

RADIO TEST REPORT FCC ID: 2AXNU-1910

Product:Smart PhoneTrade Mark:ANT INTELLIGENTModel No.:1910Family Model:N/AReport No.:S20082800402001Issue Date:21 Sep. 2020

Prepared for

Shenzhen KaiCheng Technology Co. Ltd Room 2005, 20th floor, Block C, DaChong business center, No.5 Tong Gu road, NanShan district, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: 400-800-6106, 0755-3699 5508 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

1	TES	ST RESULT CERTIFICATION	3
2	SUN	AMARY OF TEST RESULTS	4
3	FAC	CILITIES AND ACCREDITATIONS	5
	3.1	FACILITIES	
	3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	
		NERAL DESCRIPTION OF EUT	
4		SCRIPTION OF TEST MODES	
5			
6	SET	UP OF EQUIPMENT UNDER TEST	
6	5.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
	5.2	SUPPORT EQUIPMENT.	
(5.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TES	ST REQUIREMENTS	13
7	7.1	CONDUCTED EMISSIONS TEST	13
	7.2	RADIATED SPURIOUS EMISSION	
	7.3	NUMBER OF HOPPING CHANNEL	
	7.4	HOPPING CHANNEL SEPARATION MEASUREMENT	
	7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
	7.6 7.7	20DB BANDWIDTH TEST	-
	7.8	CONDUCTED BAND EDGE MEASUREMENT	
	7.9	SPURIOUS RF CONDUCTED EMISSION	
	7.10	ANTENNA APPLICATION	
		REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8	TES	ST RESULTS	35
8	8.1	DWELL TIME	35
8	8.2	MAXIMUM CONDUCTED OUTPUT POWER	
8	8.3	OCCUPIED CHANNEL BANDWIDTH	
8	8.4	CARRIER FREQUENCIES SEPARATION	55
	8.5		
	8.6	BAND EDGE	
8	8.7	CONDUCTED RF SPURIOUS EMISSION	74

NTEKJL测

1 TEST RESULT CERTIFICATION

Shenzhen KaiCheng Technology Co. Ltd
Room 2005, 20th floor, Block C, DaChong business center, No.5 Tong Gu road, NanShan district, Shenzhen, China
Shenzhen KaiCheng Technology Co. Ltd
Room 2005, 20th floor, Block C, DaChong business center, No.5 Tong Gu road, NanShan district, Shenzhen, China
Smart Phone
1910
N/A

Certificate #4298.01

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD/ TEST PROCEDURE	TEST RESULT		
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied		

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	28 Aug. 2020 ~ 18 Sep, 2020
Testing Engineer	:	Cheny Jiawan
Technical Manager	:	(Cheng Jiawen) Jason chen
	-	(Jason Chen)
Authorized Signatory	:	Alles
		(Alex Li)

NTEK北测

2 SUMMARY OF TEST RESULTS

2 SUMMARY OF LEST RESULTS					
FCC Part15 (15.247), Subpart C					
Standard Section Test Item Verdict Remark					
15.207	Conducted Emission	PASS			
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS			
15.247(a)(1)	Hopping Channel Separation	PASS			
15.247(b)(1)	Peak Output Power	PASS			
15.247(a)(iii)	Number of Hopping Frequency	PASS			
15.247(a)(iii)	Dwell Time	PASS			
15.247(a)(1)	Bandwidth	PASS			
15.247 (d)	Band Edge Emission	PASS			
15.247 (d)	Spurious RF Conducted Emission	PASS			
15.203	Antenna Requirement	PASS			

ACCRED

Certificate #4298.01

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK北测

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Smart Phone			
Trade Mark	ANT INTELLIGENT			
FCC ID	2AXNU-1910			
Model No.	1910			
Family Model	N/A			
Model Difference	N/A			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK, π/4-DQPSK, 8-DPSK			
Bluetooth Version	BT V5.0			
Number of Channels	79 Channels			
Antenna Type	FPC Antenna			
Antenna Gain	1.55dBi			
	DC supply: DC 3.85V/4000mAh from battery or DC 5V from Adapter.			
Power supply	Adapter supply: Model: TPA-46050200UU Input: 100-240V~50/60Hz 0.3A Output: 5.0V2000mA			
HW Version	1910EU-MAINBOARD-P1.1			
SW Version	ASW1910QD_2201_T0285			

ACC

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

Report No.	Version	Description	Issued Date		
S20082800402001	Rev.01	Initial issue of report	21 Sep, 2020		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

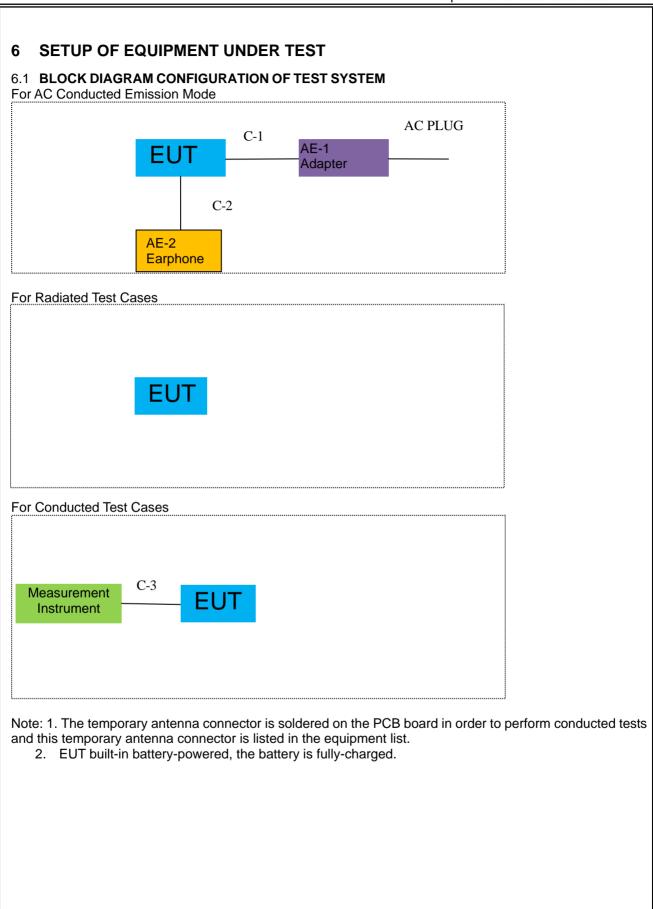
Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission			
Final Test Mode	Description		
Mode 1	normal link mode		

Note: AC power line Conducted Emission was tested under maximum output power.


For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases				
Final Test Mode Description				
Mode 2 CH00(2402MHz)				
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			
Mode 5	Hopping mode			
	and the second sec			

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	TPA-46050200UU	N/A	Peripherals
AE-2	Earphone	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment				·	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.07.13	2021.07.12	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.07.13	2021.07.12	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.04.11	2021.04.10	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2019.12.10	2020.12.09	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.07.13	2021.07.12	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.12.11	2020.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.07.13	2021.07.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.6	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.6	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.04.11	2021.04.10	1 year
16	Filter	TRILTHIC	2400MHz	29	2020.07.13	2021.07.12	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

ACC

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment Kind of Calibration Last Calibrated Manufacturer Type No. Serial No. Item Equipment calibration until period Test Receiver R&S ESCI 101160 2020.05.11 2021.05.10 1 1 year 2 LISN R&S **ENV216** 101313 2020.04.11 2021.04.10 1 year SCHWARZBE LISN **NNLK 8129** 3 8129245 2020.05.11 2021.05.10 1 year CK 50Ω Coaxial ANRITSU 4 MP59B 6200983704 2020.05.11 2023.05.10 3 year Switch CORP **Test Cable** 5 (9KHz-30MH N/A C01 N/A 2020.05.11 2023.05.10 3 year Z) Test Cable 6 (9KHz-30MH N/A C02 N/A 2020.05.11 2023.05.10 3 year Z) Test Cable C03 N/A 2020.05.11 2021.05.10 7 (9KHz-30MH N/A 1 year Z)

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEKJLIM CERTIFICATE #4298.01

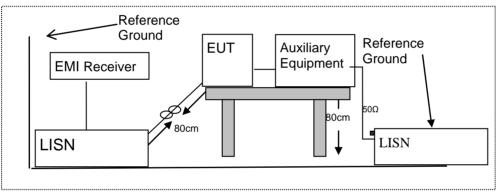
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


Frequency (MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

EUT:	Smart Phone	Model Name :	1910
Temperature:	25 ℃	Relative Humidity:	49%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerle
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1500	45.35	9.56	54.91	65.99	-11.08	QP
0.1500	28.00	9.56	37.56	55.99	-18.43	AVG
0.2220	39.48	9.55	49.03	62.74	-13.71	QP
0.2220	20.20	9.55	29.75	52.74	-22.99	AVG
0.2620	37.59	9.54	47.13	61.36	-14.23	QP
0.2620	19.17	9.54	28.71	51.36	-22.65	AVG
0.4820	29.23	9.55	38.78	56.30	-17.52	QP
0.4820	15.26	9.55	24.81	46.30	-21.49	AVG
1.3300	30.29	9.56	39.85	56.00	-16.15	QP
1.3300	16.44	9.56	26.00	46.00	-20.00	AVG
2.2020	30.33	9.58	39.91	56.00	-16.09	QP
2.2020	15.11	9.58	24.69	46.00	-21.31	AVG

