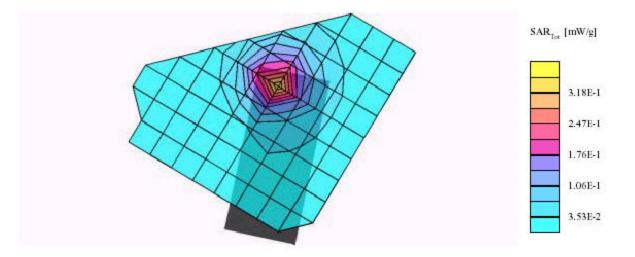
Plot #12


Chi Mei Communication Systems, Amadeus (Cheek, Left Head, Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/17/2003) SAM Phantom; Left Hand Section; Position: (82°,83°); Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(5.68,5.68); Crest factor: 8.0; (Head) 1900 MHz: $\sigma = 1.46$ mho/m $\varepsilon_r = 41.9 \ \rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.216 mW/g, SAR (10g): 0.114 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: 0.07 dB

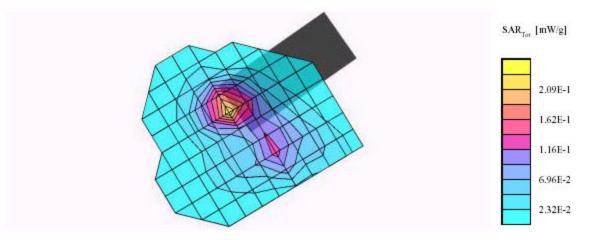
Plot #13


Chi Mei Communication Systems, Amadeus (Tilted, Left head with ear phone, Ambient

Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/17/2003) SAM Phantom; Left Hand Section; Position: (82°,83°); Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(5.68,5.68); Crest factor: 8.0; (Head) 1900 MHz: $\sigma = 1.46$ mho/m $\epsilon_r = 41.9 \ \rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.215 mW/g, SAR (10g): 0.114 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: -0.00 dB

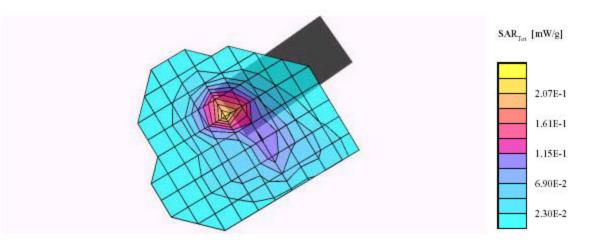

Plot #14

Chi Mei Communication Systems, Amadeus (Tilted, Left Head, Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/17/2003) SAM Phantom; Left Hand Section; Position: (97°,78°); Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(5.68,5.68); Crest factor: 8.0; (Head) 1900 MHz: $\sigma = 1.46$ mho/m $\epsilon_r = 41.9 \ \rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.307 mW/g, SAR (10g): 0.158 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: 0.07 dB



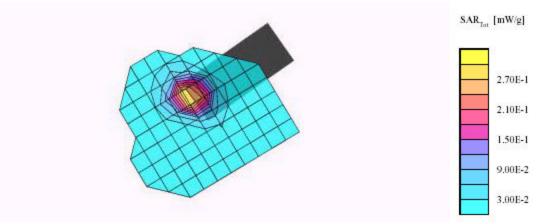
Plot #15

Chi Mei Communication Systems, Amadeus (Tilted, Left head with ear phone, Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/17/2003) SAM Phantom; Left Hand Section; Position: (97°,78°); Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(5.68,5.68,5.68); Crest factor: 8.0; (Head) 1900 MHz: $\sigma = 1.46$ mho/m $\epsilon_r = 41.9 \ \rho = 1.00$ g/cm³ Cube 5x5x7; SAR (1g): 0.313 mW/g, SAR (10g): 0.163 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: -0.06 dB


