Qwizdom Inc.

RF Host

January 23, 2005

Report No. PROU0007

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2005 Northwest EMC, Inc

Certificate of Test Issue Date: January 23, 2005 Qwizdom Inc RF Host

	Emissions		
Specification	Test Method	Pass	Fail
FCC 15.247(a)(2) Occupied Bandwidth:2004	ANSI C63.4:2003		
FCC 15.247(b)(3) Output Power:2004	ANSI C63.4:2003		
FCC 15.247(d) Band Edge Compliance:2004	ANSI C63.4:2003	\square	
FCC 15.247(d) Spurious Conducted Emissions:2004	ANSI C63.4:2003		
FCC 15.247(d) Spurious Radiated Emissions:2004	ANSI C63.4:2003	\square	
FCC 15.247(e) Power Spectral Density:2004	ANSI C63.4:2003	\square	
FCC 15.207 AC Power Line Conducted Emissions:2004	ANSI C63.4:2003		

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facilities used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826

The sites have been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:
Dould Manten
Don Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP)

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Nos. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761)*

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/scope.asp</u>

(N) NEMKO

How important is it to understand performance criteria?

It is the responsibility of the test laboratory to observe the results of the tests that are performed and to accurately report those results. As the responsible party (manufacturer, importer, etc) it is your responsibility to take those results, compare them against the specifications and standards, then, if appropriate make a declaration of conformity. As the responsible party it makes sense that you are fully aware of the requirements, how your device performs when tested to those requirements, and what information is being used to declare conformity.

To better assist you in making those conformity decisions, Northwest EMC has adopted a very simple, yet very clear performance assessment procedure. The following criteria is used when performing immunity or susceptibility tests:

Performance Criteria 1:

- □ The EUT exhibited no change in performance when operating as specified by the manufacturer. In this case no changes were observed during the test.
- In most cases this would be equivalent to Performance Criteria A. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, no changes were observed. Basically nothing happened.

Performance Criteria 2:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment recovered without any operator intervention, once the test signal was removed. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria B. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT was able to recover from those changes without any operator intervention, once the test signal was removed.

Performance Criteria 3:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment required some operator intervention in order to recover. This intervention may be in the form of changing EUT settings, or even resetting the system. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria C. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT required some sort of operator intervention to recover. There was no permanent damage and the EUT appeared to function normally after completion test.

Performance Criteria 4:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment was damaged and would not recover. The data sheets will detail the exact phenomena observed.
- In most cases there is no specific criterion to compare this to, it typically ends the test. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. There was no recovery; the equipment would no longer function as intended.

Each of the standards and specifications has unique performance criteria. In order to make an accurate assessment, one must compare the test results provided with the specific performance criteria. To ensure that a responsible party is compliant with the specifications, one must read and understand those specifications. Provided below is a sample performance criteria, taken from EN 61000-6-1.

EN 61000-6-1 Performance Criteria

Performance Criteria A: The apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

Performance Criteria B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

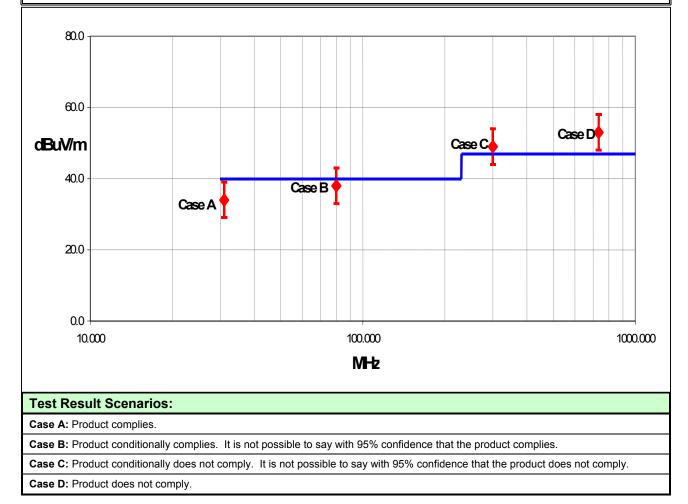
Performance Criteria C: Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of controls.

How should a device perform in order for a declaration of conformity to be made?

As already stated, it is the responsible party that must interpret and understand the results in such a way that a declaration of conformity is made. Having said that, we are often asked to render our opinion as to how a device should perform. Our recommendation simply follows the standards, as can be referenced below. Most of the standards and specifications offer the same performance criterion shown below as their requirements.

Test	Performance Criteria typically specified by the Standard	Equivalent Northwest EMC Performance Criteria	
ESD	Performance Criteria B	Performance Criteria 1 or 2	
Radiated RF	Performance Criteria A	Performance Criteria 1	
EFT/Burst	Performance Criteria B	Performance Criteria 1 or 2	
Surge	Performance Criteria B	Performance Criteria 1 or 2	
Conducted RF	Performance Criteria A	Performance Criteria 1	
Magnetic Field	Performance Criteria A	Performance Criteria 1	
Voltage Dips and Variations	Performance Criteria B & C	Performance Criteria 1, 2, or 3	

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Radiated Emissions ≤ 1 GHz		Value (dB)					
	Probability Biconical		Log Po	eriodic	D	ipole		
	Distribution	n Antenna		stribution Antenna Antenna		enna	Antenna	
Test Distance		3m	10m	3m	10m	3m	10m	
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25	
uncertainty <i>u_c(y)</i>		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25	
Expanded uncertainty U	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49	
(level of confidence $\approx 95\%$)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49	

Radiated Emissions > 1 GHz	Value (dB)		
	Probability	Without High	With High
	Distribution	Pass Filter	Pass Filter
Combined standard uncertainty <i>u_c(y)</i>	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty U	normal (k=2)	+ 2.57	+ 2.76
(level of confidence $\approx 95\%$)		- 2.51	2.70

Conducted Emissions					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty <i>uc(y)</i>	normal	1.48			
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.97			

Radiated Immunity					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty <i>uc(y)</i>	normal	1.05			
Expanded uncertainty <i>U</i>	normal (k = 2)	2.11			
(level of confidence \approx 95 %)	$\operatorname{Horman}(K=Z)$	2.11			

Conducted Immunity					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty <i>uc(y</i>)	normal	1.05			
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.10			

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility Labs EV01 – EV10

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility Labs TE01 – TE03

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Party Requesting the Test	
Company Name:	Product Creation Studio
Address:	5425 Ballard Ave NW
City, State, Zip:	Seattle, WA 98107
Test Requested By:	Scott Thielman
Model:	RF Host
First Date of Test:	12-21-2004
Last Date of Test:	01-08-2005
Receipt Date of Samples:	12-21-2004
Equipment Design Stage:	Pre-Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	1 MHz, 6 MHz, 16 MHz, 48 MHz, 65 MHz, 256 MHz, 2.45 GHz
I/O Ports:	USB

Functional Description of the EUT (Equipment Under Test):

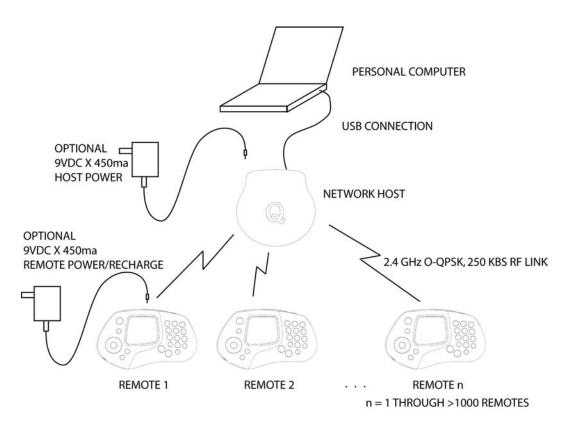
EUT is a network host for an Audience Response System (ARS).

Client Justification for EUT Selection:

The product is an engineering sample, representative of the final product.

Client Justification for Test Selection:

These test satisfy the requirements for the FCC and CE mark.


EUT Information

The Audience Response System (ARS) consists of the elements shown in Figure1. A computer (laptop or desktop) connects to the network host via a USB connection. The host obtains its power from the USB connection and alternately from a regulated 9VDC wall transformer. The network host communicates to multiple audience remotes via an IEEE 802.15.4 compliant RF link. The teacher remote, Q5 RF, has more buttons and a larger graphical display, while the student remote, Q4 RF, has fewer buttons and smaller LCD. The remotes accept user feedback via the keypad and displays information on an LCD. The Q5 remotes are powered by rechargeable batteries and can be powered and recharged via a 9VDC regulated wall transformer. The Q4 remotes are powered by two AA alkaline batteries.

Product Description

Figure 1

Modifications

	Equipment modifications						
Item	Test	Date	Modification	Note	Disposition of EUT		
1	Band Edge Compliance	12/20/2004	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.		
2	Output Power	12/20/2004	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.		
3	Radiated Emissions – FCC DoC	12/28/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.		
4	Conducted Emissions – FCC DoC	01/03/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.		
5	AC Powerline Conducted Emissions	01/03/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.		
6	Occupied Bandwidth	01/06/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.		
7	Power Spectral Density	01/06/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.		
8	Spurious Conducted Emissions	01/06/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.		
9	Spurious Radiated Emissions	01/08/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.		

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: Transmit

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Software\Firmware Applied During Test						
Exercise software TestRFGen1 Version Unknown						
Description						
The system was tested using standard operating production software to exercise the functions of the						
device during the testing ir	ncluding mode, channel, ar	nd power.				

EUT and Peripherals					
Description Manufacturer Model/Part Number Serial Number					
AC Power Adapter	CUI, Inc.	41-9-500R	N/A		
EUT- RF Host	Quizdom, Inc.	RF Host	Unknown		

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Laptop PC	Acer, Inc.	Travelmate 803 LCi	LXT 2506001326031C2EF01			
AC Power Adapter DELTA, Inc. ADP-75FB B S4W0326044192						
Equipment isolated from the E	Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary					

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
USB	Yes	2.0		EUT- RF Host	Laptop PC		
DC Leads	No	1.8	PA	AC Power Adapter	EUT- RF Host		
PA = Cable is peri	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

Measurement Equipment						
Description Manufacturer Model Identifier Last Cal Interval						
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo	

Test Description

Requirement: Per 47 CFR 15.247(a)(2), the 6 dB bandwidth of a direct sequence channel must be at least 500kHz. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation.

Completed by:	
Rocky Le	Reling

NORTHWEST								
EMC		EMISSIONS I	DATA SHEET		Rev BETA 01/30/01			
EUT:	RF Host			Work Order:	PROU0007			
Serial Number:	Blue			Date:	01/06/05			
Customer:	Product Creation Studio			Temperature:	22°C			
Attendees:	None		Tested by: Rod Peloquin	Humidity:	30% RH			
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION	IS							
	47 CFR 15.247(a)(2)	Year: Most Current	Method: FCC 97-114, ANSI C63.	.4 Year:	1992			
SAMPLE CALCULATION	ONS							
COMMENTS								
EUT OPERATING MOI								
	t maximum data rate, 802.11(b) mo	dulation scheme						
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
The minimum 6dB bar	ndwidth is 500KHz							
RESULTS			BANDWIDTH					
Pass			1.87 MHz					
SIGNATURE								
Tested By:	Rocky Le Reley							
DESCRIPTION OF TES	ST							
	Occupied Bandwidth - Low Channel							

Occupied Bandwidth - Low Channel

	Mkr 🛆 1.87MHz	∆ -0.10dB	Tek
0.0	Ref Lv1*0.0dBm	10dB/	Atten 10dB
-10.0		Vatra Manual Martin	
-20.0			
-30.0		where the second	
-40.0			The second secon
-50.0	makethed the and the a		What and a second way was a second with a second second
-60.0			
-70.0			
-80.0			
-90.0			
-100.0			
	Freq 2.405 OOGHz	:	Span 10MHz
	ResBW 100kHz	VidBW 300kHz	SWP 50mS
	LEVEL SPAN	VidBW 300kHz	
	KNOB 2 KNOB 1	KEYPAD Tektronix	2784

NORTHWEST					_		
EMC		EMISSIONS [DATA SH	EET			Rev BETA 01/30/01
EUT:	RF Host				Wo	ork Order: PROU0007	
Serial Number:	Blue					Date: 01/06/05	
Customer:	Product Creation Studio				Tem	perature: 22°C	
Attendees:	None		Tested by:	Rod Peloquin	H	Humidity: 30% RH	
Customer Ref. No.:	N/A			120VAC/60Hz		Job Site: EV06	
TEST SPECIFICATION	IS						
Specification:	47 CFR 15.247(a)(2)	Year: Most Current	Method:	FCC 97-114, ANSI C63.4	4	Year: 1992	
SAMPLE CALCULATIO							
COMMENTS							
EUT OPERATING MOD	DES						
Modulated by PRBS at	t maximum data rate, 802.11(b) mo	odulation scheme					
DEVIATIONS FROM TE	EST STANDARD						
None							
REQUIREMENTS							
The minimum 6dB bar	ndwidth is 500KHz						
RESULTS			BANDWIDTH				
Pass			1.82 MHz				
SIGNATURE							
Tested By:	Rocky le Relings						
DESCRIPTION OF TES	ST						

	MKr 🛆 1.82MHz	∆ 1.10dB	1.10ab Tex			
0.0	Ref Lv1*0.0dBm	10dB/	Atten 10dB			
-10.0						
-20.0		- Marine Marine				
-30.0						
-40.0	- Marchan	×	New Work College			
-50.Q	which the provide a strange and a strange		Marthala Jarger Jar			
-60.Q						
-70.0						
-80.0						
-90.0						
-100.Q						
	Freq 2.440 OOGHz		Span 10MHz			
	ResBW 100kHz	VidBW 300kHz	SWP 50mS			
	LEVEL SPAN	Freq 2.440 00GHz				
	KNOB 2 KNOB 1	KEYPAD Tektroni	x 2784			

NORTHWEST							
EMC		EMISSIONS	DATA SHE	ET		Rev BETA 01/30/01	
	RF Host				Work Order	: PROU0007	
Serial Number:						: 01/06/05	
	Product Creation Studio Temperature: 22°C						
Attendees:			Tested by:	Rod Peloguin		: 30% RH	
Customer Ref. No.:				20VAC/60Hz	Job Site		
TEST SPECIFICATION			rower.	20VA0/00112	305 5116	. 2000	
	47 CFR 15.247(a)(2)	Year: Most Current	Method:	CC 97-114, ANSI C63.	4 Voar	: 1992	
SAMPLE CALCULATIO		Tear. Most ourrent	Methou.	00 37-114, ANOI 003.	.+ rear	. 1552	
SAMPLE CALCULATI							
COMMENTS							
COMMENTS							
EUT OPERATING MO	DES						
	t maximum data rate, 802.11(b) mo	dulation scheme					
DEVIATIONS FROM T	; , , ,						
None	LOT OTANDARD						
REQUIREMENTS							
The minimum 6dB bar	ndwidth is 500KHz						
RESULTS			BANDWIDTH				
Pass			1.87 MHz				
SIGNATURE							
	10.00						
	Porting to Reling						
	0 03						
Tested By:	-						
DESCRIPTION OF TES	ST						
	Occupied Bandwidth - High Channel						

Occupied Bandwidth - High Channel

[Mkr 🛆 1.87MHz				∆ 0.10db				Tek	
0.0	Ref Lvl	*O.OdBm			10d	в/		Atten 100	iB	
-10.0					Jacob Carlington Constants					
-20.Q					Jul warden w		T			
-30.0					:					
-40.0			and have we	/ W	· ·		· W	- March March		
-50.Q	Minalland	and a support of the second						· · · · ·	Hermony	here we we we we want for the
-60.0					:					
-70.0					:					
-80.0										
-90.0					:					
-100.0					:					
	Freq 2	2.480 OOGH	Iz				5	5pan 10MHz		
	ResBW 10	OckHz		v	idBW 300kHz			SWP	50mS	
	LEVEL		SPAN	F	req 2.480 (DOGHz				
	KNOB 2		KNOB 1	K	EYPAD	Te	ktronix	2784		

Output Power

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: Typical

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

Powered from USB

Software\Firmware Applied During Test							
Exercise software TestRFGen1 Version Unknown							
Description							
The system was tested using standard operating production software to exercise the functions of the							
device during the testing in	cluding mode, channel, a	nd power.					

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
EUT- RF Host	Quizdom, Inc.	RF Host	Blue

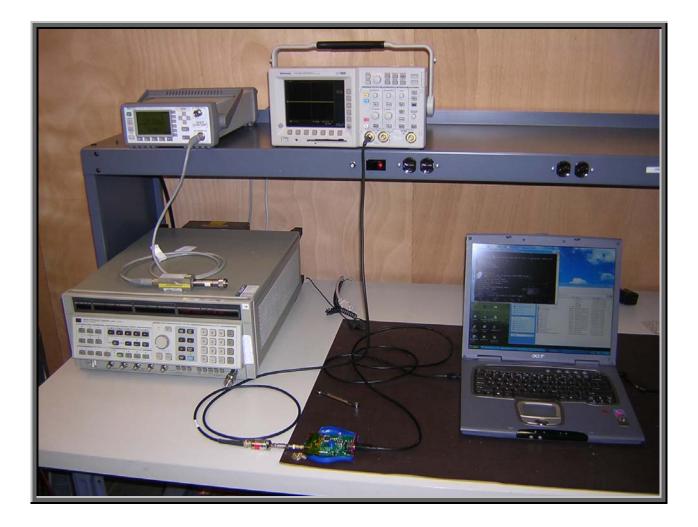
Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Laptop PC Acer, Inc. Travelmate 803 LCi LXT 2506001326031C2EF01						
Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary						

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	No	2.0	No	EUT- Network Host	Laptop PC

Measurement Equipment							
Description	Manufacturer	Model	Identifier	Last Cal	Interval		
Power Meter	Hewlett Packard	E4418A	SPA	07/23/2004	24 mo		
Power Sensor	Hewlett-Packard	8481H	SPB	07/23/2004	24 mo		
Oscilloscope	Tektronix	TDS 3052	TOF	07/21/2004	12 mo		
Signal Generator	Hewlett Packard	8341B	TGN	01/23/2004	13 mo		
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo		

Test Description

Requirement: Per 47 CFR 15.247(b)(3), the maximum peak output power must not exceed 1 Watt.


<u>Configuration</u>: The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The EUT was transmitting at its maximum output power. The data rate of the radio was varied to determine the level that produced the highest output power.

The measurement was made using a direct connection between the RF output of the EUT and a RF detector diode. The DC output of the diode was measured with the oscilloscope. The signal generator, tuned to the transmit frequency, was then substituted for the EUT. The CW output of the signal generator was adjusted until the DC output of the RF detector diode match the peak level produced when connected to the EUT. To further reduce measurement error, the power meter and sensor were then used to measure the output power level of the signal generator.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

Completed by:	
Rocky le	Peling

NORTHWEST						
EMC		EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT:	RF Host				Work Order: P	ROU0007
Serial Number:	Blue				Date: 1	2/20/04
Customer:	Product Creation Studio				Temperature: 2	3°C
Attendees:	Scott Thielman		Tested by:	Rod Peloquin	Humidity: 3	8% RH
Customer Ref. No.:	N/A		Power:	USB	Job Site: E	V06
TEST SPECIFICATION	NS					
Specification:	47 CFR 15.247(b)(3)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year: 1	992
SAMPLE CALCULATI	ONS					
COMMENTS						
COMMENTS						
EUT OPERATING MO	DES					
	m data rate, at maximum output p	owor.				
DEVIATIONS FROM T		ower.				
None	LOTOTANDARD					
REQUIREMENTS						
	ucted output power does not exce	ed 1 Watt				
RESULTS			AMPLITUDE			
Pass			0.699 mW			
SIGNATURE						
Tested By:	Rocky Le Relings					
DESCRIPTION OF TE	ST					
	Οι	utput Power - Low,	Mid, & High C	hannels		
	Frequency (MHz)			Power	(mW)	
	2405			0.6	99	
	2440			0.6	00	
	2480			0.5	05	

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
High

Operating Modes Investigated: Transmit

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated: 120 VAC, 60 Hz.

Software\Firmware Applied During Test							
Exercise software TestRFGen1 Version Unknown							
Description							
The system was tested using standard operating production software to exercise the functions of the							
device during the testing ir	ncluding mode, channel, ar	nd power.					

EUT and Peripherals								
Description	Manufacturer	Model/Part Number	Serial Number					
AC Power Adapter	CUI, Inc.	41-9-500R	N/A					
EUT- RF Host	Quizdom, Inc.	RF Host	Unknown					

Remote Equipment Outside of Test Setup Boundary							
Description	Manufacturer	Model/Part Number	Serial Number				
Laptop PC	Acer, Inc.	Travelmate 803 LCi	LXT 2506001326031C2EF01				
AC Power Adapter	DELTA, Inc.	ADP-75FB B	S4W0326044192				
Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary							

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
USB	Yes	2.0		EUT- RF Host	Laptop PC	
DC Leads	No	1.8	PA	AC Power Adapter	EUT- RF Host	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

Measurement Equipment						
Description	Manufacturer	Model	Identifier	Last Cal	Interval	
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo	

Test Description

Requirement: Per 47 CFR 15.247(c), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 25 MHz below the band edge to 25 MHz above the band edge.

Completed by: in he Relings

NORTHWEST						
EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01
EUT:	RF Host				Work Order	: PROU0007
Serial Number:	Unknown				Date	: 12/20/04
Customer:	Product Creation Studio				Temperature	: 23°C
Attendees:	Scott Thielman		Tested by:	Rod Peloquin	Humidity	: 38% RH
Customer Ref. No.:	N/A	USB	Job Site	: EV06		
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(d)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year	: 1992
SAMPLE CALCULATI	ONS					
COMMENTS						
COMMENTO						
EUT OPERATING MO	DES					
Modulated at maximu	m data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission at the edge of	the authorized band is 20 dB down	n from the fundamenta			
RESULTS			AMPLITUDE			
Pass	ass -40.2 dB					
SIGNATURE						
Rocky to Prolenny						
DESCRIPTION OF TES	ST					
		Band Edge Complia	ance - Low C	hannel		

	MKr 🛆 -5.44MHz							Tek		
0.0	Ref Lvl ³	*O.OdBm				10dB/		Atten 100	1B	
-10.0						-		morton		
-20.0						-			ζ	
-30.0										
-40.0						- - -	Γ.Υ.		V	
-50.0				المعني أجرار	marin	Nr. AHAYYONJAN MANAMANA	/ * \/		۴۲	What was
-60.0	Myramathia	adamanahahahan	MUNAMURALIAN AND	/hoy/4/~name/	- 11	•				
-70.0						-				
-80.0						-				
-90.0						-				
-100.0										
	Freq 2	2.400 OOG	Hz				\$	õpan 20MHz		
	ResBW 10	OckHz		v	idBW	300kHz		SWP	50mS	
	LEVEL		ATTEN	F	req	2.400 00GHz				
	KINOB 2		KNOB 1	KI	EYPAD	Т	ektronix	2784		

REVIEWS							
EMC						01/30/01	
EUT:	RF Host				Work Order	PROU0007	
Serial Number:	Unknown				Date:	12/20/04	
Customer:	Product Creation Studio				Temperature:	23°C	
	Scott Thielman			Rod Peloquin	Humidity		
Customer Ref. No.:	N/A	USB	Job Site:	EV06			
TEST SPECIFICATION						-	
Specification:	47 CFR 15.247(d)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992	
SAMPLE CALCULATION	ONS						
COMMENTS							
COMMENTO							
EUT OPERATING MOD	DES						
Modulated at maximum	m data rate						
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
Maximum level of any	spurious emission at the edge of	the authorized band is 20 dB dow	n from the fundamenta	I			
RESULTS			AMPLITUDE				
Pass -35.3 dB							
SIGNATURE							
Rocky to Release							
DESCRIPTION OF TES	T						
	Band Edge Compliance - High Channel						

Band Edge Compliance - High Channel

	Mkr 🛆	кг 🛆 3.70MHz			35.30ав				Tek	
0.0	Ref Lvl*	0.0dBm				10dB/		Atten 100	цВ	
-10.0				when a						
-20.0				- NA						
-30.0										
-40.Q			\triangle		M					
-50.0	Ladin preventer to re	MANN			`₩ 	when the the the test of t	Nerothing in the	Warming		
-60.Q										- NA
-70.Q						•				
-80.Q						-				
-90.0										
-100.Q						-				
	Freq 2	.483 50GH	z				ŝ	õpan 20MHz		
	ResBW 10	0kHz		v	idBW 30	OkHz		SWP	50mS	
	LEVEL		ATTEN	м	kr 2.	483 54GHz				
·	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated:	
Transmit	

Data Rates Investigated:	
Maximum	

Output Power Setting(s) Investigated:	
Maximum	

Power Input Settings Investigated: 120 VAC, 60 Hz.

Frequency Range Investigated						
Start Frequency	0 MHz	Stop Frequency	25 GHz			

Software\Firmware Applied During Test								
Exercise software TestRFGen1 Version Unknown								
Description								
The system was tested usi device during the testing in		duction software to exercise ad power.	e the functions of the					

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
AC Power Adapter	CUI, Inc.	41-9-500R	N/A
EUT- RF Host	Quizdom, Inc.	RF Host	Unknown

Remote Equipment Outside of Test Setup Boundary							
Description Manufacturer Model/Part Number Serial Number							
Laptop PC	Acer, Inc.	Travelmate 803 LCi	LXT 2506001326031C2EF01				
AC Power Adapter DELTA, Inc. ADP-75FB B S4W0326044192							
Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary							

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
USB	Yes	2.0		EUT- RF Host	Laptop PC		
DC Leads	No	1.8	PA	AC Power Adapter	EUT- RF Host		
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.							

Measurement Equipment							
Description	Manufacturer	Model	Identifier	Last Cal	Interval		
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo		

Test Description

Requirement: Per 47 CFR 15.247(c), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

Completed by:	
Rocky Le	Peling

NORTHWEST		EMISSIONS	DATA SHEET		Rev BETA			
EMC		LINISSICING			01/30/01			
EUT:	RF Host			Work Order:	PROU0007			
Serial Number:	Unknown			Date:	01/06/05			
Customer:	Product Creation Studio			Temperature:	22°C			
Attendees:	None		Tested by: Rod Peloquin	Humidity:	30% RH			
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION	S							
Specification:	47 CFR 15.247(d)	Year: 2004	Method: FCC 97-114, ANSI C63	.4 Year:	2003			
SAMPLE CALCULATIO	DNS							
COMMENTS								
EUT OPERATING MOD								
Modulated by PRBS at								
DEVIATIONS FROM TE	ST STANDARD							
None								
REQUIREMENTS								
	spurious emission outside of the au	thorized band is 20 dB down from	the fundamental					
RESULTS								
Pass								
SIGNATURE								
	Rocky Le Felings							
Tested By:	Tested By:							
DESCRIPTION OF TES	т							
		ucted Sourious Emi	ssions - Low Channel 0MH	IZ-3GHZ				

Antenna Conducted Spurious Emissions - Low Channel 0MHz-3GHz

										Tek
10.0	Ref Lvl ³	10.OdBm			10dE	17		Atten 100	ıв	
0.0										
-10.0									I	
-10.0										
-20.Q					· ·					
-30.Q					· ·					
-40.Q										
-50.Q										
-60.Q	mmunikan	right	#*************************************	lense Monsmith	ารมาระสมสู่ใบข้างให้เหลือสารระบบการ		alweining and	on marine where we will	been haven and	water and a start of the
-70.0					· · · · · · · · · · · · · · · · · · ·					
-80.Q					-					
-90.Q	OMHz		to		OOGHz	I				
	ResBW 10)0kHz			idBW 300kHz			SWP	1.75	
	LEVEL		SPAN	Åt	tten 10dB					
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST								
EMC		EMISSIONS [JATA SHI	EEI		Rev BETA 01/30/01		
EUT:	RF Host				Work Order:	PROU0007		
Serial Number:	Unknown				Date:	01/06/05		
Customer:	Product Creation Studio				Temperature:	22°C		
Attendees:	None		Tested by:	Rod Peloquin	Humidity:			
Customer Ref. No.:			Power:	120VAC/60Hz	Job Site:	EV06		
TEST SPECIFICATION	IS							
Specification:	47 CFR 15.247(d)	Year: 2004	Method:	FCC 97-114, ANSI C63.	4 Year:	2003		
SAMPLE CALCULATIO	ONS							
COMMENTS								
EUT OPERATING MOD								
Modulated by PRBS a								
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental					
RESULTS								
Pass								
SIGNATURE								
Tested Bv:	Rocky to Releng							
DESCRIPTION OF TES								
	Antenna Condu	cted Spurious Emis	sions - Low	Channel 3GH	lz-6.5GHz			

Antenna Conducted Spurious Emissions - Low Channel 3GHz-6.5GHz

									Tek
10.0	Ref Lvl*10.00	lBm		10dB/			Atten 100	1B	
0.0				•					
-10.0									
-20.0									
-30.0									
				:					
-40.0				· · · · · · · · · · · · · · · · · · ·					
-50.0									h marked and moved the market
-60.Q	haven and it is a second s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and a superior of the second	.//xxx/9.42/1.x.x1991-1.a9444949499716749444	4run-verte	difestered and an and the	ag _{aat} ii badaata ay ii aa ahaa ahaa ahaa ahaa ahaa ahaa	an show for to the four	
-70.0									
.0.0									
-80.0				· · · · · · · · · · · · · · · · · · ·					
-90.0				:					
	2.990GHz	to	6.50	DOGHz					
	ResBW 100kHz		Vi	dBW 300kHz			SWP	2.05	
	LEVEL	SPAN	St	op 6.500GHz					
	KNOB 2	KNOB 1	KE	YPAD	Tek	tronix	2784		

NORTHWEST		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	RF Host			Work Order:	
Serial Number:					01/06/05
	Product Creation Studio			Temperature:	
Attendees:			Tested by: Rod Peloguin	Humidity:	
Customer Ref. No.:			Power: 120VAC/60Hz	Job Site:	
TEST SPECIFICATION				000 0101	
	47 CFR 15.247(d)	Year: 2004	Method: FCC 97-114, ANSI C63	.4 Year:	2003
SAMPLE CALCULATI	1 1/			Tour	
COMMENTS					
EUT OPERATING MO	DES				
Modulated by PRBS a	t maximum data rate				
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS					
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental		
RESULTS					
Pass					
SIGNATURE					
Tested By:	Rocky Le Relings				
DESCRIPTION OF TES					
	Antenna Conduc	cted Spurious Emis	sions - Low Channel 6.5G	Hz-15GHz	

Antenna Conducted Spurious Emissions - Low Channel 6.5GHz-15GHz

	Mkr	7.222GHz	*-31	L.30dBm							Tek
10.0	Ref L	vl*10.0dBm				10dB/	,		Atten 100	1B	
						:					
0.0						:					
-10.0						:					
-20.0											
-30.0		~				:					
-40.Q											
-50.Q						:					
-60.Q	http://www.phanter.	all and man market	www.	we the base of the base	thrown the share	www.hannell Manya	an a	wellin markely war	when with a start	the way of the second	handfar indar inflyense africanse
						:					
-70.0						•					
-80.0						:					
-90.0						•					
	6.	499GHz	to	15.0	OOGHz						
	ResBW	100kHz		v:	idBW 3	OOkHz			SWP	4.85	
	LEVEL		SPAN	St	trt	6.499GHz	:				
	KNOB	2	KNOB 1	к	EYPAD		Te	ktronix	2784		

NORTHWEST EMISSIONS DATA SHEET Rev Beta Ottoo EUT: RF Host Work Order: PROL0007 Serial Number: Unknown Date: 01/06/05 Customer: Product Creation Studio Temperature: 22°C Attendees: None Tested by: Rod Peloquin Humidity: 30% RH Customer Ref. No.: NA Power: 120VAC/60Hz Job Site: EV06 TEST SPECIFICATIONS Tested by: Rod Peloquin Humidity: 30% RH Specification: 147 CFR 15.247(d) Year: 2004 Method: FCC 97-114, ANSI C63.4 Year: 2003 SAMPLE CALCULATIONS Sample Calculations EUT OPERATING MODES Sample Calculations Sample Calculations Sample Calculations EUT OPERATING MODES Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD Sample Calculations Sample Calculat										
Serial Number: Unknown Date: 01/06/05 Customer: Product Creation Studio Temperature: 22°C Attendees: None Tested by: Rod Peloquin Humidity: 30% RH Customer Ref. No.: N/A Power: 120VAC/60Hz Job Site: EV06 Specification: 47 CFR 15.247(d) Year: 2004 Method: FCC 97-114, ANSI C63.4 Year: 2003 SAMPLE CALCULATIONS EUT OPERATING MODES EUT OPERATING MODES EUT OPERATING MODES Undulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None Requirements EUT OPERATINS										
Customer: Product Creation Studio Temperature: 22°C Attendees: None Tested by: Rod Peloquin Humidity: 30% RH Customer Ref. No.: INA Power: 120VAC/60Hz Job Site: EV06 TEST SPECIFICATIONS Specification: 47 CFR 15.247(d) Year: 2004 Method: FCC 97-114, ANSI C63.4 Year: 2003 SAMPLE CALCULATIONS EUT OPERATING MODES Redulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None REQUIREMENTS EUT OPERATING EUT OPERATING MODES										
Attendees: None Tested by: Rod Peloquin Humidity: 30% RH Customer Ref. No.: N/A Power: 120VAC/60Hz Job Site: EV06 TEST SPECIFICATIONS Specification: 47 CFR 15.247(d) Year: 2004 Method: FCC 97-114, ANSI C63.4 Year: 2003 SAMPLE CALCULATIONS COMMENTS										
Customer Ref. No.: IV/A Power: 120VAC/60Hz Job Site: EV06 TEST SPECIFICATIONS Specification: 47 CFR 15.247(d) Year: 2003 SAMPLE CALCULATIONS SAMPLE CALCULATIONS Vear: 2004 Method: FCC 97-114, ANSI C63.4 Year: 2003 COMMENTS EUT OPERATING MODES Vear: 000 000 000 000 EUT OPERATING MODES Vear: 000 000 000 000 000 REQUIREMENTS EUT OPERATING EUT OPERATING 0000 000 000 000										
TEST SPECIFICATIONS Specification: 47 CFR 15.247(d) Year: 2004 Method: FCC 97-114, ANSI C63.4 Year: 2003 SAMPLE CALCULATIONS COMMENTS COMMENTS EUT OPERATING MODES Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None REQUIREMENTS										
Specification: 47 CFR 15.247(d) Year: 2004 Method: FCC 97-114, ANSI C63.4 Year: 2003 SAMPLE CALCULATIONS										
SAMPLE CALCULATIONS COMMENTS EUT OPERATING MODES Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None REQUIREMENTS										
COMMENTS EUT OPERATING MODES Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None REQUIREMENTS										
EUT OPERATING MODES Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None REQUIREMENTS										
EUT OPERATING MODES Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None REQUIREMENTS										
EUT OPERATING MODES Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None REQUIREMENTS										
EUT OPERATING MODES Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None REQUIREMENTS										
Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None REQUIREMENTS										
Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None REQUIREMENTS										
None REQUIREMENTS										
None REQUIREMENTS										
Maximum level of any spurious emission outside of the authorized band is 20 dB down from the fundamental										
RESULTS										
Pass										
SIGNATURE										
Porting te Reling										
Tested By:										
DESCRIPTION OF TEST										
Antenna Conducted Spurious Emissions - Low Channel 15GHz - 25GHz										

Antenna Conducted Spurious Emissions - Low Channel 15GHz - 25GHz

								Tek
10.0	Ref Lvl*10.	.OdBm		10dB/		Atten 100	1B	
0.0								
0.0								
-10.0								
-20.0								
-30.Q								
-40.0								
-50.0					phonester	bier aler an have been	hand a second and the second	warmant
	man month and wonders and and	hannesser and sugardy and a subscription	Madan de de la contra de la de arta de la contra de la co	an non-produced	4-4 ¹			
-60.Q				:				
-70.0				: ·				
-80.0								
-90.0								
	14.99GHz	to	25.00GHz					
	ResBW 100kHz		VidBW 300k	VidBW 300kHz			5.78	
	LEVEL	SPAN	Strt 14.9	9GHz				
	KINOB 2	KNOB 1	KEYPAD	Te	ktronix	2784		

NORTHWEST											
EMC	EM	ISSIONS [NS DATA SHEET								
EUT:	RF Host			Work Order:	PROU0007						
Serial Number:	Unknown	Date:	01/06/05								
Customer:	Product Creation Studio Temperature 22°C										
Attendees:	None	Humidity:	30% RH								
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06							
TEST SPECIFICATION	IS										
Specification:	47 CFR 15.247(d) Year	r: 2004	Method: FCC 97-114, ANSI C63	.4 Year:	2003						
SAMPLE CALCULATI	ONS										
COMMENTS											
COMMENTO											
EUT OPERATING MO	DES										
Modulated by PRBS a											
DEVIATIONS FROM T											
None											
REQUIREMENTS											
	spurious emission outside of the authorize	d band is 20 dB down fro	om the fundamental								
RESULTS	-										
Pass											
SIGNATURE											
Rocky te Peleny											
Tested By:	Tested By:										
DESCRIPTION OF TEST											
	Antenna Conducted Spurious Emissions - Mid Channel 0MHz-3GHz										

Antenna Conducted Spurious Emissions - Mid Channel 0MHz-3GHz

										Tek
10.0	Ref Lvl	*10.0dBm			10	DdB/		Atten 100	dB	
0.0					· · · · · · · · · · · · · · · · · · ·					
					:					
-10.0										
-20. <u>0</u>										
-30.0										
-40.Q					· · · · ·					
-50.0					:					
-60.0	www.	n man wat have been	ne manter adversed	washipiliteraturation	which when more in	Hugen way added	mana the stand of the state of	ang-tashkatikantasakika	a humanining	anghaharad dalah menangkikan
-70.0					· · · · · · · · · · · · · · · · · · ·					
-70.0					:					
-80.0					· · ·					
-90.0					:					
	OMHz		to	3.0	OOGHz					
	ResBW 100kHz			VidBW 300kHz			SWP 1.75			
	LEVEL		SPAN	Å	tten 10dB					
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST EMISSIONS DATA SHEET REV BETA										
EMC		JATA SHEET		Rev BETA 01/30/01						
EUT: RF Host			Work Order:	PROU0007						
Serial Number: Unknown			Date:	01/06/05						
Customer: Product Creation Studio			Temperature:	22°C						
Attendees: None	None Tested by: Rod Peloquin Humidity: 30% RH									
Customer Ref. No.: N/A	Customer Ref. No.: N/A Power: 120VAC/60Hz									
TEST SPECIFICATIONS										
Specification: 47 CFR 15.247(d)	Year: 2004	Method: FCC 97-114, ANSI C63	.4 Year:	2003						
SAMPLE CALCULATIONS										
COMMENTS										
EUT OPERATING MODES										
Modulated by PRBS at maximum data rate										
DEVIATIONS FROM TEST STANDARD										
None										
REQUIREMENTS										
Maximum level of any spurious emission outside of the aut	horized band is 20 dB down fr	om the fundamental								
RESULTS										
Pass										
SIGNATURE										
Porting ter Relings										
Tested By:										
DESCRIPTION OF TEST										
Antenna Conducted Spurious Emissions - Mid Channel 3GHz-6.5GHz										

Antenna Conducted Spurious Emissions - Mid Channel 3GHz-6.5GHz

											Tek
10.0	Ref Lvl*10	.OdBm				10dB/			Atten 100	18	
0.0											
-10.0						•					
-20.0											
-30.0						•					
-40.Q						· · · ·					
-50. <u>0</u>						•					
-60.Q	www.weiteraconarter	atives the statement	mannershipping	lity have the order of the	pppmahan	mound	hy neddad	alwaysay by aky white safe	k, in the second s	₩₩ [₩] ₩₩₩₩₩₩₩₩₩	₩1. ₩1. ₩1.
-70.0											
-80.0						•					
-90.0											
	2.990GH		to		OOGHz						
	ResBW 100kHz		V:	VidBW 300kHz				SWP	2.05		
	LEVEL		SPAN	St	top	6.500GHz					
	KNOB 2		KNOB 1	KI	EYPAD		Te	ktronix	2784		

NORTHWEST					
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	RF Host			Work Order:	PROU0007
Serial Number:	Unknown			Date:	01/06/05
Customer:	Product Creation Studio			Temperature:	22°C
Attendees:	None		Tested by: Rod Peloquin	Humidity:	30% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	15				
Specification:	47 CFR 15.247(d)	Year: 2004	Method: FCC 97-114, ANSI C63	.4 Year:	2003
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO					
Modulated by PRBS a					
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS					
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental		
RESULTS					
Pass					
SIGNATURE					
	Rocky te Releng				
Tested By:					
DESCRIPTION OF TES	ST				
	Antenna Condu	cted Spurious Emis	sions - Mid Channel 6.5G	Hz-15GHz	
1		cion opunious Enne			

Antenna Conducted Spurious Emissions - Mid Channel 6.5GHz-15GHz

	Mkr	7.324GHz	*-33	.00dBm							Tek
10.0	Ref La	vl*10.0dBm				10d	в/		Atten 100	1B	
						:					
0.0						:					
-10.0						:					
-20.0						:					
-30.0						:					
-40.0											
-50.0											
-60.0	en the sport gas	were wordshings where	r - +++++++++++++++++++++++++++++++++++	worldwwwww	Wenter	n state way was the way	ومدوره والمجاور	menual gently while for a big	agentifications and a second	www.when.	numerolyna
						:					
-70.0						:					
-80.0						:					
-90.0											
	6.4	499GHz	to	15.0	OOGHz	:					
	ResBW	100kHz		V:	idBW :	300kHz			SWP	4.85	
	LEVEL		SPAN	St	trt	6.499G	Hz				
	KNOB 2	2	KNOB 1	KI	EYPAD		Te	ktronix	2784		

NORTHWEST					
EMC	EMISS	IONS DATA SH	EET		Rev BETA 01/30/01
EUT:	RF Host			Work Order: PROU000	7
Serial Number:	Unknown			Date: 01/06/05	
Customer:	Product Creation Studio			Temperature: 22°C	
Attendees:	None	Tested by:	Rod Peloquin	Humidity: 30% RH	
Customer Ref. No.:	N/A	Power:	120VAC/60Hz	Job Site: EV06	
TEST SPECIFICATION	IS				
Specification:	47 CFR 15.247(d) Year: 2004	Method:	FCC 97-114, ANSI C63.4	Year: 2003	
SAMPLE CALCULATI	ONS				
COMMENTS					
COMMENTS					
EUT OPERATING MO	DES				
Modulated by PRBS a					
DEVIATIONS FROM T					
None					
REQUIREMENTS					
	spurious emission outside of the authorized band is	20 dB down from the fundamental			
RESULTS	·				
Pass					
SIGNATURE					
olonarone	Rocky Le Felings				
Tested By:					
DESCRIPTION OF TES	ST				
	Antenna Conducted Spuri	ous Emissions - Mid	Channel 15GHz-	25GHz	
	•				

Antenna Conducted Spurious Emissions - Mid Channel 15GHz-25GHz

										Tek
10.0	Ref Lvl	*10.0dBm				10dB/		Atten 10	dB	
0.0						•				
-10.0						•				
-20.0										
-30.0										
-40.0										
-50.0						•	production	waterstation	y so hay an it is a solution of the solution o	with marked and
	had a land	viewice. Made you was	and the second second	manyappanens	falifer and a	MANN MARAN	to want the stand			
-60.Q										
-70.0						•				
-80.0										
-90.0						•				
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	OckHz		V:	idBW 30	OkHz		SWP	5.75	
	LEVEL		SPAN	St	trt 14	.99GHz				
	KNOB 2		KNOB 1	KI	EYPAD		Tektronix	2784		

NORTHWEST						
EMC		EMISSIONS [DATA SHE	EET		Rev BETA 01/30/01
EUT:	RF Host				Work Order:	PROU0007
Serial Number:	Unknown				Date: 0	01/06/05
Customer:	Product Creation Studio				Temperature: 2	22°C
Attendees:	None		Tested by: F	Rod Peloquin	Humidity:	30% RH
Customer Ref. No.:	N/A		Power: 1	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(d)	Year: 2004	Method: F	FCC 97-114, ANSI C63.4	4 Year: 2	2003
SAMPLE CALCULATIO	ONS					
COMMENTS						
EUT OPERATING MOD	DES					
Modulated by PRBS a	t maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the au	thorized band is 20 dB down fro	om the fundamental			
RESULTS						
Pass						
SIGNATURE						
	Rocky le Releng					
Tested By:						
DESCRIPTION OF TES	ST					
	Antenna Conduc	ted Spurious Emi	ssions - High	Channel 0M	Hz-3GHz	

Antenna Conducted Spurious Emissions - High Channel 0MHz-3GHz

										Tek
10.0	Ref Lvl	*10.0dBm			10	dB/		Atten 100	dB	
0.0										
0.0					:					
-10.0										
-20.0					:					
-30.Q										
-40.Q										
-50.0										
-60.Q	mounder	havateled and a second and	wellinkersonwell	and the second second	manhanna AMMaradhinan	whenterward	n maland all and the		me how many	elsen notes by the basis
-70.0					· · ·					
-70.0					:					
-80.0					•					
-90.0										
	OMHz		to	3.0	OOGHz					
	ResBW 10	OOkHz		v	idBW 300kHz			SWP	1.75	
	LEVEL		SPAN	Å1	tten 10dB					
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST					
EMC		EMISSIONS I	DATA SHEET		Rev BETA
	RF Host		·	Work Order:	01/30/01
Serial Number:					01/06/05
	Product Creation Studio			Temperature:	
Attendees:		<u> </u>	Tested by: Rod Peloquin	Humidity:	
Customer Ref. No.:			Power: 120VAC/60Hz	Job Site:	
TEST SPECIFICATION			Power: 120VAC/60Hz	Job Site:	EV06
	47 CFR 15.247(d)	Year: 2004	Method: FCC 97-114, ANSI C63.	.4 Year:	2002
SAMPLE CALCULATION:		fear. 2004	Method: FCC 9/-114, ANGI 003.	4 ieai.	2003
SAMPLE CALCULATIO	UNS				
COMMENTS					
COMMENTS					
EUT OPERATING MO	DEC				
Modulated by PRBS a					
DEVIATIONS FROM T					
None	EST STANDARD				
REQUIREMENTS					
	spurious emission outside of the	authorized hand is 20 dB down fr	om the fundamental		
RESULTS	spurious emission outside of the	authorized band is 20 db down inc			
Pass					
SIGNATURE					
SIGNATURE	10:00				
	Rocky to Reling				
Tested By:					
DESCRIPTION OF TES	ST				
	Antonna Condu	ctod Spurious Emis	sions - High Channel 3GF		
	Antenna Conuu	cieu Spurious Linis	sions - mgn channel 30	12-0.30112	

Antenna Conducted Spurious Emissions - High Channel 3GHz-6.5GHz

										Tek
10.0	Ref Lvl*:	10.0dBm				10dB/		Atten 10	dB	
0.0						•				
-10.0										
-20.0										
-30.0						•				
-40.Q						· · · · · ·				
-50. <u>0</u>					ىقىرا بىل			n a	and Mary and the	www.conterquerterates.com
-60.0	ynninger ar an	w7.81/9+96+10+1919#8	Alehand when a series of the s	h.h.shuhannon youdaged	₩¦₽ _{₽₽} ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	And de south and a set of the s	******		and a second of a	
-70.0						•				
-80.0										
-90.0						•				
	2.990	GHz	to	6.5	OOGHz					
	ResBW 100	OkHz		V:	idBW 3(DOkHz		SWP	2.05	
	LEVEL		SPAN	St	cop (6.500GHz				
	KINOB 2		KNOB 1	KI	EYPAD		Tektronix	2784		

NORTHWEST									
EMC		EMISSIONS I	DATA SHEET		Rev BETA				
	RF Host			Work Order:	01/30/01				
-									
Serial Number:					01/06/05				
	Product Creation Studio			Temperature:					
Attendees:			Tested by: Rod Peloquin	Humidity:					
Customer Ref. No.:			Power: 120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION				. N					
	47 CFR 15.247(d)	Year: 2004	Method: FCC 97-114, ANSI C63.	4 Year:	2003				
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO									
Modulated by PRBS a									
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental						
RESULTS									
Pass									
SIGNATURE									
	Rocky le Releng								
Tested By:	Tested By:								
DESCRIPTION OF TES	ST								
		tod Sourious Emis	sions - High Channel 6.5G						
	Antenna Conduc	ieu spunous Enns	Sions - righ channel 6.56						

Antenna Conducted Spurious Emissions - High Channel 6.5GHz-15GHz

	Mkr	7.443GHz	*-3	5.00dBm						Tek
10.0	Ref Lv	1*10.0dBm			:	LOdB/		Atten 100	ЗB	
0.0										
-10.0										
-20.0										
-30.0										
-40.0										
-50.0										
-60.0	y.eHaraanse ahterdetee	www.water	American	from another many of	where we approved the	the when the property and	weekersen after freihagen in bee	w.weetwoon as your strates down	at manual whether	with the for the first a first
-70.0										
-80.0										
-90.0										
	6.4	99GHz	to	15.0	OOGHz					
	ResBW	100kHz		v	idBW 300kH	Iz		SWP	4.85	
	LEVEL		SPAN	SI	trt 6.49	99GHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST						
EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01
EUT:	RF Host				Work Order	PROU0007
Serial Number:	Unknown				Date:	01/06/05
Customer:	Product Creation Studio				Temperature:	22°C
Attendees:	None		Tested by:	Rod Peloquin	Humidity	30% RH
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(d)	Year: 2004	Method:	FCC 97-114, ANSI C63.	4 Year:	2003
SAMPLE CALCULATION	ONS					
COMMENTS						
EUT OPERATING MOL						
Modulated by PRBS at						
DEVIATIONS FROM TI None	EST STANDARD					
REQUIREMENTS						
	sourious emission outside of the	authorized band is 20 dB down fro	m the fundamental			
RESULTS	spurious christion outside of the					
Pass SIGNATURE						
Tested By:	Porting to Feling					
DESCRIPTION OF TES	ST					
	Antenna Condu	cted Spurious Emis	sions - High	Channel 15G	Hz-25GHz	

Antenna Conducted Spurious Emissions - High Channel 15GHz-25GHz

								r S
10.0	Ref Lvl*10.0d	Bm		10dB/		Atten 100	1B	
0.0				•				
				•				
-10.Q				• •				
-20.Q				•				
-30.Q								
-40.0				· · ·				
-50.0						monte	verygenderter termine	n. Manager and a start
	dividence of the strage any particularly	hat a for a series and a series and any	www.b.b.b.mblewish.got.dimportance	14h martin with the for the	www.d			
-60.Q				:				
-70.0				: ·				
-80.Q				•				
-90.0				•				
	14.99GHz	to	25.00GHz					
	ResBW 100kHz		VidBW 300k	Hz		SWP	5.78	
	LEVEL	SPAN		9GHz				
	KNOB 2	KNOB 1	KEYPAD	Te	ktronix	2784		

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: Transmit

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Software\Firmware Applied During Test					
Exercise software	TestRFGen1	Version	Unknown		
Description					
The system was tested using standard operating production software to exercise the functions of the					
device during the testing including mode, channel, and power.					