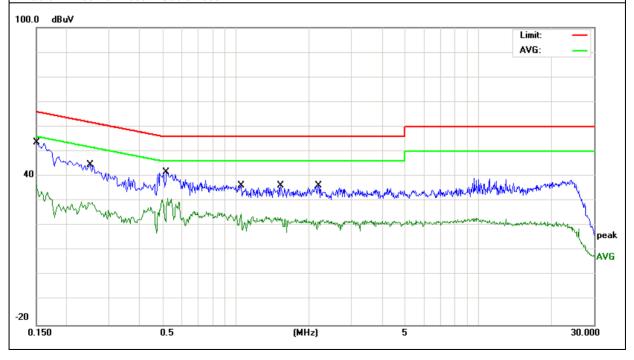
Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

Report No.: S20082800402001

EUT:	Smart Phone	Model Name :	1910
Temperature:	25 ℃	Relative Humidity:	49%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

ACCREDITED


Certificate #4298.01

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	44.17	9.55	53.72	65.99	-12.27	QP
0.1500	26.90	9.55	36.45	55.99	-19.54	AVG
0.2500	35.24	9.53	44.77	61.75	-16.98	QP
0.2500	19.94	9.53	29.47	51.75	-22.28	AVG
0.5180	32.18	9.54	41.72	56.00	-14.28	QP
0.5180	21.72	9.54	31.26	46.00	-14.74	AVG
1.0500	26.62	9.55	36.17	56.00	-19.83	QP
1.0500	15.30	9.55	24.85	46.00	-21.15	AVG
1.5300	26.63	9.57	36.20	56.00	-19.80	QP
1.5300	13.73	9.57	23.30	46.00	-22.70	AVG
2.1940	26.67	9.57	36.24	56.00	-19.76	QP
2.1940	12.82	9.57	22.39	46.00	-23.61	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 alt 13.20	According to FOC Fart 15.200, Restlicted barros					
MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

	Class B (dBuV/	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

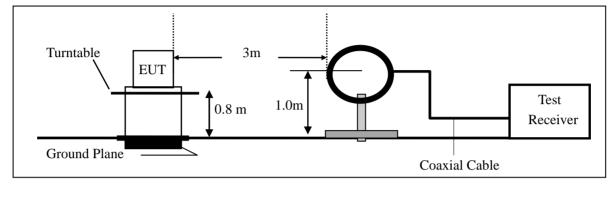
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

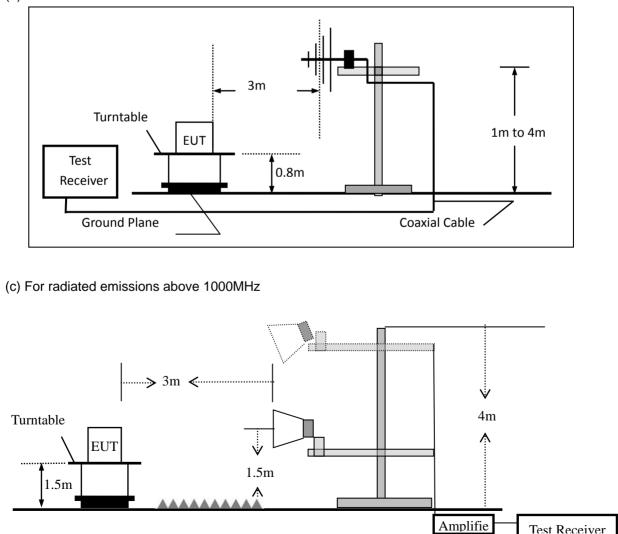
Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

ACC

Certificate #4298.01

(b) For radiated emissions from 30MHz to 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the	Spectrum Analyzer was set with the followin	a configurations.
During the radiated enhousen tool, the	speed and range of that the following	g oornigarationo.

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth		
30 to 1000	QP	120 kHz	300 kHz		
Ab ave 4000	Peak	1 MHz	1 MHz		
Above 1000	Average	1 MHz	1 MHz		

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

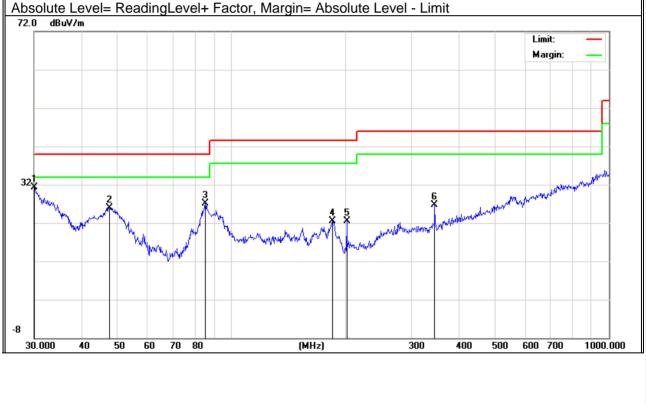
7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Smart Phone	Model No.:	1910
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Cheng Jiawen

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Smart Phone	Model Name :	1910
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.85V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	n) (dBuV/m) (dB)		
V	30.1053	12.56	18.78	31.34	40.00	-8.66	QP
V	47.4917	15.11	10.81	25.92	40.00	-14.08	QP
V	85.2980	18.05	9.07	27.12	40.00	-12.88	QP
V	185.1379	12.75	9.67	22.42	43.50	-21.08	QP
V	202.1005	13.01	9.40	22.41	43.50	-21.09	QP
V	345.5951	10.64	16.10	26.74	46.00	-19.26	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remarl	
(H/V)	(MHz)	(dBuV)	(dB) (dBuV/m		(dBuV/m)	(dB)	Roman	
Н	30.9618	5.59	18.33	23.92	40.00	-16.08	QP	
Н	84.4054	11.00	8.76	19.76	40.00	-20.24	QP	
Н	96.0986	14.17	10.17	24.34	43.50	-19.16	QP	
Н	280.0237	6.57	16.00	22.57	46.00	-23.43	QP	
Н	562.6624	6.48	22.22	28.70	46.00	-17.30	QP	
Н	785.0934	8.12	25.03	33.15	46.00	-12.85	QP	
72.0 dB	uV/m					Limit: Margin:	_	
32			4° Ulemp Annold Strady & A	n for a for	A MARMANA MARMAN			
8								

UT:	Sm	art Phon	e	N	lodel No.:		191	0			
Femperature:	20	°C		R	Relative Humidity:			48%			
Test Mode:	Мо	de2/Mod	le3/Mode4	. Т	Test By: Cheng Jiawen						
All the modula	tion mod	es have	been teste	ed, and	the worst res	ult was	repo	ort as be	ow:		
Frequency	Read Level	Cable loss	Antenna Factor	Pream Facto	•	Limi	ts	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	//m)	(dB)			
			Low Cha	annel (24	402 MHz)(GFSI	<)Abo	ve 10	3			
4804	67.14	5.21	35.59	44.30	63.64	74.0	00	-10.36	Pk	Vertical	
4804	47.50	5.21	35.59	44.30	0 44.00	54.0	00	-10.00	AV	Vertical	
7206	65.13	6.48	36.27	44.60	63.28	74.0	00	-10.72	Pk	Vertical	
7206	50.62	6.48	36.27	44.60	48.77	54.0	00	-5.23	AV	Vertical	
4804	69.24	5.21	35.55	44.30	65.70	74.0	00	-8.30	Pk	Horizontal	
4804	48.54	5.21	35.55	44.30	45.00	54.0	00	-9.00	AV	Horizontal	
7206	67.30	6.48	36.27	44.52	2 65.53	74.0	00	-8.47	Pk	Horizontal	
7206	47.04	6.48	36.27	44.52	_	54.0	-	-8.73	AV	Horizontal	
	1	Γ	Mid Cha		141 MHz)(GFSł	()Abov	ve 1G	6	г – Г		
4882	64.62	5.21	35.66	44.20		74.0	00	-12.71	Pk	Vertical	
4882	47.81	5.21	35.66	44.20) 44.48	54.0	00	-9.52	AV	Vertical	
7323	64.24	7.10	36.50	44.43	3 63.41	74.0	00	-10.59	Pk	Vertical	
7323	43.63	7.10	36.50	44.43		54.0	00	-11.20	AV	Vertical	
4882	65.61	5.21	35.66	44.20) 62.28	74.0	00	-11.72	Pk	Horizontal	
4882	47.61	5.21	35.66	44.20		54.0		-9.72	AV	Horizontal	
7323	65.29	7.10	36.50	44.43		74.0	-	-9.54	Pk	Horizontal	
7323	47.86	7.10	36.50	44.43		54.0	-	-6.97	AV	Horizontal	
			, v	,	480 MHz)(GFSI	,					
4960	65.14	5.21	35.52	44.21		74.0		-12.34	Pk	Vertical	
4960	47.21	5.21	35.52	44.21		54.0		-10.27	AV	Vertical	
7440	63.93	7.10	36.53	44.60		74.0		-11.04	Pk	Vertical	
7440	46.33	7.10	36.53	44.60		54.0	-	-8.64	AV	Vertical	
4960	65.97	5.21	35.52	44.21	1 62.49	74.0	00	-11.51	Pk	Horizontal	
4960	44.14	5.21	35.52	44.21	40.66	54.0	00	-13.34	AV	Horizontal	
7440	67.46	7.10	36.53	44.60	66.49	74.0	00	-7.51	Pk	Horizontal	
7440	48.91	7.10	36.53	44.60) 47.94	54.0	00	-6.06	AV	Horizontal	

ACCRED

Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Report No.: S20082800402001

Ξ	UT:	Smart Pho	one		Mode	el No.:	19	10			
(emperature:	20 ℃			Relat	ive Humidit	y: 48	48%			
6	est Mode:	Mode2/ M	lode4		Test	Test By: Cheng Jiawen					
Α	Il the modul	ation mode	es have	been teste	ed, and th	e worst res	ult was r	eport as bel	OW:		
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/r	n) (dB)	Туре		
	1Mbps(GFSK)- Non-hopping										
	2310.00	67.28	2.97	27.80	43.80	54.25	74	-19.75	Pk	Horizontal	
	2310.00	46.79	2.97	27.80	43.80	33.76	54	-20.24	AV	Horizontal	
	2310.00	70.40	2.97	27.80	43.80	57.37	74	-16.63	Pk	Vertical	
	2310.00	47.92	2.97	27.80	43.80	34.89	54	-19.11	AV	Vertical	
	2390.00	69.81	3.14	27.21	43.80	56.36	74	-17.64	Pk	Vertical	
	2390.00	50.73	3.14	27.21	43.80	37.28	54	-16.72	AV	Vertical	
	2390.00	68.15	3.14	27.21	43.80	54.70	74	-19.30	Pk	Horizontal	
	2390.00	48.29	3.14	27.21	43.80	34.84	54	-19.16	AV	Horizontal	
	2483.50	68.67	3.58	27.70	44.00	55.95	74	-18.05	Pk	Vertical	
	2483.50	50.15	3.58	27.70	44.00	37.43	54	-16.57	AV	Vertical	
	2483.50	71.35	3.58	27.70	44.00	58.63	74	-15.37	Pk	Horizontal	
	2483.50	50.71	3.58	27.70	44.00	37.99	54	-16.01	AV	Horizontal	
					1Mbps (G	FSK)- hoppin	g				
	2310.00	70.79	2.97	27.80	43.80	57.76	74	-16.24	Pk	Horizontal	
	2310.00	49.01	2.97	27.80	43.80	35.98	54	-18.02	AV	Horizontal	
	2310.00	70.67	2.97	27.80	43.80	57.64	74	-16.36	Pk	Vertical	
	2310.00	51.11	2.97	27.80	43.80	38.08	54	-15.92	AV	Vertical	
	2390.00	73.88	3.14	27.21	43.80	60.43	74	-13.57	Pk	Vertical	
	2390.00	47.83	3.14	27.21	43.80	34.38	54	-19.62	AV	Vertical	
	2390.00	69.54	3.14	27.21	43.80	56.09	74	-17.91	Pk	Horizontal	
	2390.00	51.06	3.14	27.21	43.80	37.61	54	-16.39	AV	Horizontal	
	2483.50	70.07	3.58	27.70	44.00	57.35	74	-16.65	Pk	Vertical	
	2483.50	49.99	3.58	27.70	44.00	37.27	54	-16.73	AV	Vertical	
	2483.50	69.18	3.58	27.70	44.00	56.46	74	-17.54	Pk	Horizontal	
	2483.50	48.19	3.58	27.70	44.00	35.47	54	-18.53	AV	Horizontal	

ACCRED

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

1						z-18000MHz	-	1010				
EUT:		Sma	art Phone		IVIOC	Model No.:			1910			
Temperature:20 °CRelative Humidity:48%												
Test Mode:	Test Mode: Mode2/ Mode4				Test	By:		Cheng	g Jiawen			
All the mod	ulation	mo	des have	been teste	ed, and t	ne worst resu	ult wa	is repo	rt as belov	N:		
Frequency	Readi Leve	0	Cable Loss	Antenna Factor	Pream Factor	Emission Level	Li	mits	Margin	Detector	Comment	
(MHz)	(dBµ'	V)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	µV/m)	(dB)	Туре		
3260	63.0	4	4.04	29.57	44.70	51.95		74	-22.05	Pk	Vertical	
3260	3260 50.60		4.04	29.57	44.70	39.51		54	-14.49	AV	Vertical	
3260	260 69.80		4.04	29.57	44.70	58.71	-	74	-15.29	Pk	Horizontal	
3260	49.7	9	4.04	29.57	44.70	38.70		54	-15.30	AV	Horizontal	
3332	64.8	1	4.26	29.87	44.40	54.54		74	-19.46	Pk	Vertical	
3332	47.9	1	4.26	29.87	44.40	37.64		54	-16.36	AV	Vertical	
3332	65.0	8	4.26	29.87	44.40	54.81		74	-19.19	Pk	Horizontal	
3332	48.2	8	4.26	29.87	44.40	38.01		54	-15.99	AV	Horizontal	
17797	48.6	4	10.99	43.95	43.50	60.08	-	74	-13.92	Pk	Vertical	
17797	37.4	5	10.99	43.95	43.50	48.89		54	-5.11	AV	Vertical	
17788	49.9	7	11.81	43.69	44.60	60.87	-	74	-13.13	Pk	Horizontal	
17788	36.3	1	11.81	43.69	44.60	47.21		54	-6.79	AV	Horizontal	

ACC

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Smart Phone	Model No.:	1910
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Cheng Jiawen

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Smart Phone	Model No.:	1910
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Cheng Jiawen

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Smart Phone	Model No.:	1910
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Cheng Jiawen

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Smart Phone	Model No.:	1910
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Cheng Jiawen

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Smart Phone	Model No.:	1910
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Cheng Jiawen

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Smart Phone	Model No.:	1910
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Cheng Jiawen

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

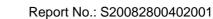
Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement


15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached FPC antenna (Gain: 1.55dBi). It comply with the standard requirement.

ACCREDIT

NTEK北测

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298 01

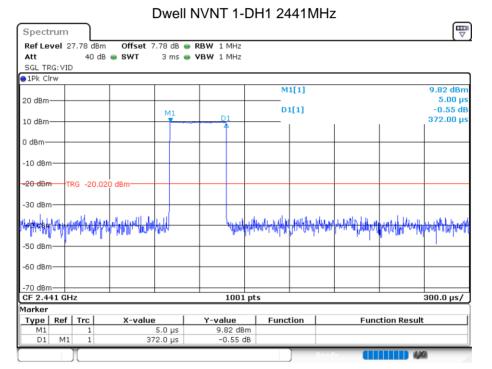
7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.


The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8 TEST RESULTS

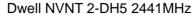
8.1 **DWELL TIME**

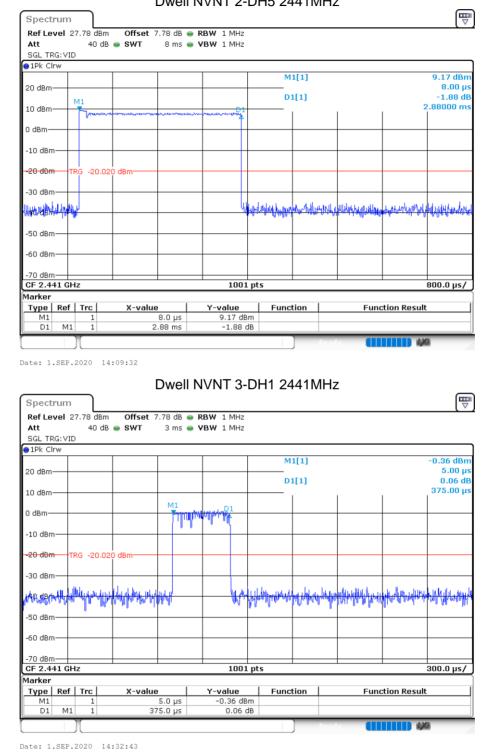
O.I DIVEL							
Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.372	119.04	31600	400	Pass
NVNT	1-DH3	2441	1.625	260	31600	400	Pass
NVNT	1-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	2-DH1	2441	0.378	120.96	31600	400	Pass
NVNT	2-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	3-DH1	2441	0.375	120	31600	400	Pass
NVNT	3-DH3	2441	1.625	260	31600	400	Pass
NVNT	3-DH5	2441	2.88	307.2	31600	400	Pass

