

Choose certainty. Add value.

Report On

FCC Testing of the Sharp Quad-band LTE (B1/B3/B17/B26), Dualband WCDMA (FDD I / V), Quad-band GSM (850/900/1800/1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC,FeliCa) and GPS in accordance with FCC 47 CFR Part 22 and FCC 47 CFR Part 2 (GSM 850)

COMMERCIAL-IN-CONFIDENCE

FCC ID: APYHRO00243

Document 75935599 Report 14 Issue 1

September 2016

Product Service

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: www.tuv-sud.co.uk

COMMERCIAL-IN-CONFIDENCE

REPORT ON FCC Testing of the Sharp Quad-band LTE (B1/B3/B17/B26), Dualband WCDMA (FDD I / V) , Quad-band GSM (850/900/1800/1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS in accordance with FCC 47 CFR Part 22 and FCC 47 CFR Part 2 (GSM 850)

Document 75935599 Report 14 Issue 1

September 2016

PREPARED FOR

PREPARED BY

APPROVED BY

Sharp Telecommunications of Europe Ltd Inspired Easthampstead Road Bracknell Berkshire **RG12 1NS**

Natalie Bennett Senior Administrator, Project Support

Simon Bennett Authorised Signatory

DATED

22 September 2016

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 22 and FCC 47 CFR Part 2. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s);

G Lawle

D Rallev

Document 75935599 Report 14 Issue 1

Page 1 of 41

CONTENTS

Section

Page No

1	REPORT SUMMARY	. 3
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Introduction Brief Summary of Results Product Technical Description Product Information Test Conditions Deviations from the Standard Modification Record	.5 .6 .6 .6
2	TEST DETAILS	.7
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Frequency Tolerance	10 13 15 22 29
3	TEST EQUIPMENT USED	35
3.1 3.2	Test Equipment Used Measurement Uncertainty	
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	40
4.1	Accreditation, Disclaimers and Copyright	41

SECTION 1

REPORT SUMMARY

FCC Testing of the Sharp Quad-band LTE (B1/ B3/ B17/ B26), Dual-band WCDMA (FDD I / V) , Quad-band GSM (850/900/1800/1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC,FeliCa) and GPS In accordance with FCC 47 CFR Part 22 and FCC 47 CFR Part 2 (GSM 850)

1.1 INTRODUCTION

The information contained in this report is intended to show the verification of FCC Testing of the Sharp Quad-band LTE (B1/ B3/ B17/ B26), Dual-band WCDMA (FDD I / V) , Quad-band GSM (850/900/1800/1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC,FeliCa) and GPS to the requirements of FCC 47 CFR Part 22 and FCC 47 CFR Part 2.

Objective	To perform FCC Testing to determine the Equipment Under Test's (EUT's) compliance with the Test Specification, for the series of tests carried out.
Manufacturer	Sharp Corporation
Serial Number(s)	IMEI 004401115905156 IMEI 004401115905347
Number of Samples Tested	2
Test Specification/Issue/Date	FCC 47 CFR Part 22 (2015) FCC 47 CFR Part 2 (2015)
Disposal Reference Number Date	Held Pending Disposal Not Applicable Not Applicable
Order Number Date	10879 18 July 2016
Start of Test	10 August 2016
Finish of Test	7 September 2016
Name of Engineer(s)	D Ralley M Russell G Lawler
Related Document(s)	ANSI C63.4 (2014) ANSI TIA-603-C (2004)

COMMERCIAL-IN-CONFIDENCE

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 22 and FCC 47 CFR Part 2 is shown below.

Oration	Specificati	on Clause	Test Description		O among a sta /D a a a Ottan d and	
Section	Part 22	Part 2	Test Description	Result	Comments/Base Standard	
GSM 850	GSM 850					
2.1	22.355	2.1055	Frequency Tolerance	Pass		
2.2	22.905 and 22.917	2.1051	Spurious Emissions at Band Edge	Pass		
2.3	22.913 (a)(2)	2.1046	Maximum Conducted Output Power	Pass		
2.4	22.917	-	Emission Limitations for Cellular Equipment	Pass		
2.5	22.917 (a)	2.1051	Spurious Emissions at Antenna Terminals	Pass		
2.6	22.917 (b)	2.1049 (h)	26 dB Bandwidth	Pass		
2.7	-	2.1047 (d)	Modulation Characteristics	-	Customer Declaration	

1.3 PRODUCT TECHNICAL DESCRIPTION

Refer to Model Description APYHRO00243 Rev 4.0 document.

1.4 **PRODUCT INFORMATION**

1.4.1 Technical Description

The Equipment Under Test (EUT) was a Sharp Quad-band LTE (B1/B3/B17/B26), Dualband WCDMA (FDD I / V), Quad-band GSM (850/900/1800/1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC,FeliCa) and GPS. A full technical description can be found in the manufacturer's documentation.

1.5 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure.

The EUT was powered from a 4.0 V DC supply.

FCC Measurement Facility Registration Number 90987 Octagon House, Fareham Test Laboratory

1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standard were made during testing

1.7 MODIFICATION RECORD

Modification 0 - No modifications were made to the test sample during testing.

SECTION 2

TEST DETAILS

FCC Testing of the Sharp Quad-band LTE (B1/ B3/ B17/ B26), Dual-band WCDMA (FDD I / V) , Quad-band GSM (850/900/1800/1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC,FeliCa) and GPS In accordance with FCC 47 CFR Part 22 and FCC 47 CFR Part 2 (GSM 850)

2.1 FREQUENCY TOLERANCE

2.1.1 Specification Reference

FCC 47 CFR Part 22, Clause 22.355 FCC 47 CFR Part 2, Clause 2.1055

2.1.2 Equipment Under Test and Modification State

S/N: IMEI 004401115905156 - Modification State 0

2.1.3 Date of Test

26 August 2016

2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.5 Test Procedure

This test was performed in accordance with FCC 47 CFR Part 2, clause 2.1055.

Remarks

A radio communications test set frequency measurement function was used to measure the frequency error. The radio communications test set was configured for an uplink frequency of 836.4 MHz and the frequency reference was set to an external 10MHz rubidium frequency standard.

2.1.6 Environmental Conditions

Ambient Temperature	23.7°C
Relative Humidity	45.9%

2.1.7 Test Results

4.0 V DC Supply

<u>GSM 850, 836.40 MHz, Circuit-Switched, GMSK, Frequency Tolerance Under Temperature</u> <u>Variations Results</u>

Temperature	Fundamental Frequency Deviation (ppm)
-30 °C	-0.02272
-20 °C	-0.02272
-10 °C	-0.02391
0°C	-0.01913
+10 °C	-0.01913
+20 °C	-0.02272
+30 °C	0.02272
+40 °C	0.01435
+50 °C	0.01674

FCC 47 CFR Part 22, Limit Clause 22.355

Frequency Range (MHz)	Base, Fixed (ppm)	Mobile ≤ 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20	20	50
50 to 450	5	5	50
450 to 512	2.5	5	5
821 to 896	1.5	2.5	2.5
928 to 929	5.0	-	-
929 to 960	1.5	-	-
2110 to 2220	10	-	-

2.2 SPURIOUS EMISSIONS AT BAND EDGE

2.2.1 Specification Reference

FCC 47 CFR Part 22, Clause 22.905 and 22.917 FCC 47 CFR Part 2, Clause 2.1051

2.2.2 Equipment Under Test and Modification State

S/N: IMEI 004401115905156 - Modification State 0

2.2.3 Date of Test

7 September 2016

2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, Clause 6.

Remarks

The EUT was controlled using a Rohde and Schwarz CMU 200. Measurements of the EUT were performed using a spectrum analyser.

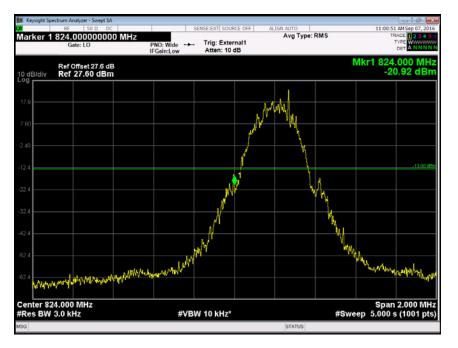
An external trigger was derived from the CMU 200.

An RMS detector was used in conjunction with a gated external trigger to ensure measurements were made during a transmission burst with an RBW which was at least 1% of the measured 26dB Bandwidth.

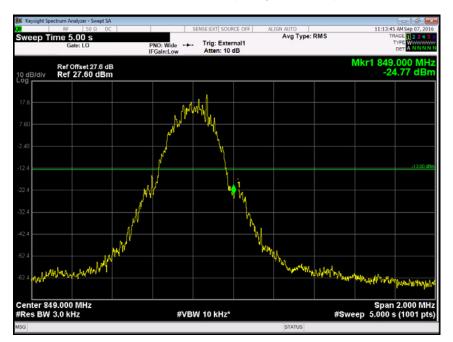
Sweep time was calculated such that, the minimum dwell time per measurement point was greater than 1 ms.

2.2.6 Environmental Conditions

Ambient Temperature	23.4°C
Relative Humidity	56.3%


2.2.7 Test Results

4.0 V DC Supply


GSM 850, Circuit-Switched, GMSK, Spurious Emissions at Band Edge Results

Block Edge	Frequency Block (MHz)		
Block Edge	A :824.0 MHz – 835.0 MHz	B :846.5 MHz – 849.0 MHz	
Lower	Channel: 128 824.2 MHz	-	
Upper	-	Channel: 251 848.8 MHz	

GSM 850, Circuit-Switched, GMSK, Frequency Block A, Spurious Emissions at Band Edge Plot

GSM 850, Circuit-Switched, GMSK, Frequency Block B, Spurious Emissions at Band Edge Plot

FCC 47 CFR Part 22, Limit Clause 22.905 and 22.917

-13 dBm at block edge.

