

Element Materials Technology

(formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com

RF EXPOSURE EVALUATION REPORT

Applicant Name:

Apple Inc. One Apple Park Way Cupertino, CA 95014 USA Date of Testing: 10/26/2024 – 01/02/2025 Test Report Issue Date: 01/27/2025 Test Site/Location: Element, Morgan Hill, CA, USA Document Serial No.: 1C2410210072-01.BCG-R1

FCC ID:

BCGA3266

APPLICANT:

APPLE, INC.

DUT Type: Application Type: FCC Rule Part(s): Models: Tablet Device Certification CFR §2.1093 A3266

0			
			SAR
Equipment Class	Band & Mode	Tx Frequency	1g Body (W/kg)
DTS	2.4 GHz WFI	2412 - 2472 MHz	1.18
NI	5 GHz WIFI	U-NII-1: 5180 - 5240 MHz U-NII-2A: 5260 - 5320 MHz U-NII-2C: 5500 - 5720 MHz U-NII-3: 5745 - 5825 MHz	1.19
6CD/6VL	6 GHz WIFI	U-NI-5: 5935 - 6415 MHz U-NI-6: 6435 - 6515 MHz U-NI-7: 6535 - 6875 MHz U-NI-8: 6895 - 7115 MHz	1.07
DSS/DTS	2.4 GHz Bluetooth	2402 - 2480 MHz	1.14
DTS	802.15.4	2405 - 2475 MHz	1.19
NI	NB U-NI 1	5162 - 5245 MHz	0.50
NI	NB U-NI 3	5733 - 5844 MHz	0.67
DXX	WPT	13.56 MHz	<0.1
Sir	nultaneous SAR per KD	B 690783 D01v01r03:	1.58
Equipment Class	Band & Mode	Tx Frequency	APD (W/m*2)
6CD	6 GHz WIFI	U-NII-5: 5935 - 6415 MHz U-NII-6: 6435 - 6515 MHz U-NII-7: 6535 - 6875 MHz U-NII-7: 6535 - 6875 MHz U-NII-8: 6895 - 7115 MHz	6.88
Equipment Class	Band & Mode	Tx Frequency	Reported PD (W/m*2)
6CD	6 GHz WIFI	U-NI-5: 5935 - 6415 MHz U-NI-6: 6435 - 6515 MHz U-NI-7: 6535 - 6875 MHz U-NI-8: 6895 - 7115 MHz	7.09

Note: This revised Test Report supersedes and replaces the previously issued test report on the sane subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

SAR ELIGIBLE

Executive Vice President

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 1 of 95
ss otherwise specified, no part of this report may be rep	produced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and mi	REV 24.0 05/01/2024 crofilm, without permission in writ

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	INTRODU	JCTION	24
3	DOSIME	TRIC ASSESSMENT	25
4	TEST CC	ONFIGURATION POSITIONS	
5	RF EXPC	DSURE LIMITS	27
6	FCC MEA	ASUREMENT PROCEDURES	29
7	RF CON	DUCTED POWERS	32
8	SYSTEM	VERIFICATION	
9	SAR DAT	TA SUMMARY	
10	SAR MEA	ASUREMENT VARIABILITY	88
11	EQUIPMI	ENT LIST	
12	MEASUR	REMENT UNCERTAINTIES	90
13	CONCLU	ISION	93
14	REFERE	NCES	94
APPEN	DIX A:	SAR TEST PLOTS	
APPEN	DIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	DIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	DIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	DIX E:	MULTI-TX AND ANTENNA SAR CONSIDERATIONS	
APPEN	DIX F:	SAR SYSTEM VALIDATION	
APPEN	DIX G:	802.11AX RU SAR EXCLUSION	
APPEN	DIX H:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEN	DIX I:	WLAN TIME-AVERAGED SAR VERIFICATION	

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 2 of 95
otherwise specified, no part of this report may be repr lement. If you have any questions or have an enquiry al	duced or utilized in any part, form or by any means, electronic or mechanical, including photocopyin out obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFC	REV 24.0 05/01/2024 og and microfilm, without permission i D@ELEMENT.COM.

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz
5 GHz WIFI	Voice/Data	U-NII-1: 5180 - 5240 MHz U-NII-2A: 5260 - 5320 MHz U-NII-2C: 5500 - 5720 MHz U-NII-3: 5745 - 5825 MHz
6 GHz WIFI	Voice/Data	U-NII-5: 5935 - 6415 MHz U-NII-6: 6435 - 6515 MHz U-NII-7: 6535 - 6875 MHz U-NII-8: 6895 - 7115 MHz
Bluetooth	Data	2402 - 2480 MHz
802.15.4	Data	2405 - 2475 MHz
NB UNII-1	Data	5162 - 5245 MHz
NB UNII-3	Data	5733 - 5844 MHz
WPT	N/A	13.56 MHz

1.2 Power Reduction for SAR

This device additionally utilizes a power reduction mechanism for Bluetooth/802.15.4/NB UNII and WLAN operations. When Bluetooth/802.15.4/NB UNII is operating simultaneously with certain combinations of WLAN antennas, the output power is permanently reduced. SAR evaluations were additionally performed at the maximum allowed output power for these scenarios to evaluate simultaneous transmission compliance.

Additionally, this device uses an independent mechanism that limits WIFI powers to a time-averaged output power. For the purposes of this test report, all SAR measurements were performed with the algorithm disabled at the maximum time-averaged output power level. Verification data for this time-averaged SAR mechanism can be found in the WLAN Time-Averaged SAR Verification Appendix.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D04v01.

RF EXPOSURE EVALUATION REPORT	Approved by:				
RF EXPOSORE EVALUATION REPORT	Technical Manager				
	Page 3 of 95				
	Tage 5 61 55				
	REV 24.0 05/01/2024				

Oness otherwise specified, no part or this report may be reproduced or unitzed in any part, form of by any means, electronic or mechanical, including prodocopying and microhim, whole from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTLINFO@ELEMENT.COM.