Date: 1.SEP.2020 14:29:27

Dwell NVNT 1-DH3 2441MHz

Att SGL TRG:V		SWT	5 ms 👄	VBW 1 MHz					
1Pk Clrw	10								
00 da					м	1[1]			9.72 dBm 10.00 μs
20 dBm	N	11				1[1]			-0.52 dB
10 dBm					<u>D1</u> A	I	1	:	1.62500 ms
0 dBm									
-10 dBm									
-20 dBm	TRG -20.02	0 dBm							
¹ ማ dBm —									
	AN HALF AND A DECK				hund Mange	իիկչը էլ հայտում էլ դեր	Jana an that the the	a tological dilog	APPENDER OF THE PARTY OF THE PA
01.0.0.0	La constructioner				ALV 19	المريد ويرا	ol i o talko allo atta	nooff of the off holds of] • [[[[[] • · · · ·
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.441 (GHz			1001	pts				500.0 µs/
1arker Type Re	f Trc	X-valu	e	Y-value	Func	tion	Fun	ction Result	:
M1	1		10.0 µs	9.72 dBr					
D1 M	11 1	1.	625 ms	-0.52 d	8				
te: 1.SEF	P.2020 14	:30:51				,			
Spectrun	n			NVNT 1-I	DH5 24	41MH	Z		
Spectrun Ref Level Att SGL TRG: V	n 27.78 dBm 40 dB		7.78 dB 👄	NVNT 1-I RBW 1 MHz VBW 1 MHz			2		
Spectrun Ref Level Att SGL TRG:V 1Pk Clrw	n 27.78 dBm 40 dB	Offset	7.78 dB 👄	RBW 1 MHz		141MH:	2		-1.02 dBm
Spectrun Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm	n 27.78 dBm 40 dB	Offset	7.78 dB 👄	RBW 1 MHz	M		Z		-1.02 dBm 8.00 µs -1.39 dB 2.88000 ms
Spectrun Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm	n 27.78 dBm 40 dB	Offset	7.78 dB 👄	RBW 1 MHz	M	1[1]	z		-1.02 dBm 8.00 µs -1.39 dB
Spectrun Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm 10 dBm 0 dBm	n 27.78 dBm 40 dB ID	Offset	7.78 dB 👄	RBW 1 MHz	M	1[1]	Z		-1.02 dBm 8.00 µs -1.39 dB
Spectrun Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm 10 dBm 0 dBm	n 27.78 dBm 40 dB ID	Offset	7.78 dB 👄	RBW 1 MHz	M	1[1]	Z		-1.02 dBm 8.00 µs -1.39 dB
Spectrum Ref Level Att SGL TRG: V 1Pk Cirw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	n 27.78 dBm 40 dB 1D	Offset	7.78 dB 👄	RBW 1 MHz	M	1[1]	Z		-1.02 dBm 8.00 µs -1.39 dB
Spectrum Ref Level Att SGL TRG: V 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm	n 27.78 dBm 40 dB 1D	Offset	7.78 dB 👄	RBW 1 MHz VBW 1 MHz	M	1[1]	z		-1.02 dBm 8.00 µs -1.39 dB 2.88000 ms
Spectrun Ref Level Att SGL TRG:V 1Pk Clrw 20 dBm	n 27.78 dBm 40 dB 1D	Offset	7.78 dB 👄	RBW 1 MHz VBW 1 MHz	M	1[1]			-1.02 dBm 8.00 µs -1.39 dB 2.88000 ms


-60 dBm -70 dBm CF 2.441 GHz 1001 pts 800.0 µs/ Marker Type Ref Trc X-value Y-value Function Function Result M1 1 8.0 µs -1.02 dBm D1 M1 1 2.88 ms -1.39 dB

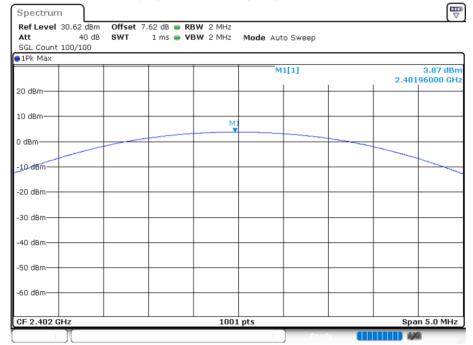

Date: 1.SEP.2020 12:22:05

Ref Level	40 dB	SWT		VBW 1 MHz					
SGL TRG:	VID								
					M	1[1]			0.40 dBm
20 dBm—					D	1[1]			2.00 µs -2.42 dB
10 dBm									378.00 µs
0 40			M1						
0 dBm				a Waak					
-10 dBm	TRG -10.020) dBm							
-20 dBm—									
-30 dBm—									
	ي بر الله ينه				And the state of the	ակու ափոլո	المتحد المالة	المراجع الملا	. العن المراجع
n an	Alcull Manual and	eller Alf-Altryahappy	h.h.	111	and a start and a start	<u>Apripalonan</u> a	A MARTING AND	allah Manana	HA WANNY
-50 dBm—							· ·		*
-60 dBm—									
-70 dBm-	GHz			100	1 pts		1		300.0 µs/
Marker				100	- 203				
Type Re		X-value		Y-value	Func	tion	Fund	tion Result	
M1 D1 M	1 V1 1	27	2.0 μs 78.0 μs	0.40 dł -2.42					
			010 ps	2.1.12					
Spectrur					-DH3 24	141MH	Z		(III) (⊽)
Spectrur	m I 27.78 dBm 40 dB		7.78 dB 😑	NVNT 2- RBW 1 MHz VBW 1 MHz	-DH3 24	141MH	Z		Œ
Spectrur Ref Level Att	m I 27.78 dBm 40 dB	Offset 7	7.78 dB 😑	RBW 1 MHz			Z		
Spectrur Ref Level Att SGL TRG:\	m I 27.78 dBm 40 dB	Offset 7	7.78 dB 😑	RBW 1 MHz		141MH	Z		₩ 8.98 dBm 5.00 µs
Spectrur Ref Level Att SGL TRG:\ 1Pk Clrw 20 dBm-	m I 27.78 dBm 40 dB	Offset 7 ● SWT	7.78 dB 😑	RBW 1 MHz	M		Z		8.98 dBm 5.00 μs -2.71 dB
Spectrur Ref Level Att SGL TRG:\ PIPk Cirw	11 27.78 dBm 40 dB VID	Offset 7 ● SWT	7.78 dB 😑	RBW 1 MHz VBW 1 MHz	M	1[1]	Z		8.98 dBm 5.00 μs
Spectrur Ref Level Att SGL TRG:\ 1Pk Clrw 20 dBm-	11 27.78 dBm 40 dB VID	Offset 7 ● SWT	'.78 dB ● 5 ms ●	RBW 1 MHz VBW 1 MHz	M	1[1]	z	,	8.98 dBm 5.00 μs -2.71 dB
Spectrur Ref Level Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm-	11 27.78 dBm 40 dB VID	Offset 7 SWT	'.78 dB ● 5 ms ●	RBW 1 MHz VBW 1 MHz	M	1[1]			8.98 dBm 5.00 μs -2.71 dB
Spectrur Ref Level Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm- -10 dBm	11 27.78 dBm 40 dB VID	Offset 7 SWT	'.78 dB ● 5 ms ●	RBW 1 MHz VBW 1 MHz	M	1[1]			8.98 dBm 5.00 μs -2.71 dB
Spectrum Ref Level Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm- 0 dBm-	11 27.78 dBm 40 dB VID	Offset 7 SWT	'.78 dB ● 5 ms ●	RBW 1 MHz VBW 1 MHz	M	1[1]			8.98 dBm 5.00 μs -2.71 dB
Spectrur Ref Level Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm- -10 dBm	11 27.78 dBm 40 dB VID	Offset 7 SWT	'.78 dB ● 5 ms ●	RBW 1 MHz VBW 1 MHz		1[1] 1[1]			8.98 dBm 5.00 µs -2.71 dB .63000 ms
Spectrur Ref Level Att SGL TRG:\ 1 Pk Clrw 20 dBm	TT	Offset 7 SWT	'.78 dB ● 5 ms ●	RBW 1 MHz VBW 1 MHz		1[1] 1[1]			8.98 dBm 5.00 µs -2.71 dB .63000 ms
Spectrur Ref Level Att SGL TRG:\ 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	11 27.78 dBm 40 dB VID	Offset 7 SWT	'.78 dB ● 5 ms ●	RBW 1 MHz VBW 1 MHz		1[1] 1[1]			8.98 dBm 5.00 µs -2.71 dB .63000 ms
Spectrum Ref Level Att SGL TRG: 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	TT	Offset 7 SWT	'.78 dB ● 5 ms ●	RBW 1 MHz VBW 1 MHz		1[1] 1[1]			8.98 dBm 5.00 µs -2.71 dB .63000 ms
Spectrur Ref Level Att SGL TRG:\ 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	TT	Offset 7 SWT	'.78 dB ● 5 ms ●	RBW 1 MHz VBW 1 MHz		1[1] 1[1]			8.98 dBm 5.00 µs -2.71 dB .63000 ms
Spectrur Ref Level Att SGL TRG: 10 dBm 20 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm	TRG -10.020	Offset 7 SWT	'.78 dB ● 5 ms ●	RBW 1 MHz VBW 1 MHz		1[1] 1[1]			8.98 dBm 5.00 µs -2.71 dB .63000 ms
Spectrur Ref Level Att SGL TRG: 10 dBm 20 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm CF 2.441	TRG -10.020	Offset 7 SWT	'.78 dB ● 5 ms ●	RBW 1 MHz VBW 1 MHz		1[1] 1[1]			8.98 dBm 5.00 µs -2.71 dB .63000 ms
Spectrur Ref Level Att SGL TRG: 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm Type Ref	TRG -10.020	Offset 7 SWT	2.78 dB Sms	RBW 1 MHz VBW 1 MHz	M D D HI 4444				8.98 dBm 5.00 µs -2.71 dB .63000 ms
Spectrur Ref Level Att SGL TRG:\ 10 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm CF 2.441 Type Ref M1	TRG -10.020	Offset 7 SWT 1 J J J X-value	2.78 dB 5 ms 5 ms 5.0 µs	RBW 1 MHz VBW 1 MHz	M D D D D D D D D D D D D D D D D D D D			ւրեզույնություններին Դեզունություններին	8.98 dBm 5.00 µs -2.71 dB .63000 ms
Spectrur Ref Level Att SGL TRG:\ 10 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm CF 2.441 Type Ref M1	TRG -10.020	Offset 7 SWT 1 J J J X-value	2.78 dB Sms	RBW 1 MHz VBW 1 MHz	M D D D D D D D D D D D D D D D D D D D		Func	ւրեզույնություններին Դեզունություններին	8.98 dBm 5.00 µs -2.71 dB .63000 ms

