

FCC Test Report

Application No.: DNT2501210361R0697-00739

Applicant: SHENZHEN ZEALOT DIGITAL TECHNOLOGY CO., LTD

Address of Applicant: 401,501,building 3,NO.8,Yong Tai Road,east District,BaiShi xia

Community,Fu Yong street,BaoAn District,ShenZhen China

EUT Description: WIRELESS SPEAKER

Model No.: ZEALOT-S32

FCC ID: 2AFKR-2501

Input:DC 5V;

Power Supply

DC 3.7V by 1800mAh rechargeable lithium-ion battery

Trade Mark: ZEALOT

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2013

Date of Receipt: 2025/1/21

Date of Test: 2025/1/21 to 2025/1/24

Date of Issue: 2025/2/11

Test Result: PASS

Prepared By: Wayne . Lin (Testing Engineer)

Reviewed By: (Project Engineer)

Approved By: (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

00739 Date: February 11, 2025

Page: 2/59

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	Feb.11, 2025	Valid	Original Report

Date: February 11, 2025 Page

Page: 3/59

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10: 2013	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10: 2013	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10: 2013	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10: 2013	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10: 2013	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.8	PASS
Radiated Spurious emissions	15.247(d); 15.205/15.209	ANSI C63.10: 2013	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10: 2013	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2013	Clause 3.11	PASS

Note:

1. "N/A" denotes test is not applicable in this test report.

Contents

1 Test Summary	3
2 General Information	5
2.1 Test Location	5
2.2 General Description of EUT	6
2.3 Channel List	7
2.4 5Test Environment and Mode	8
2.5 Power Setting of Test Software	9
2.6 Description of Support Units	9
2.7 Test Facility	9
2.8 Measurement Uncertainty (95% confidence levels, k=2)	10
2.9 Equipment List	11
2.10 Assistant equipment used for test	12
3 Test results and Measurement Data	13
3.1 Antenna Requirement	13
3.2 20dB Emission Bandwidth	14
3.3 Conducted Output Power	15
3.4 Carrier Frequencies Separationy	16
3.5 Dwell Time	17
3.6 Hopping Channel Number	18
3.7 Band-edge for RF Conducted Emissions	19
3.8 RF Conducted Spurious Emissions	20
3.9 Radiated Spurious Emissions	21
3.10 Restricted bands around fundamental frequency	29
3.11 AC Power Line Conducted Emissions	33
4 Appendix	36
Appendix A: 20dB Emission Bandwidth	36
Appendix B: Maximum conducted output power	39
Appendix C: Carrier frequency separation	42
Appendix D: Dwell Time	44
Appendix E: Number of hopping channels	46
Appendix F: Band edge measurements	47
Appendix G: Conducted Spurious Emission	53

597-00739 Date: February 11, 2025 Page: 5 / 59

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Date: February 11, 2025 Page: 6 / 59

2.2 General Description of EUT

Manufacturer:	SHENZHEN ZEALOT DIGITAL TECHNOLOGY CO., LTD			
Address of Manufacturer:	401,501,building 3,NO.8,Yong Tai Road,east District,BaiShi xia Community,Fu Yong street,BaoAn District,ShenZhen China			
Test EUT Description:	WIRELESS SPEAKER			
Model No.:	ZEALOT-S32			
Additional Model(s):				
Chip Type:	AC7065E8			
Serial number:	PR2501210361R0697			
Power Supply	Input:DC 5V; DC 3.7V From 1800mAh rechargeable lithium-ion battery			
Trade Mark:	ZEALOT			
Hardware Version:	V1.0			
Software Version:	V1.0			
Operation Frequency:	2402 MHz to 2480 MHz			
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)			
Type of Modulation:	GFSK,π/4-DQPSK			
Sample Type:				
Antenna Type:	☐ External, ⊠ Integrated			
Antenna Ports:				
Antenna Gain:	⊠ Provided by applicant			
Antenna Gain:	-0.58dBi			
	⊠ Provided by applicant			
RF Cable:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);			

Remark:

^{*}Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Date: February 11, 2025 Page: 7 / 59

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz), (

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: February 11, 2025 Page: 8 / 59

2.4 5Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

Date: February 11, 2025 Page: 9 / 59

2.5 Power Setting of Test Software

Software Name	FCC_assist_1.0.2.2				
Frequency(MHz)	2402	2441	2480		
GFSK Setting	10	10	10		
π/4-DQPSK Setting	10	10	10		

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

• FCC, USA

Designation Number: CN1348

• A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149.

IC#: 30755.

Date: February 11, 2025

Page: 10 / 59

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	4	9KHz-1GHz:±0.746dB
	Conducted RF Spurious Emission	1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty		
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)		
		± 4.8dB (Below 1GHz)		
2	Dedicted Emission	± 4.8dB (1GHz to 6GHz)		
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)		
	7 7 7 7 7	± 5.02dB (Above 18GHz)		

Date: February 11, 2025 Page: 11 / 59

2.9 Equipment List

	For Conne	ct EUT Anteni	na Terminal ⁻	Гest	
Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2024-10-23	2025-10-22
Signal Generator	Keysight	N5182B	MY57300617	2024-10-23	2025-10-22
Power supply	Keysight	E3640A	ZB2022656	2024-10-23	2025-10-22
Radio Communication Tester	R&S	CMW500	105082	2024-10-23	2025-10-22
Spectrum Analyzer	Aglient	N9010A	MY52221458	2024-10-23	2025-10-22
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
Power Sensor	Anritsu	ML2495A	2129005	2024-10-23	2025-10-22
Pulse Power Sensor	Anritsu	MA2411B	1911397	2024-10-23	2025-10-22
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2024-10-23	2025-10-22