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
AC Power Adapter	CUI, Inc.	41-9-500R	N/A
EUT- RF Host	Quizdom, Inc.	RF Host	Unknown

Remote Equipment Outside of Test Setup Boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Laptop PC	Acer, Inc.	Travelmate 803 LCi	LXT 2506001326031C2EF01			
AC Power Adapter	DELTA, Inc.	ADP-75FB B	S4W0326044192			
Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary						

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	2.0		EUT- RF Host	Laptop PC
DC Leads	No	1.8	PA	AC Power Adapter	EUT- RF Host
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

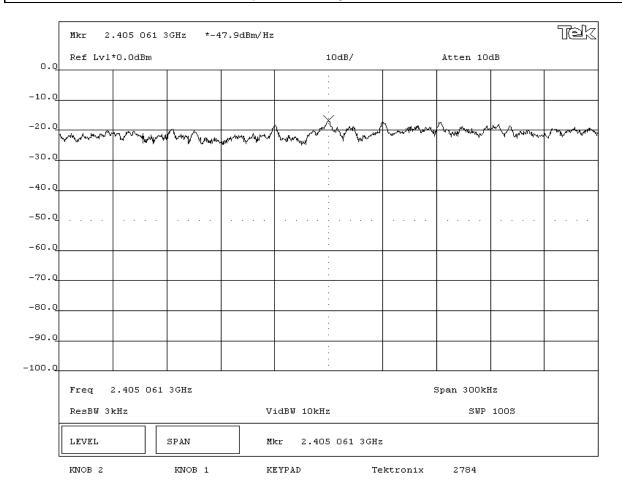
Measurement Equipment	t				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo

Test Description

Requirement: Per 47 CFR 15.247(e), the peak power spectral density conducted from the antenna port of a direct sequence transmitter must not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission.

Configuration: The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:

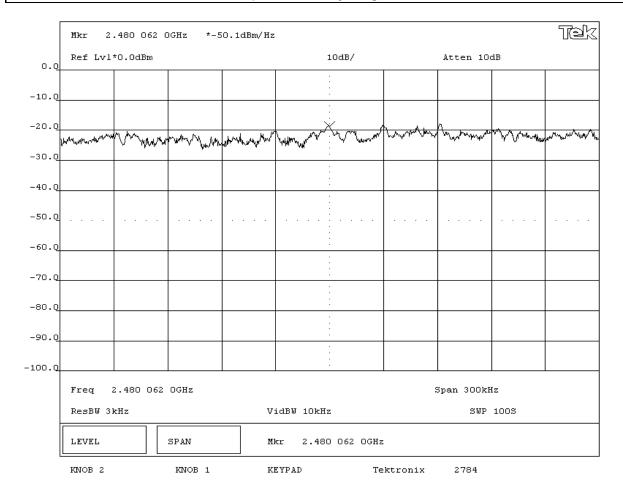
The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x 106 ÷ 3 x 103 = 500 seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:


"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz."

The spectrum analyzer power reading was calibrated prior to testing using the power meter, power sensor, and signal generator via the substitution method.

Completed by:	
Rocky la	Pelen

NORTHWEST						
EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01
EUT:	RF Host				Work Order:	PROU0007
Serial Number:	Unknown				Date:	01/06/05
Customer:	Product Creation Studio				Temperature:	22°C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	30% RH
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(e)	Year: 2004	Method:	FCC 97-114, ANSI C63.4	4 Year:	2003
SAMPLE CALCULATION	ONS					
Meter reading on spec	ctrum analyzer is internally compe	nsated for cable loss and external	attenuation.			
Power Spectral Densit	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.		
Bandwidth Correction	Factor = 10*log(3kHz/1Hz) = 34.8 d	dB				
COMMENTS						
EUT OPERATING MOD						
Modulated by PRBS a						
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
	spectral density conducted from a	a DSSS transmitter does not excee	ed 8 dBm in any 3 kHz	band		
RESULTS			AMPLITUDE			
Pass			Power Spectral Densit	y = -13.1 dBm / 3kHz		
SIGNATURE						
Tested By:	Rochy te Relings					
DESCRIPTION OF TES	ST					


NORTHWEST								
EMC		EMISSIONS L	DATA SHEET		Rev BETA 01/30/01			
EUT:	RF Host			Work Order:	PROU0007			
Serial Number:	Unknown Date: 01/06/05							
Customer:	Product Creation Studio			Temperature:	22°C			
Attendees:	None		Tested by: Rod Peloquin	Humidity:	30% RH			
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION	IS							
Specification:	47 CFR 15.247(e)	Year: 2004	Method: FCC 97-114, ANSI C63	3.4 Year:	2003			
SAMPLE CALCULATION	ONS							
Meter reading on spec	ctrum analyzer is internally compe	nsated for cable loss and external	attenuation					
Power Spectral Densit	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction Factor.					
Bandwidth Correction	Factor = 10*log(3kHz/1Hz) = 34.8 d	1B						
COMMENTS								
EUT OPERATING MOI	DES							
Modulated by PRBS a	t maximum data rate							
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
Maximum peak power	spectral density conducted from a	a DSSS transmitter does not excee	ed 8 dBm in any 3 kHz band					
RESULTS			AMPLITUDE					
Pass	Pass Power Spectral Density = - dBm / 3kHz							
SIGNATURE								
Tested By:	Rocky to Relings							
DESCRIPTION OF TES	ST							
		Power Spectral Der	nsity - Mid Channel					

Power Spectral Density - Mid Channel

	Mkr 2	.440 061 2	2GHz *-4	9.2dBm/Hz						Tek
0.0	Ref Lvl	*O.OdBm			:	.0dB/		Atten 100	1B	
10.0										
-10.0										
-20.0	WWW. ANA AN	MM was	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		hand and	Curren Marton	Land	my for the way on the	Mary Mary	Al warden a
-30.0	op 10 400.	ાર પશ્ચમાણ પ્ર	, shanee	ANN	. AL DAY					
-40.0										
-50.Q										
-60.0										
-70.0										
-80.0										
-90.0										
-100.0										
	Freq :	2.440 061	2GHz				5	5pan 300kH	[z	
	ResBW 31	kHz		v	idBW 10kHz			SWP	1005	
	LEVEL		SPAN	М	kr 2.440	061 2GHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST						
EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01
EUT:	RF Host				Work Order:	PROU0007
Serial Number:	Unknown				Date:	01/06/05
Customer:	Product Creation Studio				Temperature:	22°C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	30% RH
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(e)	Year: 2004	Method:	FCC 97-114, ANSI C63.4	4 Year:	2003
SAMPLE CALCULATION	ONS					
Meter reading on spec	ctrum analyzer is internally compe	nsated for cable loss and external	attenuation			
Power Spectral Densit	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	n Factor.		
Bandwidth Correction	Factor = 10*log(3kHz/1Hz) = 34.8	dB				
COMMENTS						
EUT OPERATING MOD						
Modulated by PRBS a						
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
	spectral density conducted from	a DSSS transmitter does not excee	ed 8 dBm in any 3 kHz	band		
RESULTS			AMPLITUDE			
Pass			Power Spectral Densit	y = -15.3 dBm / 3kHz		
SIGNATURE						
Tested By:	Rochy le Relings					
DESCRIPTION OF TES	ST					

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: Transmit

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

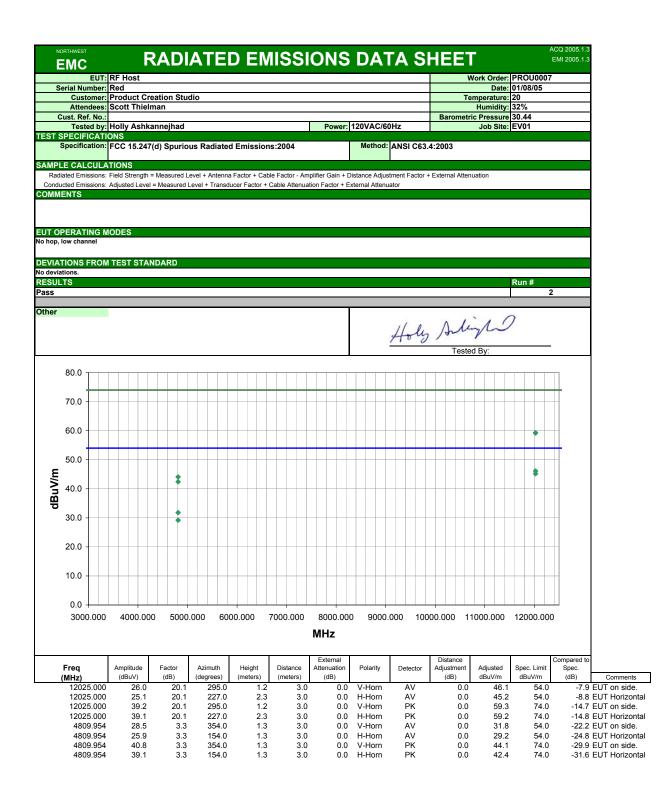
Software\Firmware Applied During Test						
Exercise software TestRFGen1 Version Unknown						
Description						
The system was tested using standard operating production software to exercise the functions of the						
device during the testing ir	cluding mode, channel, ar	nd power.				

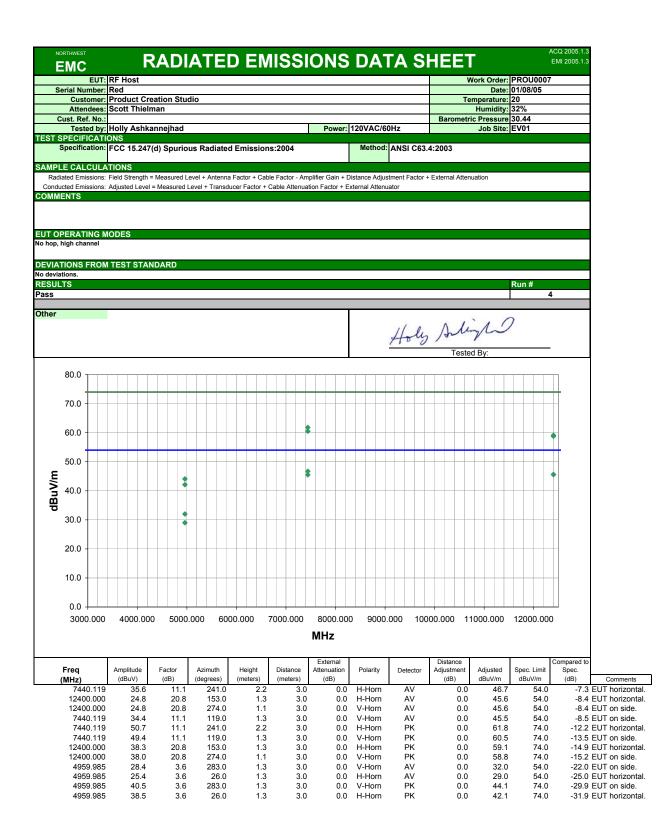
EUT and Peripherals						
Description	Manufacturer	Model/Part Number	Serial Number			
AC Power Adapter	CUI, Inc.	41-9-500R	N/A			
EUT- RF Host	Quizdom, Inc.	RF Host	Red			

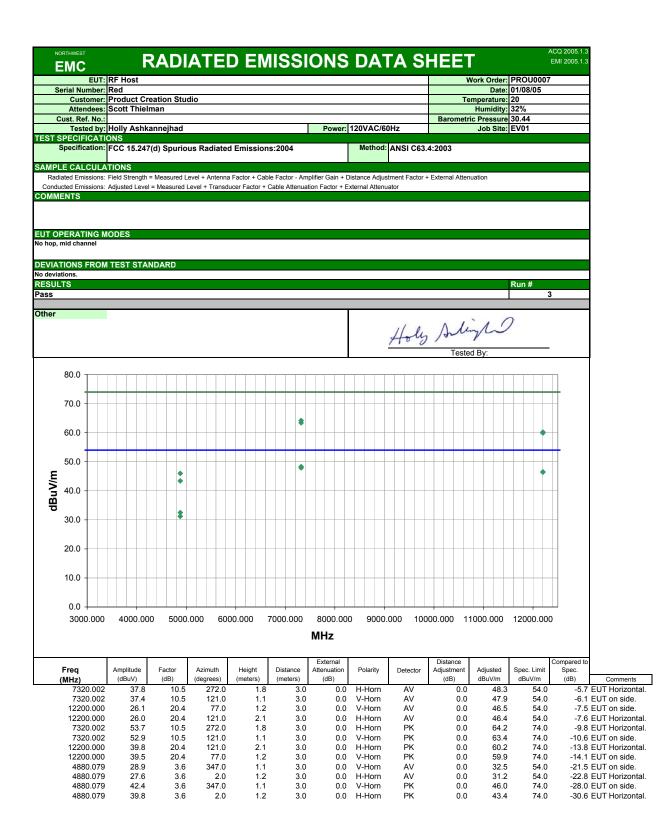
Remote Equipment Outside of Test Setup Boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Laptop PC	Acer, Inc.	Travelmate 803 LCi	LXT 2506001326031C2EF01			
AC Power Adapter	DELTA, Inc.	ADP-75FB B	S4W0326044192			
Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary						

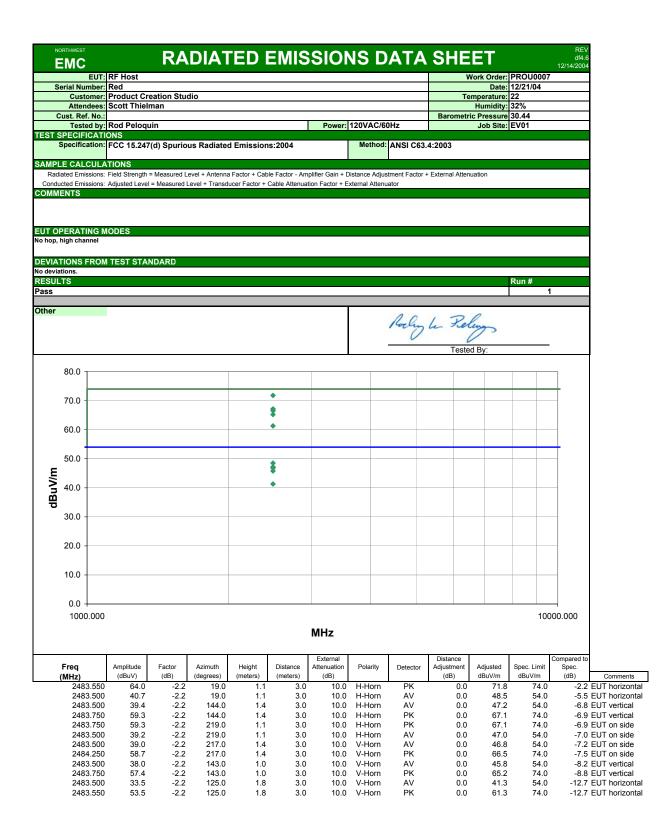
Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	No	1.8	PA	AC Power Adapter	EUT- RF Host
USB	Yes	4.0	No	EUT- RF Host	Laptop PC
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

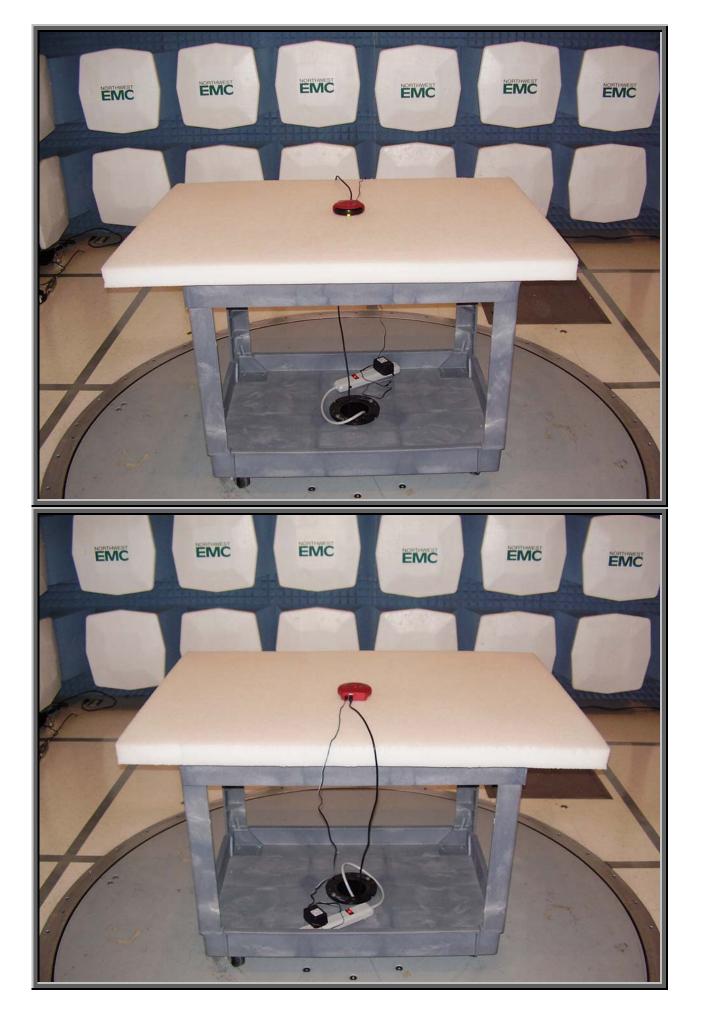
Measurement Equipment						
Description	Manufacturer	Model	Identifier	Last Cal	Interval	
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA	
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	10/08/2003	15 mo	
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo	
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA	
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	10/08/2003	15 mo	
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo	
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	01/05/2004	13 mo	
Pre-Amplifier	AR	LN1000A	APS	02/05/2004	13 mo	
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo	
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo	
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo	
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo	

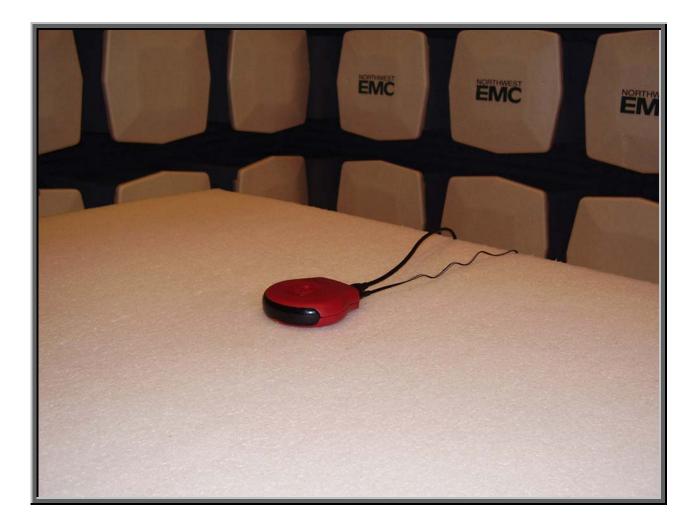

Test Description

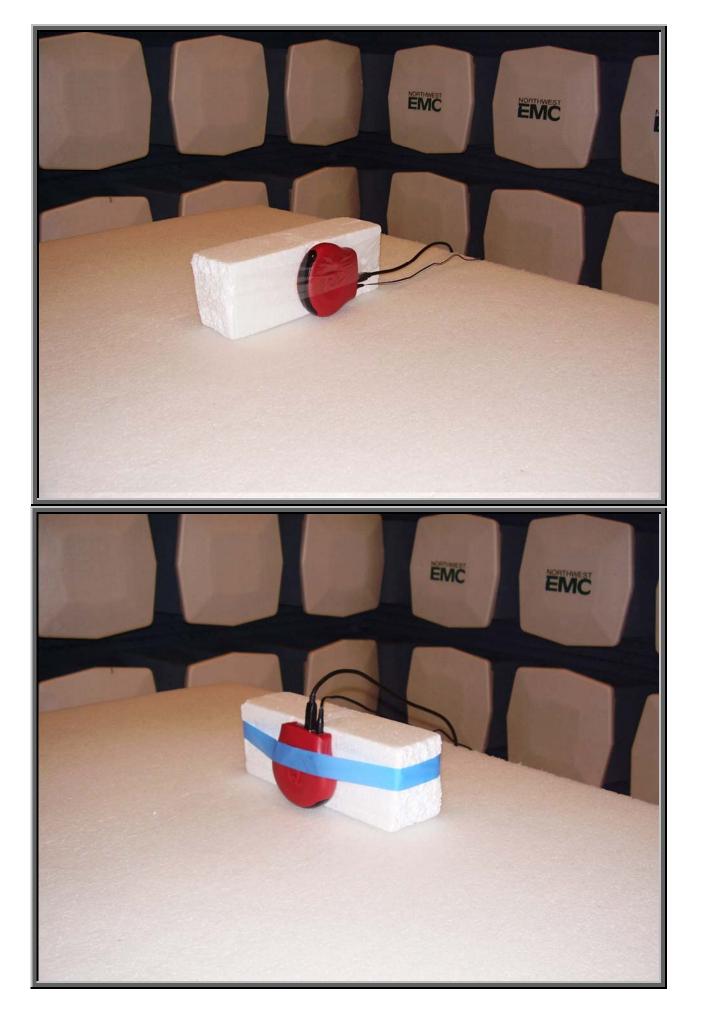

<u>Requirement</u>: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.


Configuration: The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.


Bandwidths Used for Measurements				
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)	
0.01 – 0.15	1.0	0.2	0.2	
0.15 – 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000	1000.0	N/A	1000.0	
Measurements were made using the bandwidths and detectors specified. No video filter was used.				


Completed by: Holy Aligh





Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated:	
Receive	
Transmit	

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

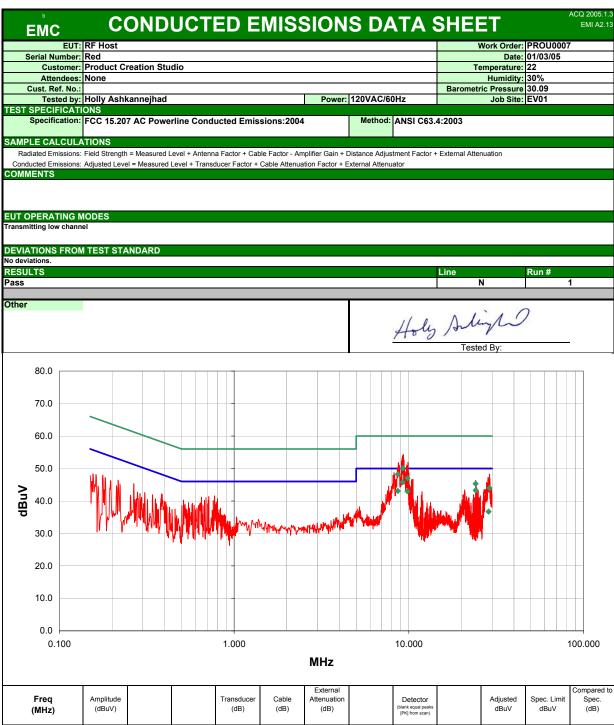
Power Input Settings Investigated: 120 VAC, 60 Hz.

Software\Firmware Applied During Test						
Exercise software TestRFGen1 Version Unknown						
Description						
The system was tested using standard operating production software to exercise the functions of the						
device during the testing in	cluding mode, channel, a	nd power.				

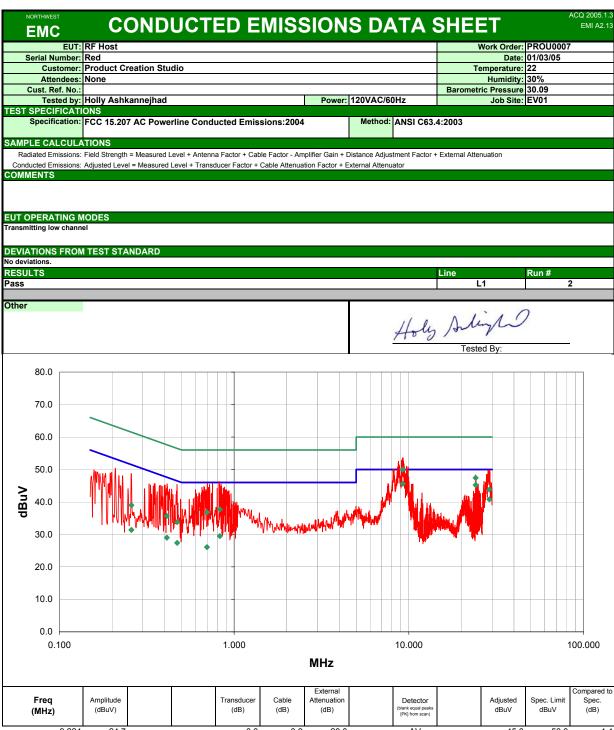
EUT and Peripherals						
Description	Manufacturer	Model/Part Number	Serial Number			
EUT- RF Host	Quizdom, Inc.	RF Host	Red			
AC Power Adapter	CUI, Inc.	41-9-500R	N/A			

Remote Equipment Outside of Test Setup Boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Laptop PC	Acer, Inc.	Travelmate 803 LCi	LXT 2506001326031C2EF01			
AC Power Adapter	DELTA, Inc.	ADP-75FB B	S4W0326044192			
Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary						

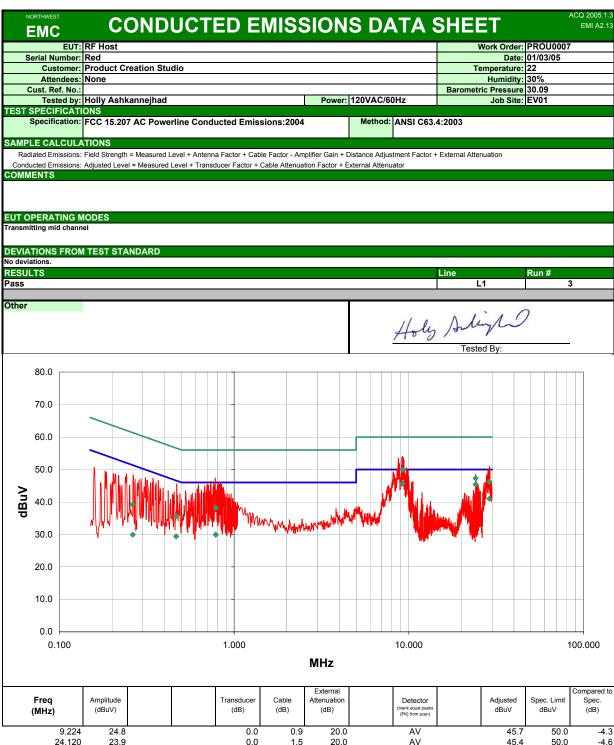
Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	2.0		EUT- RF Host	Laptop PC
DC Leads	No	1.8	PA	AC Power Adapter	EUT- RF Host
DC Leads	PA	2.0	Yes	Laptop PC	AC Power Adapter
AC Power	No	2.0	No	AC Power Adapter	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

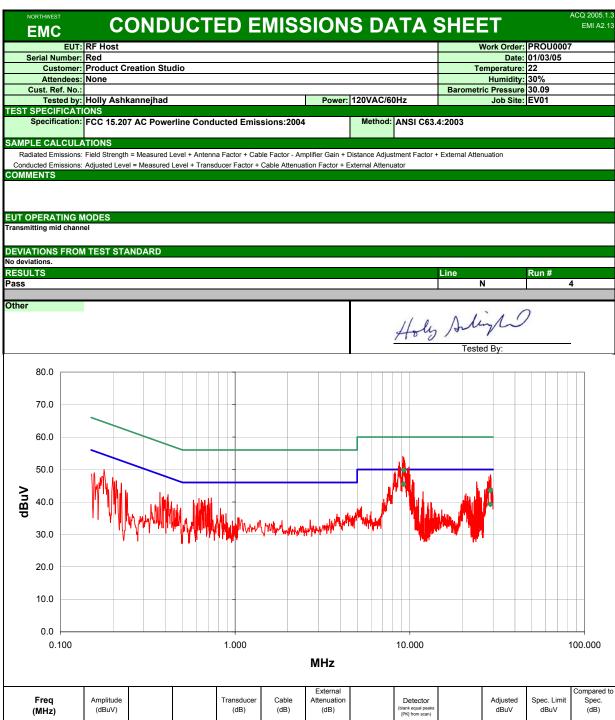

Measurement Equipment					
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Attenuator	Tektronix	011-0059-02	ATH	12/29/2004	13 mo
High Pass Filter	TTE	H97-100k-50-720B	HFC	12/29/2004	13 mo
LISN	Solar	9252-50-R-24-BNC	LIO	04/30/2004	12 mo
LISN	Solar	9252-50-R-24-BNC	LIN	12/29/2004	13 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/02/2004	13 mo

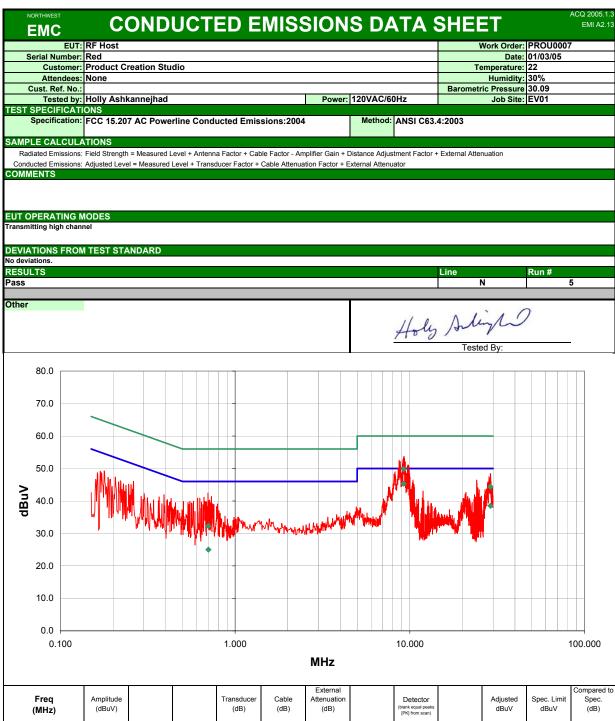
Test Description

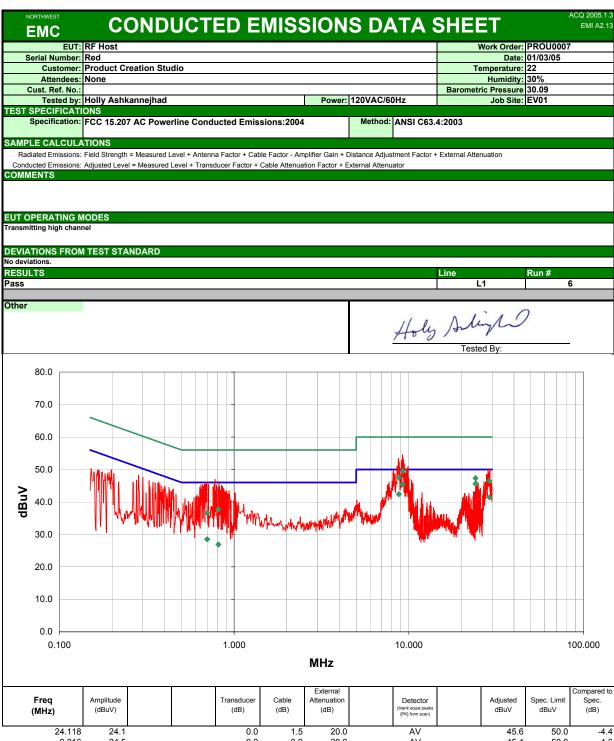

<u>Requirement:</u> Per 47 15.207(d), if the EUT is connected to the AC power line indirectly, obtaining its power from another device that is connected to the AC power line, then it should be tested to demonstrate compliance with the conducted limits of 15.207.

Configuration: The EUT will be powered from a device that could be connected to the AC power line. Therefore, the measurements were made on the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-1992.

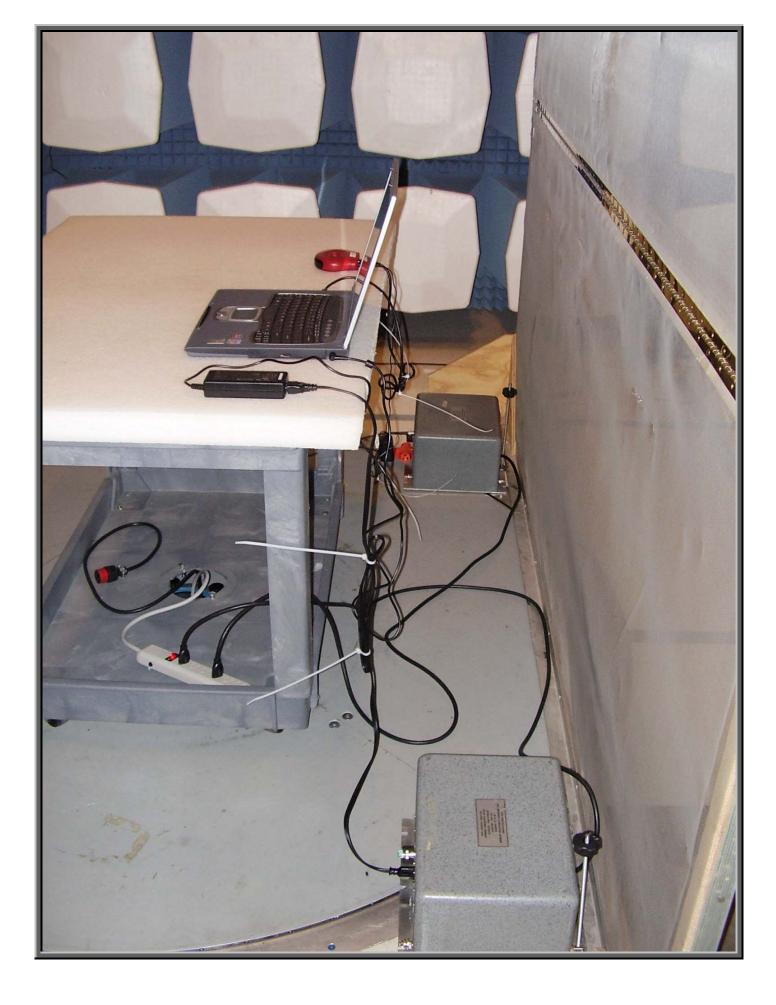

Completed by:									
Holy	slight								


(MHz)	(dBuV)	(dB)	(dB)	(dB)	(PK) from scan)	dBuV	dBuV	(dB)
9.225	24.9	0.0	0.9	20.0	AV	45.8	50.0	-4.2
24.121	21.8	0.0	1.5	20.0	AV	43.3	50.0	-6.7
8.652	22.3	0.0	0.8	20.0	AV	43.1	50.0	-6.9
9.823	22.1	0.0	0.9	20.0	AV	43.0	50.0	-7.0
9.225	29.2	0.0	0.9	20.0	QP	50.1	60.0	-9.9
8.652	27.4	0.0	0.8	20.0	QP	48.2	60.0	-11.8
9.823	26.1	0.0	0.9	20.0	QP	47.0	60.0	-13.0
28.624	15.1	0.0	1.6	20.0	AV	36.7	50.0	-13.3
24.121	23.8	0.0	1.5	20.0	QP	45.3	60.0	-14.7
28.968	22.4	0.0	1.6	20.0	QP	44.0	60.0	-16.0
8.619	29.1	0.0	0.8	20.0		49.9	50.0	-0.1
9.840	29.0	0.0	0.9	20.0		49.9	50.0	-0.1
9.759	29.0	0.0	0.9	20.0		49.9	50.0	-0.1
9.749	28.9	0.0	0.9	20.0		49.8	50.0	-0.2
9.792	28.8	0.0	0.9	20.0		49.7	50.0	-0.3
9.060	28.8	0.0	0.9	20.0		49.7	50.0	-0.3
9.439	28.7	0.0	0.9	20.0		49.6	50.0	-0.4
9.429	28.7	0.0	0.9	20.0		49.6	50.0	-0.4
9.936	28.3	0.0	0.9	20.0		49.2	50.0	-0.8