Spectrui Ref Level		Bm Offset	7.78 dB 👄	RBW 1 MHz					
Att		dB 🕳 SWT		VBW 1 MHz					
SGL TRG:	VID								
1Pk Clrw			1						0.40.40
20 dBm—					M1[11			-0.43 dBm 5.00 µs
20 0000					D1[1]			-2.29 dB
10 dBm—								I	1.62500 ms
0 dBm		M1	اماطلا المراجع المراجع	Arr. I., itter i sektion store	digit:				
o abiii		Let a subtrace of the	ակեստություն՝ Այ	lage Aritic of a constraint from					
-10 dBm	TRG -10	.020 dBm							
-20 dBm—									
20 0011									
-30 dBm—		_							
HAR HAR HAR	the shill be be	. tab			4 million all	urAlisada d	u kana daliku	And an and the	ստ մահերիվել է Հա
Managh an	All Mark.	401.8			Re rolling hours	a na the and	on to add and a	Able of the	and a factor of the factor of the second
-50 dBm—									
-60 dBm—									
-70 dBm—									
CF 2.441	GHz			1001	pts				500.0 µs/
1arker	- 6 7		- 1		1		-		u 1
Type R M1	ef Trc	X-valu	5.0 µs	<u>Y-value</u> -0.43 dBr	Function	on	Fun	ction Resu	lt
				-2.29 d					
	M1 1	14:33:04	.625 ms	NVNT 3-1		Poor 11MHz	× ()		
ate: 1.SE	m	14:33:04	Dwell I	NVNT 3-I		Pool 11MHz	× 11		
ate: 1.SE Spectrui Ref Leve	m I 27.78 df	14:33:04	Dwell			Pead 41MHz	y (11		
Spectrui Ref Level Att SGL TRG:	m 1 27.78 df 40	14:33:04 3m Offset	Dwell	NVNT 3-1 RBW 1 MHz		Road 41MHz	· •		
Spectrui Ref Level Att SGL TRG:	m 1 27.78 df 40	14:33:04 3m Offset	Dwell	NVNT 3-1 RBW 1 MHz	DH5 244		· •		
Spectrui Ref Level Att SGL TRG: 1Pk Clrw	m 1 27.78 df 40	14:33:04 3m Offset	Dwell	NVNT 3-1 RBW 1 MHz			· •		9.02 dBm
Spectrui Ref Level Att SGL TRG: 1Pk Clrw	m 1 27.78 di 40	14:33:04 3m Offset	Dwell	NVNT 3-1 RBW 1 MHz	DH5 244	[1]	· •		9.02 dBm 8.00 μs -2.64 dB
Spectrun Ref Level Att SGL TRG:) IPk Cirw 20 dBm-	M1	14:33:04 3m Offset	Dwell I 7.78 dB • 8 ms •	NVNT 3-1 RBW 1 MHz	DH5 244	[1]	•		9.02 dBm 8.00 µs
Spectrun Ref Level Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm-	M1	14:33:04 Bm Offset dB • SWT	Dwell I 7.78 dB • 8 ms •	NVNT 3-I RBW 1 MHz VBW 1 MHz	DH5 244	[1]			9.02 dBm 8.00 μs -2.64 dB
Spectrun Ref Level Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm-	M1	14:33:04 Bm Offset dB • SWT	Dwell I 7.78 dB • 8 ms •	NVNT 3-I RBW 1 MHz VBW 1 MHz	DH5 244	[1]			9.02 dBm 8.00 μs -2.64 dB
Spectrum Ref Level Att SGL TRG: DIPk Clrw 20 dBm 0 dBm 0 dBm	M1	14:33:04 Bm Offset dB • SWT	Dwell I 7.78 dB • 8 ms •	NVNT 3-I RBW 1 MHz VBW 1 MHz	DH5 244	[1]			9.02 dBm 8.00 μs -2.64 dB
Spectrum Ref Level Att SGL TRG:)IPk Clrw 20 dBm- 10 dBm- -10 dBm-	M1	14:33:04	Dwell I 7.78 dB • 8 ms •	NVNT 3-I RBW 1 MHz VBW 1 MHz	DH5 244	[1]			9.02 dBm 8.00 μs -2.64 dB
Spectrum Ref Level Att SGL TRG:)IPk Clrw 20 dBm- 10 dBm- -10 dBm-	M1	14:33:04 Bm Offset dB • SWT	Dwell I 7.78 dB • 8 ms •	NVNT 3-I RBW 1 MHz VBW 1 MHz	DH5 244	[1]			9.02 dBm 8.00 μs -2.64 dB
Spectrum Ref Level Att SGL TRG:) IPk Clrw 20 dBm	M1	14:33:04	Dwell I 7.78 dB • 8 ms •	NVNT 3-I	DH5 244	1]			9.02 dBm 8.00 µs -2.64 dB 2.88000 ms
Spectrum Ref Level Att SGL TRG:) IPk Clrw 20 dBm	M1 TRG -20	14:33:04	Dwell I 7.78 dB • 8 ms •	NVNT 3-I	DH5 244	1]			9.02 dBm 8.00 µs -2.64 dB 2.88000 ms
Spectrum Ref Level Att SGL TRG:) IPk Clrw 20 dBm	M1 TRG -20	14:33:04	Dwell I 7.78 dB • 8 ms •	NVNT 3-I	DH5 244	1]			9.02 dBm 8.00 µs -2.64 dB 2.88000 ms
Spectrum Ref Level Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	M1 TRG -20	14:33:04	Dwell I 7.78 dB • 8 ms •	NVNT 3-I	DH5 244	1]			9.02 dBm 8.00 µs -2.64 dB 2.88000 ms
Spectrum Ref Level Att SGL TRG: 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	M1 TRG -20	14:33:04	Dwell I 7.78 dB • 8 ms •	NVNT 3-I	DH5 244	1]			9.02 dBm 8.00 µs -2.64 dB 2.88000 ms
Spectrum Ref Level Att SGL TRG: 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	M1 TRG -20	14:33:04	Dwell I 7.78 dB • 8 ms •	NVNT 3-I	DH5 244	1]			9.02 dBm 8.00 µs -2.64 dB 2.88000 ms
Spectrum Ref Level Att SGL TRG: 1Pk Clrw 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm	M1 TRG -20	14:33:04	Dwell I 7.78 dB • 8 ms •	NVNT 3-I	DH5 244	1]			9.02 dBm 8.00 µs -2.64 dB 2.88000 ms
ate: 1.SE Spectrum Ref Level Att SGL TRG: IPK CIrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441	M1 TRG -20	14:33:04	Dwell I 7.78 dB • 8 ms •	NVNT 3-I		1]			9.02 dBm 8.00 µs -2.64 dB 2.88000 ms
ate: 1.SE Spectrum Ref Level Att SGL TRG: 1PK CIrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm GF 2.441	M1 TRG -20 GHz	14:33:04	Dwell I 7.78 dB • 8 ms • 1 1 1 1 1 1 1 1 1 1 1 1 1	NVNT 3-I	DH5 244	1] 1]			9.02 dBm 8.00 μs -2.64 dB 2.88000 ms
ate: 1.SE Spectrum Ref Level Att SGL TRG: 1PK CIrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441	M1 TRG -20 GHz	14:33:04	Dwell I 7.78 dB • 8 ms • 1 1 1 1 1 1 1 1 1 1 1 1 1	NVNT 3-I	DH5 244	1] 1]		all the light of t	9.02 dBm 8.00 μs -2.64 dB 2.88000 ms