	Test Equipment for Conducted Emission									
Description	Cal Date	Due Date								
Receiver	R&S	ESCI3	101152	2024-10-23	2025-10-22					
LISN	R&S	ENV216	102874	2024-10-23	2025-10-22					
ISN	R&S	ENY81-CA6	1309.8590.03	2024-10-23	2025-10-22					

Test Ed	quipment for F	Radiated Emis	sion(30MHz-	-1000MHz	<u>z</u>)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2024-10-23	2025-10-22
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2024-10-23	2025-10-22
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2022-11-28	2025-11-27
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2024-10-23	2025-10-22

Date: February 11, 2025 Page: 12 / 59

Test E	quipment for I	Radiated Emi	ssion(Above	1000MHz)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2024-10-23	2025-10-22
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2024-10-23	2025-10-22
Horn Antenna	ETS-LINDGREN	3117	00252567	2022-11-28	2025-11-27
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2022-11-28	2025-11-27
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2024-10-23	2025-10-22
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2024-10-23	2025-10-22

2.10 ssistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	1 Computer		N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

Date: February 11, 2025 Page: 13 / 59

3 Test results and Measurement Data

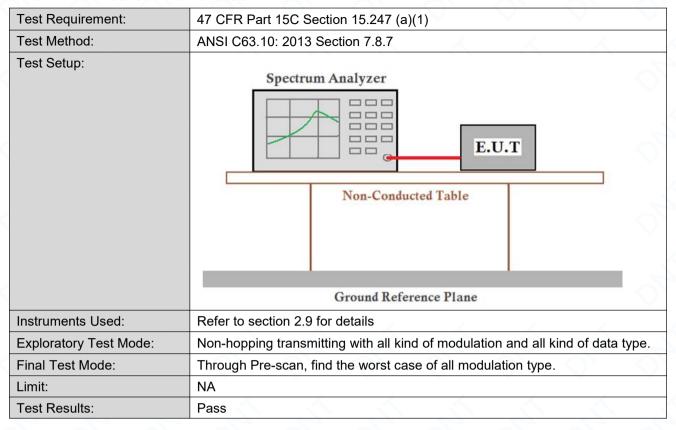
3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

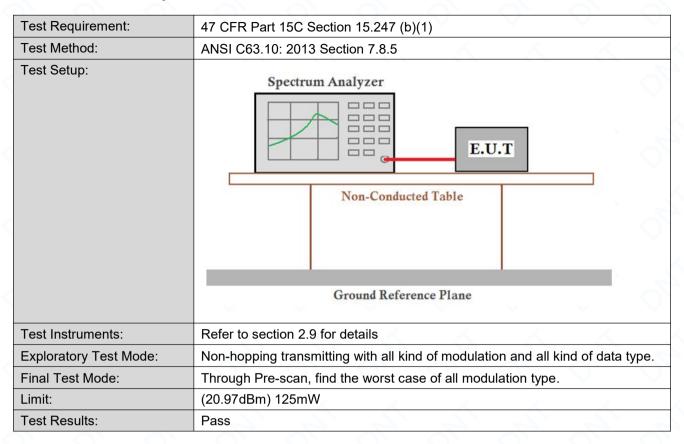
15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58dBi.