2.3 MAXIMUM CONDUCTED OUTPUT POWER

2.3.1 Specification Reference

FCC 47 CFR Part 22, Clause 22.913 (a)(2) FCC 47 CFR Part 2, Clause 2.1046

2.3.2 Equipment Under Test and Modification State

S/N: IMEI 004401115905156 - Modification State 0

2.3.3 Date of Test

10 August 2016

2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, clause 5.1.2.

Remarks

The antenna gain was declared by the manufacturer as 2.0 dBi. The ERP result was calculated using the formula below:

ERP (dBm) = Pout (dBm) + Antenna Gain (dBi) - 2.15 dB

2.3.6 Environmental Conditions

Ambient Temperature22.3°CRelative Humidity61.7%

2.3.7 Test Results

4.0 V DC Supply

GSM 850, Circuit-Switched, Maximum Conducted Output Power Results

Frequency	Conducted Power (dBm)	Antenna Gain	ERP (dBm)	ERP (W)
824.20 MHz	32.28	2.0 dBi	32.13	1.63
836.40 MHz	32.46	2.0 dBi	32.31	1.70
848.80 MHz	32.41	2.0 dBi	32.26	1.68

FCC 47 CFR Part 22, Limit Clause 22.913 (a)(2)

Mobile Transmitters: 7 W or 38.45 dBm

2.4 EMISSION LIMITATIONS FOR CELLULAR EQUIPMENT

2.4.1 Specification Reference

FCC 47 CFR Part 22, Clause 22.917

2.4.2 Equipment Under Test and Modification State

S/N: IMEI 004401115905347 - Modification State 0

2.4.3 Date of Test

29 August 2016

2.4.4 Test Equipment Used

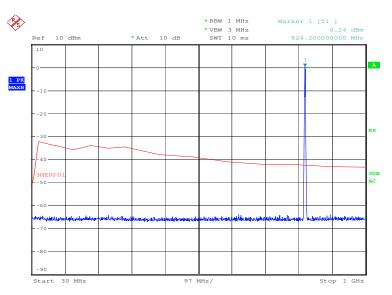
The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.5 Test Procedure

The test was performed in accordance with ANSI C63.26, clause 5.5.

2.4.6 Environmental Conditions

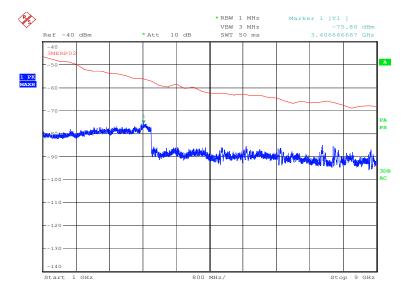
Ambient Temperature21.5°CRelative Humidity61.0%


2.4.7 Test Results

GSM 850, 824.20 MHz, Emission Limitations for Cellular Equipment Results

Frequency (MHz)	Emission Results (dBm)
*	

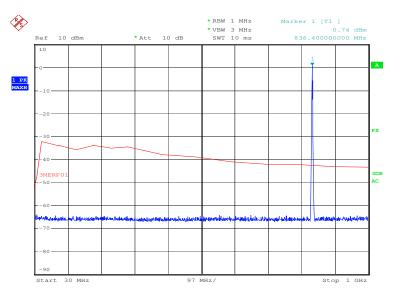
*No emissions were detected within 10 dB of the limit.


GSM 850, 824.20 MHz, 30 MHz to 1 GHz, Emission Limitations for Celluar Equipment Plot

Date: 29.AUG.2016 10:58:24

GSM 850, 824.20 MHz, 1 GHz to 9 GHz, Emission Limitations for Celluar Equipment Plot

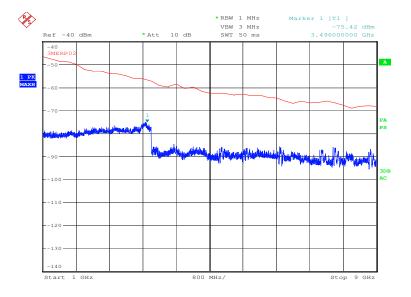
Date: 29.AUG.2016 08:38:24



GSM 850, 836.40 MHz, Emission Limitations for Cellular Equipment Results

Frequency (MHz)	Emission Results (dBm)
*	

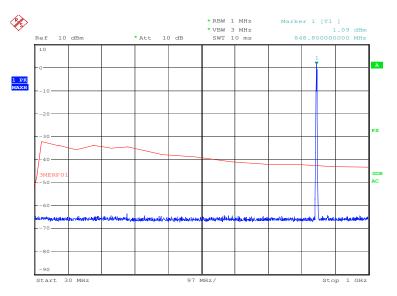
*No emissions were detected within 10 dB of the limit.


GSM 850, 836.40 MHz, 30 MHz to 1 GHz, Emission Limitations for Celluar Equipment Plot

Date: 29.AUG.2016 11:00:10

GSM 850, 836.40 MHz, 1 GHz to 9 GHz, Emission Limitations for Celluar Equipment Plot

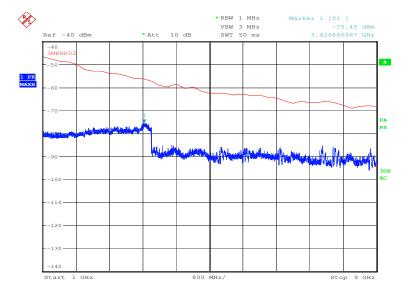
Date: 29.AUG.2016 08:30:00



GSM 850, 848.80 MHz, Emission Limitations for Cellular Equipment Results

Frequency (MHz)	Emission Results (dBm)
*	

*No emissions were detected within 10 dB of the limit.


GSM 850, 848.80 MHz, 30 MHz to 1 GHz, Emission Limitations for Celluar Equipment Plot

Date: 29.AUG.2016 11:01:58

GSM 850, 848.80 MHz, 1 GHz to 9 GHz, Emission Limitations for Celluar Equipment Plot

Date: 29.AUG.2016 08:45:51

FCC 47 CFR Part 22, Limit Clause 22.917 (a)

43+10log(P) or -13 dBm

2.5 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

2.5.1 Specification Reference

FCC 47 CFR Part 22, Clause 22.917 (a) FCC 47 CFR Part 2, Clause 2.1051

2.5.2 Equipment Under Test and Modification State

S/N: IMEI 004401115905156 - Modification State 0

2.5.3 Date of Test

7 September 2016

2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, Clause 6.

Remarks

The EUT was connected using a Rohde and Schwarz CMU 200. Measurements of the EUT were performed using a spectrum analyser.

Testing was carried out with an RBW of 100 kHz as defined in 22.917(b). Measurements were made with a Peak detector and the trace set to Max Hold.

2.5.6 Environmental Conditions

Ambient Temperature	24.0°C
Relative Humidity	68.4%

2.5.7 Test Results

4.0 V DC Supply

GSM 850, 824.20 MHz, Spurious Emissions at Antenna Terminals Results

Frequency (MHz)	Emission Results (dBm)
*	

*No emissions were detected within 20 dB of the limit.

GSM 850, 824.20 MHz, 9 kHz to 1.5 GHz, Spurious Emissions at Antenna Terminals Plot

Keysight Spr	ectrum Analyzer - Swept SA							
_	RF S0 Q DC		SENSE:EXT SOUR	CE OFF	ALIGN AUTO			PM Sep 07, 201
arker 1	824.404053600 M Gate: LO	PNO: Fast -	Trig: Exter Atten: 20 d		Avg Type: Avg Hold:	Log-Pwr 150/150	11	
dB/div	Ref Offset 27.6 dB Ref 37.60 dBm						Mkr1 82 32.	4.40 MH 019 dBi
^{pg}				• 1				
7.6								
7.6								
.60								
.40								
								-13.00 d
2.4								13.00 0
2.4								
2.4								
2.4				also a lla	ail and an international	Lange and the	and a station a late	dands Broom
	المربطية والمتعرف المتعرفا المستخلفات		and the state of the		and the second second	and particular states	the state of the state of the	in the bolies
2.4	ana an an an Anna an An							
art 0.0 I							Stop 1	.5000 GH
tes BW	100 kHz	#V	BW 300 kHz			Sweep	16.00 ms	(40001 pt
3					STATUS			

	RF S0 Q DC		SENSE:EXT SOURCE OFF	ALIGN AUTO		12:23:17 PM Sep 07, 20
arker 1	3.804750000000 Gate: LO			Avg Type: Avg Hold:		TRACE 2 3 4 TYPE MUNITIES DET P NNN
dB/div	Ref Offset 31.51 dB Ref -8.49 dBm				N	lkr1 3.804 75 GH -45.885 dBi
.5						-13.00 d
.6						
.5		♦ ¹				
5	Canadian and a state of the state of the state	in the second second			all all all	
.5	A CONTRACTOR OF STREET, ST.					
.5						
.5						
.6						
.5						
	00 GHz					Stop 9.000 GF

GSM 850, 824.20 MHz, 1.5 GHz to 9 GHz, Spurious Emissions at Antenna Terminals Plot

GSM 850, 836.40 MHz, Spurious Emissions at Antenna Terminals Results

Frequency (MHz)	Emission Results (dBm)
*	

*No emissions were detected within 20 dB of the limit.

