

TEST REPORT

Product Name: True wireless headphones

Trade Mark:

PHILIPS or PHILIPS

Model No.: TAT3216

Add. Model No.: TAT3216LC, TAT3216xx/yy (xx=AA-ZZ or

blank denoted different color; yy=00-99 denoted different country destination)

Report No.: 210419025RFC-2

Report Number: 210419025RFC-2

Test Standards: FCC 47 CFR Part 15 Subpart C

RSS-247 Issue 2 RSS-Gen Issue 5

FCC ID: 2AR2STAT3216LC

Test Result: PASS

Date of Issue: May 19, 2021

Prepared for:

MMD Hong Kong Holding Limited Unit 1006, 10th Floor, C-Bons International Center, 108 Wai Yip Street, Kwun Tong, Kowloon, Hong Kong

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

> TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:

Kieron Luo

Reviewed by:

Project Engineer

Project Supervisor

Approved by:

Kevin Liang

Date:

May 19, 2021

Version

Version No.	Date	Description
V1.0	May 19, 2021	Original

CONTENTS

1.	GENE	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	EUT Information	4
		1.2.1 GENERAL DESCRIPTION OF EUT	4
		1.2.2 DESCRIPTION OF ACCESSORIES	4
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	TEST LOCATION	
	1.7	TEST FACILITY	
	1.8	DEVIATION FROM STANDARDS	
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	1.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	1.11	MEASUREMENT UNCERTAINTY	
2.	TEST	SUMMARY	8
3.		PMENT LIST	
3. 4.	TEST	CONFIGURATION	10
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	10
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
4. 1		4.1.2 RECORD OF NORMAL ENVIRONMENT	
	4.2	TEST CHANNELS	
	4.3	EUT Test Status	
	4.4	PRE-SCAN	11
		4.4.1 PRE-SCAN UNDER ALL PACKETS AT MIDDLE CHANNEL	11
		4.4.2 WORST-CASE DATA PACKETS	11
		4.4.3 TESTED CHANNEL DETAIL	
	4.5	TEST SETUP	
		4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	
		4.5.3 FOR CONDUCTED RF TEST SETUP	
	4.6	SYSTEM TEST CONFIGURATION	
	4.7	DUTY CYCLE	16
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	17
	5.1	REFERENCE DOCUMENTS FOR TESTING	17
	5.2	ANTENNA REQUIREMENT	
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	20 DB BANDWIDTH & OCCUPIED BANDWIDTH	21
	5.5	CARRIER FREQUENCIES SEPARATION	
	5.6	NUMBER OF HOPPING CHANNEL	
	5.7	DWELL TIME	
	5.8	CONDUCTED OUT OF BAND EMISSION	
	5.9	RADIATED SPURIOUS EMISSIONS	
	5.10	BAND EDGE MEASUREMENTS (RADIATED)	46
ΑP	PENDI	X 1 PHOTOS OF TEST SETUP	51
۸D	DENIDI	V 2 BUOTOS OF FUT CONSTRUCTIONAL DETAILS	E 4

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant: MMD Hong Kong Holding Limited	
Address of Applicant: Unit 1006, 10th Floor, C-Bons International Center, 108 Wai Yip S Tong, Kowloon, Hong Kong	
Manufacturer:	MMD Hong Kong Holding Limited
Address of Manufacturer:	Unit 1006, 10th Floor, C-Bons International Center, 108 Wai Yip Street, Kwun Tong, Kowloon, Hong Kong

1.2 EUT INFORMATION

General Description of EUT

211 Contra Boochpach of Lot					
Product Name:	True wireless headphones				
Model No. :	TAT3216LC				
Add. Model No.:	TAT3216, TAT3216xx/yy (xx=AA-ZZ or blank denoted different color; yy=00-99 denoted different country destination)				
Trade Mark:	or PHILIPS				
DUT Stage:	Production Unit				
EUT Supports Function:	2.4 GHz ISM Band: Bluetooth 5.0				
Software Version:	1.0				
Hardware Version:	V0.2				
Sample Received Date:	ived Date: April 19, 2021				
Sample Tested Date: April 26, 2021 to May 11, 2021					
Note: The additional model TAT3216LC, TAT3216xx/yy (xx=AA-ZZ or blank denoted different color; yy=00-99 denoted different country destination) is identical with the test model TAT3216 except the model number for marketing purpose					

1.2.2 **Description of Accessories**

Cable				
Description:	USB Type-C Plug Cable			
Cable Type:	Unshielded without ferrite			
Length:	0.65 Meter			