Chi Mei Communication Systems, Amadeus (Cheek, Right Head, Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/17/2003) SAM Phantom; Righ Hand Section; Position: (90°,35"); Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(5.68,5.68,5.68); Crest factor: 8.0; (Head) 1900 MHz: $\sigma = 1.46$ mho/m s_r = 41.9 p = 1.00 g/cm³ Cube 5x5x7; SAR (1g): 0.223 mW/g, SAR (10g): 0.117 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: -0.04 dB

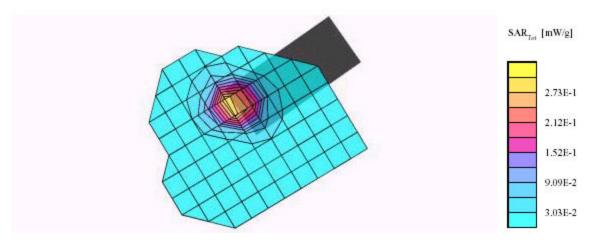
Plot #17

Chi Mei Communication Systems, Amadeus (Cheek, Right head with ear phone, Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/17/2003) SAM Phantom; Righ Hand Section; Position: (90°,35°); Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(5.68,5.68); Crest factor: 8.0; (Head) 1900 MHz: $\sigma = 1.46$ mbo/m $\varepsilon_r = 41.9 \ p = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.222 mW/g, SAR (10g): 0.117 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0


Powerdrift: 0.03 dB

Plot #18

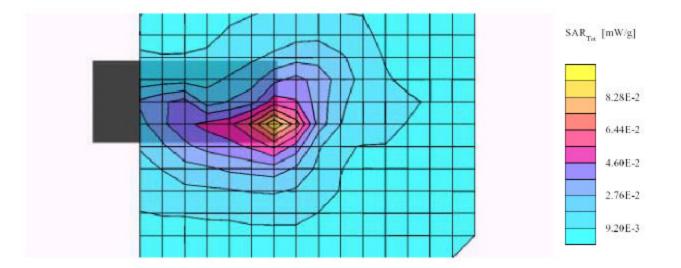
Chi Mei Communication Systems, Amadeus (Tilted, Right Head, Ambient Temp = 23 Deg C,


 $\begin{array}{l} Liquid Temp = 21 \ Deg \ C, \ 3/17/2003) \\ \text{SAM Phantom; Righ Hand Section; Position; (90°,35°); Frequency: 1880 \ MHz \\ \text{Probe: ET3DV6 - SN1604; ConvF(5.68,5.68); Crest factor: 8.0; (Head) 1900 \ MHz: \ \sigma = 1.46 \ mho/m \ \epsilon_r = 41.9 \ \rho = 1.00 \ g/cm^3 \\ \text{Cube 5x5x7: SAR (1g): 0.347 \ mW/g, SAR (10g): 0.173 \ mW/g, (Worst-case extrapolation) \\ \text{Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0} \end{array}$

Chi Mei Communication Systems, Inc.

Chi Mei Communication Systems, Amadeus (Tilted, Right head with ear phone, Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/17/2003) SAM Phantom; Righ Hand Section; Position: (90°,35°); Frequency: 1880 MHz

Probe: ET3DV6 - SN1604; ConvF(5.68,5.68,5.68); Crest factor: 8.0; (Head) 1900 MHz: $\sigma = 1.46$ mho/m $\varepsilon_r = 41.9 \ \rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.342 mW/g, SAR (10g): 0.171 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: -0.02 dB

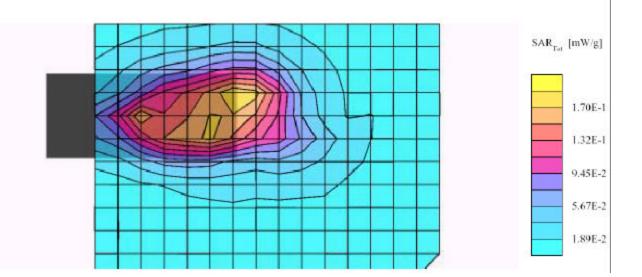


Plot #20

Chimei Amadeus (Front 1.5cm separation with flat phantom, Middle channel, Ambient Temp = 22 Deg C, Liquid Temp = 22 Deg C, 7/16/2003)

SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1880 MHz

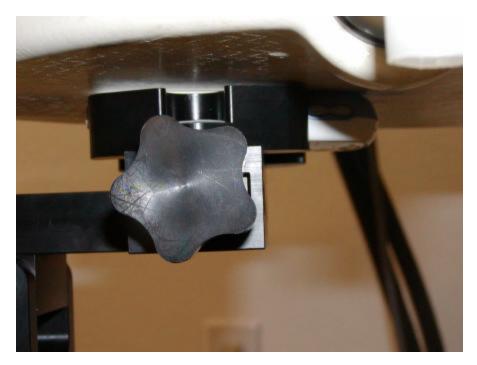
Probe: ET3DV6 - SN1604; ConvF(4.90,4.90,4.90); Crest factor: 4.0; Body 1900 MHz: $\sigma = 1.46$ mho/m $\epsilon_r = 52.4 \ \rho = 1.00 \ g/cm^3$ Cube 5x5x7: SAR (1g): 0.0872 mW/g, SAR (10g): 0.0530 mW/g, (Worst-case extrapolation) Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.02 dB



Plot #21

Chimei Amadeus (Back 1.5cm separation with flat phantom, Middle channel, Ambient Temp = 22 Deg C, Liquid Temp = 22 Deg C, 7/16/2003)

SAM Phantom; Flat Section; Position: $(90^{\circ}, 90^{\circ})$; Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(4.90,4.90,4.90); Crest factor: 4.0; Body 1900 MHz: $\sigma = 1.46$ mho/m $\epsilon_r = 52.4$ $\rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.322 mW/g, SAR (10g): 0.194 mW/g, (Worst-case extrapolation) Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0

