Report No: 709502303612-00C



## **MPE Calculation**

| Applicant:               | Rollease Acmeda Inc                                                                                                                                            |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address:                 | 7th Floor / 750 East Main Street, Stamford, CT 06902, USA                                                                                                      |  |  |
| Product:                 | Li-ion 1.1Nm ARC Motor                                                                                                                                         |  |  |
| FCC ID:                  | 2AGGZ003B9ACA4A                                                                                                                                                |  |  |
| Model No.:               | MT01-1325-069001-S, MT01-1325-069002-S, MT01-1325-069003-S, MT01-1325-069005-S, MT01-1325-069015-S, MT01-1325-069018-S, MT01-1325-069019-S, MT01-1325-069020-S |  |  |
| Reference<br>RF report # | 709502303612-00B                                                                                                                                               |  |  |

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

| (B) Limits for General Population/Uncontrolled Exposure |                                  |                                  |                           |                          |  |  |
|---------------------------------------------------------|----------------------------------|----------------------------------|---------------------------|--------------------------|--|--|
| Frequency Range<br>(MHz)                                | Electric Field<br>Strength (V/m) | Magnetic Field<br>Strength (A/m) | Power Density<br>(mW/cm²) | Averaging Time (minutes) |  |  |
| 0.3–1.34                                                | 614                              | 1.63                             | *(100)                    | 30                       |  |  |
| 1.34–30                                                 | 824/f                            | 2.19/f                           | *(180/f²)                 | 30                       |  |  |
| 30–300                                                  | 27.5                             | 0.073                            | 0.2                       | 30                       |  |  |
| 300–1,500                                               | /                                | /                                | f/1500                    | 30                       |  |  |
| 1,500–100,000                                           | 1                                | /                                | 1.0                       | 30                       |  |  |

f = frequency in MHz; \* = Plane-wave equivalent power density;

## Calculation method for 433.92MHz

$$EIRP = p_{t} \times g_{t} = (E \times d)^{2} / 30$$

where

 $p_{\rm t}$  is the transmitter output power in watts

 $g_t$  is the numeric gain of the transmitting antenna (dimensionless)

E is the electric field strength in V/m

d is the measurement distance in meters (m)

Report No: 709502303612-00C



## For 433.92MHz

| 1 01 1001021111121                             |                         |  |  |  |
|------------------------------------------------|-------------------------|--|--|--|
| Field Strength (EMeas):                        | 72.38(dBuV/m)=0.0042V/m |  |  |  |
|                                                | (f=433.92 MHz)          |  |  |  |
| Measurement Distance(dMeas):                   | 3 (m)                   |  |  |  |
| Equivalent Isotropically Radiated Power(EIRP): | 0.000005292W=0.005292mW |  |  |  |

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm<sup>2</sup>);$ 

PG =0.005292mW (in appropriate units, e.g., mW);

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

The max power density  $0.031827 \text{mW}/4 \pi \text{ R}^2 = 1.0533*10^{-6} (\text{mW/cm}^2) < 0.28928 (\text{mW/cm}^2)$ 

Result: Compliant

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by: Prepared by: Tested by:

\_\_\_\_\_\_

Cheng Huali

Hui TONG

Jiaxi XU

Cheng Huali

**EMC Section Manager** 

**EMC Project Engineer** 

**EMC Test Engineer** 

Date: 2023-06-14

Date: 2023-06-14

Date: 2023-06-14