Charging box Battery				
Model No.:	653030			
Battery Type: Lithium-ion Rechargeable Battery				
Rated Voltage:	3.7 Vdc			
Limited Charge Voltage:	4.2 Vdc			
Rated Capacity:	550 mAh			

Battery			
Model No.:	M1254		
Battery Type: Lithium-ion Rechargeable Battery			
Rated Voltage: 3.7 Vdc			
Limited Charge Voltage:	4.2 Vdc		
Rated Capacity:	55 mAh		

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz		
Frequency Range: 2402 MHz to 2480 MHz			
Bluetooth Version:	Bluetooth BR + EDR		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	dulation: GFSK, π/4DQPSK, 8DPSK		
Number of Channels: 79			
Channel Separation: 1 MHz			
Hopping Channel Type: Adaptive Frequency Hopping Systems			
Antenna Type: Ceramic Antenna			
Antenna Gain: 3.61 dBi			
Maximum Peak Power: 3.893 dBm			
Normal Test Voltage: 3.7 Vdc			

1.4 OTHER INFORMATION

	O	peration	Fred	uency	Each	of	Channel
--	---	----------	------	-------	------	----	---------

f = 2402 + k MHz, k = 0,...,78

Note:

is the operating frequency (MHz);

k is the operating channel.

Modulation Configure						
Modulation	Packet	Packet Type	Packet Size			
	1-DH1	4	27			
GFSK	1-DH3	11	183			
	1-DH5	15	339			
	2-DH1	20	54			
π/4 DQPSK	2-DH3	26	367			
	2-DH5	30	679			
	3-DH1	24	83			
8DPSK	3-DH3	27	552			
	3-DH5	31	1021			

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Description Manufacturer Model No. S		Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust
Mouse	DELL	MS111	CN-011D3V-738	UnionTrust

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.10 Meter	UnionTrust
2	serial port	USB	0.50 Meter	UnionTrust

Page 6 of 51 Report No.: 210419025RFC-2

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district,

Shenzhen, China

Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

No.	Item	Measurement Uncertainty		
1	Conducted emission 9KHz-150KHz	±3.2 dB		
2	Conducted emission 150KHz-30MHz	±2.7 dB		
3	Radiated emission 9KHz-30MHz	± 4.7 dB		
4	Radiated emission 30MHz-1GHz	± 4.6 dB		
5	Radiated emission 1GHz-18GHz	± 4.4 dB		
6	Radiated emission 18GHz-26GHz	± 4.6 dB		
7	Radiated emission 26GHz-40GHz	± 4.6 dB		
8	RF Power, Conducted	± 0.9 dB		
9	Transmission Time	± 0.19 %		
10	Occupied Bandwidth	± 1.86 %		
11	Power Spectral Density, conducted	± 0.6 dB		
12	Radio Frequency	± 6.5 x 10 ⁻⁸		
13	Conducted out of band emission	± 2.7 dB		

2. TEST SUMMARY

	FCC 47 CFR Part 15 Subpart C Tes	t Cases	
Test Item	Test Requirement	Test Method	Result
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c) RSS-Gen Issue 5, Section 6.8	N/A	PASS
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207 RSS-Gen Issue 5, Section 8.8	ANSI C63.10-2013 Section 6.2	N/A ^(Note2)
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1) RSS-247 Issue 2, Section 5.4(b)	ANSI C63.10-2013 Section 7.8.5	PASS
20 dB Bandwidth	Bandwidth FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) ANS Section 5.1(a)		PASS
Occupied Bandwidth	upied Bandwidth RSS-Gen section 6.7		PASS
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(b)	ANSI C63.10-2013 Section 7.8.2	PASS
Number of Hopping Channel	hber of Hopping FCC 47 CFR Part 15 Subpart C Section		PASS
Dwell Time	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) RSS-247 Issue 2, Section 5.1(d)	ANSI C63.10-2013 Section 7.8.4	PASS
Conducted Out of Band Emission	15 24 //d)		PASS
Radiated Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 RSS-Gen Issue 5, Section 6.13/8.9/8.10	ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6	PASS

Note:

- 1) N/A: In this whole report not applicable.
- 2) This EUT is charged by AC adapter to the battery, when charging, It doesn't transmitting while charging.