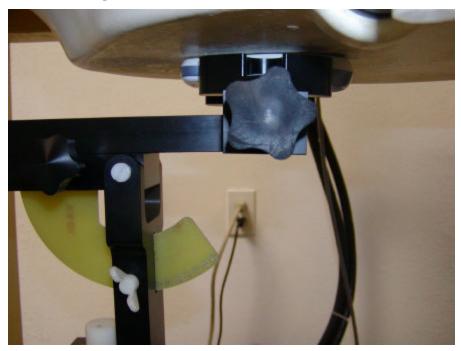

Powerdrift: -0.03 dB

Plot #22

EXHIBIT A - SAR SETUP PHOTOGRAPHS

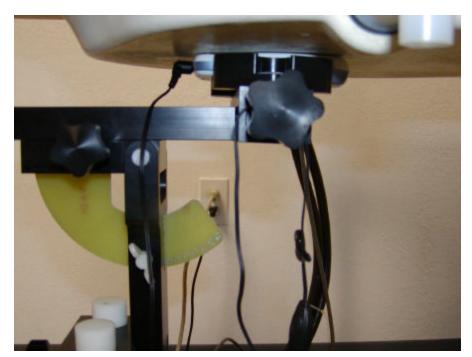
Bottom Touching Phantom – Side View

Bottom Touching Phantom with Earphone – Side View


Bottom 1.5 Separation to Phantom – Side View

Bottom 1.5 Separation to Phantom with Earphone – Side View

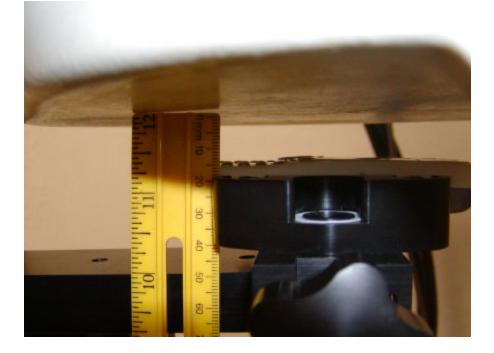
Face Touching Phantom – Side View


Face Touching Phantom – Front View

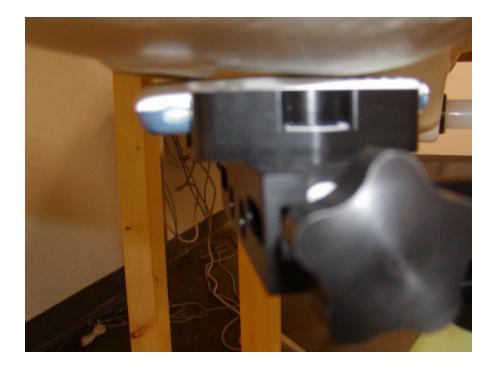
Face Touching Phantom – Rear View

Face Touching Phantom with Earphone – Side View

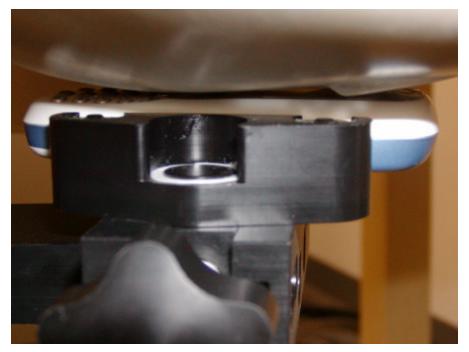
Face Touching Phantom with Earphone – Front View


Face 1.5cm Separation To Phantom with Earphone – Side View

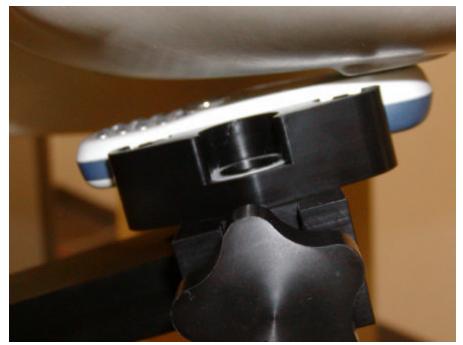
Face 1.5cm Separation To Phantom with Earphone – Front View


Face 1.5cm Separation To Phantom – Side View

Face 1.5cm Separation To Phantom – Front View


Cheek Position Left Side

Cheek Position with Earphone Left Side


Cheek Position Right Side

Cheek Position with Earphone Right Side

Tilted Position Left Side

Tilted Position with Earphone Left Side

Tilted Position Right Side

Tilted Position with Earphone Right Side

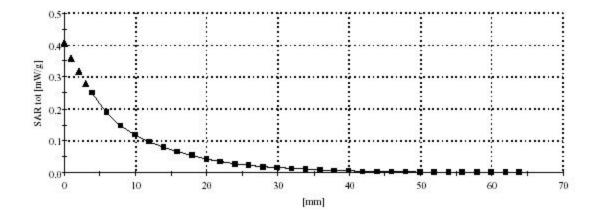

Chi Mei Communication Systems, Inc.

EXHIBIT C – Z-Axis

Chi Mei Communication Systems, Amadeus (Cheek, Right Head, Ambient Temp = 23 Deg C, Liquid Temp = 21 Deg C, 3/17/2003) SAM Phantom: Section: Position: Frequency: 1880 MHz

SAM Phantom; Section; Position; ; Frequency: 1880 MHz Probe: ET3DV6 - SN1604; ConvF(5.68,5.68,5.68); Crest factor: 8.0; (Head) 1900 MHz: $\sigma = 1.46$ mho/m $\epsilon_t = 41.9 \ \rho = 1.00$ g/cm³

: , () Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 2.0

EXHIBIT D – ACCESSORIES

Earphone is the only accessory for the EUT.

Part name: HEADSET(EMC197-016-01)

Part number: 85C1 9 70 1 60 0 1

Picture:

