

TEST REPORT

Applicant Name : Address : Zeeva International Limited Suite 1007B, 10th Floor, Exchange Tower, 33 Wang Chiu Road, Kowloon Bay, Hong Kong SZ3220608-25242E-RF 2ADM5-EP-0667

Report Number : FCC ID:

Test Standard (s) FCC PART 15.247

Sample Description

Product Type:
Test Model:
Trade Mark:
Date Received:
Date of Test:
Report Date:

LOCK CASE TWS EP-0667 N/A 2022-06-08 2022-06-20 to 2022-06-29 2022-06-30

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Andy. Yu

Audy.Yu EMC Engineer

Approved By:

Candy . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 62

FCC-BT

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective Test Methodology	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
Special Accessories Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	9
FCC§15.247 (i), §1.1307 (b) (1) – RF EXPOSURE	
APPLICABLE STANDARD	10
TEST RESULT	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI TEST RECEIVER SETUP	
Test Procedure	
FACTOR & MARGIN CALCULATION	
TEST DATA	13
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS	16
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	
EMITTEST RECEIVER & SPECTRUM ANALYZER SETUP TEST PROCEDURE	
FACTOR & MARGIN CALCULATION	
TEST DATA	17
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	23
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	
Applicable Standard Test Procedure	
TEST PROCEDURE	
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	

Shenzhen Accurate Technology Co., Ltd.	Report No.: SZ3220608-25242E-RF
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWE	ELL TIME)40
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUR	REMENT50
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(d) - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	

GENERAL INFORMATION

Product	LOCK CASE TWS			
Tested Model	EP-0667			
SKU	Black-6550211; White-6550212 Blue-6550213; Green-6550214			
UPC	Black-1922343600824; White-1922343600831 Blue-1922343600848; Green-1922343600855			
Frequency Range	2402~2480MHz			
Maximum conducted Peak output power	3.81dBm			
Modulation Technique	BDR(GFSK)/EDR(1/4-DQPSK)/EDR(8DPSK)			
Antenna Specification*	Internal Antenna: -0.58dBi(provided by the applicant)			
Voltage Range	DC 5V from adapter or DC 3.7V from battery			
Sample number	SZ3220608-25242E-RF-S1(RF Radiated Test) SZ3220608-25242E-RF-S2(RF Conducted Test) (Assigned by ATC, Shenzhen)			
Sample/EUT Status	Good condition			

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Para	meter	Uncertainty
Occupied Channel Bandwidth		5%
RF output pov	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines Conducted Emissions		2.72dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
18GHz - 26.5GHz		5.06dB
Temperature		1°C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

Software "BT_Tool V1.1.0"* was used during testing and the power level was Default Power level 6*.

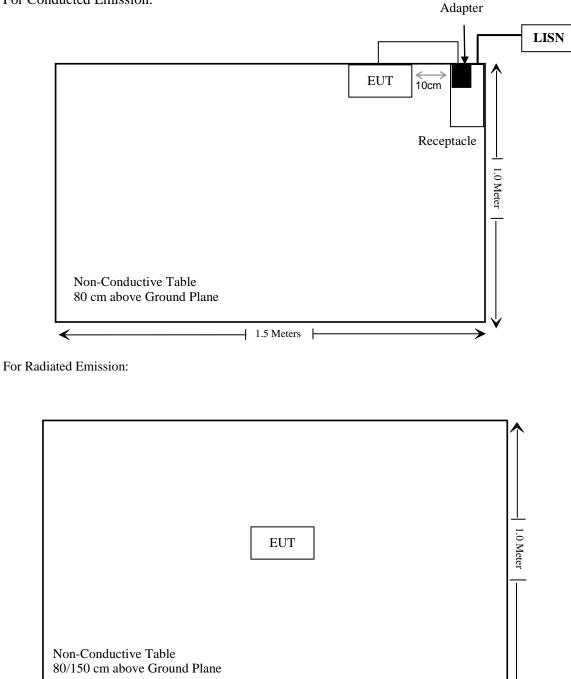
Special Accessories

N/A.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
TECNO	Adapter	U050TSA	AH07015321906

External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-shielding Detachable USB Cable	0.3	EUT	Adapter
Unshielded Un-detachable AC cable	1.2	LISN	Receptacle

Block Diagram of Test Setup

For Conducted Emission:

1.5 Meters

Version 11: 2021-11-09

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result	
§15.247 (i), §1.1307 (b)	RF EXPOSURE	Compliant	
§15.203	Antenna Requirement	Compliant	
§15.207(a)	AC Line Conducted Emissions	Compliant	
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant	
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant	
§15.247(a)(1)	Channel Separation Test	Compliant	
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant	
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant	
§15.247(b)(1)	Peak Output Power Measurement Compliant		
§15.247(d)	Band edges Compliant		

Note: The right and left earbuds are identical, please refer to the Declaration letter for more detail, Per verified the output power of both unit, the output power for them is consistent, only the left earbud was full tested and reported.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Conducted Emissions Test							
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12		
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12		
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12		
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13		
	Conducted E		tware: e3 19821b (V9)	· · · · · · · · · · · · · · · · · · ·		
		Radiated Emissi	ons Test				
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12		
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08		
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08		
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2021/11/11	2022/11/10		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04		
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13		
	Radiated Er	nission Test Softw	ware: e3 19821b (V	/9)			
		RF Conducted	d Test				
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12		
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2021/12/13	2022/12/12		
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.33	RF-03	Each	time		

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Version 11: 2021-11-09

FCC§15.247 (i), §1.1307 (b) (1) – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.3.1-SAR-Based Exemption:

A more comprehensive exemption, considering a variable power threshold that depends on both the separation distance and power, is provided in § 1.1307(b)(3)(i)(B). This exemption is applicable to the frequency range between 300 MHz and 6 GHz, with test separation distances between 0.5 cm and 40 cm, and for all RF sources in fixed, mobile, and portable device exposure conditions.

Accordingly, a RF source is considered an RF exempt device if its available maximum time-averaged (matched conducted) power or its effective radiated power (ERP), whichever is greater, are below a specified threshold. This exemption threshold was derived based on general population 1-g SAR requirements and is detailed in Appendix C.

Test Result

For worst case:

Mode	Frequency	Maximum Tune-up Conducted Power		Antenna Gain		E E E E E E E E E E E E E E E E E E E		ERP _{20cm}	Distance	SAR-Based Exclusion Threshold		SAR-Based Exclusion
	(MHz)	(dBm)	(dBi)	(dBd)	(dBm)	(mW)	(mm)	(mW)	(dBm)			
BDR/EDR	2402-2480	4.0	-0.58	-2.73	1.27	3060	5	2.717	4.34	Yes		

Note 1: The tune-up power was declared by the applicant. Note 2: 0dBd=2.15dBi.

Result: Compliant.

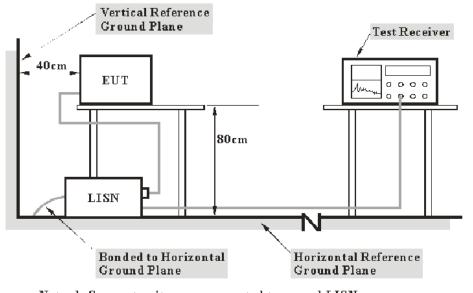
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is -0.58 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

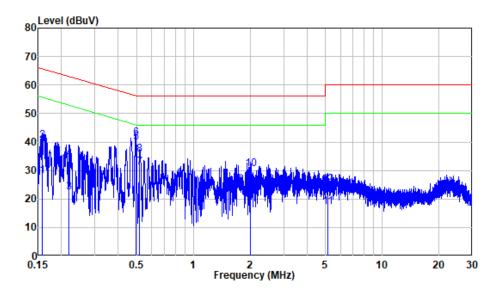
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

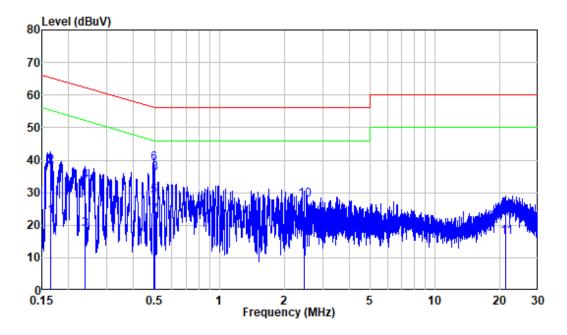
Test Data


Environmental Conditions

Temperature:	25 °C
Relative Humidity:	53 %
ATM Pressure:	101.1 kPa

The testing was performed by Jason Liu on 2022-06-22.