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Jan. 22, 2021	Jan. 21, 2024		
\boxtimes	Loop Antenna	ETS-Lindgren	6502	00202525	Nov. 14, 2020	Nov. 13, 2021		
\boxtimes	Receiver	R&S	ESIB26	100114	Nov. 18, 2020	Nov. 17, 2021		
\boxtimes	Broadband Antenna	nd Antenna ETS-LINDGREN		00201566	Nov. 14, 2020	Nov. 13, 2021		
	6dB Attenuator	Talent	RA6A5-N- 18	18103001	Nov. 14, 2020	Nov.13, 2021		
\boxtimes	Preamplifier	HP	8447F	2805A02960	Nov. 10, 2020	Nov. 9, 2021		
\boxtimes	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May. 30, 2020	May. 29, 2021		
	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A		
	Test Software	Audix	e3	Sof	tware Version: 9.16	0323		

	Conducted RF test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 10, 2020	Nov. 9, 2021		
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Nov. 10, 2020	Nov. 9, 2021		
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Nov. 10, 2020	Nov. 9, 2021		
\boxtimes	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	Nov. 10, 2020	Nov. 9, 2021		
	Temp & Humidity chamber	Votisch	VT4002	58566133290 020	May. 11, 2020	May. 10, 2021		
	Wideband Radio Communication Tester	R&S	CMW500	120932	Jul. 20, 2020	Jul. 19, 2021		
	Shielding room	ETS-Lindgren	333	Euroshiedpn-T J2343-S1608	Jun. 5, 2020	Jun. 4, 2021		
\boxtimes	Temperature & Humidity Datalogger	СЕМ	DT-172	200408605	Jul. 24, 2020	Jul. 23, 2021		
	Test Software	AutomationTes tSystem	ECIT	Softwa	re Version: 1.0.751	5.16529		

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests					
Test Condition	Ambient					
lest Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)			
NT/NV	+15 to +35 3.7 20 to 75					
Remark: 1) NV: Normal Voltage; NT: Normal Temperature						

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by
AC Power Line Conducted Emission	N/A	N/A	N/A	N/A
Conducted Peak Output Power	23.0	31.0	101.8	Leo Li
20 dB Bandwidth & Occupied Bandwidth	23.0	23.0 31.0		Leo Li
Carrier Frequencies Separation	23.0	31.0	101.8	Leo Li
Number of Hopping Channel	23.0	31.0	101.8	Leo Li
Dwell Time	23.0	31.0	101.8	Leo Li
Conducted Out of Band Emission	23.0	31.0	101.8	Leo Li
Radiated Emissions	23.0	31.0	101.8	Leo Li
Band Edge Measurement	24.2	52.0	100.0	Andy Lin

4.2TEST CHANNELS

Mode	Ty/Dy Fraguency	Test RF Channel L				
Wode	Tx/Rx Frequency	Lowest(L)	Middle(M)	Highest(H)		
GFSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78		
(DH1, DH3, DH5)	2402 WITZ 10 2400 WITZ	2402 MHz	2441 MHz	2480 MHz		
π/4DQPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78		
(DH1, DH3, DH5)	2402 WITZ 10 2460 WITZ	2402 MHz	2441 MHz	2480 MHz		
8DPSK	2402 MHz to 2400 MHz	Channel 0	Channel 39	Channel 78		
(DH1, DH3, DH5)	2402 MHz to 2480 MHz	2402 MHz	2441 MHz	2480 MHz		

4.3 EUT TEST STATUS

Type of Modulation	Tx Function	Description
GFSK/π/4DQPSK/ 8DPSK	1Tx	 Keep the EUT in continuously transmitting with Modulation test single Keep the EUT in continuously transmitting with Modulation test Hopping Frequency.

Report No.: 210419025RFC-2

	Power Setting	
Power Setting: 7		

	Test Software	
Test software name: BT-TOOL, V1.1.0		

4.4 PRE-SCAN

4.4.1 Pre-scan under all packets at middle channel

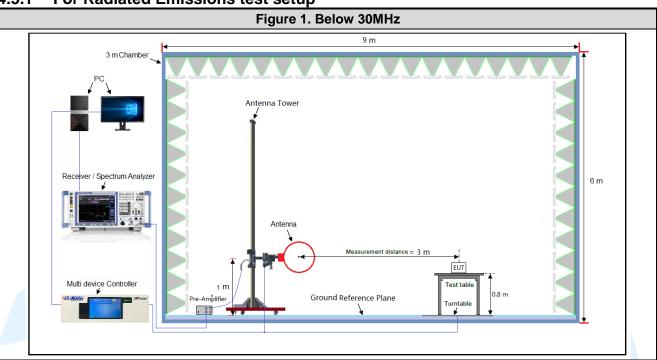
Conducted Average Power (dBm) for packets									
Type of Modulation GFSK π/4DQPSK				8DPSK					
Packets	1-DH1	1-DH3	1-DH5	2-DH1	2-DH3	2-DH5	3-DH1	3-DH3	3-DH5
Power (dBm)	-5.61	-2.36	-1.66	-5.63	-2.50	-1.84	-5.59	-2.53	-1.82