NTEK北测

8.2 MAXIMUM CONDUCTED OUTPUT POWER

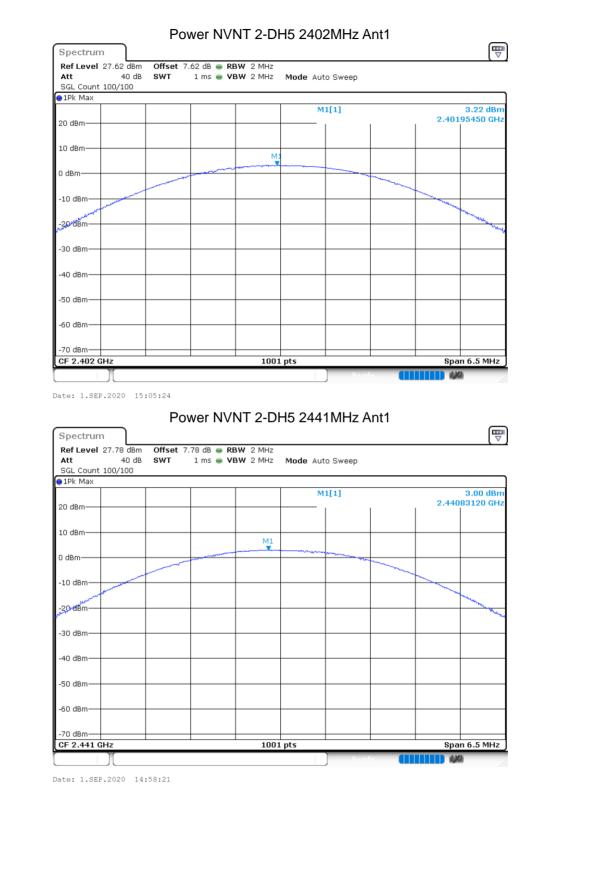

Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	3.867	30	Pass
NVNT	1-DH5	2441	Ant 1	3.695	30	Pass
NVNT	1-DH5	2480	Ant 1	3.954	30	Pass
NVNT	2-DH5	2402	Ant 1	3.217	21	Pass
NVNT	2-DH5	2441	Ant 1	3.004	21	Pass
NVNT	2-DH5	2480	Ant 1	3.481	21	Pass
NVNT	3-DH5	2402	Ant 1	2.905	21	Pass
NVNT	3-DH5	2441	Ant 1	3.013	21	Pass
NVNT	3-DH5	2480	Ant 1	3.437	21	Pass

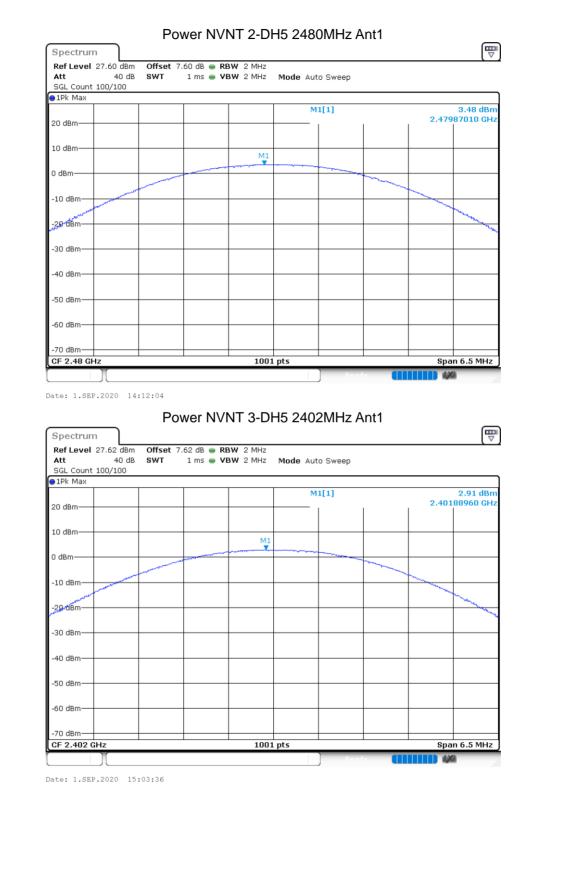
ACCREDITED

Certificate #4298.01

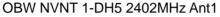
ilac-ME

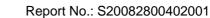
Power NVNT 1-DH5 2402MHz Ant1


Date: 1.SEP.2020 15:06:57


Report No.: S20082800402001

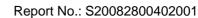
Ref Level 30.78 dBn Att 40 dB SGL Count 100/100 1Pk Max		RBW 2 MHz VBW 2 MHz Mode	Auto Sweep		
			M1[1]	3.70 dB	m
			1 1	2.44102500 GH	Hz
20 dBm					
10 dBm					_
		NI1			
0 dBm					
-10 dBm					_
					_
-20 dBm					
-30 dBm					
-40 dBm					-
-50 dBm					
-60 dBm					-
		1001 pts		Span 5.0 MH	
CF 2.441 GHz		1001 pts	Deada	span 5.0 MH	z
Spectrum Ref Level 30.60 dBn Att 40 d8	Power N	RBW 2 MHz VBW 2 MHz MBW 2 MHz Mode			B
Spectrum Ref Level 30.60 dBn Att 40 df SGL Count 100/100	Power N	RBW 2 MHz			
Spectrum Ref Level 30.60 dBn Att 40 df SGL Count 100/100	Power N	RBW 2 MHz		3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 dt SGL Count 100/100 1Pk Max	Power N	RBW 2 MHz	Auto Sweep	Ę	
Spectrum Ref Level 30.60 dBn Att 40 df SGL Count 100/100 1Pk Max 20 dBm	Power N	RBW 2 MHz	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 df SGL Count 100/100 1Pk Max 20 dBm	Power N	RBW 2 MHz	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 df SGL Count 100/100 PIPk Max 20 dBm 10 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 df SGL Count 100/100 PIPk Max 20 dBm 10 dBm 0 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 df SGL Count 100/100 PIPk Max 20 dBm 10 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 df SGL Count 100/100 PIPk Max 20 dBm 10 dBm 0 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 di SGL Count 100/100 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 df SGL Count 100/100 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 di SGL Count 100/100 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 dE SGL Count 100/100 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 di SGL Count 100/100 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 dE SGL Count 100/100 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 dE SGL Count 100/100 1Pk Max 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB	
Spectrum Ref Level 30.60 dBn Att 40 dE SGL Count 100/100 1Pk Max 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -60 dBm	Power N	RBW 2 MHz VBW 2 MHz Mode	Auto Sweep	3.95 dB 2.47998000 GP	
Ref Level 30.60 dBn Att 40 dE SGL Count 100/100 1Pk Max 20 dBm 10 dBm 0 10 dBm -0 -20 dBm	Power N	RBW 2 MHz Mode	Auto Sweep	3.95 dB 2.47998000 GP	
Spectrum Ref Level 30.60 dBn Att 40 dE SGL Count 100/100 1Pk Max 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -60 dBm	Power N	RBW 2 MHz Mode	Auto Sweep	3.95 dB 2.47998000 GP	
Spectrum Ref Level 30.60 dBn Att 40 dE SGL Count 100/100 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Power N	RBW 2 MHz Mode	Auto Sweep	3.95 dB 2.47998000 GP	