GSM 850, 836.40 MHz, 9 kHz to 1.5 GHz, Spurious Emissions at Antenna Terminals Plot

🎉 Ke		Analyzer - Swept SA								
Mar		59 Ω DC .59148047 jate: LO	5 MHz	NO: Fast	SENSE:EXT SOUR Trig: Exter Atten: 20 c	nal1	ALIGN AUTO Avg Typ Avg Hold	e: Log-Pwr I: 150/150	TF	IPM Sep 07, 2016 ACE 2 3 4 5 6 TYPE MWWWWWWW DET PNNNNN
10 dE Log		Offset 27.6 dE 37.60 dBm							Mkr1 83 32.	6.59 MHz 111 dBm
27.6						• 1				
-2.40										-13.00 dBm
-12.4										
-22.4										
-32.4										
-42.4	and the alter	and the section of th		ank eikender		dine stille		a loci da dite dire		
	and a set of set of	in in a star of the second								
	t 0.0 MHz s BW 100 I	kHz		#VB	W 300 kHz			Sweet	Stop 1 5 16.00 ms	1.5000 GHz (40001 pts)
MSG							STATUS			

	RF 50 Ω DC .033125000000 (Gate: LO	GHz	SENSE:EXT SOUR	CE OFF AL	IGN AUTO		12:18:58	PM Sep 07, 201
		PNO: Fast	Trig: Extern Atten: 6 dE		Avg Type: I Avg Hold: 1	.og-Pwr 00/100	1	ACE 2 3 4 5 TYPE MWWW DET PNNNN
) dB/div	Ref Offset 31.51 dB Ref -8.49 dBm					M	lkr1 4.03 -46.	3 13 GH 142 dBr
0								-13.00 d
.6								
.6								
.5		1						
.6		ante a la l	ini a Della Protes anto	-	Angle and the second	SP , and a second second	and a state of the state	and any state of the
			أستعاقها		a state and a second		a della a politika i	and the second
3.5								
.5								
.6								
3.5								
art 1.500							Stop	9.000 GH
Res BW 1	00 KHZ	#VB	W 300 kHz			sweep	77.33 ms	40001 pt

GSM 850, 836.40 MHz, 1.5 GHz to 9 GHz, Spurious Emissions at Antenna Terminals Plot

GSM 850, 848.80 MHz, Spurious Emissions at Antenna Terminals Results

Frequency (MHz)	Emission Results (dBm)
*	

*No emissions were detected within 20 dB of the limit.

GSM 850, 848.80 MHz, 9 kHz to 1.5 GHz, Spurious Emissions at Antenna Terminals Plot

🚺 Key	sight Spect	rum Analyzer - Swept							- 6 -
Mari	ker 1 8	RF 50 Ω 48.9664062 Gate: LO	PNO: Fast	SENSE:EXT SOUR Trig: Exter Atten: 20 d	nal1		Type: Log-Pwr Iold: 200/200		3 AM Sep 07, 2016 RACE 2 3 4 5 6 TYPE MWWWWWW DET P NNNNN
10 dE Log I		Ref Offset 27.6 Ref 37.60 dB						Mkr1 84 32	8.97 MHz .031 dBm
27.6						1			
17.6									
7.60									
-2.40									
-12.4									-13.00 dBm
-22.4									
-42.4				م الم الم	a batan ta	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	- Matoria da ya da Mila	لمتعامد وريقامه مر	- de alte é fablice d
-52.4		nd die die gebreit weben die eerste die die gebreite		ladise and description	and the second				discound a ministration
	t 0.0 M	Hz 00 kHz		W 300 kHz			Swee	Stop ⁻ p 16.00 ms	1.5000 GHz (40001 pts)
MSG		00 MHZ	<i></i>			STAT		p 10.00 ms	(recer pro)

Keysight Spe	ctrum Analyzer - Swept Si								
10 8 9	RF 50 Ω D			SENSE:EXT SOUR	RCE OFF AL	IGN AUTO			PM Sep 07, 201
larker 1	1.6978125000 Gate: LO		PNO: Fast ++ FGain:Low	. Trig: Exter Atten: 6 d		Avg Type: Avg Hold: 2	Log-Pwr 200/200		ACE 2 3 4 5 TYPE MWWWW DET PNNN
0 dB/div	Ref Offset 31.51 Ref -8.49 dBm	dB I					N	lkr1 1.69 -44.	7 81 GH 200 dBr
-9									-13.00 df
3.5									
3.6									
8.5									
9.5		41.4	the state of the state	a star a	THE OWNER OF A	age for the second	and the second	instant and	Constant of
a a state		distant of		the shift of the second		a sufficient state		and the second s	Contraction of the
3.5									
3.5									
3.5									
3.5									
3.5									
tart 1.50 Res BW			#)(D	W 300 kHz			Swaan	Stop	9.000 GH
10-51 211	100 KHZ		#VB	W JUU KHZ			Sweep	77.33 ms	40001 Dt

GSM 850, 848.80 MHz, 1.5 GHz to 9 GHz, Spurious Emissions at Antenna Terminals Plot

FCC 47 CFR Part 22, Limit Clause 22.917 (a)

43+10log(P) or -13 dBm

2.6 26 dB BANDWIDTH

2.6.1 Specification Reference

FCC 47 CFR Part 22, Clause 22.917 (b) FCC 47 CFR Part 2, Clause 2.1049 (h)

2.6.2 Equipment Under Test and Modification State

S/N: IMEI 004401115905156 - Modification State 0

2.6.3 Date of Test

26 August 2016

2.6.4 Test Equipment Used

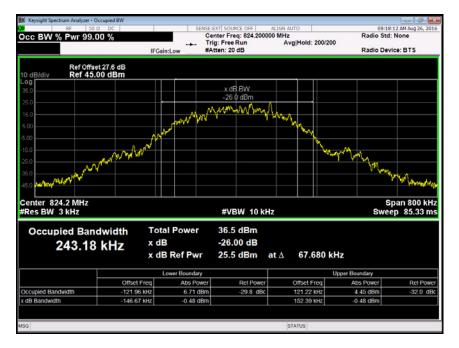
The major items of test equipment used for the above tests are identified in Section 3.1.

2.6.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, Clause 4.1.

2.6.6 Environmental Conditions

Ambient Temperature21.4 - 23.6°CRelative Humidity48.5 - 48.8%

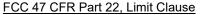

2.6.7 Test Results

4.0 V DC Supply

GSM 850, GMSK, 26 dB Bandwidth Results

824.20 MHz	836.40 MHz	848.80 MHz
kHz	kHz	kHz
299.06	298.16	299.32

GSM 850, 824.20 MHz, GMSK, 26 dB Bandwidth Plot



Keysight Spectrum Analyzer - Oc	Sector Contraction Contraction					
enter Freq 836.400	0000 MHz	Ce	EXT SOURCE OFF nter Freq: 836.4000 g: Free Run tten: 20 dB	ALIGN AUTO 00 MHz Avg[Hold: 200/	Radio Std	
Ref Offset dB/div Ref 45.0						
5.0			x dB BW -26.0 dBm			
5.0		amount	monthen	Mm.		
	ſ	ndur		" wy		
	of the second second				man Mary	What
enter 836.4 MHz Res BW 3 kHz			#VBW 10 kH	-iz		pan 800 kH ep 85.33 m
Occupied Band 240.51	kHz ×	otal Power dB dB Ref Pwr	36.5 dBm -26.00 dB 25.6 dBm	at 🛆 67.360	kHz	
					Upper Boundary	
		Lower Boundary				
-	Offset Freq	Lower Boundary Abs Power	Rel Power	Offset Freq	Abs Power	Rel Pow
	-121.30 kHz	Abs Power 8.61 dBm	Rel Power -27.9 dBc	119.22 kHz	7.22 dBm	Rel Pow -29.3 dE
cupied Bandwidth JB Bandwidth		Abs Power				

GSM 850, 836.40 MHz, GMSK, 26 dB Bandwidth Plot

None specified.

2.7 MODULATION CHARACTERISTICS

2.7.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1047 (d)

2.7.2 Test Results

GSM 850, Modulation Characteristics, Customer Description

The modulation scheme used in GSM is called Gaussian Minimum Shift Keying (GMSK). GMSK facilitates the use of narrow bandwidth and allows for both coherent and non coherent detection capabilities. It is a scheme in which the transitions from One to Zero or Zero to One do not occur quickly, but over a period of time. If pulses are transmitted quickly harmonics are transmitted. The power spectrum for a square wave is rich in harmonics, and the power within the side lobes is wasted, and can be a cause of potential interference.

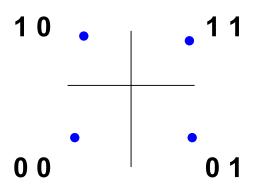
A method to reduce the harmonics is to round off the edges of the pulses thus lowering the spectral components of the signal. In GSM this is done by using a Gaussian pre-filter which typically has a bandwidth of 81.25kHz. The output from the Gaussian filter then phase modulates the carrier. As there are no dramatic phase transitions of the carrier this gives a constant envelope and low spectral component output from the transmitter.

The spectral efficiency is calculated by

bit rate / Channel bandwidth = 270.83333 kbit/s / 200 kHz = 1.354 bit/s/Hz.

The bandwidth product BT = Bandwidth x bit duration = 81.25 kHz x 3.6923 micros = 0.3

GMSK OVERVIEW


The modulation scheme used for the EUT is GMSK.

A brief overview of how GMSK works is shown below.

GMSK (Gaussian Minimum Shift Keying)

The fundamental principal behind GMSK is Phase shift keying. This splits a data stream into a series of 2-digit phase shifts, using the following phase shifts to represent data pairs.

Therefore for the BIT sequence 0 0 1 1 1 0 0 1 The corresponding phase shift will be used

BIT SEQUEN	CE	00	11	10	01
PHASE	225°	45°	135°	315°	

This is called QPSK (Quadratic Phase Shift Keying)

However

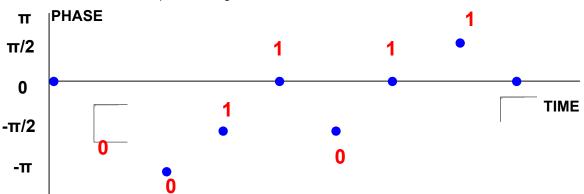
There is a problem with QPSK: transition from e.g. 00 to 11 gives phase shift of 180° (π radians). This has the effect of inverting the carrier waveform and this can lead to detection errors at the receiver.