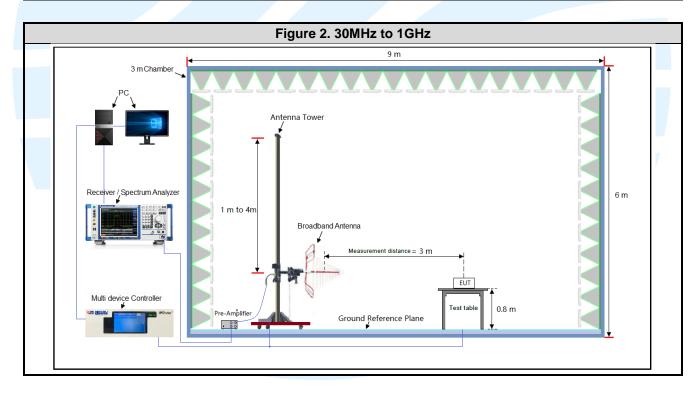
4.4.2 Worst-case data packets

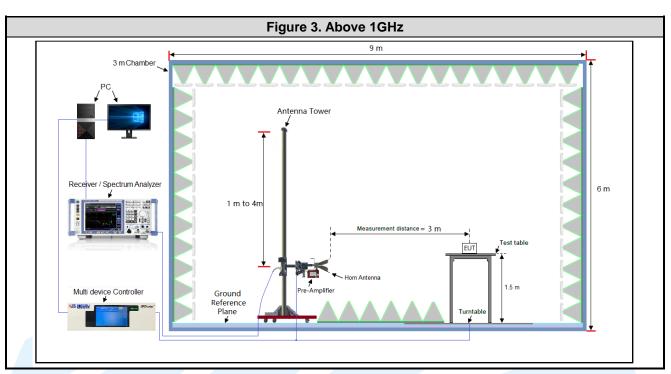
Type of Modulation	Worst-case data rates
GFSK	1-DH5
π/4DQPSK	2-DH5
8DPSK	3-DH5

4.4.3 Tested channel detail

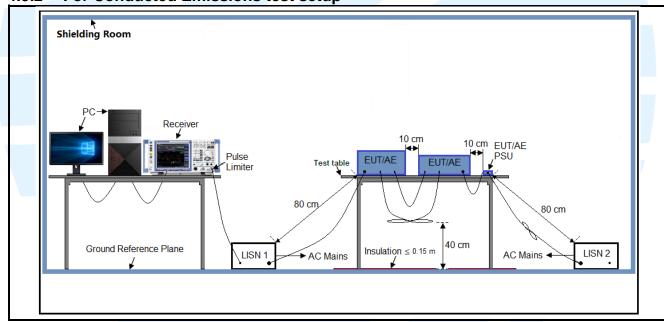
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