Date: February 11, 2025 Page: 14 / 59

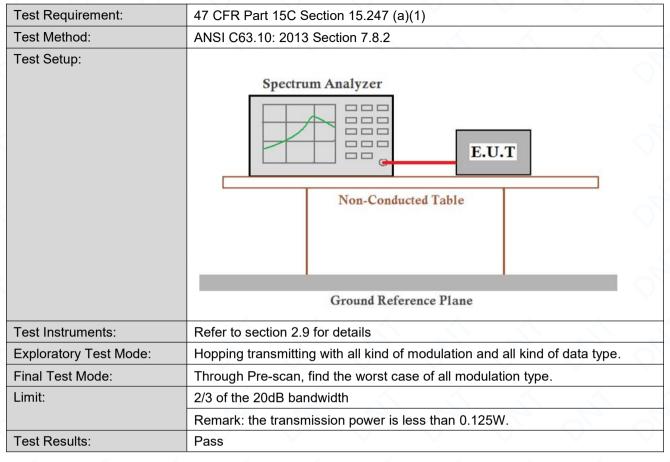
3.2 20dB Emission Bandwidth



The detailed test data see: Appendix A

Date: February 11, 2025 Page: 15 / 59

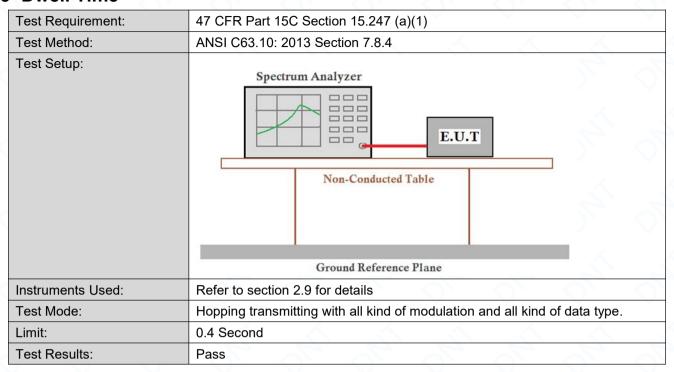
3.3 Conducted Output Power



The detailed test data see: Appendix B

Date: February 11, 2025 Page: 16 / 59

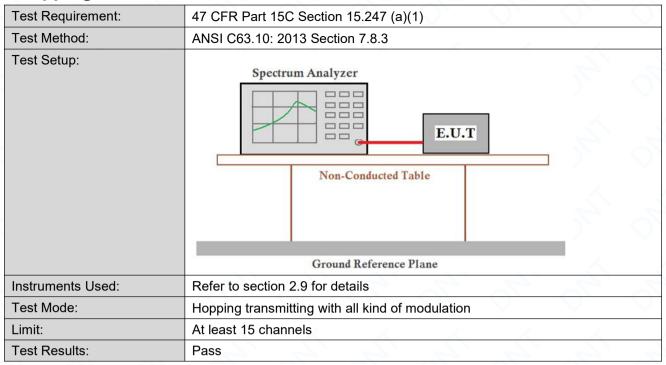
3.4 Carrier Frequencies Separationy



The detailed test data see: Appendix C

Date: February 11, 2025 Page: 17 / 59

3.5 Dwell Time



The detailed test data see: Appendix D

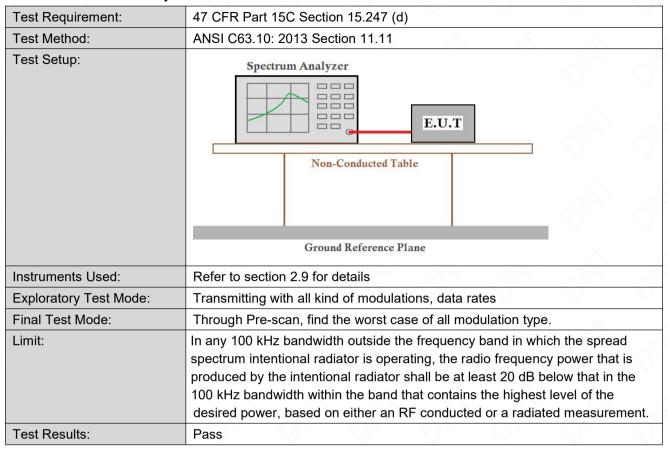
Date: February 11, 2025 Page: 18 / 59

3.6 Hopping Channel Number

The detailed test data see: Appendix E

Date: February 11, 2025 Page: 19 / 59

3.7 Band-edge for RF Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013 Section 7.8.6
Test Setup:	Spectrum Analyzer E.U.T
	Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

The detailed test data see: Appendix F

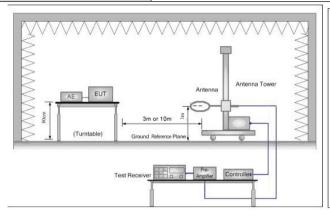
Date: February 11, 2025 Page: 20 / 59

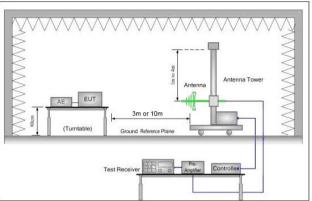
3.8 RF Conducted Spurious Emissions

The detailed test data see: Appendix G

Date: February 11, 2025

Page: 21 / 59


3.9 Radiated Spurious Emissions


Test Requirement:	47 CFR Part 15C Section	7 CFR Part 15C Section 15.209 and 15.205										
Test Method:	ANSI C63.10: 2013 Sect	ion 11.12										
Test Site:	Measurement Distance:	3m or 10m (Semi-	Anechoic Ch	amber)	L . L							
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark							
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak							
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average							
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak							
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak							
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average							
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak							
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak							
		Peak	1MHz	3MHz	Peak							
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T (DC<0.98)	Average							
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)							
	0.009MHz-0.490MHz	2400/F(kHz)	- /	-<	300							
	0.490MHz-1.705MHz	24000/F(kHz)	-	6-7	30							
	1.705MHz-30MHz	30	<u>_</u>	<u> </u>	30							
	30MHz-88MHz	100	40.0	Quasi-peak	3							
	88MHz-216MHz	150	43.5	Quasi-peak	3							
	216MHz-960MHz	200	46.0	Quasi-peak	3							
	960MHz-1GHz	500	54.0	Quasi-peak	3							
	Above 1GHz	500	54.0	Average	3							
	Remark: 15.35(b),Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.											

Page: 22

/ 59

Test Setup:

Date: February 11, 2025

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

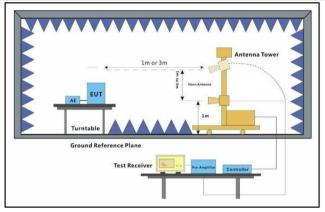


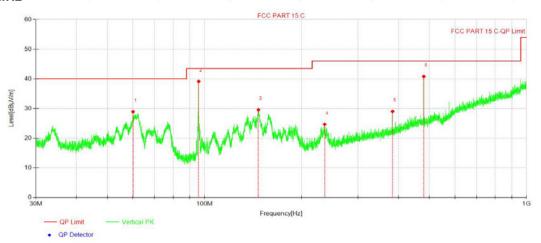
Figure 3. Above 1 GHz

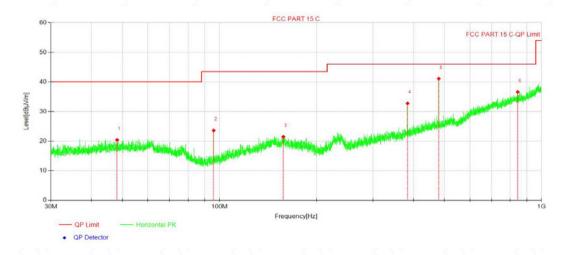
Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for