Solution: restrict phase changes to ± 90°

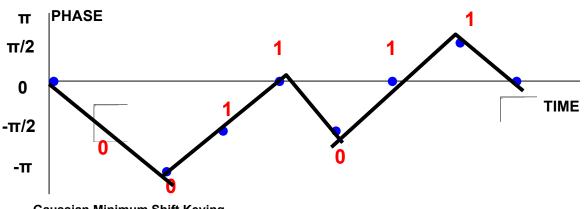
1. Split bitstream into 2 streams e.g.

	0 0		11		0 1		10	
I Stream	0		1		0		1	
Q stream		0		1		1		0

2. Modulate each stream with PSK (1 = 90° or $\pi/2$, 0 = -90° or - $\pi/2$ phase shift)


I Stream	0		1		0		1	
	-π/2		-π/2		-π/2		π/2	
Q stream		0		1		1		0
		-π/2		π/2		π/2		-π/2

3. Combine (add) the two PSK signals:


Combined Phase	-π/2	-π	-π/2	0	-π/2	0	π/2	0

Result: offset - QPSK, phase change is restricted to $\pm \pi/2$ radians:

It would be preferable to have "gradual" changes in place between each pair of bits (Continuous-phase modulation). Replacing each "rectangular" shaped pulse (for 1 or 0) with a sinusoidal pulse can do this:

Result: Minimum Shift Keying (MSK):

Gaussian Minimum Shift Keying

MSK has high sidebands relative to the main lobes in the frequency domain - this can lead to interference with adjacent signals.

If the rectangular pulses corresponding to the bitstream are filtering using a Gaussian-shaped impulse response filter, we get Gaussian MSK (GMSK) - this has low sidelobes compared to MSK.

FCC 47 CFR Part 2, Limit Clause 2.1047 (d)

A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.1 - Frequency Toler	ance				
Radio Communications Test Set	Rohde & Schwarz	CMU 200	442	12	18-Jan-2017
Attenuator (20dB/ 2W)	Pasternack	PE7004-20	489	12	30-Oct-2016
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	5-Mar-2017
Radio Communications Test Set	Rohde & Schwarz	CMU 200	2809	12	19-Jul-2017
Climatic Chamber	TAS	Micro 225	2892	-	O/P Mon
Thermocouple Thermometer	Fluke	51	3174	12	9-Dec-2016
Hygrometer	Rotronic	I-1000	3220	12	23-Aug-2017
Power Divider	Weinschel	1506A	3345	12	7-Jun-2017
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	5-Mar-2017
Hygropalm Temperature and Humidity Meter	Rotronic	HP21	4410	12	27-Apr-2017
2 metre SMA Cable	Florida Labs	SMS-235SP-78.8- SMS	4518	12	16-Feb-2017
1 metre K-Type Cable	Florida Labs	KMS-180SP-39.4- KMS	4519	12	16-Feb-2017
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	8-Oct-2016
2 Channel PSU	Rohde & Schwarz	HMP2020	4735	-	TU
Section 2.2 - Spurious Emissi	ons at Band Edge				
Radio Communications Test Set	Rohde & Schwarz	CMU 200	442	12	18-Jan-2017
Multimeter	Fluke	75 Mk3	455	12	10-Sep-2016
20dB/2W Attenuator	Narda	4772-20	462	-	TU
Attenuator (20dB/ 2W)	Pasternack	PE7004-20	489	12	30-Oct-2016
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	5-Mar-2017
Hygrometer	Rotronic	I-1000	3220	12	23-Aug-2017
Power Divider	Weinschel	1506A	3345	12	7-Jun-2017
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Combiner/Splitter	Weinschel	1506A	3878	12	7-Jun-2017
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	5-Mar-2017
Digital Multi-meter	Iso-tech	IDM93N	4435	12	25-Aug-2017
2 metre SMA Cable	Florida Labs	SMS-235SP-78.8- SMS	4518	12	16-Feb-2017
1 metre K-Type Cable	Florida Labs	KMS-180SP-39.4- KMS	4519	12	16-Feb-2017
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	8-Oct-2016
2 Channel PSU	Rohde & Schwarz	HMP2020	4735	-	TU