EUT operation mode: Charging


AC 120V/60 Hz, Line

Site :	Shielding Room
Condition:	Line
Mode :	Charging
Model :	EP-0667
Power :	AC 120V 60Hz

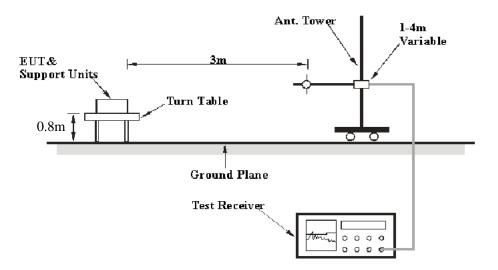
	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.158	9.80	18.38	28.18	55.56	-27.38	Average
2	0.158	9.80	30.68	40.48	65.56	-25.08	QP
3	0.220	9.80	12.57	22.37	52.83	-30.46	Average
4	0.220	9.80	24.46	34.26	62.83	-28.57	QP
5	0.494	9.80	30.06	39.86	46.10	-6.24	Average
6	0.494	9.80	31.50	41.30	56.10	-14.80	QP
7	0.519	9.81	21.18	30.99	46.00	-15.01	Average
8	0.519	9.81	25.67	35.48	56.00	-20.52	QP
9	2.003	9.82	12.94	22.76	46.00	-23.24	Average
10	2.003	9.82	20.73	30.55	56.00	-25.45	QP
11	5.125	9.85	7.25	17.10	50.00	-32.90	Average
12	5.125	9.85	15.06	24.91	60.00	-35.09	QP

AC 120V/60 Hz, Neutral

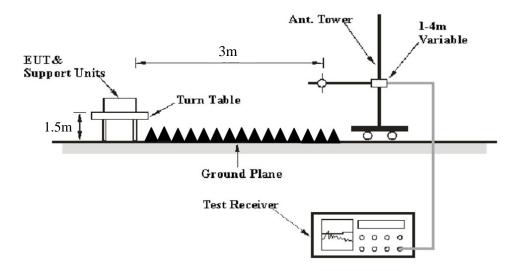
Site :	Shielding Room
Condition:	Neutral
Mode :	Charging
Model :	EP-0667
Power :	AC 120V 60Hz

	-		Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.165	9.80	12.88	22.68	55.19	-32.51	Average
2	0.165	9.80	28.26	38.06	65.19	-27.13	QP
3	0.237	9.80	8.88	18.68	52.20	-33.52	Average
4	0.237	9.80	23.74	33.54	62.20	-28.66	QP
5	0.494	9.80	19.18	28.98	46.10	-17.12	Average
6	0.494	9.80	29.02	38.82	56.10	-17.28	QP
7	0.500	9.80	13.02	22.82	46.00	-23.18	Average
8	0.500	9.80	26.02	35.82	56.00	-20.18	QP
9	2.467	9.82	7.14	16.96	46.00	-29.04	Average
10	2.467	9.82	17.93	27.75	56.00	-28.25	QP
11	21.260	10.11	6.28	16.39	50.00	-33.61	Average
12	21.260	10.11	13.40	23.51	60.00	-36.49	QP

Shenzhen Accurate Technology Co., Ltd.


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
Above I GHZ	1 MHz	10 Hz	/	AV

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

If the maximized peak measured value complies with the limit, then it is unnecessary to perform QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

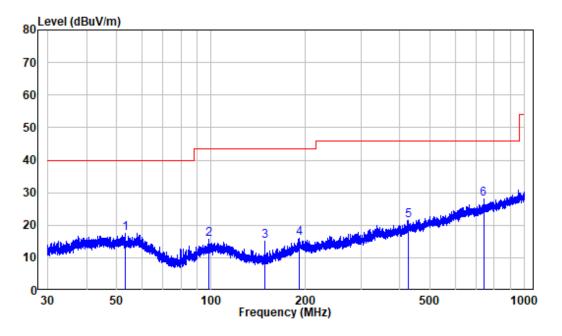
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

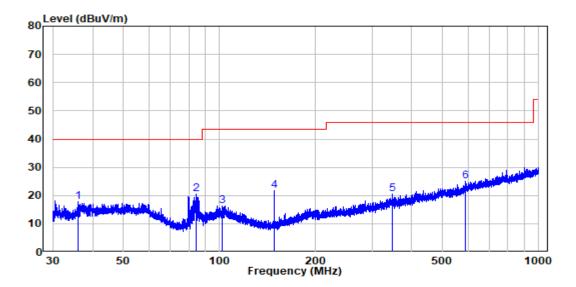
Environmental Conditions


Temperature:	24 °C
Relative Humidity:	61 %
ATM Pressure:	108.0 kPa

The testing was performed by Level Li on 2022-06-29.

EUT operation mode: BT Transmitting

(Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK mode at X axis, Y axis, Z axis, the worst case is 8DPSK Mode at X axis)


Below 1GHz: 8DPSK Low Channel

Horizontal

Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	SZ3220608-25242E-RF
Test Mode:	BT Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	53.131	-10.19	27.76	17.57	40.00	-22.43	Peak
2	98.357	-12.17	28.01	15.84	43.50	-27.66	Peak
3	148.376	-15.36	30.48	15.12	43.50	-28.38	Peak
4	191.241	-11.37	27.44	16.07	43.50	-27.43	Peak
5	425.214	-5.86	27.28	21.42	46.00	-24.58	Peak
6	739.661	-0.78	28.71	27.93	46.00	-18.07	Peak

Vertical

Site : chamber Condition: 3m VERTICAL Job No. : SZ3220608-25242E-RF Test Mode: BT Transmitting

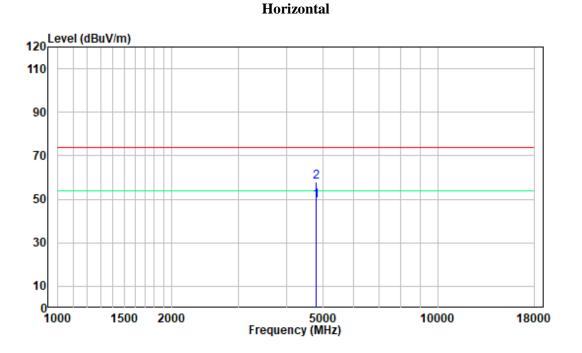
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	36.096	-11.18	28.85	17.67	40.00	-22.33	Peak
2	84.628	-15.79	36.22	20.43	40.00	-19.57	Peak
3	101.912	-11.58	28.00	16.42	43.50	-27.08	Peak
4	148.376	-15.36	37.13	21.77	43.50	-21.73	Peak
5	347.875	-7.27	27.84	20.57	46.00	-25.43	Peak
6	588.905	-2.80	27.92	25.12	46.00	-20.88	Peak

Frequency	Recei	ver	Turntable Angle	Rx An	tenna	Factor	Absolute Level	Limit	Margin
(MHz)	Reading	PK/AV	Degree	Height	Polar	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)
	(dBuV)	ΓΛ/Αν	Degree	(m)	(H/V)		~ /		
				Low Ch	annel				
2310	44.19	PK	165	1.1	Н	-7.23	36.96	74	-37.04
2310	45.11	PK	337	1.8	V	-7.23	37.88	74	-36.12
2390	48.23	PK	304	2.0	Н	-7.21	41.02	74	-32.98
2390	47.75	РК	113	1.3	V	-7.21	40.54	74	-33.46
4804	61.55	PK	185	1.6	Н	-3.52	58.03	74	-15.97
4804	52.9	AV	185	1.6	Н	-3.52	49.38	54	-4.62
4804	55.18	РК	315	2.2	V	-3.52	51.66	74	-22.34
				Middle C	hannel				
4882	56.99	РК	17	1.7	Н	-3.37	53.62	74	-20.38
4882	52.43	РК	351	1.0	V	-3.37	49.06	74	-24.94
				High Ch	annel			•	
2483.5	45.9	РК	127	1.1	Н	-7.2	38.7	74	-35.3
2483.5	46.52	РК	220	1.8	V	-7.2	39.32	74	-34.68
2500	45.5	РК	232	1.4	Н	-7.18	38.32	74	-35.68
2500	44.75	РК	344	1.2	V	-7.18	37.57	74	-36.43
4960	50.32	РК	132	2.0	Н	-3.01	47.31	74	-26.69
4960	47.4	PK	268	2.2	V	-3.01	44.39	74	-29.61

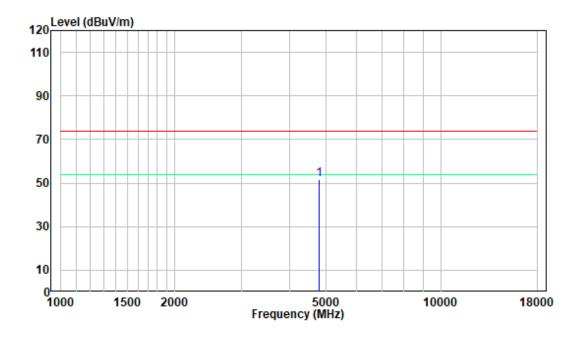
Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Absolute Level (Corrected Amplitude) = Factor + Reading


Margin = Absolute Level (Corrected Amplitude) – Limit

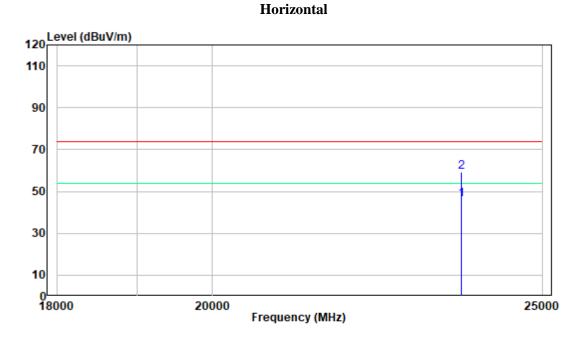
The other spurious emission which is in the noise floor level was not recorded.


For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

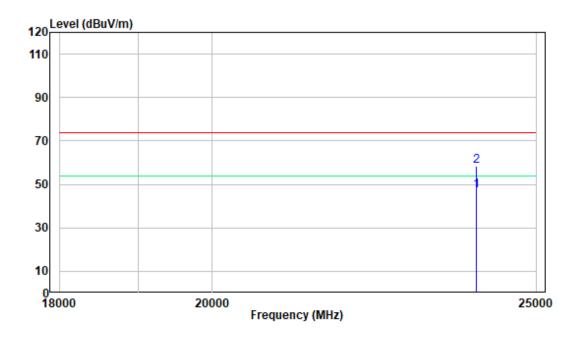
1 GHz - 18 GHz: (Pre-Scan plots)

Worst case for 8DPSK Low Channel:

Vertical



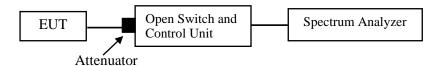
Version 11: 2021-11-09


Shenzhen Accurate Technology Co., Ltd.

18-25GHz: (Pre-Scan plots)

Worst case for 8DPSK Low Channel:

Vertical


FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

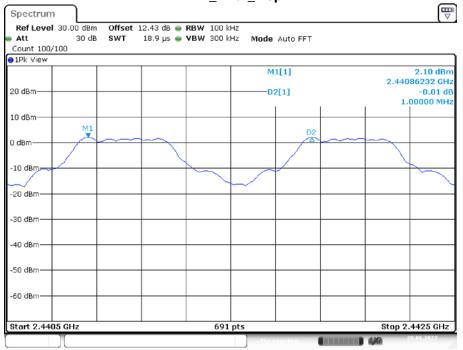
- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

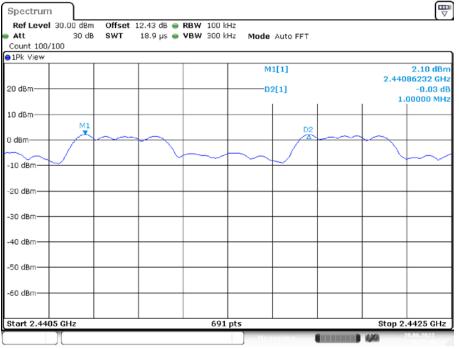
The testing was performed by Cat Kang on 2022-06-20.


EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1	>=0.540	PASS
2DH1	Ant1	Нор	1	>=0.854	PASS
3DH1	Ant1	Нор	1.003	>=0.806	PASS

Note: The limit = (2/3) * 20dB bandwidth


Please refer to the below plots:

DH1_Ant1_Hop

Date: 20.JUN.2022 10:14:46

2DH1_Ant1_Hop

Date: 20.JUN.2022 10:25:49

3DH1_Ant1_Hop

Date: 20.JUN.2022 10:33:09

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

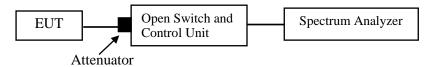
Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

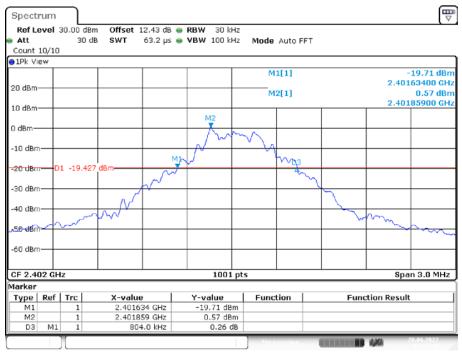
Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

Temperature:	23 °C	
Relative Humidity:	51 %	
ATM Pressure:	101.1 kPa	

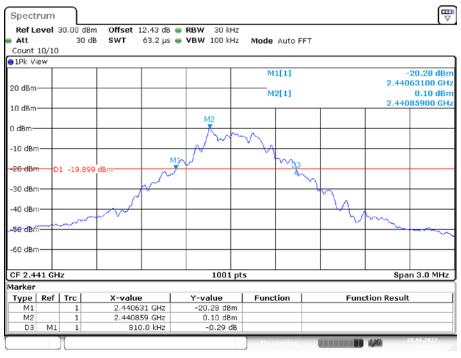

The testing was performed by Cat Kang on 2022-06-20.

EUT operation mode: Transmitting

Test Result: Compliant.