Date: February 11, 2025 Page: 23

/ 59

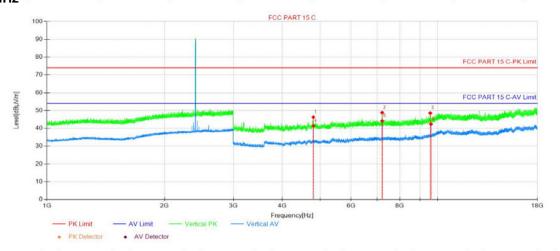

	Transmitting mode, And found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete.
Test Configuration:	 Measurements Below 1000MHz RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge+Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass


Date: February 11, 2025 Page: 24 / 59

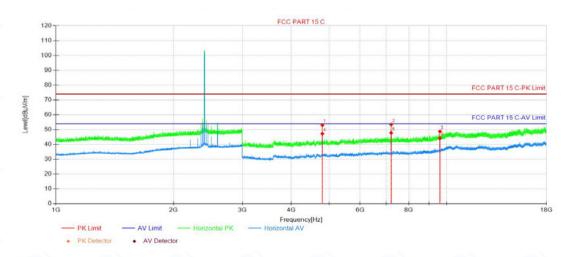
Test data

For 30-1000MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	60.02	37.69	-8.76	28.93	40.00	11.07	100	39	QP	Vertical
2	95.99	52.41	-13.22	39.19	43.50	4.31	100	24	QP	Vertical
3	147.14	37.63	-8.04	29.59	43.50	13.91	100	350	QP	Vertical
4	236.23	34.28	-9.59	24.69	46.00	21.31	100	334	QP	Vertical
5	383.93	33.72	-4.69	29.03	46.00	16.97	100	334	QP	Vertical
6	479.85	43.06	-2.24	40.82	46.00	5.18	100	4	QP	Vertical



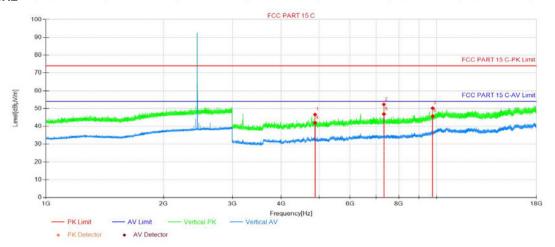
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	48.12	28.51	-8.07	20.44	40.00	19.56	100	70	QP	Horizontal
2	95.99	36.86	-13.22	23.64	43.50	19.86	100	229	QP	Horizontal
3	157.94	29.30	-7.79	21.51	43.50	21.99	100	350	QP	Horizontal
4	383.93	37.44	-4.69	32.75	46.00	13.25	100	70	QP	Horizontal
5	479.85	43.36	-2.24	41.12	46.00	4.88	100	81	QP	Horizontal
6	843.60	32.09	4.52	36.61	46.00	9.39	100	168	QP	Horizontal

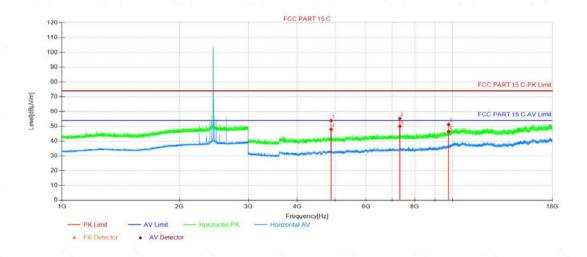


Date: February 11, 2025 Page: 25 / 59

For above 1GHz DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4803.84	50.87	-4.61	46.26	74.00	27.74	150	4	Peak	Vertical
2	7206.21	50.65	-1.76	48.89	74.00	25.11	150	18	Peak	Vertical
3	9570.32	47.85	0.75	48.60	74.00	25.40	150	126	Peak	Vertical
4	4804.59	45.97	-4.61	41.36	54.00	12.64	150	4	AV	Vertical
5	7206.96	45.97	-1.76	44.21	54.00	9.79	150	72	AV	Vertical
6	9608.58	41.57	0.88	42.45	54.00	11.55	150	216	AV	Vertical

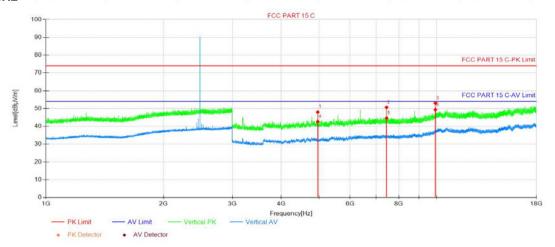

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4804.59	57.63	-4.61	53.02	74.00	20.98	150	286	Peak	Horizon
2	7205.46	55.21	-1.77	53.44	74.00	20.56	150	286	Peak	Horizon
3	9607.83	47.93	0.87	48.80	74.00	25.20	150	164	Peak	Horizon
4	4804.59	51.91	-4.61	47.30	54.00	6.70	150	72	AV	Horizon
5	7206.96	49.53	-1.76	47.77	54.00	6.23	150	307	AV	Horizon
6	9608.58	43.30	0.88	44.18	54.00	9.82	150	19	AV	Horizon