COMMERCIAL-IN-CONFIDENCE

Product Service

Section 2.3 - Maximum Conducted Output Power Radio Communications Test Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Set Multimeter Fluke 75 MK3 455 12 10-Sep-2016 20dB/2W Attenuator Narda 4772-20 462 - TU Rubidium Standard Rohde & Schwarz XSRM 1316 6 3-Sep-2016 Hygrometer Rohonic L1000 3220 12 19-Aug-2017 Herkork Analyser Rohonic Schwarz ZVA 40 3987 12 2-Sep-2016 Communications/Splitter Weinschel Schwarz ZVA 40 3982 12 2-Sep-2016 Power Sensor Aglient Technologies N1921A 3982 12 2-Sep-2016 Calibration Unit Rohde & Schwarz ZV-Z54 4368 12 3-Sep-2016 Guideand Radio Test Set Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Section 2.4 - Ensistion Limitations for Cellular Equipment Rohde & Schwarz <td< th=""><th>Instrument</th><th>Manufacturer</th><th>Туре No.</th><th>TE No.</th><th>Calibration Period (months)</th><th>Calibration Due</th></td<>	Instrument	Manufacturer	Туре No.	TE No.	Calibration Period (months)	Calibration Due
Set Fuke 75 Mk3 455 12 10-Sep-2016 20dB/2W Attenuator Narda 4772-20 462 - TU Rubidum Standard Rohde & Schwarz XSRM 1316 6 3-Sep-2016 Hygrometer Rohde & Schwarz ZVA 40 3548 12 2-Sep-2016 Combiner/Splitter Weinschel 1506A 3648 12 2-Sep-2016 Ontz-16 Griz Wideband Aglient Technologies N1911A 3980 12 2-Sep-2016 Calibration Unit Rohde & Schwarz ZV-Z54 4368 12 7-Sep-2016 Frequency Standard Spectracom Secure Sync 1200- 4933 6 3-Sep-2016 Videband Radio Test Set Rohde & Schwarz CMW200 4546 12 3-Feb-2017 Screened Room (5) Rainford Rainford 1545 36 2-Obce-2017 Turntable Controller Inn-Co GmbH CO 1000 1606 1 1-Uun-2017 Screened Room (5) Rainford Rainford	Section 2.3 - Maximum Condu	cted Output Power				
20dB/2W Attenuator Narda 4772-20 462 . TU Rubidum Standard Rohde & Schwarz XSRM 1316 6 3-5ep-2016 Hygrometer Rotronic L-1000 3220 12 19-Aug-2017 Combiner/Splitter Weinschel 1506A 3578 12 7-Jun-2017 P-Seres Power Meter Aglient Technologies N1911A 3980 12 25-Sep-2016 Calibration Unit Rohde & Schwarz ZV-Z54 4368 12 7-Sep-2016 Frequency Standard Spectracom Secure Sync 1200- 4393 6 3-Sep-2016 Videband Radio Test Set Rohde & Schwarz CMU 200- 4735 - TU Schonz 2.4 Rohde & Schwarz CMU 200- 4735 - TU Schonz 2.4 Rohde & Schwarz CMU 200- 4742 12 18-Jan-2017 Standom 2.5 Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Standom 3.5 Ratinford Rahford 1545		Rohde & Schwarz	CMU 200	442	12	18-Jan-2017
Rubidum Standard Rohde & Schwarz XSRM 1316 6 3-Sep-2016 Hygrometer Rohde & Schwarz ZVA 40 3548 12 12-9-92-2016 Combiner/Splitter Weinschel 1506A 3878 12 7-Jun-2017 P-Series Power Meter Aglient Technologies N1911A 3980 12 25-Sep-2016 Calibration Unit Rohde & Schwarz ZV-Z54 4368 12 7-Sep-2016 Frequency Standard Spectracom Secure Sync 1200 4333 6 3-Sep-2016 Videband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 2 channel PSU Rohde & Schwarz CMW200 4546 12 3-Feb-2017 2 channel Rom (5) Rainford Rainford 1545 36 20-Dec-2017 2 metana (Biog) Chase CBL/JAR (200) 442 12 19-Jan-2017 2 Mit Standard Rohde & Schwarz CSUA 3506 12 2-No-2016 3 Frequency Standard Rainford </td <td></td> <td>Fluke</td> <td></td> <td></td> <td>12</td> <td>10-Sep-2016</td>		Fluke			12	10-Sep-2016
Hygrometer Rotronic I-1000 3220 12 19-Aug-2016 Network Analyser Rohde & Schwarz ZVA 40 3548 12 2-Sep-2016 Ombiner/Splitter Weinschel 1506A 3878 12 Z-Sep-2016 OS MHz-18 GHz Wideband Agilent Technologies N1911A 3982 12 Z5-Sep-2016 Calibration Unit Rohde & Schwarz ZV-Z54 4368 12 7-Sep-2016 Calibration Unit Rohde & Schwarz CMW500 4546 12 3-Feb-2017 Videband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 Section 2.4 - Emission Limitations for Cellular Equipment Radio Communications Test Rahde & Schwarz CMU200 442 12 18-Jan-2017 Sereened Room (5) Rainford Rainford 1645 36 20-Dec-2017 Turntable Controller Inn-Co GmbH C0 1000 1606 - TU Antenna (Bilog) Chase CBL6143 2904 24 11-Jun-2017	20dB/2W Attenuator			462		
Instruct Analyser Rohde & Schwarz ZVA 40 3548 12 2-Sep-2016 Combiner/Splitter Weinschel 1506A 3878 12 7-Jun-2017 P-Series Power Meter Agilent Technologies N1911A 3980 12 25-Sep-2016 Solutiz-18 Grtz Wideband Agilent Technologies N1921A 3982 12 25-Sep-2016 Calibration Unit Rohde & Schwarz ZV-Z54 4368 12 7-Sep-2016 Wideband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 Section 2.4 Emission Limitations for Collar Egupment CMU 200 442 12 18-Jan-2017 Set Turntable Controller Inn-Co GmbH CO 1000 1666 - TU Antenna (Biog) Chale & Schwarz CMU 200 442 12 1-Nu-2017 Bm R Cable (N Type) Rhohde & Schwarz ESU40 3506 12 2-Nov-2016 Turntable Controller Inn-Co GmbH CO 1000 1606 - TU Digital	Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	
Combner/Splitter Weinschel 1506A 3878 12 7-Jun-2017 P-Series Dwer Meter Aglient Technologies N1911A 3980 12 25-Sep-2016 Galibration Unit Rohde & Schwarz ZV-Z54 4388 12 7-Sep-2016 Galibration Unit Rohde & Schwarz ZV-Z54 4388 12 7-Sep-2016 Videband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Sep-2016 Videband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 Section 2.4 - Emission Limitations for Cellular Equipment Radio Communications Test Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Sectened Room (5) Rainford Rainford 1545 36 20-Dec-2017 Turntable Controller Inn-Co GmH CO 1000 1606 - TU Antenna (Bilog) Rohde & Schwarz ESU40 3506 12 2-Nov-2016 Sm RF Cable (N Type) Rohpase NPS-3203-9000- 3791 -	,0	Rotronic		3220		
P-Series Power Meter Aglient Technologies N1911A 3980 12 25-Sep-2016 OMHz-8 64 2Wideband Aglient Technologies N1921A 3982 12 25-Sep-2016 Calibration Unit Rohde & Schwarz ZV-Z54 4388 12 7-Sep-2016 Frequency Standard Spectracom Secure Sync 1200 4333 6 3-Sep-2016 Wideband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 2 channel PSU Rohde & Schwarz CMW500 442 12 18-Jan-2017 Section 2.4 - Emission Limitations for Cellular Equipment Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Section 2.4 - Emission Limitations for Cellular Equipment Rohde & Schwarz CMU 200 442 11-Jun-2017 Section 2.4 - Enission Limitations for Cellular Equipment Rohde & Schwarz ESU40 3506 12 2-Nov-2016 Turntable Controller Inne-Co GmbH CO 1000 1606 - TU Bigliat Hermon Hygrometer Radio Spares 1260 30		Rohde & Schwarz		3548		
50 MHz-18 GHz Wideband Power Sensor Aglient Technologies N1921A 3982 12 25-Sep-2016 Calibration Unit Rohde & Schwarz ZV-Z54 4368 12 7-Sep-2016 Wideband Radio Test Set Rohde & Schwarz ZWW500 4546 12 3-Feb-2017 Videband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 Zchannel PSU Rohde & Schwarz LMW200 4735 - TU Sectore 2.4 - Emission Limitations for Cellular Equipment Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Settened Room (5) Rainford Rainford Rainford 1545 36 20-Dec-2017 Turntable Controller Im-Co GmbH CO 1000 1606 - TU Antenna (Bilog) Chase CBL6143 2904 24 11-Jun-2017 Mast Controller maturo Gmbh TAM 4.0-P 3916 - TU Mast Controller maturo Gmbh NCD 3917 - TU <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Power Sensor Dock & Schwarz ZV-Z54 4368 12 7-Sep-2016 Calibration Unit Rohde & Schwarz ZV-Z54 4393 6 3-Sep-2016 Wideband Radio Test Set Rohde & Schwarz CMW300 4546 12 3-Feb-2017 2 Channel FSU Rohde & Schwarz CMW200 4735 - TU Section 2.4 - Emission Limitations for Cellular Equipment - TU - TU Screened Room (5) Rainford Rainford 1545 36 20-Dec-2017 Turntable Controller Inn-Co GmbH C0 1000 1606 - TU Antenna (Biog) Chase CBL6143 2904 24 11-Jun-2017 EMI Cable (N Type) Rhohase NPS-3030-9000- NPS 3791 - TU Mast Controller maturo Gmbh NLOP 3916 - TU Mast Controller maturo Gmbh NCD 3917 - TU Mast Controller Rohde & Schwarz CMU 200 4421						
Frequency Standard Spectracom Secure Sync 1200- 0408-0600 4393 4393 6 3-Sep-2016 Wideband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 2 Channel PSU Rohde & Schwarz IMP2020 4735 - TU Section 2.4 - Emission Limitations for Section 2.4 - Emission Limitations for Cellular Equipment 18-Jan-2017 18-Jan-2017 Screened Room (5) Rainford Rainford 1645 36 20-Dec-2017 Turntable Controller Inn-Co GmbH CO 1000 1666 - TU Antenna (Bilog) Chase CBL6143 2904 24 11-Jun-2017 PM RF Cable (N Type) Rhophase NPS-2303-9000- 3791 - TU Mast Controller maturo Gmbh NCD 3916 - TU Mast Controller maturo Gmbh NCD 3917 - TU Duble Ridged Waveguide ETS-Lindgren 3117 4722 12 29-Dec-2016 Hon Antenna Soctico 2.5 Spurious Emi		Agilent Technologies	N1921A	3982	12	25-Sep-2016
Udeband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 2 Channel PSU Rohde & Schwarz HMP2020 4735 - TU Section 2.4 - Emission Limitations for Cellular Equipment Radio Communications Test Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Sectened Room (5) Rainford Rainford 1545 36 20-Dec-2017 Turntable Controller Inn-Co GmbH CO 1000 1606 - TU Antenna (Blog) Chase CBL6143 2904 24 11-Jun-2017 EMI Test Receiver Rohde & Schwarz ESU40 3506 12 2-Nov-2016 9m RF Cable (N Type) Rhophase NPS-2303-9000- 3791 - TU Mats Controller maturo Gmbh TAM 4.0-P 3916 - TU Digital thermo Hygrometer Radio Spares 1260 4420 12 23-Aug-2017 Cable (Yellow, Rx, Km-Km Scott Cables KPS-1501-2000- 4527 - TU	Calibration Unit	Rohde & Schwarz		4368	12	7-Sep-2016
Wideband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 2 Channel PSU Rohde & Schwarz HMP2020 4735 - TU Section 2.4 - Emission Limitations for Cellular Equipment Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Screened Room (5) Rainford Rainford 1545 36 20-Dec-2017 Turntable Controller Inn-Co GmbH CO 1000 1606 - TU Antenna (Biog) Chase CBL6143 2904 24 11-Jun-2017 EMI Test Receiver Rohde & Schwarz ESU40 3506 12 2-Nov-2016 9m RF Cable (N Type) Rhophase NPS-3203-9000- NPS TU Mast Controller TU Mast Controller maturo Gmbh NCD 3917 - TU Mast Controller maturo Gmbh NCD 3917 - TU Section 2.5 - Spurious Emissions at Antenna Terminals KPS-1501-2000- 4527 - TU Section 2.5 - Spurious Emiss	Frequency Standard	Spectracom		4393	6	3-Sep-2016
2 Channel PSU Rohde & Schwarz HMP2020 4735 - TU Section 2.4 - Emission Limitations for Cellular Equipment Radio Communications Test Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Set Screened Room (5) Rainford Rainford 1545 36 20-Dec-2017 Turntable Controller Inn-Co GmbH CO 1000 1606 - TU Antenna (Bliog) Chase CBL6143 2904 24 11-Jun-2017 EMI Test Receiver Rohde & Schwarz ESU40 3506 12 2-Nov-2016 9m RF Cable (N Type) Rhophase NPS-2303-9000- 3791 - TU Mast Controller maturo Gmbh NAM 4.0-P 3916 - TU Digital ithermor Hygrometer Radio Spares 1260 4300 12 23-Aug-2017 Cable (Yellow, Rx, Km-Km Socti Cables KPS-1501-2000- 4527 - TU Duble Ridged Waveguide ETS-Lindgren 3117 4722 12 29-Dec-2016	Wideband Radio Test Set	Rohde & Schwarz		4546	12	3-Feb-2017