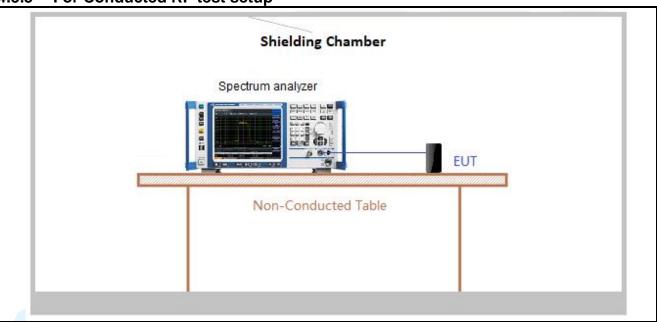

Type of Modulation	GFSK π/4DQPSK 8DPSK								
•	1-DH	1-DH	1-DH	2-DH	2-DH	2-DH	3-DH	3-DH	3-DH
Data Packets	1	3	5	1	3	5	1	3	5
Available Channel					0 to 78				
Test Item			Test cha	nnel and	d choose	of data	packets		
AC Power Line Conducted			Freq	uency Ho	pping Ch	nannel 0	to 78		
Emission					☐ Link				
Conducted Peak Output				Chani	nel 0 & 39	9 & 78			
Power			\boxtimes			\boxtimes			\boxtimes
20 dB Bandwidth				Chan	nel 0 & 39	9 & 78			
20 db Bandwidth			\boxtimes			\boxtimes			\boxtimes
Carrier Frequencies	Frequency Hopping Channel 0 to 78								
Separation			\boxtimes			\boxtimes			\boxtimes
Number of Hopping Channel	Frequency Hopping Channel 0 to 78								
ramber of Hopping Chamiler									\boxtimes
Dwell Time	Channel 39								
Dwell Tille	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes
Conducted Out of Band	Channel 0 & 39 & 78								
Emission			\boxtimes			\boxtimes			\boxtimes
Radiated Emissions	Channel 0 & 39 & 78								
Nadiated Emissions									\boxtimes
Band Edge Measurements	Channel 0 & 78								
(Radiated)									\boxtimes
Remark: 1. The mark "⊠" means is chosen for testing;									


^{2.} The mark "□" means is not chosen for testing.


4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup





4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.7V battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning	
Above 1GHz	1TX	Chain 0	Y axis	

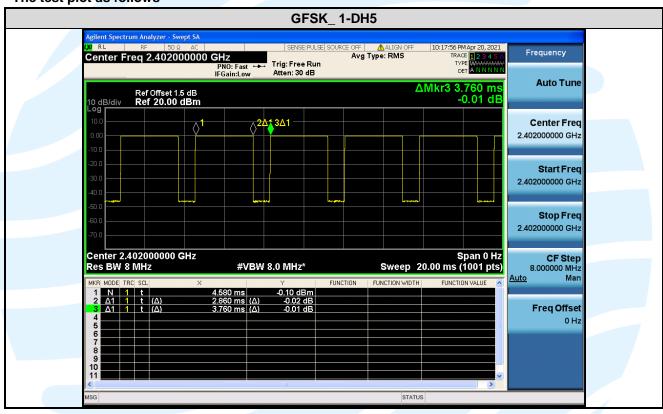
All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6.

Test Results


Type of Modulation	Packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
GFSK	1-DH5	2.8600	3.7600	0.76	76.06	1.19	0.35	-2.38

Report No.: 210419025RFC-2

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plot as follows

Page 17 of 51 Report No.: 210419025RFC-2

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title			
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations			
2	FCC 47 CFR Part 15	Radio Frequency Devices			
3	RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices			
4	RSS-Gen Issue 5	General Requirements for Compliance of Radio Apparatus			
5	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices			
6	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules			

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-Gen Issue 5, Section 6.8 requirement:

According to RSS-Gen Issue 5, section 6.8, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 3.61 dBi.

Page 18 of 51 Report No.: 210419025RFC-2

5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)

RSS-247 Issue 2, Section 5.4(b) **Test Method:**ANSI C63.10-2013 Section 7.8.5

Limit: For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted

output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as

provided in section 5.4(e).

FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an

output power no greater than 0.125 W.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

a) Use the following spectrum analyzer settings:

1) Span: Approximately 5 x 20 dB bandwidth, centered on a hopping channel.

2) RBW > 20 dB bandwidth of the emission being measured.

3) VBW ≥ RBW.

4) Sweep: Auto.

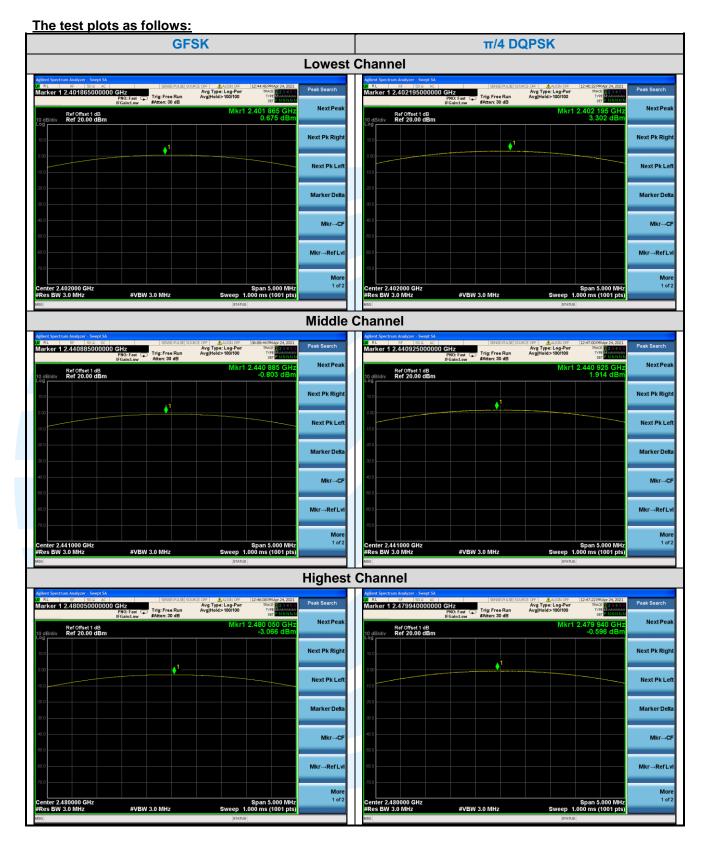
5) Detector function: Peak.