(<i>)</i>					[PR] Itom scan)			
9.224	24.7	0.0	0.9	20.0	AV	45.6	50.0	-4.4
24.120	23.7	0.0	1.5	20.0	AV	45.2	50.0	-4.8
28.946	19.2	0.0	1.6	20.0	AV	40.8	50.0	-9.2
9.224	29.1	0.0	0.9	20.0	QP	50.0	60.0	-10.0
24.120	25.9	0.0	1.5	20.0	QP	47.4	60.0	-12.6
28.946	22.2	0.0	1.6	20.0	QP	43.8	60.0	-16.2
0.829	9.5	0.0	0.0	20.0	AV	29.5	46.0	-16.5
0.829	17.7	0.0	0.0	20.0	QP	37.7	56.0	-18.3
0.412	9.0	0.0	0.0	20.0	AV	29.0	47.6	-18.6
0.472	7.4	0.0	0.0	20.0	AV	27.4	46.5	-19.1
0.699	16.8	0.0	0.0	20.0	QP	36.8	56.0	-19.2
0.699	6.1	0.0	0.0	20.0	AV	26.1	46.0	-19.9
0.258	11.4	0.0	0.0	20.0	AV	31.4	51.5	-20.1
0.412	15.7	0.0	0.0	20.0	QP	35.7	57.6	-21.9
0.258	19.0	0.0	0.0	20.0	QP	39.0	61.5	-22.5
0.472	13.8	0.0	0.0	20.0	QP	33.8	56.5	-22.7
9.840	29.1	0.0	0.9	20.0		50.0	50.0	0.0
9.828	29.1	0.0	0.9	20.0		50.0	50.0	0.0
8.139	29.1	0.0	0.8	20.0		49.9	50.0	-0.1


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.2	224 24	1.8	0.0	0.9	20.0	AV	45.7	50.0	-4.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.1	120 23	3.9	0.0	1.5	20.0	AV	45.4	50.0	-4.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.9	962 19	9.4	0.0	1.6	20.0	AV	41.0	50.0	-9.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.2	224 29	9.0	0.0	0.9	20.0	QP	49.9	60.0	-10.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.1	120 25	5.8	0.0	1.5	20.0	QP	47.3	60.0	-12.7
0.466 9.4 0.0 0.0 20.0 AV 29.4 46.6 -17.2 0.784 18.2 0.0 0.0 20.0 QP 38.2 56.0 -17.8 0.466 15.7 0.0 0.0 20.0 QP 35.7 56.6 -20.9 0.263 9.9 0.0 0.0 20.0 QP 39.7 56.6 -20.9 0.263 19.2 0.0 0.0 20.0 AV 29.9 51.3 -22.1 9.439 29.1 0.0 0.9 20.0 GP 39.0 50.0 0.0 9.429 29.1 0.0 0.9 20.0 50.0 50.0 0.0 0.837 25.6 0.0 0.2 20.0 45.8 46.0 -0.2 0.811 25.6 0.0 0.2 20.0 45.8 46.0 -0.2 9.840 28.9 0.0 0.9 20.0 45.8 46.0 -0.2 9.828 28.9 0.0 0.9 20.0 49.8 50.0 <td>28.9</td> <td>962 24</td> <td>ł.6</td> <td>0.0</td> <td>1.6</td> <td>20.0</td> <td>QP</td> <td>46.2</td> <td>60.0</td> <td>-13.8</td>	28.9	962 24	ł.6	0.0	1.6	20.0	QP	46.2	60.0	-13.8
0.784 18.2 0.0 0.0 20.0 QP 38.2 56.0 -17.8 0.466 15.7 0.0 0.0 20.0 QP 35.7 56.6 -20.9 0.263 9.9 0.0 0.0 20.0 AV 29.9 51.3 -21.4 0.263 19.2 0.0 0.0 20.0 AV 29.9 51.3 -22.1 9.439 29.1 0.0 0.9 20.0 50.0 50.0 0.0 9.429 29.1 0.0 0.9 20.0 50.0 50.0 0.0 0.837 25.6 0.0 0.2 20.0 45.8 46.0 -0.2 0.811 25.6 0.0 0.2 20.0 45.8 46.0 -0.2 9.840 28.9 0.0 0.9 20.0 45.8 46.0 -0.2 9.828 28.9 0.0 0.9 20.0 49.8 50.0 -0.2	0.7	784 9	9.9	0.0	0.0	20.0	AV	29.9	46.0	-16.1
0.466 15.7 0.0 0.0 20.0 QP 35.7 56.6 -20.9 0.263 9.9 0.0 0.0 20.0 AV 29.9 51.3 -21.4 0.263 19.2 0.0 0.0 20.0 AV 29.9 51.3 -21.4 9.439 29.1 0.0 0.9 20.0 50.0 50.0 0.0 9.429 29.1 0.0 0.9 20.0 50.0 50.0 0.0 0.837 25.6 0.0 0.2 20.0 45.8 46.0 -0.2 0.811 25.6 0.0 0.2 20.0 45.8 46.0 -0.2 9.840 28.9 0.0 0.9 20.0 45.8 45.0 -0.2 9.828 28.9 0.0 0.9 20.0 49.8 50.0 -0.2	0.4	466 9	9.4	0.0	0.0	20.0	AV	29.4	46.6	-17.2
0.263 9.9 0.0 0.0 20.0 AV 29.9 51.3 -21.4 0.263 19.2 0.0 0.0 20.0 QP 39.2 61.3 -22.1 9.439 29.1 0.0 0.9 20.0 50.0 50.0 0.0 9.429 29.1 0.0 0.9 20.0 50.0 50.0 0.0 0.837 25.6 0.0 0.2 20.0 45.8 46.0 -0.2 0.811 25.6 0.0 0.2 20.0 45.8 46.0 -0.2 9.840 28.9 0.0 0.9 20.0 49.8 50.0 -0.2 9.828 28.9 0.0 0.9 20.0 49.8 50.0 -0.2	0.7	784 18	3.2	0.0	0.0	20.0	QP	38.2	56.0	-17.8
0.26319.20.00.020.0QP39.261.3-22.19.43929.10.00.920.050.050.00.09.42929.10.00.920.050.050.00.00.83725.60.00.220.045.846.0-0.20.81125.60.00.920.045.846.0-0.29.84028.90.00.920.049.850.0-0.29.82828.90.00.920.049.850.0-0.2	0.4	466 15	5.7	0.0	0.0	20.0	QP	35.7	56.6	-20.9
9.43929.10.00.920.050.050.00.09.42929.10.00.920.050.050.00.00.83725.60.00.220.045.846.0-0.20.81125.60.00.220.045.846.0-0.29.84028.90.00.920.049.850.0-0.29.82828.90.00.920.049.850.0-0.2	0.2	263 9	9.9	0.0	0.0	20.0	AV	29.9	51.3	-21.4
9.42929.10.00.920.050.050.00.00.83725.60.00.220.045.846.0-0.20.81125.60.00.220.045.846.0-0.29.84028.90.00.920.049.850.0-0.29.82828.90.00.920.049.850.0-0.2	0.2	263 19	9.2	0.0	0.0	20.0	QP	39.2	61.3	-22.1
0.83725.60.00.220.045.846.0-0.20.81125.60.00.220.045.846.0-0.29.84028.90.00.920.049.850.0-0.29.82828.90.00.920.049.850.0-0.2	9.4	139 29	9.1	0.0	0.9	20.0		50.0	50.0	0.0
0.81125.60.00.220.045.846.0-0.29.84028.90.00.920.049.850.0-0.29.82828.90.00.920.049.850.0-0.2	9.4	129 29	9.1	0.0	0.9	20.0		50.0	50.0	0.0
9.840 28.9 0.0 0.9 20.0 49.8 50.0 -0.2 9.828 28.9 0.0 0.9 20.0 49.8 50.0 -0.2	0.8	337 25	5.6	0.0	0.2	20.0		45.8	46.0	-0.2
9.828 28.9 0.0 0.9 20.0 49.8 50.0 -0.2	0.8	311 25	5.6	0.0	0.2	20.0		45.8	46.0	-0.2
	9.8	340 28	3.9	0.0	0.9	20.0		49.8	50.0	-0.2
9.720 28.9 0.0 0.9 20.0 49.8 50.0 -0.2	9.8	328 28	3.9	0.0	0.9	20.0		49.8	50.0	-0.2
	9.7	720 28	3.9	0.0	0.9	20.0		49.8	50.0	-0.2


(MHz)	(dBuV)	(dB)	(dB)	(dB)	(blank equal peaks [PK] from scan)	dBuV	dBuV	(dB)	
9.222	24.6	0.0	0.9	20.0	AV	45.5	50.0	-4.5	
9.222	28.9	0.0	0.9	20.0	QP	49.8	60.0	-10.2	
28.920	17.7	0.0	1.6	20.0	AV	39.3	50.0	-10.7	
28.920	21.9	0.0	1.6	20.0	QP	43.5	60.0	-16.5	
9.720	29.1	0.0	0.9	20.0		50.0	50.0	0.0	
9.708	29.1	0.0	0.9	20.0		50.0	50.0	0.0	
9.828	29.0	0.0	0.9	20.0		49.9	50.0	-0.1	
9.840	28.9	0.0	0.9	20.0		49.8	50.0	-0.2	
9.792	28.9	0.0	0.9	20.0		49.8	50.0	-0.2	
9.739	28.9	0.0	0.9	20.0		49.8	50.0	-0.2	
9.684	28.9	0.0	0.9	20.0		49.8	50.0	-0.2	
9.899	28.8	0.0	0.9	20.0		49.7	50.0	-0.3	
9.869	28.7	0.0	0.9	20.0		49.6	50.0	-0.4	
9.859	28.6	0.0	0.9	20.0		49.5	50.0	-0.5	
8.239	28.5	0.0	0.8	20.0		49.3	50.0	-0.7	
9.456	28.1	0.0	0.9	20.0		49.0	50.0	-1.0	
9.480	28.0	0.0	0.9	20.0		48.9	50.0	-1.1	
9.468	28.0	0.0	0.9	20.0		48.9	50.0	-1.1	
8.179	28.0	0.0	0.8	20.0		48.8	50.0	-1.2	



(MHz)	(abuv)	(GB)	(dB)	(0B)	[PK] from scan)	dBuv	aBuv	(ab)
9.226	24.4	0.0	0.9	20.0	AV	45.3	50.0	-4.7
9.226	28.9	0.0	0.9	20.0	QP	49.8	60.0	-10.2
28.965	16.9	0.0	1.6	20.0	AV	38.5	50.0	-11.5
28.965	22.8	0.0	1.6	20.0	QP	44.4	60.0	-15.6
0.703	5.0	0.0	0.0	20.0	AV	25.0	46.0	-21.0
0.703	12.3	0.0	0.0	20.0	QP	32.3	56.0	-23.7
9.879	29.0	0.0	0.9	20.0		49.9	50.0	-0.1
9.720	28.8	0.0	0.9	20.0		49.7	50.0	-0.3
9.708	28.8	0.0	0.9	20.0		49.7	50.0	-0.3
9.684	28.8	0.0	0.9	20.0		49.7	50.0	-0.3
9.792	28.7	0.0	0.9			49.6	50.0	-0.4
9.779	28.5	0.0	0.9	20.0		49.4	50.0	-0.6
9.899	28.4	0.0	0.9	20.0		49.3	50.0	-0.7
9.439	28.2	0.0	0.9	20.0		49.1	50.0	-0.9
8.239	28.2	0.0	0.8	20.0		49.0	50.0	-1.0
9.869	28.0	0.0	0.9	20.0		48.9	50.0	-1.1
9.000	27.9	0.0	0.9	20.0		48.8	50.0	-1.2
9.552	27.7	0.0	0.9	20.0		48.6	50.0	-1.4
9.912	27.6	0.0	0.9	20.0		48.5	50.0	-1.5

24.118	24.1		0.0	1.5	20.0	AV	45.6	50.0	-4.4
9.216	24.5		0.0	0.9	20.0	AV	45.4	50.0	-4.6
8.767	21.5		0.0	0.9	20.0	AV	42.4	50.0	-7.6
28.965	19.8		0.0	1.6	20.0	AV	41.4	50.0	-8.6
9.216	28.6		0.0	0.9	20.0	QP	49.5	60.0	-10.5
8.767	26.6		0.0	0.9	20.0	QP	47.5	60.0	-12.5
24.118	25.8		0.0	1.5	20.0	QP	47.3	60.0	-12.7
28.965	24.9		0.0	1.6	20.0	QP	46.5	60.0	-13.5
0.701	8.5		0.0	0.0	20.0	AV	28.5	46.0	-17.5
0.813	17.7		0.0	0.0	20.0	QP	37.7	56.0	-18.3
0.813	6.9		0.0	0.0	20.0	AV	26.9	46.0	-19.1
0.701	16.6		0.0	0.0	20.0	QP	36.6	56.0	-19.4
9.439	29.1		0.0	0.9	20.0		50.0	50.0	0.0
9.429	29.1		0.0	0.9	20.0		50.0	50.0	0.0
8.179	29.0		0.0	0.8	20.0		49.8	50.0	-0.2
9.859	28.8		0.0	0.9	20.0		49.7	50.0	-0.3
9.816	28.8		0.0	0.9	20.0		49.7	50.0	-0.3
9.804	28.8		0.0	0.9	20.0		49.7	50.0	-0.3
9.759	28.8		0.0	0.9	20.0		49.7	50.0	-0.3