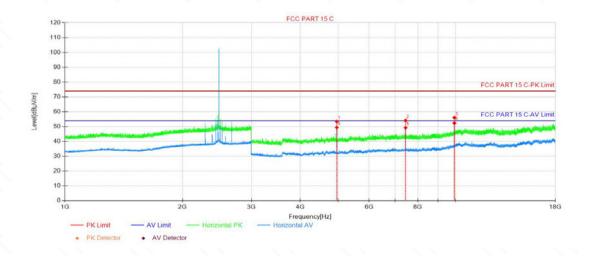

Date: February 11, 2025

Page: 26 / 59

DH5 2441MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	51.31	-4.72	46.59	74.00	27.41	150	3	Peak	Vertical
2	7323.21	53.86	-1.49	52.37	74.00	21.63	150	55	Peak	Vertical
3	9763.83	48.59	1.64	50.23	74.00	23.77	150	200	Peak	Vertical
4	4882.59	46.71	-4.72	41.99	54.00	12.01	150	268	AV	Vertical
5	7323.96	48.38	-1.49	46.89	54.00	7.11	150	38	AV	Vertical
6	9764.58	44.14	1.64	45.78	54.00	8.22	150	180	AV	Vertical


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	58.59	-4.72	53.87	74.00	20.13	150	288	Peak	Horizon
2	7322.46	56.77	-1.49	55.28	74.00	18.72	150	326	Peak	Horizon
3	9763.83	49.68	1.64	51.32	74.00	22.68	150	288	Peak	Horizon
4	4882.59	52.62	-4.72	47.90	54.00	6.10	150	288	AV	Horizon
5	7323.96	51.52	-1.49	50.03	54.00	3.97	150	342	AV	Horizon
6	9764.58	44.88	1.64	46.52	54.00	7.48	150	269	AV	Horizon


Date: February 11, 2025

Page: 27 / 59

DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	52.86	-4.86	48.00	74.00	26.00	150	251	Peak	Vertical
2	7439.47	52.06	-1.34	50.72	74.00	23.28	150	53	Peak	Vertical
3	9919.84	50.76	2.26	53.02	74.00	20.98	150	230	Peak	Vertical
4	4960.59	47.56	-4.86	42.70	54.00	11.30	150	251	AV	Vertical
5	7440.97	45.97	-1.34	44.63	54.00	9.37	150	37	AV	Vertical
6	9920.59	47.07	2.27	49.34	54.00	4.66	150	230	AV	Vertical

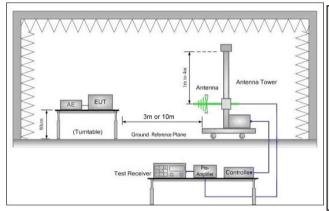
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	58.29	-4.86	53.43	74.00	20.57	150	287	Peak	Horizon
2	7440.22	55.41	-1.34	54.07	74.00	19.93	150	322	Peak	Horizon
3	9919.84	53.77	2.26	56.03	74.00	17.97	150	287	Peak	Horizon
4	4960.59	54.29	-4.86	49.43	54.00	4.57	150	287	AV	Horizon
5	7440.97	50.59	-1.34	49.25	54.00	4.75	150	322	AV	Horizon
6	9920.59	50.11	2.27	52.38	54.00	1.62	150	55	AV	Horizon

Date: February 11, 2025 Page 11, 2025

Page: 28 / 59

Note:

- 1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 - Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)
- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, DH5 is the worst case, only the worst case was reported.



Date: February 11, 2025

Page: 29 / 59

3.10Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205		
Test Method: Test Site:	ANSI C63.10: 2013 Section	11.12	, , ,	
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic	Chamber)	
Limit:	Frequency	Limit (dBuV/m)	Remark	
	30MHz-88MHz	40.0	Quasi-peak	
	88MHz-216MHz	43.5	Quasi-peak	
	216MHz-960MHz	46.0	Quasi-peak	
	960MHz-1GHz	54.0	Quasi-peak	
	Ab 4011-	54.0	Average Value Peak Value	
	Above 1GHz	74.0		
Test Setup:			0, 0,	

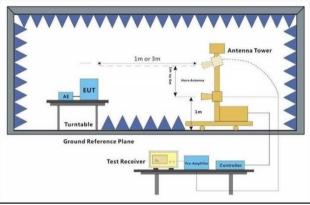


Figure 1. 30MHz to 1GHz

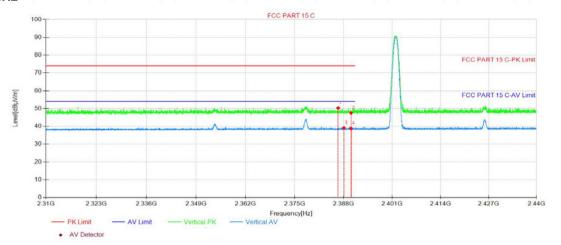
Figure 2. Above 1 GHz

Test Procedure:

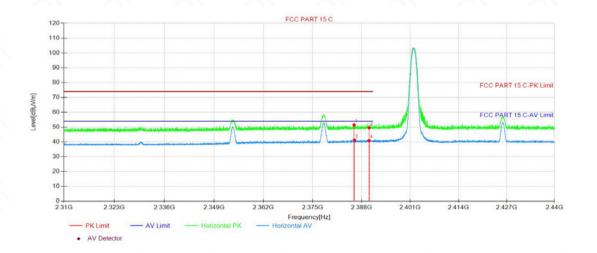
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Test Configuration:

Measurements Below 1000MHz



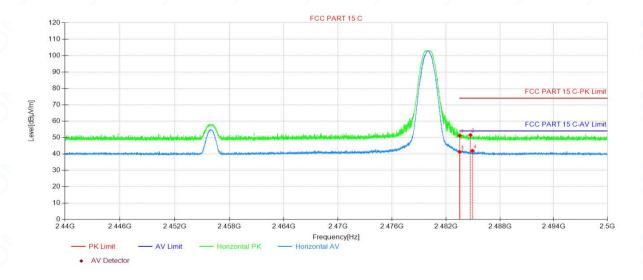
The state of the s	Penort No :D	NT2501210361R0697-00739	Date: February 11, 2025	Page: 30 / 59
	ινεμοιτινου	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Abo RBW = 1 MHz VBW = 10 Hz, when duty or 	ve 1000MHz cycle is no less than 98 percer cle is less than 98 percent who	nt. ere T is the
Explorato	ry Test Mode:	Transmitting with all kind of modulat Transmitting mode.	ions, data rates.	0, 0,
Final Test	: Mode:	Pretest the EUT Transmitting mode Through Pre-scan, find the DH5 of type. Only the worst case is recorded in t	data type is the worst case of	all modulation
Instrumen	its Used:	Refer to section 2.9 for details	<u> </u>	
Test Resu	ılts:	Pass		



Date: February 11, 2025 Page: 31 / 59

DH5 2402MHz


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2386.03	52.26	-0.81	51.45	74.00	22.55	150	55	Peak	Vertical
2	2390.01	50.30	-0.80	49.50	74.00	24.50	150	266	Peak	Vertical
3	2386.12	42.05	-0.81	41.24	54.00	12.76	150	299	AV	Vertical
4	2390.01	41.67	-0.80	40.87	54.00	13.13	150	299	AV	Vertical


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2386.03	52.26	-0.81	51.45	74.00	22.55	150	55	Peak	Horizon
2	2390.01	50.30	-0.80	49.50	74.00	24.50	150	266	Peak	Horizon
3	2386.12	42.05	-0.81	41.24	54.00	12.76	150	299	AV	Horizon
4	2390.01	41.67	-0.80	40.87	54.00	13.13	150	299	AV	Horizon

Date: February 11, 2025 Page: 32 / 59

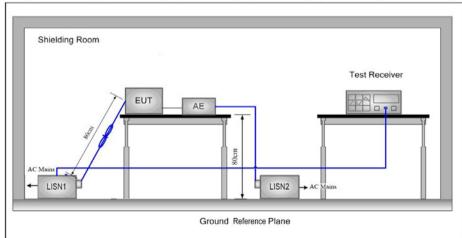
DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	48.11	-0.29	47.82	74.00	26.18	150	36	Peak	Vertical
2	2484.91	50.68	-0.27	50.41	74.00	23.59	150	205	Peak	Vertical
3	2483.50	39.08	-0.29	38.79	54.00	15.21	150	114	AV	Vertical
4	2484.66	39.89	-0.27	39.62	54.00	14.38	150	26	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	51.48	-0.29	51.19	74.00	22.81	150	336	Peak	Horizon
2	2484.70	51.81	-0.27	51.54	74.00	22.46	150	303	Peak	Horizon
3	2483.50	41.54	-0.29	41.25	54.00	12.75	150	268	AV	Horizon
4	2484.92	42.19	-0.27	41.92	54.00	12.08	150	268	AV	Horizon

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:


Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.

2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Date: February 11, 2025 Page: 33 / 59

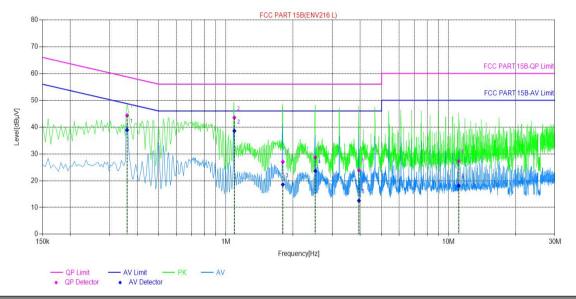
3.11AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section	15.207				
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
Limit:	[(MII-)	Limit (d	BuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logar	ithm of the frequency.				
Test Procedure:	room. 2) The EUT was connected Impedance Stabilization Not impedance. The power cast a second LISN 2, which we plane in the same way as multiple socket outlet strip single LISN provided the ready of the tabletop EUT was ground reference plane. A placed on the horizontal ground reference plane of the EUT shall be 0.4 movertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated even in order to find the maximum equipment and all of the interest in the second control of the second con	d with a vertical ground reference the vertical ground reference was bonded to the hound to a ground reference plane. This description of the LISN 1 and the EUT quipment was at least 0.8 num emission, the relative potential of the capilla of the capilla of the terface cables must be characteristical distribution.	ugh a LISN 1 (Line 0Ω/50μH + 5Ω linear EUT were connected to ference g measured. A ole power cables to a exceeded. table 0.8m above the ement, the EUT was erence plane. The rear erence plane. The inizontal ground the boundary of the ne for LISNs istance was a consistence of the form the LISN 2. The properties of the form the LISN 2.			
Test Setup:	ANSI C63.10 2013 on conducted measurement.					