Section 2.4 - Emission Limitations for Cellular Equipment Radio Communications Test Set Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Screened Room (5) Rainford Rainford 1545 36 20-Dec-2017 Turntable Controller Inn-Co GmbH CO 1000 1606 - TU Antenna (Bilog) Chase CBL6143 2904 24 11-Jun-2017 EMI Test Receiver Rohde & Schwarz ESU40 3506 12 2-Nov-2016 9m RF Cable (N Type) Rhophase NPS 3916 - TU Mast Controller maturo Gmbh NCD 3917 - TU Mast Controller maturo Gmbh NCD 427 - TU Cable (Yellow, Rx, Km-Km Soct Cables KPS-1501-2000- 4527 - TU 2m) Sott Cables KPS-1501-2000- 4527 - TU 29-Dec-2016 Atorn Antenna TTS-Lindgren 3117 4722 12 29-Dec-2016 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
Radic Communications Test Set Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Set Screened Room (5) Rainford Rainford 1545 36 20-Dec-2017 Turntable Controller Inn-Co GmbH CO 1000 1606 - TU Antenna (Biog) Chase CBL6143 2904 24 11-Jun-2017 BM Test Receiver Rohde & Schwarz ESU40 3506 12 2-Nov-2016 9m RF Cable (N Type) Rhophase NPS-2303-9000- 3791 - TU Mast Controller maturo Gmbh TAM 4.0-P 3916 - TU Mast Controller maturo Gmbh NCD 3917 - TU Digital thermo Hygrometer Radio Spares 1260 4300 12 23-Aug-2017 Cable (Yellow, Rx, Km-Km Scott Cables KPS-1501-2000- KPS - TU Section 2.5 Spurious Emissions at Antenna Terminals - TU - TU Radio Communications Test Rohde &					•	
Screened Room (5) Rainford Rainford Rainford 1545 36 20-Dec-2017 Turntable Controller Inn-Co GmbH CO 1000 1606 - TU Antenna (Bilog) Chase CBL6143 2904 24 11-Jun-2017 EMI Test Receiver Rohde & Schwarz ESU40 3506 12 2-Nov-2016 9m RF Cable (N Type) Rhophase NPS-2303-9000- 3791 - TU Mast Controller maturo Gmbh NCD 3916 - TU Digital thermo Hygrometer Radio Spares 1260 4300 12 23-Aug-2017 Cable (Yellow, Rx, Km-Km Scott Cables KPS-1501-2000- 4527 - TU Double Ridged Waveguide ETS-Lindgren 3117 4722 12 29-Dec-2016 Horn Antenna Scott Cables RPS 12 10-Sep-2016 Setion 2.5 - Spurious Emissions at Antenna Terminals Radio Communications Test Rohde & Schwarz CMU 200 442 12 18-Jan-2017 <	Radio Communications Test			442	12	18-Jan-2017
Turntable Controller Inn-Co GmbH CO 1000 1606 - TU Antenna (Blog) Chase CBL6143 294 24 11-Jun-2017 EMI Test Receiver Rohde & Schwarz ESU40 3506 12 2-Nov-2016 9m RF Cable (N Type) Rhophase NPS-2303-9000- NPS 3791 - TU 11 Antenna Mast maturo Gmbh TAM 4.0-P 3916 - TU Digital thermo Hygrometer Radio Spares 1260 4300 12 23-Aug-2017 Cable (Yellow, RX, Km-Km Scott Cables KPS-1501-2000- KPS 4527 - TU 2m) cstt Cables KPS-1501-2000- KPS 4527 - TU 2m) cstot Cables KPS-1501-2000- KPS 4527 - TU 2motherna Mattimeter Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Setton 2.5 - Spurious Emissions at Antenna Terminals - TU - TU Multimeter Fluke 75 Mk3 455 <td< td=""><td></td><td>Rainford</td><td>Rainford</td><td>1545</td><td>36</td><td>20-Dec-2017</td></td<>		Rainford	Rainford	1545	36	20-Dec-2017
Antenna (Bilog) Chase CBL6143 2904 24 11-Jun-2017 EMI Test Receiver Rohde & Schwarz ESU40 3566 12 2-Nov-2016 9m RF Cable (N Type) Rhophase NPS-2303-9000- 3791 - TU 9m RF Cable (N Type) maturo Gmbh TAM 4.0-P 3916 - TU Mast Controller maturo Gmbh NCD 3917 - TU Digital thermo Hygrometer Radio Spares 1260 4300 12 23-Aug-2017 Cable (Yellow, Rx, Km-Km Scott Cables KPS-1501-2000- 4527 - TU 2m) KPS 117 4722 12 29-Dec-2016 Atom Antenna ETS-Lindgren 3117 4722 12 18-Jan-2017 Section 2.5 - Spurious Emissions at Antenna Terminals Radio Communications Test Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Vet Fluke 75 Mk3 455 12 10-Sep-2016 20dB/2W Attenuator Narda						
EMI Test Receiver Rohde & Schwarz ESU40 3506 12 2-Nov-2016 9m RF Cable (N Type) Rhophase NPS-2303-9000- NPS 3791 - TU Mast Controller maturo Gmbh TAM 4.0-P 3916 - TU Mast Controller maturo Gmbh NCD 3917 - TU Objital thermo Hygrometer Radio Spares 1260 4300 12 23-Aug-2017 Cable (Yellow, Rx, Km-Km Scott Cables KPS-1501-2000- KPS 4527 - TU Double Ridged Waveguide ETS-Lindgren 3117 4722 12 29-Dec-2016 Horn Antenna ETS-Lindgren 3117 4722 12 18-Jan-2017 Set Rohde & Schwarz CMU 200 442 12 10-Sep-2016 OdB/ZW Attenuator Narda 4772-20 462 - TU Multimeter Fluke 75 Mk3 455 12 10-Sep-2016 OdB/ZW Attenuator Narda 4772-20 462 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>						-
9m RF Cable (N Type) Rhophase NPS-2303-9000- NPS 3791 - TU Mast Controller maturo Gmbh TAM 4.0-P 3916 - TU Mast Controller maturo Gmbh NCD 3917 - TU Digital thermo Hygrometer Radio Spares 1260 4300 12 23-Aug-2017 Cable (Yellow, Rx, Km-Km Scott Cables KPS-1501-2000- KPS 4527 - TU Double Ridged Waveguide ETS-Lindgren 3117 4722 12 29-Dec-2016 Horn Antenna ETS-Lindgren 3117 4722 12 18-Jan-2017 Set Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Multimeter Fluke 75 Mk3 455 12 10-Sep-2016 Attenuator (20dB/ 2W) Pasternack PE7004-20 489 12 30-Oct-2016 Rubidium Standard Rohde & Schwarz XSRM 1316 6 5-Mar-2017 Hygrometer Daden Anthony Ass MH-1500-7SS <t< td=""><td></td><td>÷</td><td></td><td></td><td></td><td></td></t<>		÷				
Tilt Antenna Mast maturo Gmbh TAM 4.0-P 3916 - TU Mast Controller maturo Gmbh NCD 3917 - TU Digital thermo Hygrometer Radio Spares 1260 4300 12 23-Aug-2017 Cable (Yellow, Rx, Km-Km Scott Cables KPS-1501-2000- 4527 - TU 2m) Scott Cables KPS 12 29-Dec-2016 Section 2.5 - Spurious Emissions at Antenna Terminals - 442 12 18-Jan-2017 Set Rohde & Schwarz CMU 200 442 12 10-Sep-2016 20dB/2W Attenuator Narda 4772-20 462 - TU Attenuator (20dB/ 2W) Pasternack PE7004-20 489 12 30-Oct-2016 <t< td=""><td></td><td></td><td>NPS-2303-9000-</td><td></td><td></td><td></td></t<>			NPS-2303-9000-			
Mast Controller maturo Gmbh NCD 3917 - TU Digital thermo Hygrometer Radio Spares 1260 4300 12 23-Aug-2017 Cable (Yellow, Rx, Km-Km Scott Cables KPS-1501-2000- KPS 4527 - TU Double Ridged Waveguide ETS-Lindgren 3117 4722 12 29-Dec-2016 Horn Antenna Section 2.5 - Spurious Emissions at Antenna Terminals Exection 2.5 - Spurious Emissions at Antenna Terminals 18-Jan-2017 Sett Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Set Narda 4772-20 462 - TU Multimeter Fluke 75 Mk3 455 12 10-Sep-2016 20dB/2W Attenuator Narda 4772-20 462 - TU Attenuator (20dB/2W) Pasternack PE7004-20 489 12 30-Oct-2016 Rubidium Standard Rohde & Schwarz XSRM 1316 6 5-Mar-2017 Hygrometer Rotronic I-1000 3	Tilt Antenna Mast	maturo Gmbh		3916	_	ТЦ
Digital thermo Hygrometer Radio Spares 1260 4300 12 23-Aug-2017 Cable (Yellow, Rx, Km-Km 2m) Scott Cables KPS-1501-2000- KPS 4527 - TU Double Ridged Waveguide Horn Antenna ETS-Lindgren 3117 4722 12 29-Dec-2016 Section 2.5 - Spurious Emissions at Antenna Terminals Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Set Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Set Pilke 75 Mk3 455 12 10-Sep-2016 OddR/2W Attenuator Narda 4772-20 462 - TU Attenuator (20dB/2W) Pasternack PE7004-20 489 12 30-Oct-2016 Rubidium Standard Rohde & Schwarz XSRM 1316 6 5-Mar-2017 Hygrometer Daden Anthony Ass MH-1500-7SS 2778 12 5-Feb-2017 Hygrometer Rotronic I-1000 3220 12 1-Jun-2017 Signal Generator: 10MHz to						-
Cable (Yellow, Rx, Km-Km 2m)Scott CablesKPS-1501-2000- KPS4527-TU2m)ETS-Lindgren311747221229-Dec-2016Boutble Ridged WaveguideETS-Lindgren311747221229-Dec-2016Horn AntennaETS-Lindgren311747221218-Jan-2017Section 2.5 - Spurious Emissions at Antenna TerminalsCMU 2004421218-Jan-2017Radio Communications TestRohde & SchwarzCMU 2004421210-Sep-201620dB/2W AttenuatorNarda4772-20462-TUAttenuator (20dB/2W)PasternackPE7004-204891230-Oct-2016Rubidium StandardRohde & SchwarzXSRM131665-Mar-2017FilterDaden Anthony AssMH-1500-7SS27781225-Feb-2017HygrometerRotronicI-100032201223-Aug-2017Power DividerWeinschel1506A3345127-Jun-2017High Pass Filter (3GHz)RLC ElectronicsF-100-3000-5-R3349121-Jun-2017Zignal Generator: 10MHz to 20GHzRohde & SchwarzZVA 403548122-Sep-2016Combiner/SplitterWeinschel1506A3878127-Jun-2017Calibration UnitRohde & SchwarzZV-Z544368127-Sep-2016Frequency StandardSpectracomSecure Sync 1200- 0408-0601439365-Mar-2017Digital Multi-meter <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>			-			
Double Ridged Waveguide Horn Antenna ETS-Lindgren 3117 4722 12 29-Dec-2016 Section 2.5 - Spurious Emissions at Antenna Terminals Radio Communications Test Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Set Radio Communications Test Rohde & Schwarz CMU 200 442 12 18-Jan-2017 Multimeter Fluke 75 Mk3 455 12 10-Sep-2016 20dB/2W Attenuator Narda 4772-20 462 - TU Attenuator (20dB/2W) Pasternack PE7004-20 489 12 30-Oct-2016 Rubidium Standard Rohde & Schwarz XSRM 1316 6 5-Mar-2017 Hygrometer Daden Anthony Ass MH-1500-7SS 2778 12 5-Feb-2017 Hygrometer Weinschel 1506A 3345 12 7-Jun-2017 Signal Generator: 10MHz to Rohde & Schwarz ZVA 40 3548 12 7-Jun-2017 Odg/2 Rohde & Schwarz ZVA 40 366 5-Mar-2017	Cable (Yellow, Rx, Km-Km		KPS-1501-2000-			
Section 2.5 - Spurious Emissions at Antenna TerminalsRadio Communications Test SetRohde & SchwarzCMU 2004421218-Jan-2017MultimeterFluke75 Mk34551210-Sep-201620dB/2W AttenuatorNarda4772-20462-TUAttenuator (20dB/ 2W)PasternackPE7004-204891230-Oct-2016Rubidium StandardRohde & SchwarzXSRM131665-Mar-2017FilterDaden Anthony AssMH-1500-7SS2778125-Feb-2017HygrometerRotronicI-100032201223-Aug-2017Power DividerWeinschel1506A3345127-Jun-2017High Pass Filter (3GHz)RLC ElectronicsF-100-3000-5-R3349121-Jun-2017Signal Generator: 10MHz to 20GHzRohde & SchwarzSMR2034751226-Feb-2017Network AnalyserRohde & SchwarzZVA 403548127-Jun-2017Calibration UnitRohde & SchwarzZV-Z544368127-Sep-2016Frequency StandardSpectracomSecure Sync 1200- 408-06145181225-Aug-20171Inetre K-Type CableFlorida LabsSMS-235SP-78.8- SMS45181216-Feb-20171metre K-Type CableFlorida LabsKMS-180SP-39.4- KMS45181216-Feb-2017Wideband Radio Test SetRohde & SchwarzCMW5004546123-Feb-2017PXA Signal A	Double Ridged Waveguide	ETS-Lindgren		4722	12	29-Dec-2016