6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.


e) A plot of the test results and setup description shall be included in the test report.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

Type of	Type of Peak Output Power (dBm)			Peak Output Power (mW)			
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
GFSK	0.675	-0.803	-3.066	1.17	0.83	0.49	
π/4 DQPSK	3.302	1.914	-0.596	2.14	1.55	0.87	
8DPSK	3.893	2.477	-0.132	2.45	1.77	0.97	

Page 21 of 51 Report No.: 210419025RFC-2

5.420 DB BANDWIDTH & OCCUPIED BANDWIDTH

FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

Test Requirement: RSS-247 Issue 2, Section 5.1(a)

RSS-Gen section 6.7

Test Method: ANSI C63.10-2013 Section 6.9.2

RSS-Gen section 6.7

Limit: None; for reporting purposes only.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span = approximately 2 to 5 times the OBW, centered on a hopping channel.

b) RBW = 1% to 5% of the OBW.

c) VBW ≥ 3 x RBW

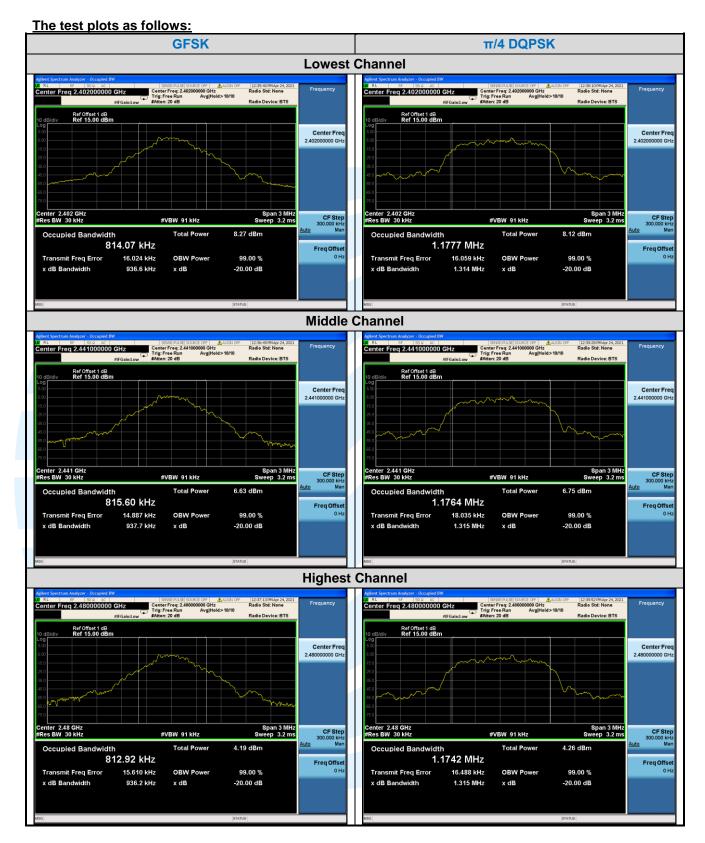
d) Sweep = auto;

e) Detector function = peak

f) Trace = max hold

g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.