Exploratory Test Mode:

Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.

Charge + Transmitting mode.

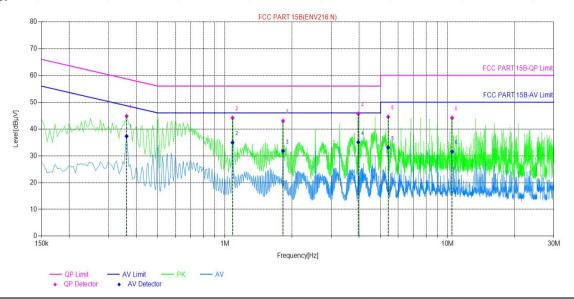


/	35-16	Report No.:DNT25	501210361R0697-00739	Date: February 11, 2025	Page: 34 / 59
	Final Test	t Mode:	Through Pre-scan, find the th	e worst case.	
	Instrumer	nts Used:	Refer to section 2.9 for details	3	$\mathcal{O}_{\mathcal{I}}$
	Test Resu	ults:	PASS		

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:



Final	Final Data List											
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict			
1	0.3597	9.81	44.37	58.74	14.37	38.89	48.74	9.85	PASS			
2	1.0910	9.72	43.54	56.00	12.46	38.59	46.00	7.41	PASS			
3	1.8007	9.73	27.05	56.00	28.95	18.57	46.00	27.43	PASS			
4	2.5193	9.73	28.75	56.00	27.25	23.62	46.00	22.38	PASS			
5	3.9578	9.75	23.93	56.00	32.07	12.53	46.00	33.47	PASS			
6	11.0958	9.88	27.40	60.00	32.60	18.10	50.00	31.90	PASS			

Date: February 11, 2025 Page: 35 / 59

Neutral Line:

Final Data List									
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.3615	9.88	44.85	58.69	13.84	37.32	48.69	11.37	PASS
2	1.0815	9.69	44.17	56.00	11.83	34.94	46.00	11.06	PASS
3	1.824	9.76	43.00	56.00	13.00	31.81	46.00	14.19	PASS
4	3.9705	9.96	45.70	56.00	10.30	35.03	46.00	10.97	PASS
5	5.4105	9.98	44.56	60.00	15.44	33.10	50.00	16.90	PASS
6	10.473	9.81	44.16	60.00	15.84	31.53	50.00	18.47	PASS

Remark:

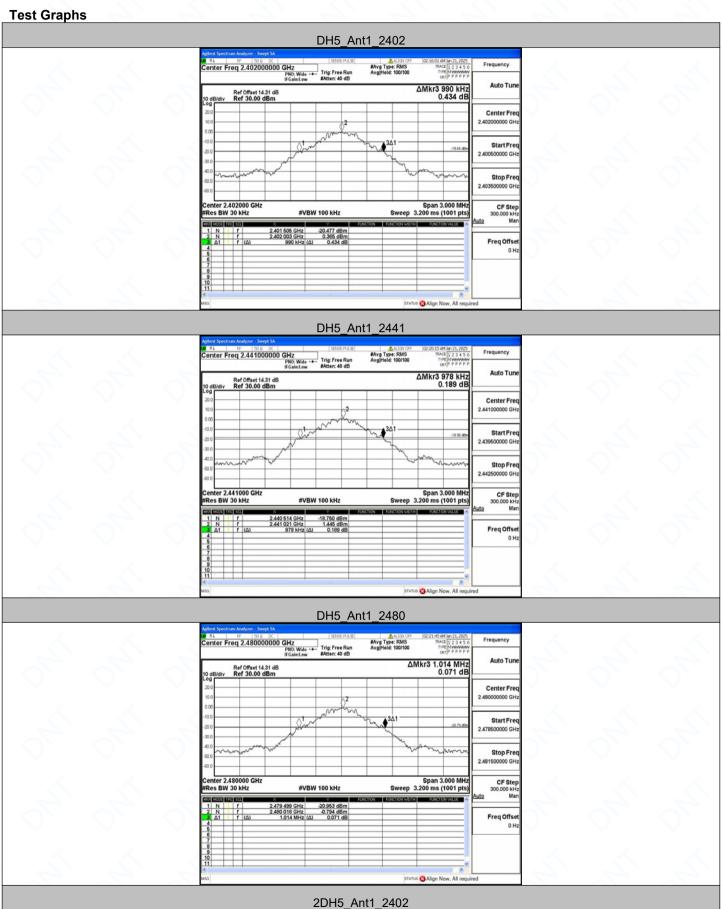
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc

Date: February 11, 2025 Page 1

Page: 36 / 59

4 Appendix


Appendix A: 20dB Emission Bandwidth

Test Result

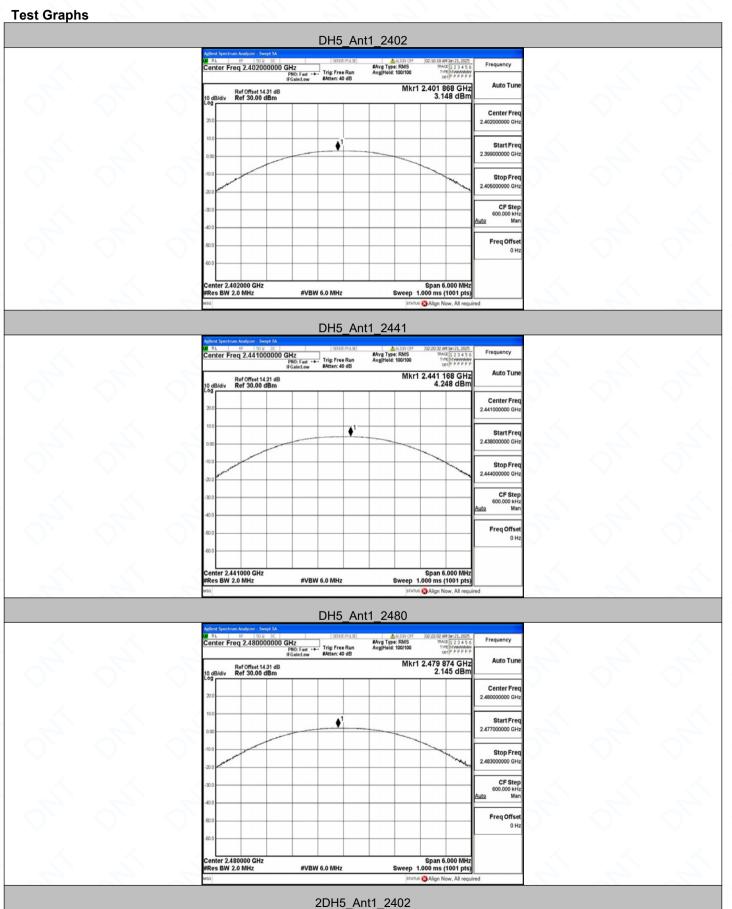
Test Result							
TestMode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.990	2401.505	2402.495		
DH5	Ant1	2441	0.978	2440.514	2441.492		<u></u>
		2480	1.014	2479.499	2480.513		
		2402	1.320	2401.343	2402.663		
2DH5	Ant1	2441	1.311	2440.346	2441.657	2-	<u></u>
		2480	1.317	2479.343	2480.660		

Date: February 11, 2025 Page: 37 / 59

10 N

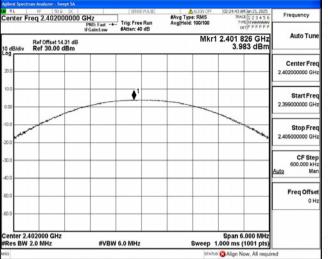
Report No.:DNT2501210361R0697-00739 Date: February 11, 2025 Page: 38 / 59 #Avg Type: RMS Avg|Hold: 100/100 ΔMkr3 1.320 MHz -0.011 dB Center Fre Start Fre Stop Free CF Step 300,000 kH Ma Span 3.000 MHz Sweep 3.200 ms (1001 pts) enter 2.402000 GHz #VBW 100 kHz Freq Offse 2DH5_Ant1_2441 #Avg Type: RMS Avg|Hold: 100/100 Auto Tun ΔMkr3 1.311 MHz -0.021 dB Ref Offset 14.31 dB Ref 30.00 dBm Center Fre 2.441000000 GH Start Free 2.439500000 GH Stop Free enter 2.441000 GHz Res BW 30 kHz Span 3.000 MHz Sweep 3.200 ms (1001 pts) #VBW 100 kHz Freq Offse STATUS Align Now, All re 2DH5_Ant1_2480 RL FF 50 2 DC
PHO: Wide + Fraincl www SAtten: 40 dB #Avg Type: RMS Avg|Hold: 100/100 Auto Tun ΔMkr3 1.317 MHz 0.026 dB Center Free Start Free Stop Fre 2.481500000 GH enter 2.480000 GHz Res BW 30 kHz Span 3.000 MHz Sweep 3.200 ms (1001 pts) Freq Offse

Date: February 11, 2025 Page: 39 / 59

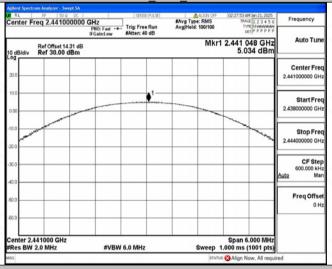

Appendix B: Maximum conducted output power

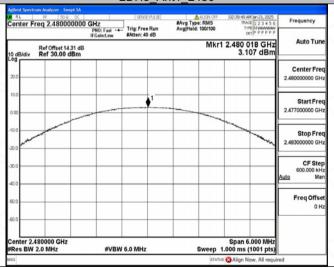
Test Result

1 COL IXCOURT						
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm] Conducted Limit[dBm]		Verdict	
	Ant1	2402	3.15	≤20.97	PASS	
DH5		2441	4.25	≤20.97	PASS	
		2480	2.15	≤20.97	PASS	
	Ant1	2402	3.98	≤20.97	PASS	
2DH5		2441	5.03	≤20.97	PASS	
		2480	3.11	≤20.97	PASS	



Date: February 11, 2025 Page: 40 / 59




Report No.:DNT2501210361R0697-00739 Date: February 11, 2025 Page: 41 / 59

2DH5_Ant1_2441

2DH5_Ant1_2480

Date: February 11, 2025 Page: 42 / 59

Appendix C: Carrier frequency separation

Test Result

TestMode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.006	≥0.676	PASS
2DH5	Ant1	Нор	1.168	≥0.880	PASS