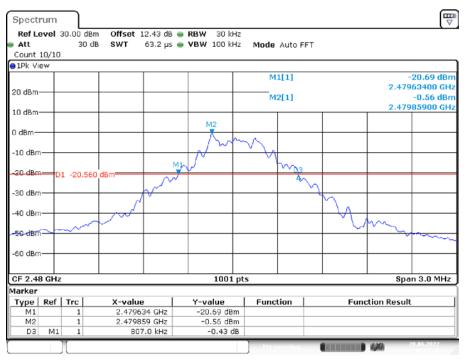
TestMode	Antenna	Channel	20db EBW[MHz]	99% OCCUPIED BANDWIDTH[MHz]	Verdict
DH1	Ant1	2402	0.804	0.782	PASS
		2441	0.810	0.779	PASS
		2480	0.807	0.785	PASS
2DH1	Ant1	2402	1.281	1.1	PASS
		2441	1.281	1.094	PASS
		2480	1.281	1.094	PASS
3DH1	Ant1	2402	1.209	1.106	PASS
		2441	1.209	1.106	PASS
		2480	1.203	1.109	PASS


Please refer to the below plots:


20 dB EMISSION BANDWIDTH_DH1_Ant1_2402

Date: 20.JUN.2022 09:57:47

Date: 20.JUN.2022 09:58:04


20 dB EMISSION BANDWIDTH_DH1 _Ant1_2441

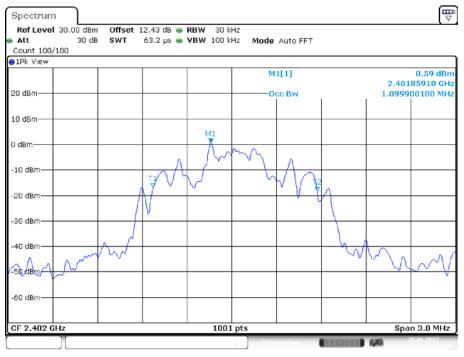
Date: 20.JUN.2022 10:00:25

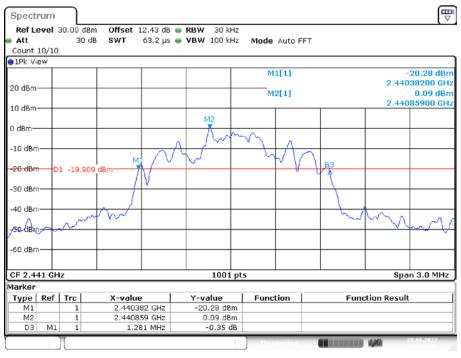
Version 11: 2021-11-09

20 dB EMISSION BANDWIDTH_DH1 _Ant1_2480

Date: 20.JUN.2022 10:01:28

99% OCCUPIED BANDWIDTH_DH1 _Ant1_2480

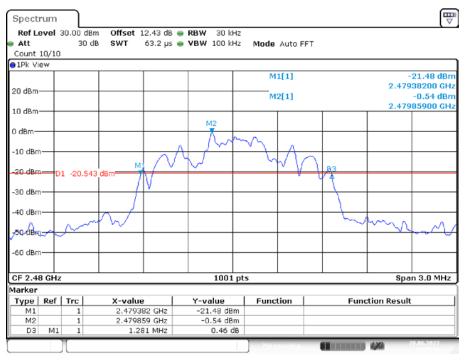

Date: 20.JUN.2022 10:01:45


20 dB EMISSION BANDWIDTH_2DH1 _Ant1_2402

Date: 20.JUN.2022 10:03:32

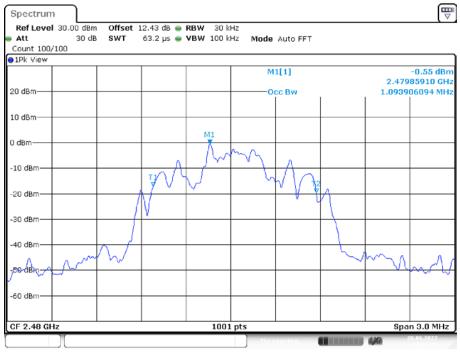
99% OCCUPIED BANDWIDTH_2DH1 _Ant1_2402

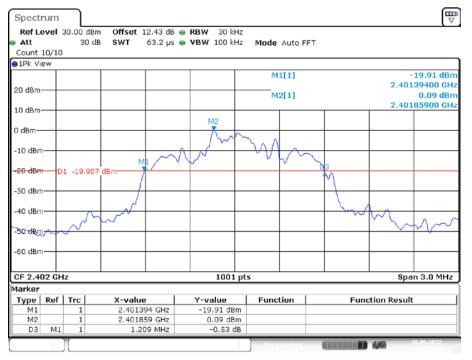
Date: 20.JUN.2022 10:03:49



20 dB EMISSION BANDWIDTH_2DH1 _Ant1_2441

Date: 20.JUN.2022 10:04:48

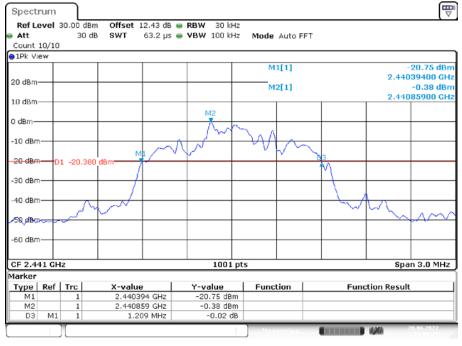



20 dB EMISSION BANDWIDTH _2DH1_Ant1_2480

Date: 20.JUN.2022 10:05:52

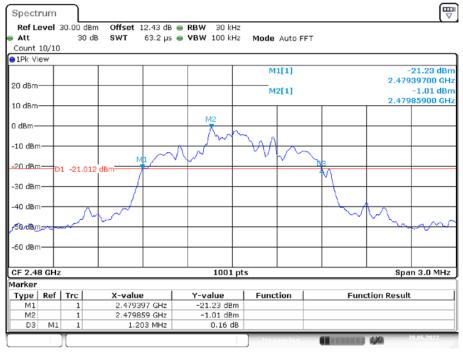
99% OCCUPIED BANDWIDTH _2DH1_Ant1_2480

Date: 20.JUN.2022 10:06:09

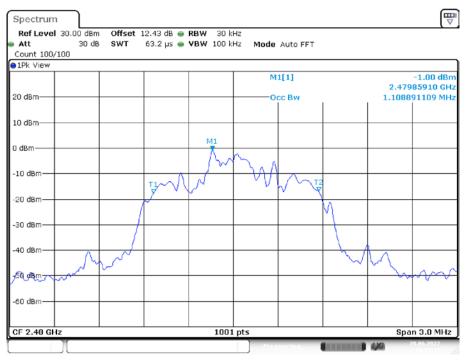

20 dB EMISSION BANDWIDTH_3DH1_Ant1_2402

Date: 20.JUN.2022 10:08:08

Version 11: 2021-11-09


20 dB EMISSION BANDWIDTH_3DH1_Ant1_2441

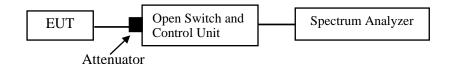
Date: 20.JUN.2022 10:09:25


Date: 20.JUN.2022 10:09:42

20 dB EMISSION BANDWIDTH_3DH1_Ant1_2480

Date: 20.JUN.2022 10:10:23

Date: 20.JUN.2022 10:10:40


FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

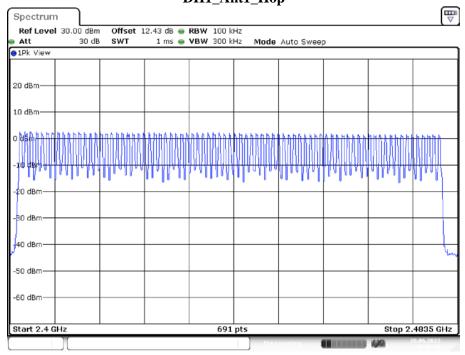
Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

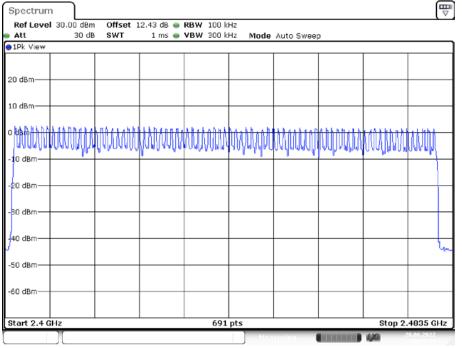
Temperature:	23°C		
Relative Humidity:	51%		
ATM Pressure:	101.1 kPa		


The testing was performed by Cat Kang on 2022-06-20.

EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	>=15	PASS
2DH1	Ant1	Нор	79	>=15	PASS
3DH1	Ant1	Нор	79	>=15	PASS


Please refer to the below plots:

DH1_Ant1_Hop

Date: 20.JUN.2022 10:15:41

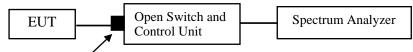
2DH1_Ant1_Hop

Date: 20.JUN.2022 10:26:13

Spectrum									E ∇
Ref Level Att	30.00 dBm 30 dB		12.43 dB 👄 1 ms 👄	RBW 100 k VBW 300 k		Auto Swee	n		
1Pk View							-		
20 dBm									
LO dBm									
10 dBm		Mithd		WWW		WWW	WWW		MM
20 dBm									
30 dBm									
40 dBm									- ¹
60 dBm									
Start 2.4 G	Hz			691	pts			Stop 2.	.4835 GHz
][]				. Mea	suring		4,40	20.06.2022

3DH1_Ant1_Hop

Date: 20.JUN.2022 10:33:41


FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Attenuator

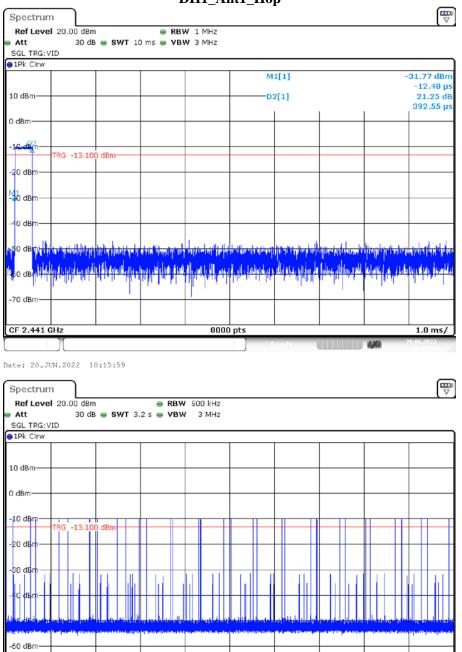
Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

The testing was performed by Cat Kang on 2022-06-20.

EUT operation mode: Transmitting


Test Result: Compliant.

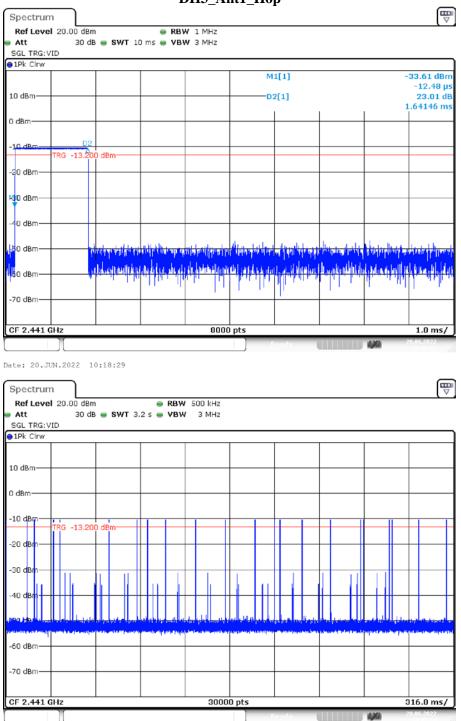
TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.39	330	0.13	<=0.4	PASS
DH3	Ant1	Нор	1.64	220	0.361	<=0.4	PASS
DH5	Ant1	Нор	2.88	80	0.231	<=0.4	PASS
2DH1	Ant1	Нор	0.40	330	0.133	<=0.4	PASS
2DH3	Ant1	Нор	1.65	140	0.231	<=0.4	PASS
2DH5	Ant1	Нор	2.89	90	0.26	<=0.4	PASS
3DH1	Ant1	Нор	0.40	320	0.129	<=0.4	PASS
3DH3	Ant1	Нор	1.65	180	0.296	<=0.4	PASS
3DH5	Ant1	Нор	2.89	80	0.231	<=0.4	PASS

Note 1: A period time=0.4*79=31.6(s), Result=Burst Width*Total Hops

Note 2: Total Hops =Hopping Number in 3.16s*10

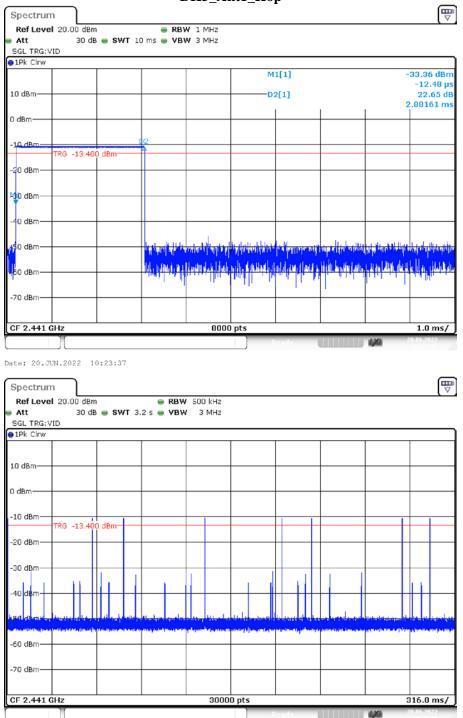
Note 3: Hoping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)