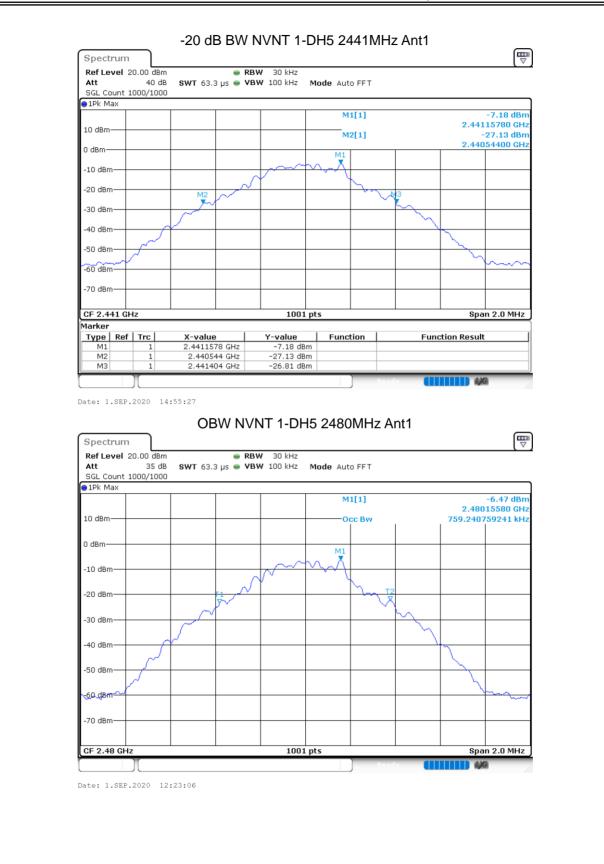



8.3 OCCUPIED CHANNEL BANDWIDTH

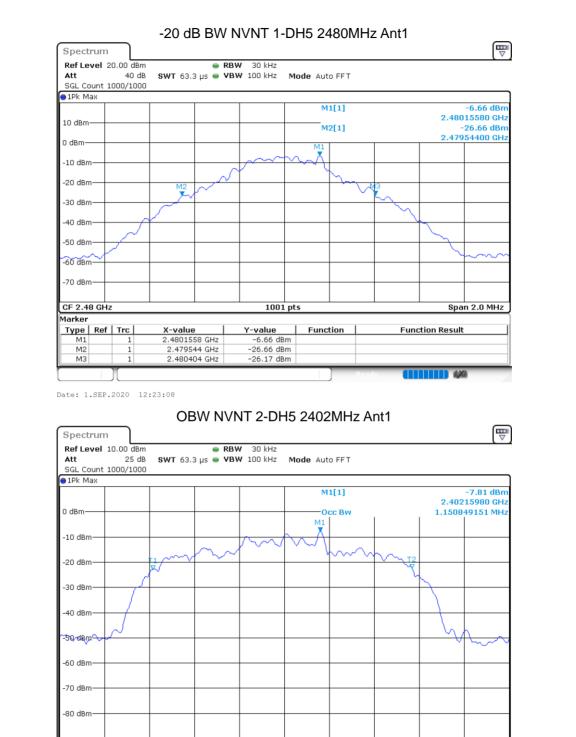
Mode	Frequency	Antenna	99%	-20 dB	Limit -20 dB	Verdict
	(MHz)		OBW	Bandwidth	Bandwidth	
			(MHz)	(MHz)	(MHz)	
1-DH5	2402	Ant 1	0.7672	0.86	N/A	Pass
1-DH5	2441	Ant 1	0.7592	0.86	N/A	Pass
1-DH5	2480	Ant 1	0.7592	0.86	N/A	Pass
2-DH5	2402	Ant 1	1.1508	1.266	N/A	Pass
2-DH5	2441	Ant 1	1.1449	1.25	N/A	Pass
2-DH5	2480	Ant 1	1.1449	1.254	N/A	Pass
3-DH5	2402	Ant 1	1.1508	1.254	N/A	Pass
3-DH5	2441	Ant 1	1.1429	1.25	N/A	Pass
3-DH5	2480	Ant 1	1.1429	1.248	N/A	Pass
	Mode 1-DH5 1-DH5 2-DH5 2-DH5 2-DH5 3-DH5 3-DH5	Mode Frequency (MHz) 1-DH5 2402 1-DH5 2441 1-DH5 2480 2-DH5 2402 2-DH5 2441 2-DH5 2441 3-DH5 2402 3-DH5 2402	Mode Frequency (MHz) Antenna (MHz) 1-DH5 2402 Ant 1 1-DH5 2441 Ant 1 1-DH5 2480 Ant 1 2-DH5 2402 Ant 1 2-DH5 2402 Ant 1 2-DH5 2441 Ant 1 2-DH5 2442 Ant 1 3-DH5 2402 Ant 1 3-DH5 2402 Ant 1	Mode Frequency (MHz) Antenna 99% OBW (MHz) 1-DH5 2402 Ant 1 0.7672 1-DH5 2441 Ant 1 0.7592 1-DH5 2480 Ant 1 0.7592 2-DH5 2402 Ant 1 1.1508 2-DH5 2441 Ant 1 1.1449 2-DH5 2402 Ant 1 1.1449 3-DH5 2402 Ant 1 1.1508 3-DH5 2441 Ant 1 1.1429	Mode Frequency (MHz) Antenna 99% OBW -20 dB Bandwidth (MHz) 1-DH5 2402 Ant 1 0.7672 0.86 1-DH5 2402 Ant 1 0.7592 0.86 1-DH5 2480 Ant 1 0.7592 0.86 2-DH5 2402 Ant 1 1.1508 1.266 2-DH5 2441 Ant 1 1.1449 1.25 2-DH5 2480 Ant 1 1.1508 1.254 3-DH5 2402 Ant 1 1.1508 1.254 3-DH5 2401 Ant 1 1.1429 1.254	(MHz) OBW (MHz) Bandwidth (MHz) Bandwidth (MHz) Bandwidth (MHz) 1-DH5 2402 Ant 1 0.7672 0.86 N/A 1-DH5 2441 Ant 1 0.7592 0.86 N/A 1-DH5 2480 Ant 1 0.7592 0.86 N/A 2-DH5 2402 Ant 1 1.1508 1.266 N/A 2-DH5 2441 Ant 1 1.1449 1.25 N/A 2-DH5 2402 Ant 1 1.1449 1.254 N/A 3-DH5 2402 Ant 1 1.1508 1.254 N/A 3-DH5 2401 Ant 1 1.1429 1.254 N/A