1.3.1 Maximum WLAN Time-Averaged Output Power

						IEE	E 802.11 (Maximum in dBm) -	Antenna WF8					
Mode	Channel	SISO	SISO	SISO	SISO	SISO	SISO	SISO	SISO	MIMO	MIMO	MIMO	MIMO
	Channel	b (Maximum)	b (Nominal)	g (Maximum)	g (Nominal)	n (Maximum)	n (Nominal)	ax SU (Maximum)	ax SU (Nominal)	g/n (Maximum)	g/n (Nominal)	ax SU (Maximum)	ax SU (Nominal)
	1	18.75	17.25	16.25	14.75	16.25	14.75	16.00	14.50	15.75	14.25	15.25	13.75
	2	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25
	3	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25
	4	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25
	5	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25
2.4 GHz WIFI	6	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25
20 MHz Bandwidth	7	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25
	8	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25
	9	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25
	10	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25	18.75	17.25
	11	18.75	17.25	18.75	17.25	18.75	17.25	18.50	17.00	18.00	16.50	17.00	15.50
	12	18.75	17.25	15.00	13.50	15.00	13.50	14.50	13.00	14.50	13.00	14.00	12.50
	13	18.75	17.25	10.00	8.50	10.00	8.50	NS	NS	9.00	7.50	NS	NS
Noto: I	m N/11		rotiona	anah ai	otonno t	ronomit	o ot mo	vimum	howodl	noworo	oo india	otod ob	

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

Mode	Channel	SISO	SISO	MIMO	MIMO	MIMO	MIMO						
	Channel	b (Maximum)	b (Nominal)	g (Maximum)	g (Nominal)	n (Maximum)	n (Nominal)	ax SU (Maximum)	ax SU (Nominal)	g/n (Maximum)	g/n (Nominal)	ax SU (Maximum)	ax SU (Nominal)
	1	19.75	18.25	16.25	14.75	16.25	14.75	16.00	14.50	15.75	14.25	15.25	13.75
	2	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.25	17.75	19.00	17.50
	3	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25
	4	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25
	5	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25
2.4 GHz WIFI	6	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25
20 MHz Bandwidth	7	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25
	8	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25
	9	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25
	10	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.75	18.25	19.50	18.00
	11	19.75	18.25	19.00	17.50	19.00	17.50	18.50	17.00	18.00	16.50	17.00	15.50
	12	19.75	18.25	15.00	13.50	15.00	13.50	14.50	13.00	14.50	13.00	14.00	12.50

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

								EE BUZ-11 (Maximum in dem) -							
Mode	Channel	SISO	siso	SISO	SISO	\$150	SISO	MIMO CDD	MIMO COO	MIMO CDD	MIMO COO	MIMO SDM	MIMO SDM	MIMO SDM	MIMO SDM
	Contraction	a (Maximum)	a (Nominal)	n/ac (Maximum)	n/ac (Nominal)	ax SU (Maximum)	ax SU (Nominal)	n/ac (Maximum)	n/ac (Nominal)	ax SU (Maximum)	ax SU (Nominal)	n/ac (Maximum)	n/ac (Nominal)	ax SU (Maximum)	ax SU (Nominal)
	36	17.00	15.50	17.00	15.50	17.00	15.50	16.50	15.00	15.50	14.00	16.50	15.00	15.50	14.00
	40	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
	44	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
	45	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
	52	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
	56	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
	60	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
	64	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	16.50	15.00	17.00	15.50	16.50	15.00
	100	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75
	104	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75
	105	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75
	112	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75
S GHz WIFI	116	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75
20 MHz Bandwidth	120	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	14.25	14.75
and the state of t	124	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	14.25	14.75
	128	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	14.25	14.75
	132	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	14.25	14.75
	136	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75
	140	16.25	14.75	16.25	14.75	15.75	14.5	15.50	14.00	14.00	12.50	15.50	14.00	14.00	12.50
	140	16.0	14.75	16.25	14.75	15.75	84.5	15.50	14.00	16.25	12.50	15-50	14.00	14.00	12.50
	144	19.0	15.75	16.75	15.75	16.25	11.75	17.25	15.75	17.25	15.75	17.25	14.75	17.25	15.75
	149	17.25	15.75	17.25	15.75	17.25	11.75	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75
	153	17.25	15.75	17.25	15.75	17.25	13.75	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75
	157														
	161	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75
	100	17.25	12/2	17.25	10.75	17.25	11.00	17.25	13.50	14.00	15.75	17.25	15.75	1/.5	12.50
	46			16.00	15.50	14.50	11.00	15.00	15.50	14.00	12.50	15.00	15.50	17.00	12.50
	46			17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50	17.00	15.50
	62			16.50	15.00	15.50	14.00	15.50	14.00	15.50	14.00	15.50	14.00	15.50	14.00
	102			15.50	14.00	15.50	14.00	15.00	13.50	14.50	13.00	15.00	13.50	14.50	13.00
S GHz WIFI	110			16.25	14.75	16.25	14.75 14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75
40 MHz Bandwidth	118			16.25	14.75	16.25	14.75 14.75	16.25	14.75		14.75	16.25	14.75	16.25	14.75
	125			16.25				16.25		16.25	14.75	16.25		16.25	
	134			16.25	14.75	16.25	34.75	16.25	14.75	16.25	14.75	26-25	14.75	16.25	14.75
	142			16.25	14.75	16.25	34.75	16.25	14.75	16.25	14.75	26-25	14.75	16.25	14.75
	151			17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75
	159			17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75	17.25	15.75
	42			14.50	13.00	13.50	12.00	13.00	11.50	12.25	10.75	13.00	11.50	12.25	10.75
	58			16.00	14.50	16.00	14.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
S GHz WIFI	106			15.00	13.50	14.50	13.00	13.50	12.00	13.00	11.50	13.50	12.00	13.00	11.50
80 MHz Bandwidth	122			16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	26-25	14.75	16.25	14.75
	138			16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75	16.25	14.75
	155			17.25	15.75	17.25	15.75	17.25	15.75	17.00	15.50	17.25	15.75	17.00	15.50
S GHz WIFI	50			13.00	11.50	13.00	11.50	11.50	10.00	11.50	10.00	11.50	10.00	11.50	10.00
160 MHz Bandwidth	114			12.50	11.00	12.00	10.50	11.00	9.50	11.00	9.50	11.00	9.50	11.00	9.50

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above. 802.11a supports up to 20 MHz, 802.11n supports up to 40 MHz, 802.11ac/ax support up to 160 MHz.

							10	EE 802.11 (Maximum in dBm) -	Antenna WF7a						
Mode	Channel	siso	SISO	\$150	siso	\$150	siso	MIMO CDD	MIMO COD	MIMO COD	MIMO COD	MIMO SDM	MIMO SDM	MIMO SOM	MIMO SDM
		a (Maximum)	a (Nominal)	n/ac (Maximum)	n/ac (Nominal)	ax SU (Maximum)	ax SU (Nominal)	n/ac (Maximum)	n/ac (Nominal)	ax SU (Maximum)	ax SU (Nominal)	n/ac (Maximum)	n/ac (Nominal)	ax SU (Maximum)	ax SU (Nominal)
	36	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.50	14.00	15.75	14.25	15.50	14.00
	40	15.75	14.25	15.75	14.25	15.75	94.25	15.75	14.25	15.75	14.25	15.75	14.25	5.75	14.25
	44	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	5.75	14.25
	48	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
	52	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
	55	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	5.75	14.25
	60	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	5.75	14.25
	64	15.75	14.25	15.75	14.25	15.75	94.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
	100	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	104	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	105	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	112	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
S GHz WIFI	115	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
20 MHz Bandwidth	120	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	124	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	125	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	132	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	135	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	140	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	14.00	12.50	15.00	13.50	14.00	12.50
	144	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	149	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75
	153	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75
	157	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75
	161	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75
	165	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75
	38			15.75	14.25	14.50	13.00	15.00	13.50	14.00	12.50	15.00	13.50	14.00	12.50
	46			15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
	54			15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25	15.75	14.25
	62			15.75	14.25	15.50	14.00	15.50	14.00	15.50	14.00	15.50	14.00	15.50	14.00
	102			15.00	13.50	15.00	13.50	15.00	13.50	14.50	13.00	15.00	13.50	14.50	13.00
S GHz WIFI	110			15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
40 MHz Bandwidth	118			15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	125			15.00	11.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	134			15.00	11.50	15.00	11.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	142			15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	151			15.25	13.75	15.25	11.75	15.25	13.75	15.25	13.75	15.25	11.75	5.5	11.75
	159			15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75
	42			14.50	13.00	13.50	12.00	13.00	11.50	12.25	10.75	13.00	11.50	12.25	10.75
	58			15.75	14.25	15.75	14.25	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
S GHz WIFI	105			15.00	11.50	14.50	13.00	13.50	12.00	13.00	11.50	13.50	12.00	13.00	11.50
80 MHz Bandwidth	122			15.00	11.50	15.00	11.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	138			15.00	11.50	15.00	11.50	15.00	13.50	15.00	13.50	15.00	13.50	15.00	13.50
	155			15.25	11.75	15.25	11.75	15.25	11.75	15.25	11.75	15.25	11.75	15.25	11.75
S GHz WIFI	50			13.00	11.50	13.00	11.50	11.50	10.00	11.50	10.00	11.50	10.00	11.50	10.00
160 MHz Bandwidth	114			12.50	11.00	12.00	10.50	11.90	9.50	11.00	9.50	11.00	9.50	11.00	9.50

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 4 of 95
	duced or utilized in any part, form or by any means, electronic or mechanical, including photocopying an	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, w from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

MIMO SD as SU (Nom NS 0.25 0.25 0.25 0.75 1.50 1.50 1.50 1.75 1.75 1.78
NS 0.25 0.25 0.75 1.50 1.50 1.50 1.50 1.75
0.25 0.25 0.75 1.50 1.50 1.50 1.75 1.75
0.25 0.75 1.50 1.50 1.50 1.50 1.50 1.75 1.75
0.25 0.75 1.50 1.50 1.50 1.75 1.75
0.75 1.50 1.50 1.50 1.75 1.75
1.50 1.50 1.50 1.75 1.75
1.50 1.50 1.75 1.75
1.50 1.75 1.75
1.75 1.75
1.75
1.75
2.75
2.75
2.75
3.25
3.25
3.25
3.75
4.50
4.50
4.50
4.75
4.75
4.75
4.75
5.75
5.75
5.75
5.75
6.25
7.00
7.00
7.25
7.25
7.25
7.25
8.25
8.25
8.25
8.75
9.50
9.75
9.75
9.75

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above. 802.11a supports up to 20 MHz, 802.11n supports up to 40 MHz, 802.11ac/ax support up to 160 MHz.

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above. 802.11a supports up to 20 MHz, 802.11ax supports up to 160 MHz.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 5 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micr quiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTJINFO@ELEMEN	

Uni froi

		IEEE 802.11 (Maximum in dBm) - Antenna WF8										
Mode	Channel	SISO	SISO	SISO	SISO	MIMO CDD	MIMO CDD	MIMO SDM	MIMO SDM			
	Channel	a (Maximum)	a (Nominal)	ax SU (Maximum)	ax SU (Nominal)	ax SU (Maximum)	ax SU (Nominal)	ax SU (Maximum)	ax SU (Nominal)			
	2	NS	NS	NS	NS	NS	NS	NS	NS			
	1	NS	NS	NS	NS	NS	NS	NS	NS			
	5	NS	NS	NS	NS	NS	NS	NS	NS			
	9-29	NS	NS	NS	NS	NS	NS	NS	NS			
	33-61	0.00	-1.50	0.50	-1.00	NS	NS	-1.75	-3.25			
	65-85	1.00	-0.50	1.50	0.00	NS	NS	-1.00	-2.50			
6 GHz WIFI	89	1.00	-0.50	1.50	0.00	NS	NS	-1.00	-2.50			
(20MHz BW)	93	1.00	-0.50	1.50	0.00	NS	NS	-1.00	-2.50			
VLP	97-113	NS	NS	NS	NS	NS	NS	NS	NS			
	117-181	1.00	-0.50	1.50	0.00	NS	NS	-0.75	-2.25			
	185	NS	NS	NS	NS	NS	NS	NS	NS			
	189-225	NS	NS	NS	NS	NS	NS	NS	NS			
	229	NS	NS	NS	NS	NS	NS	NS	NS			
	233	NS	NS	NS	NS	NS	NS	NS	NS			
	3			NS	NS	NS	NS	NS	NS			
	11			NS	NS	NS	NS	NS	NS			
	19-27			NS	NS	NS	NS	NS	NS			
	35-59			3.50	2.00	-1.75	-3.25	1.25	-0.25			
	67-75			4.50	3.00	-1.00	-2.50	2.00	0.50			
	83			4.50	3.00	-1.00	-2.50	2.00	0.50			
6 GHz WIFI	91			4.50	3.00	-1.00	-2.50	2.00	0.50			
(40MHz BW)	99-107			NS	NS	NS	NS	NS	NS			
VLP	115			NS	NS	NS	NS	NS	NS			
	123-179			4.50	3.00	-0.75	-2.25	2.25	0.75			
	187			NS	NS	NS	NS	NS	NS			
	195-219			NS	NS	NS	NS	NS	NS			
	227			NS	NS	NS	NS	NS	NS			
	7			NS	NS	NS	NS	NS	NS			
	23			NS	NS	NS	NS	NS	NS			
	39-55			6.00	4.50	0.75	-0.75	3.75	2.25			
	71			7.00	5.50	1.50	0.00	4.50	3.00			
	87			7.00	5.50	1.50	0.00	4.50	3.00			
6 GHz WIFI	103			NS	NS	NS	NS	NS	NS			
(80MHz BW)	119			NS	NS	NS	NS	NS	NS			
VLP	135-167			7.00	5.50	1.75	0.25	4.75	3.25			
	183			NS	NS	NS	NS	NS	NS			
	199			NS	NS	NS	NS	NS	NS			
	215			NS	NS	NS	NS	NS	NS			
	15			NS	NS	NS	NS	NS	NS			
	47			8.50	7.00	3.25	1.75	6.25	4.75			
6 GHz WIFI	79			9.50	8.00	4.00	2.50	7.00	5.50			
(160MHz BW)	111			NS	NS	NS	NS	NS	NS			
VLP	143			9.50	8.00	4.25	2.75	7.25	5.75			
	175			NS	NS	NS	NS	NS	NS			