DH1_Ant1_Hop

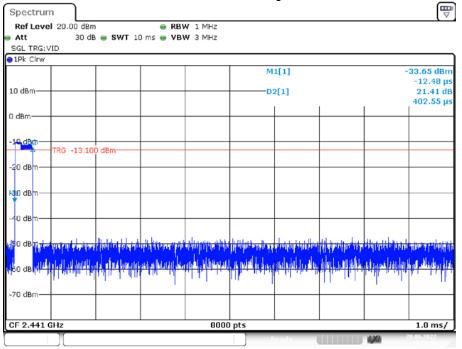

Date: 20.JUN.2022 10:16:04

-70 dBm-

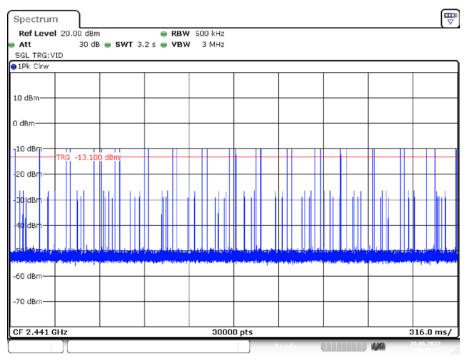
CF 2.441 GHz


30000 pts

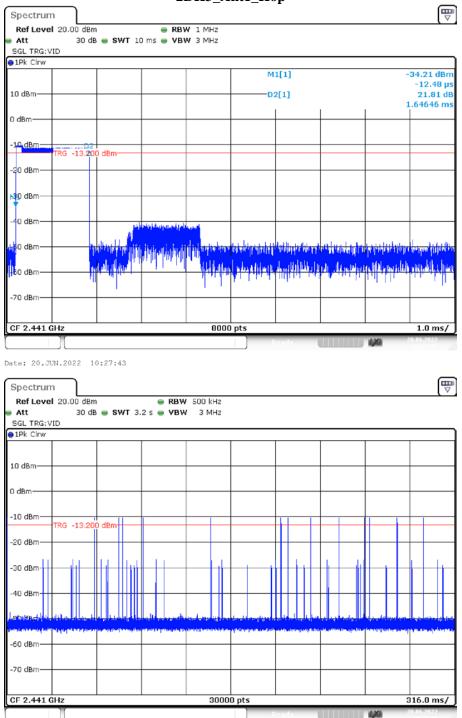
316.0 ms/


DH3_Ant1_Hop

Date: 20.JUN.2022 10:18:35

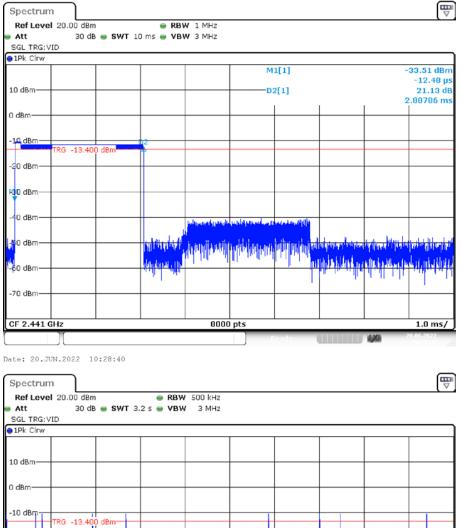

DH5_Ant1_Hop

Date: 20.JUN.2022 10:23:42



2DH1_Ant1_Hop

Date: 20.JUN.2022 10:26:31


Date: 20.JUN.2022 10:26:36

2DH3_Ant1_Hop

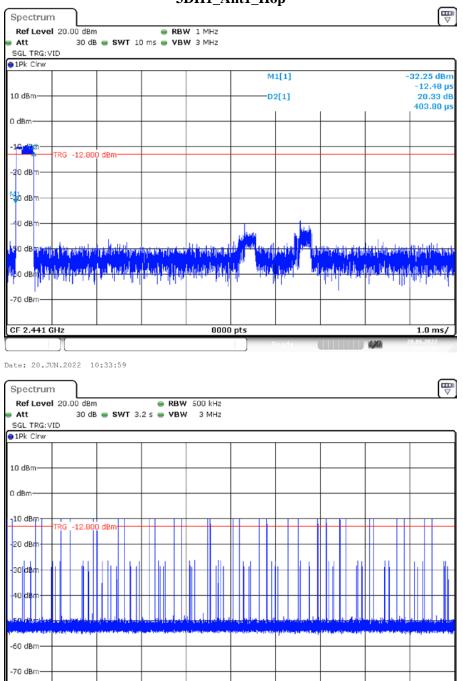
Date: 20.JUN.2022 10:27:49

Version 11: 2021-11-09

2DH5_Ant1_Hop

-20 dBr -30 dBr -40 dBr

-60 dBm-


CF 2.441 GHz

Date: 20.JUN.2022 10:28:46

30000 pts

316.0 ms/

42

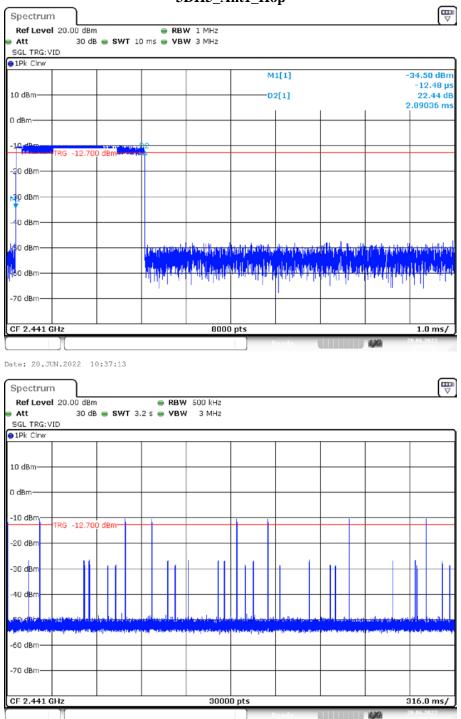
3DH1_Ant1_Hop

Date: 20.JUN.2022 10:34:05

CF 2.441 GHz

30000 pts

316.0 ms/


44

1Pk Clrw									
					м	1[1]			33.60 dBn
.0 dBm					D;	2[1]			-12.48 μ 21.46 di
								. :	1.64646 m
) dBm									
	62	d0							
1 KG	-12.800	asm-							
20 dBm									
🔱 dBm									
40 dBm									
0 dBm		ildude silvetter	سر الس	leave the set	1.11.11.11	A BOARD	dina nationia		
		. I	ן אמונים ין י	a di tana san	بليبرا لطايبياتك			and a fi	And Land, and
50 dBm	A	al the later of the	national di Antonio	l ad presented	<u>h dan dan</u>	<u>hitiotian (</u> i	all a blaching	ik i klavnih pulit i	dia an Asi, and
		11 M I	1.11	dial di se si	lu .	••• т	. Interface	B	t ti ut
70 dBm					· ·				
F 2.441 GHz				8000					1.0 ms/

3DH3_Ant1_Hop

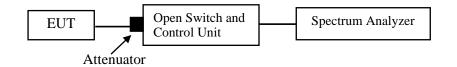
Spectrum Ref Level 20.00 dBm RBW 500 kHz 30 dB 🖷 SWT 3.2 s 👄 VBW 🛛 3 MHz Att SGL TRG: VID ●1Pk Clrw 10 dBm-0 dBm-10 dBm-RG -12.800 dBr 20 dBm 30 dBm-) dBm -60 dBm— -70 dBm-30000 pts 316.0 ms/ CF 2.441 GHz LXI

Date: 20.JUN.2022 10:36:01

3DH5_Ant1_Hop

Date: 20.JUN.2022 10:37:18

Version 11: 2021-11-09


FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

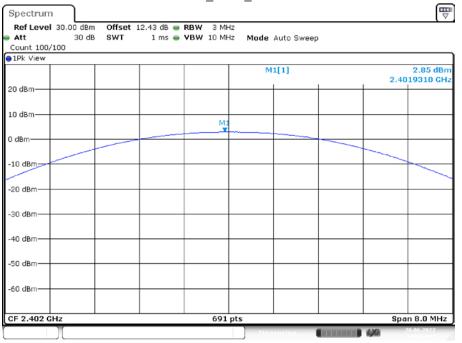
Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

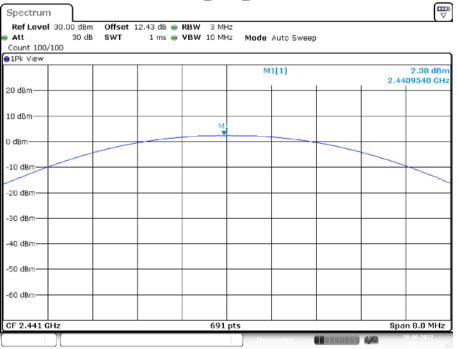
Temperature:	23°C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

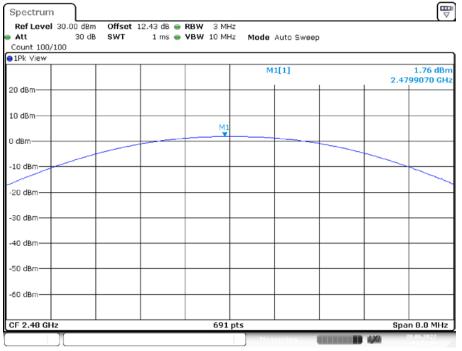

The testing was performed by Cat Kang on 2022-06-20.

EUT operation mode: Transmitting

Test Result: Compliant.