Radio Communications Test SetRohde & SchwarzCMU 2004421218-Jan-2017MultimeterFluke75 Mk34551210-Sep-201620dB/2W AttenuatorNarda4772-20462-TUAttenuator (20dB/ 2W)PasternackPE7004-204891230-Oct-2016Rubidium StandardRohde & SchwarzXSRM131665-Mar-2017FilterDaden Anthony AssMH-1500-7SS2778125-Feb-2017HygrometerRotronicI-100032201223-Aug-2017Power DividerWeinschel1506A3345127-Jun-2017High Pass Filter (3GHz)RLC ElectronicsF-100-3000-5-R3349121-Jun-2017Signal Generator: 10MHz to 20GHzRohde & SchwarzSMR2034751226-Feb-2017Network AnalyserRohde & SchwarzZVA 403548127-Jun-2017Calibration UnitRohde & SchwarzZV-Z544368127-Jun-2017Digital Multi-meterIso-techIDM93N44351225-Aug-20171metre SMA CableFlorida LabsKMS-180SP-39.4- KMS45181216-Feb-20171metre K-Type CableFlorida LabsKMS-180SP-39.4- KMS45191216-Feb-2017Yideband Radio Test SetRohde & SchwarzCMW5004546123-Feb-2017PXA Signal AnalyserKeysightN9030A4654128-Oct-2016		ana at Antanna Tarmina				
Set Fluke 75 Mk3 455 12 10-Sep-2016 20dB/2W Attenuator Narda 4772-20 462 - TU Attenuator (20dB/2W) Pasternack PE7004-20 489 12 30-Oct-2016 Rubidium Standard Rohde & Schwarz XSRM 1316 6 5-Mar-2017 Filter Daden Anthony Ass MH-1500-7SS 2778 12 23-Aug-2017 Hygrometer Rotronic I-1000 3220 12 23-Aug-2017 Power Divider Weinschel 1506A 3345 12 7-Jun-2017 Signal Generator: 10MHz to Rohde & Schwarz SMR20 3475 12 26-Feb-2017 Network Analyser Rohde & Schwarz ZVA 40 3548 12 7-Jun-2017 Calibration Unit Rohde & Schwarz ZVA 40 3548 12 7-Jun-2017 Calibration Unit Rohde & Schwarz ZV-254 4368 12 7-Sep-2016 Frequency Standard Spectracom Secure Sync 1200- 0408-0601				112	12	18 Jan 2017
20dB/2W Attenuator Narda 4772-20 462 - TU Attenuator (20dB/2W) Pasternack PE7004-20 489 12 30-Oct-2016 Rubidium Standard Rohde & Schwarz XSRM 1316 6 5-Mar-2017 Filter Daden Anthony Ass MH-1500-7SS 2778 12 5-Feb-2017 Hygrometer Rotronic I-1000 3220 12 23-Aug-2017 Power Divider Weinschel 1506A 3345 12 7-Jun-2017 Signal Generator: 10MHz to Rohde & Schwarz SMR20 3475 12 26-Feb-2017 20GHz Rohde & Schwarz ZVA 40 3548 12 7-Jun-2017 Network Analyser Rohde & Schwarz ZVA 40 3548 12 7-Sep-2016 Combiner/Splitter Weinschel 1506A 3878 12 7-Sep-2016 Frequency Standard Spectracom Secure Sync 1200- 4393 6 5-Mar-2017 Digital Multi-meter Iso-tech IDM93N <t< td=""><td>Set</td><td></td><td></td><td></td><td></td><td></td></t<>	Set					
Attenuator (20dB/ 2W) Pasternack PE7004-20 489 12 30-Oct-2016 Rubidium Standard Rohde & Schwarz XSRM 1316 6 5-Mar-2017 Filter Daden Anthony Ass MH-1500-7SS 2778 12 5-Feb-2017 Hygrometer Rotronic I-1000 3220 12 23-Aug-2017 Power Divider Weinschel 1506A 3345 12 7-Jun-2017 High Pass Filter (3GHz) RLC Electronics F-100-3000-5-R 3349 12 1-Jun-2017 Signal Generator: 10MHz to 20GHz Rohde & Schwarz ZVA 40 3548 12 2-Sep-2016 Network Analyser Rohde & Schwarz ZVA 40 3548 12 7-Jun-2017 Calibration Unit Rohde & Schwarz ZV-Z54 4368 12 7-Jun-2017 Digital Multi-meter Iso-tech IDM93N 4435 12 2-Sep-2016 Terquency Standard Spectracom Secure Sync 1200- 0408-0601 4393 6 5-Mar-2017 Digital Multi-meter <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Rubidium Standard Rohde & Schwarz XSRM 1316 6 5-Mar-2017 Filter Daden Anthony Ass MH-1500-7SS 2778 12 5-Feb-2017 Hygrometer Rotronic I-1000 3220 12 23-Aug-2017 Power Divider Weinschel 1506A 3345 12 7-Jun-2017 High Pass Filter (3GHz) RLC Electronics F-100-3000-5-R 3349 12 1-Jun-2017 Signal Generator: 10MHz to 20GHz Rohde & Schwarz SMR20 3475 12 26-Feb-2017 Network Analyser Rohde & Schwarz ZVA 40 3548 12 7-Jun-2017 Calibration Unit Rohde & Schwarz ZVA 40 3548 12 2-Sep-2016 Frequency Standard Spectracom Secure Sync 1200- 0408-0601 4393 6 5-Mar-2017 Digital Multi-meter Iso-tech IDM93N 4435 12 25-Aug-2017 2 metre SMA Cable Florida Labs SMS-235SP-78.8- SMS 4518 12 16-Feb-2017 Mideband Radi						
Filter Daden Anthony Ass MH-1500-7SS 2778 12 5-Feb-2017 Hygrometer Rotronic I-1000 3220 12 23-Aug-2017 Power Divider Weinschel 1506A 3345 12 7-Jun-2017 High Pass Filter (3GHz) RLC Electronics F-100-3000-5-R 3349 12 1-Jun-2017 Signal Generator: 10MHz to Rohde & Schwarz SMR20 3475 12 26-Feb-2017 20GHz Rohde & Schwarz ZVA 40 3548 12 2-Sep-2016 Combiner/Splitter Weinschel 1506A 3878 12 7-Jun-2017 Calibration Unit Rohde & Schwarz ZV-Z54 4368 12 7-Sep-2016 Frequency Standard Spectracom Secure Sync 1200- 0408-0601 4393 6 5-Mar-2017 Digital Multi-meter Iso-tech IDM93N 4435 12 25-Aug-2017 2 metre SMA Cable Florida Labs SMS-235SP-78.8- SMS 4518 12 16-Feb-2017 1 metre K-Type Cable						
Hygrometer Rotronic I-1000 3220 12 23-Aug-2017 Power Divider Weinschel 1506A 3345 12 7-Jun-2017 High Pass Filter (3GHz) RLC Electronics F-100-3000-5-R 3349 12 1-Jun-2017 Signal Generator: 10MHz to 20GHz Rohde & Schwarz SMR20 3475 12 26-Feb-2017 Network Analyser Rohde & Schwarz ZVA 40 3548 12 2-Sep-2016 Combiner/Splitter Weinschel 1506A 3878 12 7-Jun-2017 Calibration Unit Rohde & Schwarz ZV-Z54 4368 12 7-Sep-2016 Frequency Standard Spectracom Secure Sync 1200- 0408-0601 4393 6 5-Mar-2017 Digital Multi-meter Iso-tech IDM93N 4435 12 25-Aug-2017 2 metre SMA Cable Florida Labs SMS-235SP-78.8- SMS 4518 12 16-Feb-2017 1 metre K-Type Cable Florida Labs KMS-180SP-39.4- KMS 4519 12 16-Feb-2017 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Power DividerWeinschel1506A3345127-Jun-2017High Pass Filter (3GHz)RLC ElectronicsF-100-3000-5-R3349121-Jun-2017Signal Generator: 10MHz to 20GHzRohde & SchwarzSMR2034751226-Feb-2017Network AnalyserRohde & SchwarzZVA 403548122-Sep-2016Combiner/SplitterWeinschel1506A3878127-Jun-2017Calibration UnitRohde & SchwarzZV-Z544368127-Sep-2016Frequency StandardSpectracomSecure Sync 1200- 0408-0601439365-Mar-2017Digital Multi-meterIso-techIDM93N44351225-Aug-20172 metre SMA CableFlorida LabsSMS-235SP-78.8- SMS45181216-Feb-20171 metre K-Type CableFlorida LabsKMS-180SP-39.4- KMS4519123-Feb-2017Wideband Radio Test SetRohde & SchwarzCMW5004546123-Feb-2017PXA Signal AnalyserKeysightN9030A4654128-Oct-2016						
High Pass Filter (3GHz)RLC ElectronicsF-100-3000-5-R3349121-Jun-2017Signal Generator: 10MHz to 20GHzRohde & SchwarzSMR2034751226-Feb-2017Network AnalyserRohde & SchwarzZVA 403548122-Sep-2016Combiner/SplitterWeinschel1506A3878127-Jun-2017Calibration UnitRohde & SchwarzZV-Z544368127-Sep-2016Frequency StandardSpectracomSecure Sync 1200- 0408-0601439365-Mar-2017Digital Multi-meterIso-techIDM93N44351225-Aug-20172 metre SMA CableFlorida LabsSMS-235SP-78.8- SMS45181216-Feb-20171 metre K-Type CableFlorida LabsKMS-180SP-39.4- KMS45191216-Feb-2017Wideband Radio Test SetRohde & SchwarzCMW5004546123-Feb-2017PXA Signal AnalyserKeysightN9030A4654128-Oct-2016						U U
Signal Generator: 10MHz to 20GHzRohde & SchwarzSMR2034751226-Feb-2017Network AnalyserRohde & SchwarzZVA 403548122-Sep-2016Combiner/SplitterWeinschel1506A3878127-Jun-2017Calibration UnitRohde & SchwarzZV-Z544368127-Sep-2016Frequency StandardSpectracomSecure Sync 1200- 0408-0601439365-Mar-2017Digital Multi-meterIso-techIDM93N44351225-Aug-20172 metre SMA CableFlorida LabsSMS-235SP-78.8- SMS45181216-Feb-20171 metre K-Type CableFlorida LabsKMS-180SP-39.4- KMS45191216-Feb-2017Wideband Radio Test SetRohde & SchwarzCMW5004546123-Feb-2017PXA Signal AnalyserKeysightN9030A4654128-Oct-2016						
Network AnalyserRohde & SchwarzZVA 403548122-Sep-2016Combiner/SplitterWeinschel1506A3878127-Jun-2017Calibration UnitRohde & SchwarzZV-Z544368127-Sep-2016Frequency StandardSpectracomSecure Sync 1200- 0408-0601439365-Mar-2017Digital Multi-meterIso-techIDM93N44351225-Aug-20172 metre SMA CableFlorida LabsSMS-235SP-78.8- SMS45181216-Feb-20171 metre K-Type CableFlorida LabsKMS-180SP-39.4- KMS45191216-Feb-2017Wideband Radio Test SetRohde & SchwarzCMW5004546123-Feb-2017PXA Signal AnalyserKeysightN9030A4654128-Oct-2016	Signal Generator: 10MHz to					
Combiner/SplitterWeinschel1506A3878127-Jun-2017Calibration UnitRohde & SchwarzZV-Z544368127-Sep-2016Frequency StandardSpectracomSecure Sync 1200- 0408-0601439365-Mar-2017Digital Multi-meterIso-techIDM93N44351225-Aug-20172 metre SMA CableFlorida LabsSMS-235SP-78.8- SMS45181216-Feb-20171 metre K-Type CableFlorida LabsKMS-180SP-39.4- KMS45191216-Feb-2017Wideband Radio Test SetRohde & SchwarzCMW5004546123-Feb-2017PXA Signal AnalyserKeysightN9030A4654128-Oct-2016		Robde & Schwarz	7\/4.40	35/19	12	2-Sen-2016
Calibration UnitRohde & SchwarzZV-Z544368127-Sep-2016Frequency StandardSpectracomSecure Sync 1200- 0408-0601439365-Mar-2017Digital Multi-meterIso-techIDM93N44351225-Aug-20172 metre SMA CableFlorida LabsSMS-235SP-78.8- SMS45181216-Feb-20171 metre K-Type CableFlorida LabsKMS-180SP-39.4- KMS45191216-Feb-2017Wideband Radio Test SetRohde & SchwarzCMW5004546123-Feb-2017PXA Signal AnalyserKeysightN9030A4654128-Oct-2016						
Frequency StandardSpectracomSecure Sync 1200- 0408-0601439365-Mar-2017Digital Multi-meterIso-techIDM93N44351225-Aug-20172 metre SMA CableFlorida LabsSMS-235SP-78.8- SMS45181216-Feb-20171 metre K-Type CableFlorida LabsKMS-180SP-39.4- KMS45191216-Feb-2017Wideband Radio Test SetRohde & SchwarzCMW5004546123-Feb-2017PXA Signal AnalyserKeysightN9030A4654128-Oct-2016						
Digital Multi-meterIso-techIDM93N44351225-Aug-20172 metre SMA CableFlorida LabsSMS-235SP-78.8- SMS45181216-Feb-20171 metre K-Type CableFlorida LabsKMS-180SP-39.4- KMS45191216-Feb-2017Wideband Radio Test SetRohde & SchwarzCMW5004546123-Feb-2017PXA Signal AnalyserKeysightN9030A4654128-Oct-2016			Secure Sync 1200-			
2 metre SMA Cable Florida Labs SMS-235SP-78.8- SMS 4518 12 16-Feb-2017 1 metre K-Type Cable Florida Labs KMS-180SP-39.4- KMS 4519 12 16-Feb-2017 Wideband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 PXA Signal Analyser Keysight N9030A 4654 12 8-Oct-2016	Digital Multi-meter	lso-tech		4435	12	25-Aug-2017
1 metre K-Type Cable Florida Labs KMS-180SP-39.4- KMS 4519 12 16-Feb-2017 Wideband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 PXA Signal Analyser Keysight N9030A 4654 12 8-Oct-2016			SMS-235SP-78.8-			
Wideband Radio Test Set Rohde & Schwarz CMW500 4546 12 3-Feb-2017 PXA Signal Analyser Keysight N9030A 4654 12 8-Oct-2016	1 metre K-Type Cable	Florida Labs	KMS-180SP-39.4-	4519	12	16-Feb-2017
PXA Signal Analyser Keysight N9030A 4654 12 8-Oct-2016	Wideband Radia Test Sat	Pobdo & Sobwarz		1546	10	2 Eab 2017
L Technologies		Keysight				
2 Channel PSU Rohde & Schwarz HMP2020 4735 - TU	2 Channel PSU	Technologies Robde & Schwarz	HMP2020	1735		