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 6 of 95
	duced or utilized in any part, form or by any means, electronic or mechanical, including photocopyir out obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFG	

				IEEE	802.11 (Maximum in dBm)	- Antenna WF8			
Mode	Channel	SISO	SISO SISO SISO	SISO	SISO	MIMO CDD	MIMO CDD	MIMO SDM	MIMO SDM
		a (Maximum)	a (Nominal)	ax SU (Maximum)	ax SU (Nominal)	ax SU (Maximum)	ax SU (Nominal)	ax SU (Maximum)	ax SU (Nominal)
	2	NS	NS	NS	NS	NS	NS	NS	NS
	1	14.50	13.00	14.50	13.00	14.50	13.00	14.50	13.00
	5	14.50	13.00	14.50	13.00	14.50	13.00	14.50	13.00
	9-29	14.50	13.00	14.50	13.00	14.50	13.00	14.50	13.00
	33-61	14.50	13.00	14.50	13.00	14.50	13.00	14.50	13.00
	65-85	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75
6 GHz WIFI	89	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75
(20MHz BW)	93	15.25	13.75	15.25	13.75	15.25	13.75	15.25	13.75
SP	97-113	NS	NS	NS	NS	NS	NS	NS	NS
	117-181	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50
	185	NS	NS	NS	NS	NS	NS	NS	NS
	189-225	NS	NS	NS	NS	NS	NS	NS	NS
	229	NS	NS	NS	NS	NS	NS	NS	NS
	233	NS	NS	NS	NS	NS	NS	NS	NS
	3			14.50	13.00	14.50	13.00	14.50	13.00
	11			14.50	13.00	14.50	13.00	14.50	13.00
	19-27			14.50	13.00	14.50	13.00	14.50	13.00
	35-59			14.50	13.00	14.50	13.00	14.50	13.00
	67-75			15.25	13.75	15.25	13.75	15.25	13.75
	83			15.25	13.75	15.25	13.75	15.25	13.75
6 GHz WIFI	91			15.25	13.75	15.25	13.75	15.25	13.75
(40MHz BW)	99-107			NS	NS	NS	NS	NS	NS
SP	115			NS	NS	NS	NS	NS	NS
	123-179			12.00	10.50	12.00	10.50	12.00	10.50
	187			NS	NS	NS	NS	NS	NS
	195-219			NS	NS	NS	NS	NS	NS
	227			NS	NS	NS	NS	NS	NS
	7			14.50	13.00	14.50	13.00	14.50	13.00
	23			14.50	13.00	14.50	13.00	14.50	13.00
	39-55			14.50	13.00	14.50	13.00	14.50	13.00
	71			15.25	13.75	15.25	13.75	15.25	13.75
	87			15.25	13.75	15.25	13.75	15.25	13.75
6 GHz WIFI	103			NS	NS	NS	NS	NS	NS
(80MHz BW)	119			NS	NS	NS	NS	NS	NS
SP	135-167			12.00	10.50	12.00	10.50	12.00	10.50
	183			NS	NS	NS	NS	NS	NS
	199			NS	NS	NS	NS	NS	NS
	215			NS	NS	NS	NS	NS	NS
	15			14.50	13.00	14.50	13.00	14.50	13.00
	47			14.50	13.00	14.50	13.00	14.50	13.00
6 GHz WIFI	79			15.25	13.75	15.25	13.75	15.25	13.75
(160MHz BW)	111			NS	NS	NS	NS	NS	NS
SP	143			14.50	13.00	14.50	13.00	14.50	13.00
	175			NS	NS	NS	NS	NS	NS
	207			NS	NS	NS	NS	NS	NS

Note: Targets for 802.11ax RU operations can be found in 802.11ax RU SAR Exclusion Appendix.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 7 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and mic iquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEM	

				IEEE	802.11 (Maximum in dBm)	- Antenna WF7a			
Mode	Channel	SISO	SISO	SISO	SISO	MIMO CDD	MIMO CDD	MIMO SDM	MIMO SDM
	Channel	a (Maximum)	a (Nominal)	ax SU (Maximum)	ax SU (Nominal)	ax SU (Maximum)	ax SU (Nominal)	ax SU (Maximum)	ax SU (Nominal)
	2	NS	NS	NS	NS	NS	NS	NS	NS
	1	3.50	2.00	4.00	2.50	-1.25	-2.75	1.75	0.25
	5	3.50	2.00	4.00	2.50	-1.25	-2.75	1.75	0.25
	9-29	3.50	2.00	4.00	2.50	-1.25	-2.75	1.75	0.25
	33-61	4.00	2.50	4.50	3.00	-0.75	-2.25	2.25	0.75
	65-85	5.00	3.50	5.50	4.00	0.00	-1.50	3.00	1.50
6 GHz WIFI	89	5.00	3.50	5.50	4.00	0.00	-1.50	3.00	1.50
(20MHz BW)	93	5.00	3.50	5.50	4.00	0.00	-1.50	3.00	1.50
LP	97-113	4.50	3.00	5.00	3.50	0.25	-1.25	3.25	1.75
	117-181	5.00	3.50	5.50	4.00	0.25	-1.25	3.25	1.75
	185	5.00	3.50	5.50	4.00	0.25	-1.25	3.25	1.75
	189-225	6.75	5.25	7.25	5.75	1.25	-0.25	4.25	2.75
	229	6.75	5.25	7.25	5.75	1.25	-0.25	4.25	2.75
	233	6.75	5.25	7.25	5.75	1.25	-0.25	4.25	2.75
	3			7.00	5.50	1.75	0.25	4.75	3.25
	11			7.00	5.50	1.75	0.25	4.75	3.25
	19-27			7.00	5.50	1.75	0.25	4.75	3.25
	35-59			7.50	6.00	2.25	0.75	5.25	3.75
	67-75			8.50	7.00	3.00	1.50	6.00	4.50
	83			8.50	7.00	3.00	1.50	6.00	4.50
6 GHz WIFI	91			8.50	7.00	3.00	1.50	6.00	4.50
(40MHz BW)	99-107			8.00	6.50	3.25	1.75	6.25	4.75
LP	115			8.00	6.50	3.25	1.75	6.25	4.75
	123-179			8.50	7.00	3.25	1.75	6.25	4.75
	187			8.50	7.00	3.25	1.75	6.25	4.75
	195-219			10.25	8.75	4.25	2.75	7.25	5.75
	227			10.25	8.75	4.25	2.75	7.25	5.75
	7			9.50	8.00	4.25	2.75	7.25	5.75
	23			9.50	8.00	4.25	2.75	7.25	5.75
	39-55			10.00	8.50	4.75	3.25	7.75	6.25
	71			11.00	9.50	5.50	4.00	8.50	7.00
	87			11.00	9.50	5.50	4.00	8.50	7.00
6 GHz WIFI	103			10.50	9.00	5.75	4.25	8.75	7.25
(80MHz BW)	119			10.50	9.00	5.75	4.25	8.75	7.25
LP	135-167			11.00	9.50	5.75	4.25	8.75	7.25
	183			11.00	9.50	5.75	4.25	8.75	7.25
	199			12.75	11.25	6.75	5.25	9.75	8.25
	215			12.75	11.25	6.75	5.25	9.75	8.25
	15			12.00	10.50	6.75	5.25	9.75	8.25
	47			12.50	11.00	7.25	5.75	10.25	8.75
6 GHz WIFI	79			12.75	11.25	8.00	6.50	11.00	9.50
(160MHz BW)	111			12.00	10.50	8.25	6.75	11.25	9.75
LP	143			13.00	11.50	8.25	6.75	11.25	9.75
-	175			13.00	11.50	8.25	6.75	11.25	9.75
	207			13.00	11.50	9.25	7.75	12.25	10.75
	207			10.00		5.25		25	10.75