Note: The cable loss and attenuator loss were offset into measure device as an


amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

Type of	20 d	B Bandwidth (M	MHz)	Occupied Bandwidth (MHz)			
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
GFSK	0.9366	0.9377	0.9362	0.81407	0.81560	0.81292	
π/4 DQPSK	1.314	1.315	1.315	1.1777	1.1764	1.1742	
8DPSK	1.265	1.266	1.270	1.1647	1.1624	1.1655	

Page 24 of 51 Report No.: 210419025RFC-2

5.5 CARRIER FREQUENCIES SEPARATION

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)

RSS-247 Issue 2, Section 5.1(b) **Test Method:**ANSI C63.10-2013 Section 7.8.2

Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have

hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the

20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 125 mW.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span: Wide enough to capture the peaks of two adjacent channels.

b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

c) Video (or average) bandwidth (VBW) ≥ RBW.

d) Sweep: Auto.

e) Detector function: Peak.

f) Trace: Max hold.

g) Allow the trace to stabilize.

h) Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

Type of Modulation	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)				
Type of Modulation	Channel 39	Channel 39				
GFSK	1.000	0.625				
π/4 DQPSK	1.000	0.877				
8DPSK	1.000	0.844				
Note: The minimum limit is two-third 20 dB bandwidth.						

CFSK

W/A DQPSK

CFSK

W/A DQPSK

Page 26 of 51 Report No.: 210419025RFC-2

5.6 NUMBER OF HOPPING CHANNEL

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(b)(1)

RSS-247 Issue 2, Section 5.1(d) **Test Method:**ANSI C63.10-2013 Section 7.8.3

Limit: Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15

non-overlapping channels.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

b) RBW < 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

c) VBW ≥ RBW.

d) Sweep: Auto.

e) Detector function: Peak.

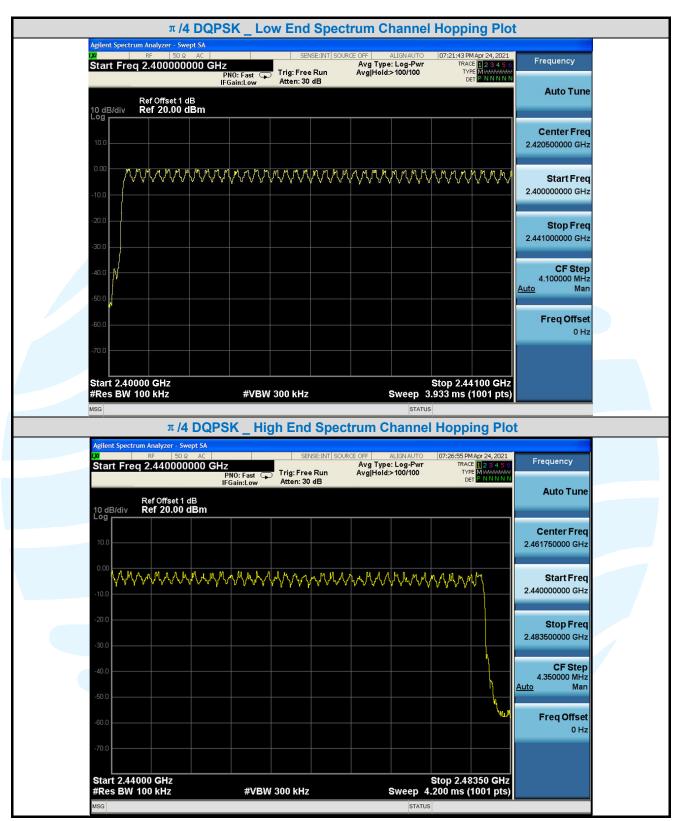
f) Trace: Max hold.

g) Allow the trace to stabilize.

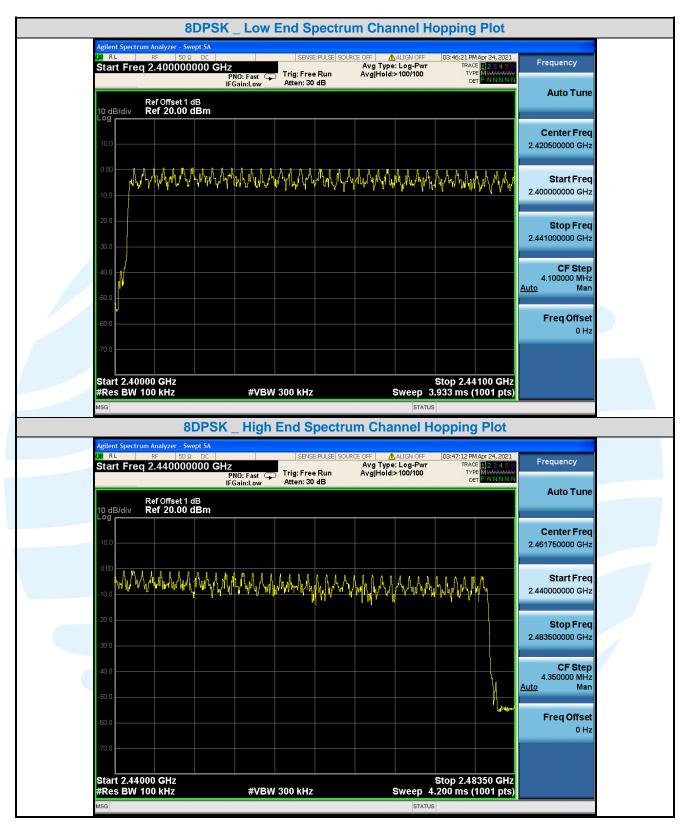
Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Results: Pass