COMMERCIAL-IN-CONFIDENCE

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.6 - 26 dB Bandwidt	h				
Multimeter	Fluke	75 Mk3	455	12	10-Sep-2016
20dB/2W Attenuator	Narda	4772-20	462	-	TU
Attenuator (20dB/ 2W)	Pasternack	PE7004-20	489	12	30-Oct-2016
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	3-Sep-2016
Radio Communications Test Set	Rohde & Schwarz	CMU 200	2809	12	19-Jul-2017
Climatic Chamber	TAS	Micro 225	2892	-	O/P Mon
Thermocouple Thermometer	Fluke	51	3174	12	9-Dec-2016
Hygrometer	Rotronic	I-1000	3220	12	23-Aug-2017
Power Divider	Weinschel	1506A	3345	12	7-Jun-2017
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Combiner/Splitter	Weinschel	1506A	3878	12	7-Jun-2017
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	3-Sep-2016
Hygropalm Temperature and Humidity Meter	Rotronic	HP21	4410	12	27-Apr-2017
2 metre SMA Cable	Florida Labs	SMS-235SP-78.8- SMS	4518	12	16-Feb-2017
1 metre K-Type Cable	Florida Labs	KMS-180SP-39.4- KMS	4519	12	16-Feb-2017
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	8-Oct-2016
2 Channel PSU	Rohde & Schwarz	HMP2020	4735	-	TU

TU – Traceability Unscheduled O/P MON – Output Monitored with Calibrated Equipment

Document 75935599 Report 14 Issue 1

3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

Test Discipline	MU
Frequency Tolerance	± 46.70 Hz
Modulation Characteristics	-
Maximum Conducted Output Power	± 0.70 dB
Spurious Emissions at Antenna Terminals	± 3.454 dB
Emission Limitations for Cellular Equipment	30 MHz to 1 GHz: ± 5.1 dB 1 GHz to 40 GHz: ± 6.3 dB
26 dB Bandwidth	± 16.74 kHz
Spurious Emissions at Band Edge	30 MHz to 1 GHz: ± 5.1 dB 1 GHz to 40 GHz: ± 6.3 dB

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2016 TÜV SÜD Product Service