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 8 of 95
	duced or utilized in any part, form or by any means, electronic or mechanical, including photocopyin out obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFG	

				IEEE	802.11 (Maximum in dBr	n) - Antenna WF7a		IEEE 802.11 (Maximum in dBm) - Antenna WF7a											
Mode	Channel	SISO	SISO SISO	SISO	SISO	MIMO CDD	MIMO CDD	MIMO SDM	MIMO SDM										
	Channel	a (Maximum)	a (Nominal)	ax SU (Maximum)	ax SU (Nominal)	ax SU (Maximum)	ax SU (Nominal)	ax SU (Maximum)	ax SU (Nominal)										
	2	NS	NS	NS	NS	NS	NS	NS	NS										
	1	NS	NS	NS	NS	NS	NS	NS	NS										
	5	NS	NS	NS	NS	NS	NS	NS	NS										
	9-29	NS	NS	NS	NS	NS	NS	NS	NS										
	33-61	0.00	-1.50	0.00	-1.50	NS	NS	-1.75	-3.25										
	65-85	0.00	-1.50	0.00	-1.50	NS	NS	-1.00	-2.50										
6 GHz WIFI	89	0.00	-1.50	0.00	-1.50	NS	NS	-1.00	-2.50										
(20MHz BW)	93	0.00	-1.50	0.00	-1.50	NS	NS	-1.00	-2.50										
VLP	97-113	NS	NS	NS	NS	NS	NS	NS	NS										
	117-181	0.00	-1.50	0.00	-1.50	NS	NS	-0.75	-2.25										
	185	NS	NS	NS	NS	NS	NS	NS	NS										
	189-225	NS	NS	NS	NS	NS	NS	NS	NS										
	229	NS	NS	NS	NS	NS	NS	NS	NS										
	233	NS	NS	NS	NS	NS	NS	NS	NS										
	3			NS	NS	NS	NS	NS	NS										
	11			NS	NS	NS	NS	NS	NS										
	19-27			NS	NS	NS	NS	NS	NS										
	35-59			0.00	-1.50	-1.75	-3.25	0.00	-1.50										
	67-75			0.00	-1.50	-1.00	-2.50	0.00	-1.50										
	83			0.00	-1.50	-1.00	-2.50	0.00	-1.50										
6 GHz WIFI	91			0.00	-1.50	-1.00	-2.50	0.00	-1.50										
(40MHz BW)	99-107			NS	NS	NS	NS	NS	NS										
VLP	115			NS	NS	NS	NS	NS	NS										
	123-179			0.00	-1.50	-0.75	-2.25	0.00	-1.50										
	187			NS	NS	NS	NS	NS	NS										
	195-219			NS	NS	NS	NS	NS	NS										
	227			NS	NS	NS	NS	NS	NS										
	7			NS	NS	NS	NS	NS	NS										
	23			NS	NS	NS	NS	NS	NS										
	39-55			0.00	-1.50	0.00	-1.50	0.00	-1.50										
	71			0.00	-1.50	0.00	-1.50	0.00	-1.50										
	87			0.00	-1.50	0.00	-1.50	0.00	-1.50										
6 GHz WIFI	103			NS	NS	NS	NS	NS	NS										
(80MHz BW)	119			NS	NS	NS	NS	NS	NS										
VLP	135-167			0.00	-1.50	0.00	-1.50	0.00	-1.50										
	183			NS	NS	NS	NS	NS	NS										
	199			NS	NS	NS	NS	NS	NS										
	215			NS	NS	NS	NS	NS	NS										
	15			NS	NS	NS	NS	NS	NS										
	47			0.00	-1.50	0.00	-1.50	0.00	-1.50										
6 GHz WIFI	79			0.00	-1.50	0.00	-1.50	0.00	-1.50										
(160MHz BW)	111			NS	NS	NS	NS	NS	NS										
VLP	143			0.00	-1.50	0.00	-1.50	0.00	-1.50										
	175			NS	NS	NS	NS	NS	NS										
	207			NS	NS	NS	NS	NS	NS										

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Fablet Device		Page 9 of 95
otherwise specified as part of this report way be repre-	duced or utilized in any part, form or by any means, electronic or mechanical, including photocopying	REV 24.0 05/01/2024