Type of Modulation	Number of Hopping Channel				
GFSK	79				
π/4 DQPSK	79				
8DPSK	79				



The test plots as follows: **GFSK Low End Spectrum Channel Hopping Plot** Frequency Avg Type: Log-Pwr Avg|Hold:>100/100 Start Freq 2.400000000 GHz Trig: Free Run Atten: 30 dB PNO: Fast 🖵 IFGain:Low **Auto Tune** Ref Offset 1 dB Ref 20.00 dBm 10 dB/div Center Freq 2.420500000 GHz Start Freq 2.400000000 GHz Stop Freq 2.441000000 GHz **CF Step** 4.100000 MHz <u>Auto</u> Freq Offset 0 Hz Start 2.40000 GHz Stop 2.44100 GHz #Res BW 100 kHz **#VBW** 300 kHz Sweep 3.933 ms (1001 pts) **High End Spectrum Channel Hopping Plot GFSK** SENSE:PULSE SOURCE OFF
AVg Type: Log-Pwr
rig: Free Run
Avg|Hold:>100/100 Frequency Stop Freq 2.483500000 GHz Trig: Free Run PNO: Fast IFGain:Low **Auto Tune** Ref Offset 1 dB Ref 20.00 dBm 10 dB/div Log Center Freq 2.461750000 GHz Start Fred 2.440000000 GHz Stop Freq 2.483500000 GHz CF Step 4.350000 MHz Man <u>Auto</u> and the Freq Offset Start 2.44000 GHz #Res BW 100 kHz Stop 2.48350 GHz Sweep 4.200 ms (1001 pts) **#VBW** 300 kHz

Page 30 of 51 Report No.: 210419025RFC-2

5.7 DWELL TIME

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(a)(1)

RSS-247 Issue 2, Section 5.1(d)
ANSI C63.10-2013 Section 7.8.4

Limit: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15

channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels

employed.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Span = zero span, centered on a hopping channel

- b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep = As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function = peak
- e) Trace = max hold
- f) Use the marker-delta function to determine the dwell time

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

Type of	Test Frequency	Packet	Pulse Width	Number of Pulses in 3.16	Dwell Time	Limit
Modulation		lacket	ms	seconds	ms	ms
		1-DH1	0.381	32.000	122.02	< 400
GFSK	2441MHz	1-DH3	1.639	13.000	213.07	< 400
		1-DH5	2.886	12.000	346.32	< 400
		2-DH1	0.392	31.000	121.58	< 400
π/4 DQPSK	2441MHz	2-DH3	1.644	12.000	197.28	< 400
		2-DH5	2.892	5.000	144.60	< 400
		3-DH1	0.393	32.000	125.89	< 400
8DPSK	2441MHz	3-DH3	1.644	16.000	263.04	< 400
		3-DH5	2.896	8.000	231.68	< 400

The test plots as follows: **Pulse Width Number of Pulses in 3.16 Seconds** GFSK_1-DH1 Ref Offset 1 dB Ref 20.00 dBm Ref Offset 1 dB Ref 20.00 dB Center Fr CF Step 1.000000 MH CF Step 1.000000 MH: GFSK 1-DH3 Ref Offset 1 dB Ref 20.00 dBm Ref Offset 1 dB Ref 20.00 dBm Center Fre 2.441000000 GH Center Fre Stop Fre 2.441000000 GH CF Step CF Step Freq Offset Freq Offse GFSK_1-DH5 enter Freq 2.441000000 GHz enter Freq 2.441000000 GHz Ref Offset 1 dB Ref 20.00 dBm Ref Offset 1 dB Ref 20.00 dBn Center Fre Center Fre Freq Offse Span 0 Hz Sweep 3.160 s (40001 pts) #VBW 3.0 MHz #VBW 3.0 MHz