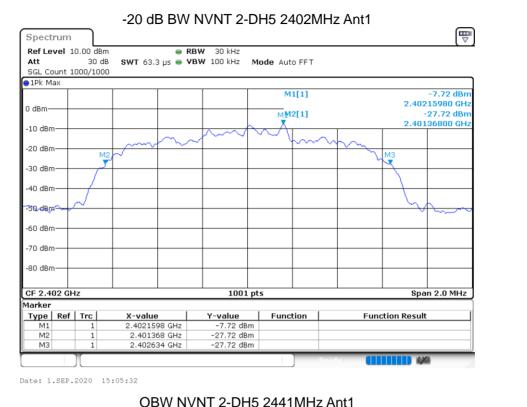
Date: 1.SEP.2020 15:07:04

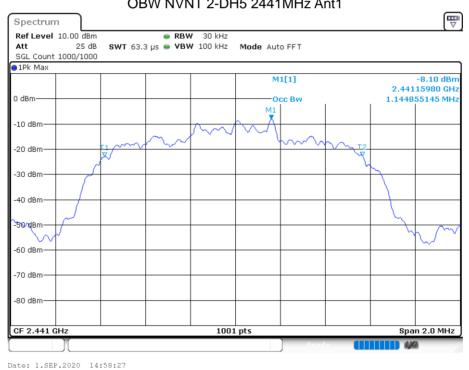




Date: 1.SEP.2020 14:55:26

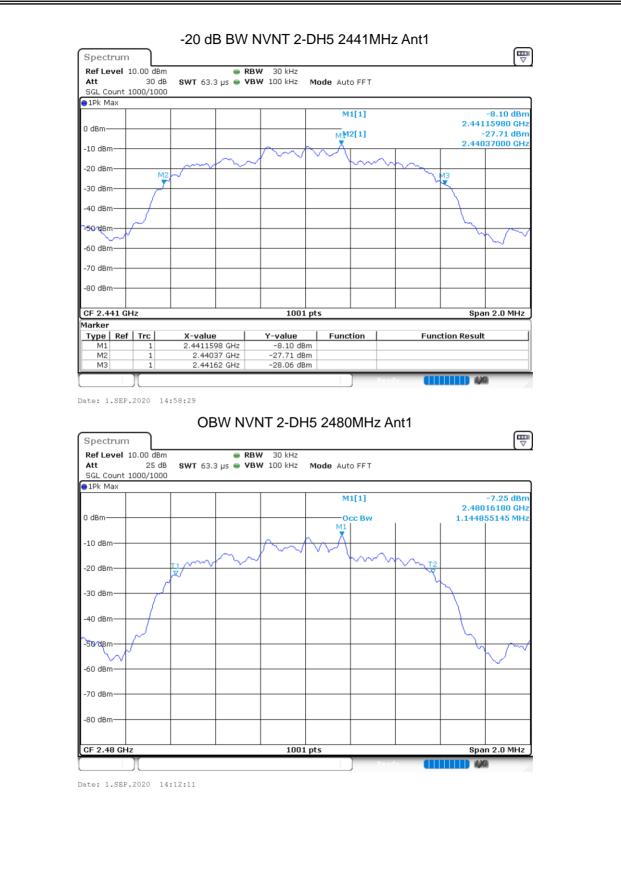



1001 pts


Date: 1.SEP.2020 15:05:30

CF 2.402 GHz

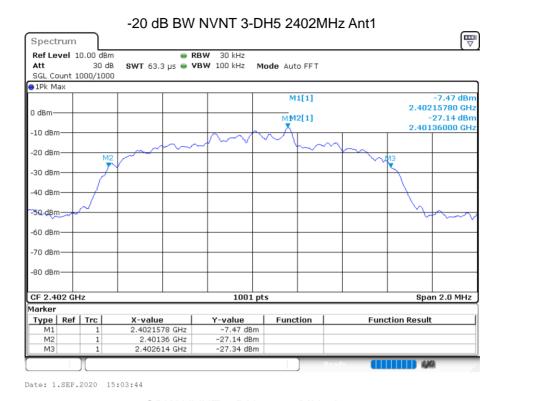
Span 2.0 MHz



NTEK北测

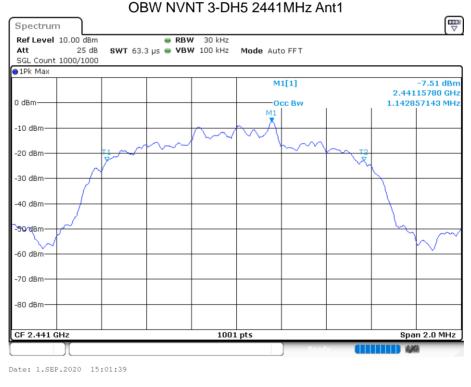
ilac-MR

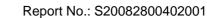
NTEK北测

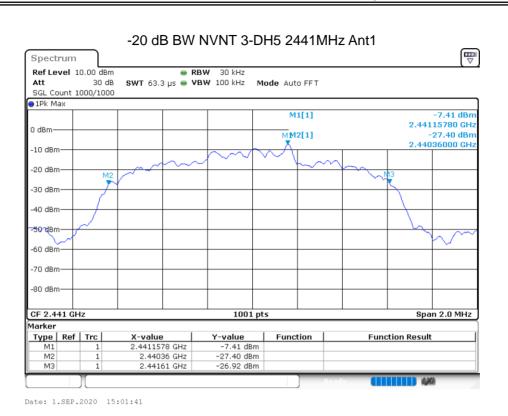

1001 pts

CF 2.402 GHz

Date: 1.SEP.2020 15:03:43

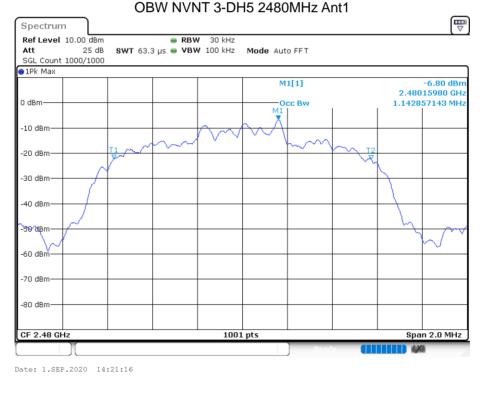

Span 2.0 MHz



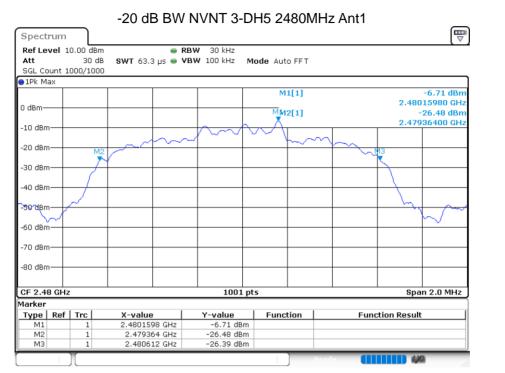


ilac-MR

NTEK北测



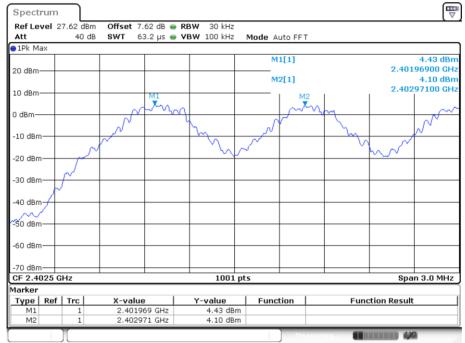
ACCREDITED


Certificate #4298.01

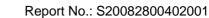
ilac-MR

NTEK北测

Date: 1.SEP.2020 14:21:18

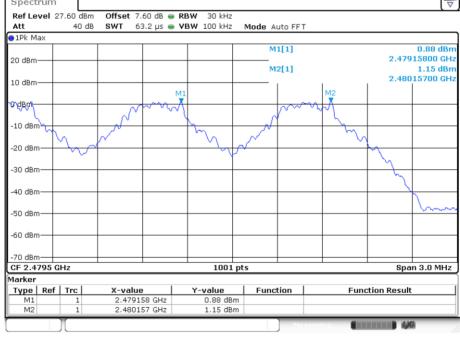


Report No.: S20082800402001

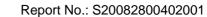

8.4 CARRIER FREQUENCIES SEPARATION

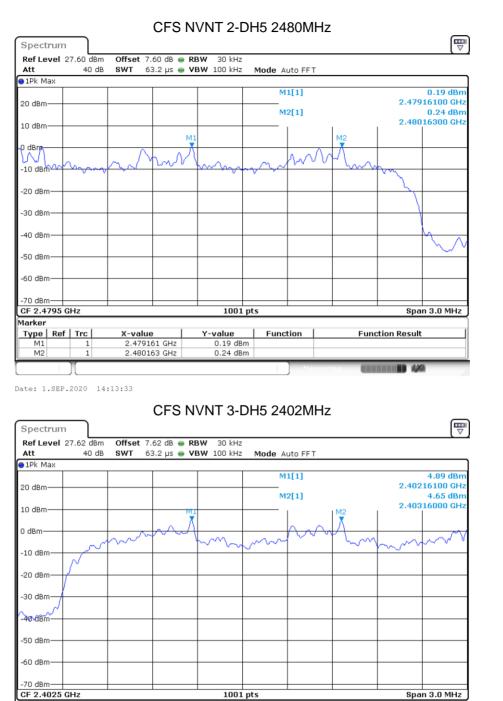
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.969	2402.971	1.002	0.86	Pass
NVNT	1-DH5	2441.155	2442.157	1.002	0.86	Pass
NVNT	1-DH5	2479.158	2480.157	0.999	0.86	Pass
NVNT	2-DH5	2402.158	2403.16	1.002	0.832	Pass
NVNT	2-DH5	2441.158	2442.16	1.002	0.832	Pass
NVNT	2-DH5	2479.161	2480.163	1.002	0.836	Pass
NVNT	3-DH5	2402.161	2403.16	0.999	0.859	Pass
NVNT	3-DH5	2441.158	2442.16	1.002	0.832	Pass
NVNT	3-DH5	2479.158	2480.16	1.002	0.832	Pass

CFS NVNT 1-DH5 2402MHz



Date: 1.SEP.2020 12:18:21




Date: 1.SEP.2020 12:25:16

Date: 1.SEP.2020 14:16:22

X-value

2.402161 GHz

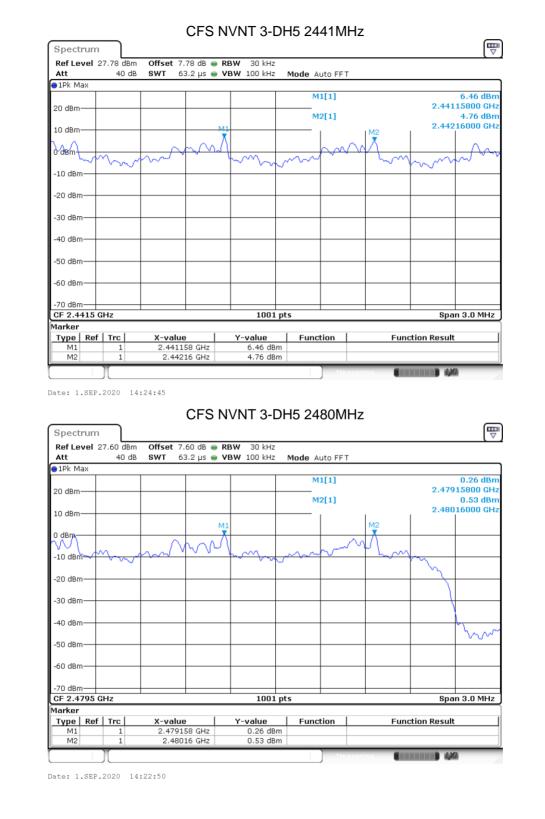
2.40316 GHz

Y-value

4.89 dBm

4.65 dBm

Function


Function Result

Marker Type | Ref | Trc

M1 M2

8.5 NUMBER OF HOPPING CHANNEL

		OFFING	CHANNEL							
dition	Mode	Hopping	g Number	Limit	Verd	ict				
/NT	1-DH5		79	15	Pas	S				
	Spec	trum	Норрі	ng No.	NVNT	- 1-DF	15 2402	2MHz		E
	Att	evel 27.62 dBr 40 d ount 5000/500	B SWT 1	dB 👄 RB¥ ms 👄 VBV		Mode	Auto Sweep)		
	• 1 1 1 1						M1[1]			6.71 dBm
	20 dBn <u>10¹d</u> Bn						M2[1]			019205 GH: 2.89 dBn 802435 GH:
	o dBm-	HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA					A A A A A A A A A A A A A A A A A A A	VAAAAAAAAA VAAAAAAAAAA		M2
	-10 86		<u>}####################################</u>			• • • • • • • • • • • • • • • • • • •	┼╫┾╢┼╢╷╖			
	-30 dBi									
	-50 dBi									loa
	-60 dB									
	-70 dBi Start 2	m 2.4 GHz			1001	nts			Ston 2	.4835 GHz
	Marker				1001				5(0) 1	in the set of the
		Ref Trc	X-value 2.4019205 (2.4802435 (GHz	/-value 6.71 dBr 2.89 dBr	n	nction	Fund	ction Resul	t
			2		2.05 001		Rea	ady 🕕) #	0

ACCREDITED

Date: 1.SEP.2020 12:18:36