				IEEE	802.11 (Maximum in dBm)	- Antenna WF7a	-		-
Mode	Channel	SISO	SISO SISO SISO	SISO	MIMO CDD	MIMO CDD	MIMO SDM	MIMO SDM	
		a (Maximum)	a (Nominal)	ax SU (Maximum)	ax SU (Nominal)	ax SU (Maximum)	ax SU (Nominal)	ax SU (Maximum)	ax SU (Nominal)
	2	NS	NS	NS	NS	NS	NS	NS	NS
	1	13.50	12.00	13.50	12.00	13.50	12.00	13.50	12.00
	5	13.50	12.00	13.50	12.00	13.50	12.00	13.50	12.00
	9-29	13.50	12.00	13.50	12.00	13.50	12.00	13.50	12.00
	33-61	13.50	12.00	13.50	12.00	13.50	12.00	13.50	12.00
	65-85	12.75	11.25	12.75	11.25	12.75	11.25	12.75	11.25
6 GHz WIFI	89	12.75	11.25	12.75	11.25	12.75	11.25	12.75	11.25
(20MHz BW)	93	12.75	11.25	12.75	11.25	12.75	11.25	12.75	11.25
SP	97-113	NS	NS	NS	NS	NS	NS	NS	NS
	117-181	12.00	10.50	12.00	10.50	12.00	10.50	12.00	10.50
	185	NS	NS	NS	NS	NS	NS	NS	NS
	189-225	NS	NS	NS	NS	NS	NS	NS	NS
	229	NS	NS	NS	NS	NS	NS	NS	NS
	233	NS	NS	NS	NS	NS	NS	NS	NS
	3			13.50	12.00	13.50	12.00	13.50	12.00
	11			13.50	12.00	13.50	12.00	13.50	12.00
	19-27			13.50	12.00	13.50	12.00	13.50	12.00
	35-59			13.50	12.00	13.50	12.00	13.50	12.00
	67-75			12.75	11.25	12.75	11.25	12.75	11.25
	83			12.75	11.25	12.75	11.25	12.75	11.25
6 GHz WIFI	91			12.75	11.25	12.75	11.25	12.75	11.25
(40MHz BW)	99-107			NS	NS	NS	NS	NS	NS
SP	115			NS	NS	NS	NS	NS	NS
	123-179			12.00	10.50	12.00	10.50	12.00	10.50
	187			NS	NS	NS	NS	NS	NS
	195-219			NS	NS	NS	NS	NS	NS
	227			NS	NS	NS	NS	NS	NS
	7			13.50	12.00	13.50	12.00	13.50	12.00
	23			13.50	12.00	13.50	12.00	13.50	12.00
	39-55			13.50	12.00	13.50	12.00	13.50	12.00
	71			12.75	11.25	12.75	11.25	12.75	11.25
	87			12.75	11.25	12.75	11.25	12.75	11.25
6 GHz WIFI	103			NS	NS	NS	NS	NS	NS
(80MHz BW)	119			NS	NS	NS	NS	NS	NS
SP	135-167			13.00	11.50	13.00	11.50	13.00	11.50
	183			NS	NS	NS	NS	NS	NS
	199			NS	NS	NS	NS	NS	NS
	215			NS	NS	NS	NS	NS	NS
	15			13.50	12.00	13.50	12.00	13.50	12.00
	47			13.50	12.00	13.50	12.00	13.50	12.00
6 GHz WIFI	79			12.75	11.25	12.75	11.25	12.75	11.25
(160MHz BW)	111			NS	NS	NS	NS	NS	NS
SP	143			13.00	11.50	13.00	11.50	13.00	11.50
	175			NS	NS	NS	NS	NS	NS
	207			NS	NS	NS	NS	NS	NS

Note: Targets for 802.11ax RU operations can be found in 802.11ax RU SAR Exclusion Appendix.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 10 of 95
	r be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micr nquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMEI	

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Ban	d	Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
Bluetooth BDR	Maximum	18.50	11.50
BIUELOOLII BDK	Nominal	17.00	10.00
Bluetooth EDR	Maximum	15.00	8.00
BluetoothEDK	Nominal	13.50	6.50
Bluetooth LE	Maximum	18.50	11.50
Bluetooth LE	Nominal	17.00	10.00
Bluetooth HDR4	Maximum	12.50	6.00
	Nominal	11.00	4.50
Bluetooth HDR8	Maximum	12.50	6.00
	Nominal	11.00	4.50

1.3.2 Bluetooth Maximum Output Power

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Ban	d	TXBF (dBm)	TXBF (dBm)
			Antenna WF8
Bluetooth BDR	Maximum	17.00	11.50
Bluetooth BDR	Nominal	15.50	10.00
Bluetooth EDR	Maximum	13.50	8.00
Bidetooth EDR	Nominal	12.00	6.50
Bluetooth LE	Maximum	18.50	11.50
Bluetooth LE	Nominal	17.00	10.00
Bluetooth HDR4	Maximum	12.50	6.00
Bidetootii HDR4	Nominal	11.00	4.50
Bluetooth HDR8	Maximum	12.50	6.00
Bidetootii HDRo	Nominal	11.00	4.50

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 11 of 95
otherwise specified, no part of this report may be repro	duced or utilized in any part, form or by any means, electronic or mechanical, including photocopying out obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO	REV 24.0 05/01/2024 and microfilm, without permission @ELEMENT.COM

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7b	Antenna WF7b
Bluetooth BDR	Maximum	20.00	11.50
BIUELOOLII BDK	Nominal	18.50	10.00
Bluetooth EDR	Maximum	15.00	8.00
BIUELOOLII EDK	Nominal	13.50	6.50
Bluetooth LE	Maximum	20.00	11.50
BIUELOOLII LE	Nominal	18.50	10.00
Bluetooth HDR4	Maximum	12.50	6.00
	Nominal	11.00	4.50
Bluetooth HDR8	Maximum	12.50	6.00
Βιμειουί ΠΡκδ	Nominal	11.00	4.50

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		TXBF (dBm)	TXBF (dBm)
		Antenna WF7b	Antenna WF7b
Bluetooth BDR	Maximum	17.00	11.50
BIUELOOLII BDR	Nominal	15.50	10.00
Bluetooth EDR	Maximum	13.50	8.00
BIUELOOLII EDK	Nominal	12.00	6.50
Bluetooth LE	Maximum	20.00	11.50
Biuelooth LE	Nominal	18.50	10.00
Bluetooth HDR4	Maximum	12.50	6.00
	Nominal	11.00	4.50
Bluetooth HDR8	Maximum	12.50	6.00
	Nominal	11.00	4.50

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 12 of 95
	uced or utilized in any part, form or by any means, electronic or mechanical, including photocopyi ut obtaining additional rights to this report or assembly of contents thereof, please contact CT.INF	

Bluetooth Reduced Output Power 1.3.3

Note: Below table is applicable in the following conditions:

Simultaneous conditions with 5/6 GHz WLAN and WPT active _

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
Bluetooth BDR	Maximum	13.00	11.50
Bluetooth BDR	Nominal	11.50	10.00
Bluetooth EDR	Maximum	13.00	8.00
BluetoothEDR	Nominal	11.50	6.50
Bluetooth LE	Maximum	13.00	11.50
Bluetootii Le	Nominal	11.50	10.00
Bluetooth HDR4	Maximum	12.50	6.00
DIUELUULII HDK4	Nominal	11.00	4.50
Bluetooth HDR8	Maximum	12.50	6.00
	Nominal	11.00	4.50

Note: Below table is applicable in the following conditions: - Simultaneous conditions with 5/6 GHz WLAN and WPT active.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		TXBF (dBm)	TXBF (dBm)
			Antenna WF8
Bluetooth BDR	Maximum	13.00	11.50
Bidetooth BDR	Nominal	11.50	10.00
	Maximum	13.00	8.00
Bluetooth EDR	Nominal	11.50	6.50
Bluetooth LE	Maximum	13.00	11.50
Bidetootii LE	Nominal	11.50	10.00
Bluetooth HDR4	Maximum	12.50	6.00
Bidetootii HDR4	Nominal	11.00	4.50
Bluetooth HDR8	Maximum	12.50	6.00
Bidetootii HDR8	Nominal	11.00	4.50

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 13 of 95
	luced or utilized in any part, form or by any means, electronic or mechanical, including photocopying ar ut obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@E	

Modulated Average (ePA) Modulated Average (iPA) Mode / Band Single Tx Chain (dBm) Single Tx Chain (dBm) Antenna WF7b Antenna WF7b 14.00 11.50 Maximum Bluetooth BDR 12.50 10.00 Nominal 14.00 8.00 Maximum **Bluetooth EDR** 12.50 6.50 Nominal 14.00 11.50 Maximum Bluetooth LE 12.50 10.00 Nominal Maximum 12.50 6.00 Bluetooth HDR4 Nominal 11.00 4.50 Maximum 12.50 6.00 **Bluetooth HDR8** 11.00 4.50 Nominal

Note: Below table is applicable in the following conditions: - Simultaneous conditions with 5/6 GHz WLAN and WPT active.

Note: Below table is applicable in the following conditions:

- Simultaneous conditions with 5/6 GHz WLAN and WPT active.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		TXBF (dBm)	TXBF (dBm)
		Antenna WF7b	Antenna WF7b
Bluetooth BDR	Maximum	14.00	11.50
DIUELUULII DDK	Nominal	12.50	10.00
Divisto eth CDD	Maximum	13.50	8.00
Bluetooth EDR	Nominal	12.00	6.50
Bluetooth LE	Maximum	14.00	11.50
Biuelooth LE	Nominal	12.50	10.00
Bluetooth HDR4	Maximum	12.50	6.00
Diuelooln HDR4	Nominal	11.00	4.50
Bluetooth HDR8	Maximum	12.50	6.00
BIUELOULN HDR8	Nominal	11.00	4.50

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 14 of 95
	r be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and mi nguiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEM	

		Modulated Average (ePA)	Modulated Average (iPA)
Mode	/ Band	Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
802.15.4	Maximum	21.00	11.50
802.15.4	Nominal	19.50	10.00

802.15.4 Maximum Output Power 1.3.4

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7b	Antenna WF7b
802.15.4	Maximum	21.50	11.50
802.15.4	Nominal	20.00	10.00

802.15.4 Reduced Output Power 1.3.5

Note: Below table is applicable in the following conditions: - Simultaneous conditions with 5/6 GHz WLAN and WPT active.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
802.15.4	Maximum	14.00	11.50
002.15.4	Nominal	12.50	10.00

Note: Below table is applicable in the following conditions: - Simultaneous conditions with 5/6 GHz WLAN and WPT active.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7b	Antenna WF7b
802.15.4	Maximum	15.00	11.50
802.15.4	Nominal	13.50	10.00

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
FCC ID. BCGA3200	RE EAROSONE EVALUATION REPORT	Technical Manager
DUT Type:		Page 15 of 95
Tablet Device		Fage 15 01 95
		REV 24.0
		05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including proceedings and intercomment or from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTJNFO@ELEMENT.COM.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
NB UNII-1 BDR	Maximum	10.00	6.50
	Nominal	8.50	5.00
	Maximum	12.50	2.50
NB UNII-1 HDR4	Nominal	11.00	1.00
NB UNII-1 HDR8	Maximum	13.50	2.50
	Nominal	12.00	1.00

1.3.6 NB UNII Maximum Output Power

	Modulated Average (ePA)	Modulated Average (iPA)
and	TXBF (dBm)	TXBF (dBm)
	Antenna WF8	Antenna WF8
Maximum	7.00	6.50
Nominal	5.50	5.00
Maximum	9.50	2.50
Nominal	8.00	1.00
Maximum	12.00	2.50
Nominal	10.50	1.00
	Maximum Nominal Maximum Nominal Maximum	and TXBF (dBm) Antenna WF8 Maximum 7.00 Nominal 5.50 Maximum 9.50 Nominal 8.00 Maximum 12.00

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-1 BDR	Maximum	10.00	6.50
	Nominal	8.50	5.00
NB UNII-1 HDR4	Maximum	12.50	2.50
	Nominal	11.00	1.00
NB UNII-1 HDR8	Maximum	13.50	2.50
	Nominal	12.00	1.00

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device	·	Page 16 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and	REV 24.0 05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-1 BDR	Maximum	7.00	6.50
	Nominal	5.50	5.00
NB UNII-1 HDR4	Maximum	9.50	2.50
	Nominal	8.00	1.00
NB UNII-1 HDR8	Maximum	12.00	2.50
	Nominal	10.50	1.00

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
NB UNII-3 BDR	Maximum	13.50	6.50
	Nominal	12.00	5.00
NB UNII-3 HDR4	Maximum	13.50	2.50
	Nominal	12.00	1.00
NB UNII-3 HDR8	Maximum	13.50	2.50
	Nominal	12.00	1.00

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF8	Antenna WF8
NB UNII-3 BDR	Maximum	13.50	6.50
	Nominal	12.00	5.00
NB UNII-3 HDR4	Maximum	13.50	2.50
	Nominal	12.00	1.00
NB UNII-3 HDR8	Maximum	13.50	2.50
	Nominal	12.00	1.00

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Dage 17 of 05
Tablet Device		Page 17 of 95
		REV 24.0
		05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Ba	and	Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-3 BDR	Maximum	13.50	6.50
	Nominal	12.00	5.00
NB UNII-3 HDR4	Maximum	13.50	2.50
	Nominal	12.00	1.00
NB UNII-3 HDR8	Maximum	13.50	2.50
	Nominal	12.00	1.00