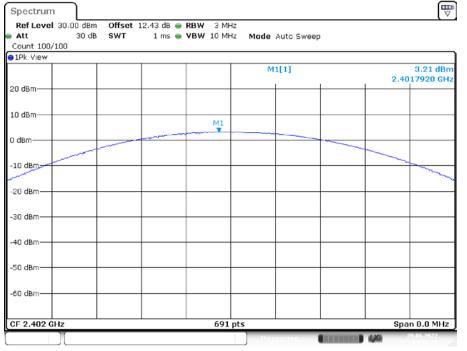
TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	2.85	<=20.97	PASS
DH1	Ant1	2441	2.38	<=20.97	PASS
		2480	1.76	<=20.97	PASS
	Ant1	2402	3.21	<=20.97	PASS
2DH1		2441	2.72	<=20.97	PASS
		2480	2.14	<=20.97	PASS
		2402	3.81	<=20.97	PASS
3DH1	Ant1	2441	3.34	<=20.97	PASS
		2480	2.72	<=20.97	PASS

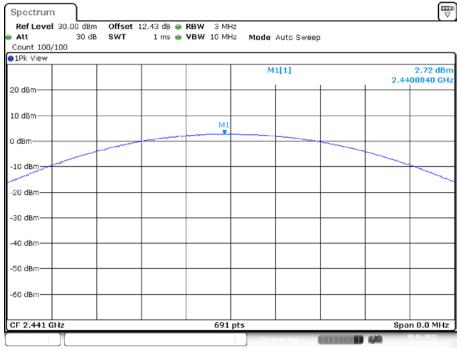

Please refer to the below plots:


DH1_Ant1_2402

Date: 20.JUN.2022 09:54:42

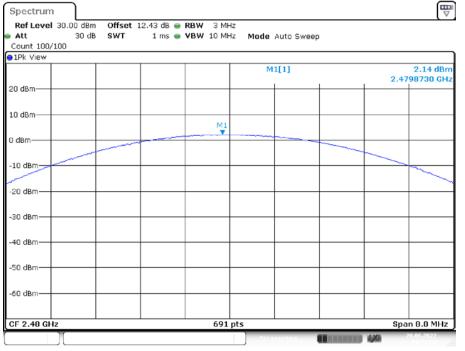
DH1_Ant1_2441


Date: 20.JUN.2022 09:55:33


DH1_Ant1_2480

Date: 20.JUN.2022 09:56:04

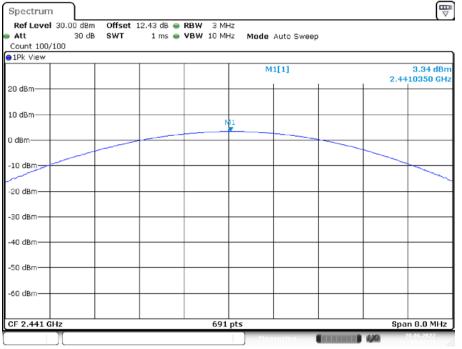
2DH1_Ant1_2402


Date: 20.JUN.2022 09:50:46

2DH1_Ant1_2441

Date: 20.JUN.2022 09:51:19

2DH1_Ant1_2480


Date: 20.JUN.2022 09:51:50

3DH1_Ant1_2402

Date: 20.JUN.2022 09:52:31

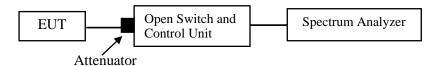
3DH1_Ant1_2441

Date: 20.JUN.2022 09:52:59

Spectrum					Ē
Ref Level 30.00 dBn	Offerent 10.42	ib 👄 RBW 3 MHz			∇
Att 30.00 dBr		IS S VBW 10 MHz	Mode Auto Sweep	n	
Count 100/100			Hous Hate Sheet	·	
91Pk View					
			M1[1]	2.4	2.72 dBm 800930 GHz
20 dBm					
10 dBm					
0 dBm		M1			
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
CF 2.48 GHz		691 pt	s	Sp	an 8.0 MHz
			Measuring		20.06.2022

3DH1_Ant1_2480

Date: 20.JUN.2022 09:53:42


FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	51 %
ATM Pressure:	101.1kPa

The testing was performed by Cat Kang on 2022-06-20.

EUT operation mode: Transmitting

Test Result: Compliant

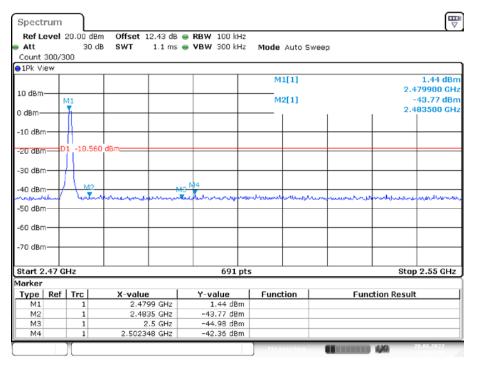
Please refer to the below plots:

DH1: Band Edge-Left Side Hopping

Spectrum						
Ref Level			iB 🖷 RBW 100 kHz			
Att	30 0	IB SWT 246.5µ	is 👄 VBW 300 kHz	Mode Auto F	FT	
Count 300/3	100					
1Pk View						
				M1[1]		2.58 dBr
10 dBm —						2.402800 GH
				M2[1]		-48.38 dØ 2.400000 GM
0 dBm					1	2.400000 GM
-10 dBm						
-20 dBm	1 -17.42	0 dBm				<u> </u>
-20 ubin						
-30 dBm						
40 dBm						
T	and the design of the design o		ramound			M3 M2
SO ABHIN		han han har	2.443	man and the second	man	
-60 dBm						
-60 aBm						
-70 dBm						
-/o ubiii						
	-					010.405.011-
Start 2.3 GH	12		691 pt	s		Stop 2.405 GHz
larker	1 - 1		1			
Type Ref		X-value	Y-value	Function	Fun	ction Result
M1	1	2.4028 GHz				
M2 M3	1	2.4 GHz 2.39 GHz				
M3 M4	1	2.39 GHz 2.300913 GHz				
1414	A	51200212 GH2	-+0.21 UBIII			

Date: 20.JUN.2022 10:14:04

Single

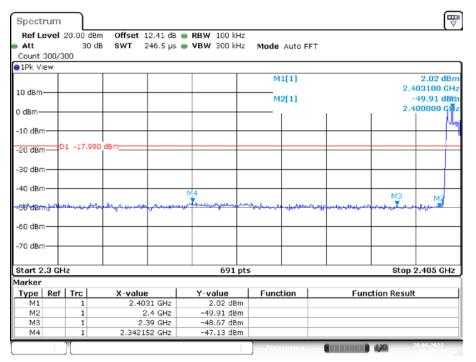

	evel	20.00 dB			BRBW 100 kHz			
Att		30 c	B SWT 2	46.5 µs 📢	VBW 300 kHz	Mode Auto I	FFT	
Count :	300/3	00						
1Pk Vi	e₩							
						M1[1]		2.59 di
l0 dBm-								2.401880 G
to abiii						M2[1]		-50.01 ຟັ
) dBm—								2.400000 0
abiii								
10 dBm	-							
20 dBm		1 -17.41	u asm					
30 dBm	+							
40 dBm	· +				M4			
50°d8#	4.4	un faire			mut me man	hits and a second second second		M3 MP
SURBH	244	4-900-00-C	da marana	Area Autorea	<u> </u>		and the second of	Margan Agener Margan
60 dBm								
00 0011	' I.							
70 dBm	-							
tart 2	3 GH	2			691 pt	<u>د</u>		Stop 2.405 GH
arker	.0 01	2			0510			0000 2.100 01
	Ref	Tro	X-value	1	Y-value	Function	1 6.0	nction Result
M1	Nei	1	2.4018		2.59 dBm	Function	ru Fu	Incluit Result
M2		1		4 GHz	-50.01 dBm			
M3		1		9 GHz	-50.99 dBm			
M4		1	2.35021		-46.31 dBm			

Date: 20.JUN.2022 09:58:19

					-9		
Spectrum							
Ref Level 3	20.00	dBm Offset 1	2.43 dB 🧉	RBW 100 kHz			
Att	30	dB SWT	1.1 ms	VBW 300 kHz	Mode Auto S	weep	
Count 300/3	00						
1Pk View							
					M1[1]		1.57 dBm
10 dBm							2.471910 GHz
M1					M2[1]		-43.57 dBm
o Manhaha	k						2.483500 GHz
KARANAN IN	1						
-10 den	<u> </u>						
L & L M M M M M M M M	1						
-20 dBm - D	1 -18.4	430 dBm					
-30 dBm							
-40 dBm	M	2	MB	M4			
-40 UBIII	here	limenne	mand	ula mandane	man	mennen	men hallowe where many warden
-50 dBm							
-60 dBm		_					
-70 dBm							
Start 2.47 G	Hz			691 pts		I	Stop 2.55 GHz
larker							
Type Ref	Trc	X-value		Y-value	Function	Fur	oction Result
M1	1	2.4719		1.57 dBm			
M2	1	2.483	35 GHz	-43.57 dBm			
M3	1		.5 GHz	-42.63 dBm			
M4	1	2.50455	51 GHz	-42.37 dBm			
					Measuring		20.05.2022
)		10:17:26

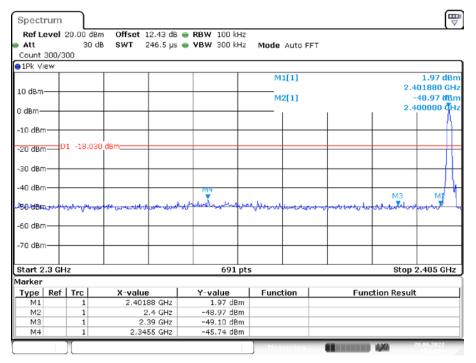
DH1: Band Edge- Right Side Hopping

Date: 20.JUN.2022 10:17:27



Single

Date: 20.JUN.2022 10:02:00


Version 11: 2021-11-09

2DH1: Band Edge-Left Side Hopping

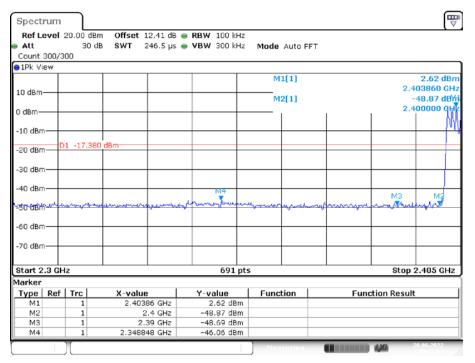
Date: 20.JUN.2022 10:25:16

Single

Date: 20.JUN.2022 10:04:04

2DH1: Band Edge- Right Side Hopping

Spectrum	Ľ								₩ V
Ref Level Att				W 100 kHz	Mada	Auto C			
Count 300/		JUB 3WI 1.1	nis 🔤 🕶	5W 300 KH2	Mode	Auto S	weep		
1Pk View	300								
					M	1[1]			1.45 dBn
								2	.473880 GH
M1					M	2[1]			-44.63 dBn
u klavit i k								. 2	.483500 GH
WWW	AN .								
-10 dBm	·r								
00 40	D1 -18 5	550 dBm							
20 dBm-									
30 dBm —									
-40 dBm —	1 14		MO					M4	
50 JD		humannan	mund	heavent	nother	malue	- www.when	matrower	Manananaharan
50 dBm									
60 dBm —									
-70 dBm									
Start 2.47	GHz			691 pt	5			St	op 2.55 GHz
larker									
Type Ref	Trc	X-value	Y	'-value	Func	tion	1	unction Res	ult
M1	1	2.47388 G		1.45 dBm					
M2	1	2.4835 G		-44.63 dBm					
M3	1	2.5 G		-44.85 dBm					
M4	1	2.535043 G	HZ	-42.70 dBm					


Date: 20.JUN.2022 10:30:04

Ref Level			RBW 100 kHz			
Att	30 dB	3 SWT 1.1 ms	👄 VBW 300 kHz	Mode Auto S	Sweep	
Count 300/3	300					
1Pk View						
I				M1[1]		1.43 dBr
10 dBm						2.479900 GH
	M1			M2[1]		-44.83 dBr 2.483500 GH
0 dBm	<u>h</u>				1	2.483500 GH
	15					
-10 dBm						
-20 dBm - C	1 -18.570	dBm				
20 0011	11					
-30 dBm						
	11					
-40 dBm	L M2		M8 M4			
-	Latur	managed makeren	Kunnerholmennerbe	www.teriterit	Honoral make	an wear and the second
-50 dBm						
-60 dBm						
-60 aBm						
-70 dBm						
-/o ubiii						
Start 2.47 0			691 pts			Stop 2.55 GHz
larker			091 pt:	>		Stop 2.55 GH2
	Trc	X-value	Y-value	Function	1 5	Inction Result
Type Ref M1	1	2.4799 GHz	1.43 dBm	Function	Fi Fi	inction Result
M2	1	2.4799 GHz 2.4835 GHz	-44.83 dBm			
M3	1	2.4655 GHz	-44.60 dBm			
M4	1	2.505826 GHz	-42.55 dBm			

Single

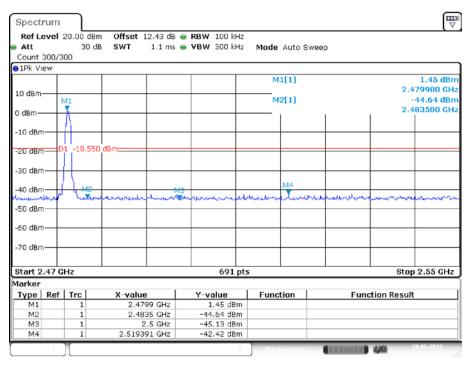
Date: 20.JUN.2022 10:06:24

3DH1: Band Edge-Left Side Hopping

Date: 20.JUN.2022 10:32:19

Single

Ref Lo	evel	20.00 dB 30 d			RBW 100 kHz VBW 300 kHz	Mode A	ito EET			
Count	300/3					HOUG A				
1Pk Vi	ew									
						M1[1]			2.62 dBr
10 dBm									2.4	+01880 GH
LO UBIII						M2[1]			-48.12 dBr
) dBm—									2.4	100000 🖣 H
, abiii										1 1
10 dBm	` −+		+							
		1 -17.38								
20 dBr		1 -17.38								
										1 11
30 dBr	1								+	
										I - 11
40 dBm			M4						M3	Ma
59-dBm		and the second	and an and should be should be	سميد والعديدا	الموسعين المتلاح وسلا	dry and	Heren and	www.	_	Autor
00 000	n r		1.4.2.14.1	() · · · · · ·				van		1.1.1
60 dBrr	-									
70 dBr	∩ - +-								+	
Start 2	.3 GH	lz			691 pt	s			Stop	2.405 GHz
larker										
Type	Ref	Trc	X-value	1	Y-value	Functio	n	Eur	ction Resul	t
M1		1	2.40188 GH	Iz	2.62 dBm					
M2		1	2.4 G	IZ	-48.12 dBm					
MЗ		1	2.39 GH	Iz	-49.42 dBm					
M4		1	2.321913 GH	12	-46.90 dBm					


Date: 20.JUN.2022 10:08:40

3DH1: Band Edge- Right Side Hopping

			- I . I .	0		_
Spectrum	ı)					
Ref Level	1 20.00 di	Bm Offset 12.43 dB	3 👄 RBW 100 kHz			· · · ·
Att	30	dB SWT 1.1 ms	s 👄 VBW 300 kHz	Mode Auto S	Sweep	
Count 300/	/300					
∋1Pk View						
				M1[1]		1.57 dBn
10 dBm-						2.470870 GH
11				M2[1]		-45.30 dBn
0 dBm +++				<u> </u>		2.483500 GH
ANNANA	W					
-10 dBm	0-					
00 40-	D1 -18.4	30 dBm				
-20 dBm						
-30 dBm						
	1					
-40 dBm	M2		M3 M4			
50 ID	South a	mentermeter	which we have been and we have a second	abbeter and the	montament	
-50 dBm						
-60 dBm-						
-70 dBm-						
Start 2.47	GHz		691 pts	5		Stop 2.55 GHz
Marker						
Type Ret	f Trc	X-value	Y-value	Function	Fur	nction Result
M1	1	2.47087 GHz	1.57 dBm			
M2	1	2.4835 GHz	-45.30 dBm			
M3	1	2.5 GHz	-44.50 dBm			
M4	1	2.505014 GHz	-42.82 dBm			
				Measuring.		20.06.2022
				-		

Date: 20.JUN.2022 10:34:42

Single

Date: 20.JUN.2022 10:10:55

***** END OF REPORT *****

Version 11: 2021-11-09