Mode / Band		Modulated Average (ePA) TXBF (dBm) Antenna WF7a	Modulated Average (iPA) TXBF (dBm) Antenna WF7a
	Maximum	13.50	6.50
NB UNII-3 BDR	Nominal	12.00	5.00
NB UNII-3 HDR4	Maximum	13.50	2.50
	Nominal	12.00	1.00
NB UNII-3 HDR8	Maximum	13.50	2.50
	Nominal	12.00	1.00

1.3.7 NB UNII Reduced Output Power

Note: Below table is applicable in the following conditions: - Simultaneous conditions with 5/6 GHz WLAN and WPT active.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
NB UNII-1 BDR	Maximum	10.00	6.50
	Nominal	8.50	5.00
NB UNII-1 HDR4	Maximum	10.50	2.50
	Nominal	9.00	1.00
NB UNII-1 HDR8	Maximum	10.50	2.50
	Nominal	9.00	1.00

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Dogo 19 of 05
Tablet Device		Page 18 of 95
	he concellured or utilized in one part form as he one month electronic or machenical including photoconving and mi	REV 24.0 05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTJNFO@ELEMENT.COM.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF8	Antenna WF8
NB UNII-1 BDR	Maximum	7.00	6.50
	Nominal	5.50	5.00
	Maximum	9.50	2.50
NB UNII-1 HDR4	Nominal	8.00	1.00
	Maximum	10.50	2.50
NB UNII-1 HDR8	Nominal	9.00	1.00

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-1 BDR	Maximum	10.00	6.50
	Nominal	8.50	5.00
NB UNII-1 HDR4	Maximum	10.00	2.50
	Nominal	8.50	1.00
NB UNII-1 HDR8	Maximum	10.00	2.50
	Nominal	8.50	1.00

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-1 BDR	Maximum	7.00	6.50
IND UNII-1 DDK	Nominal	5.50	5.00
NB UNII-1 HDR4	Maximum	9.50	2.50
	Nominal	8.00	1.00
NB UNII-1 HDR8	Maximum	10.00	2.50
	Nominal	8.50	1.00

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Dage 10 of 05
Tablet Device		Page 19 of 95
		REV 24.0
		05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / B	and	Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
NB UNII-3 BDR	Maximum	9.50	6.50
	Nominal	8.00	5.00
NB UNII-3 HDR4	Maximum	9.50	2.50
	Nominal	8.00	1.00
NB UNII-3 HDR8	Maximum	9.50	2.50
	Nominal	8.00	1.00

Mode / Band		Modulated Average (ePA) TXBF (dBm)	Modulated Average (iPA) TXBF (dBm)
		Antenna WF8	Antenna WF8
	Maximum	9.50	6.50
NB UNII-3 BDR	Nominal	8.00	5.00
	Maximum	9.50	2.50
NB UNII-3 HDR4	Nominal	8.00	1.00
	Maximum	9.50	2.50
NB UNII-3 HDR8	Nominal	8.00	1.00

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-3 BDR	Maximum	9.00	6.50
	Nominal	7.50	5.00
NB UNII-3 HDR4	Maximum	9.00	2.50
	Nominal	7.50	1.00
NB UNII-3 HDR8	Maximum	9.00	2.50
	Nominal	7.50	1.00

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 20 of 95
otherwise specified, no part of this report may be reprr	duced or utilized in any part, form or by any means, electronic or mechanical, including photocopyir out obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFG	REV 24.0 05/01/2024 ng and microfilm, without permission O@ELEMENT.COM.

Mode / Band		Modulated Average (ePA) TXBF (dBm)	Modulated Average (iPA) TXBF (dBm)
		Antenna WF7a	Antenna WF7a
	Maximum	9.00	6.50
NB UNII-3 BDR	Nominal	7.50	5.00
	Maximum	9.00	2.50
NB UNII-3 HDR4 Nomina		7.50	1.00
NB UNII-3 HDR8	Maximum	9.00	2.50
	Nominal	7.50	1.00

1.4 DUT Antenna Locations

The overall diagonal dimension of the device is > 200 mm. A diagram showing the location of the device antennas can be found in DUT Antenna Diagram & SAR Test Setup Photographs Appendix. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filings.

Note: Per FCC KDB Publication 616217 D04v01r01, front side of the device is not required to be evaluated for SAR. All other edges were evaluated for simultaneous transmission analysis.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D04v01, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D04v01 4.3.2 procedures.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 21 of 95
		REV 24.0 05/01/2024

No.	Capable Transmit Configuration	Body
1	2.4 GHz WI-FI MIMO + WPT	Yes
2	5/6 GHz WI-FI MIMO + WPT	Yes
3	2.4 GHz Bluetooth (TXBF) + WPT	Yes
4	NB UNII (TXBF) + WPT	Yes
5	2.4 GHz Bluetooth Antenna WF7b + 2.4 GHz WI-FI Antenna WF8 + WPT	Yes
6	802.15.4 Antenna WF7b + 2.4 GHz WI-FI Antenna WF8 + WPT	Yes
7	2.4 GHz Bluetooth + 5/6 GHz WI-FI + WPT	Yes
8	802.15.4 + 5/6 GHz WI-FI + WPT	Yes
9	2.4 GHz Bluetooth + 5/6 GHz WI-FI MIMO + WPT	Yes
10	802.15.4 + 5/6 GHz WI-FI MIMO + WPT	Yes
11	2.4 GHz Bluetooth (TXBF) + 5/6 GHz WI-FI + WPT	Yes
12	2.4 GHz Bluetooth (TXBF) + 5/6 GHz WI-FI MIMO + WPT	Yes
13	NB UNII + 2.4 GHz WI-FI + WPT	Yes
14	NB UNII + 2.4 GHz WI-FI MIMO + WPT	Yes
15	NB UNII (TXBF) + 2.4 GHz WI-FI + WPT	Yes
16	NB UNII (TXBF) + 2.4 GHz WI-FI MIMO + WPT	Yes

 Table 1-1

 Simultaneous Transmission Scenarios

- 2.4GHz WIFI and 2.4 GHz Bluetooth/802.15.4 can transmit simultaneously on separate antennas. Specific 2.4 GHz WIFI Antenna that can only transmit simultaneously with 2.4 GHz Bluetooth/802.15.4 is listed in the above table. In this scenario, Wi-Fi max power will not exceed minimum of (13.5 dBm, SAR max cap, Reg max cap) power. Additionally, in disconnected mode, BT will be using iPA only.
- 2. Specific NB UNII TxBF antennas can only transmit simultaneously and is listed in the Simultaneously Backoff Scenarios document.
- 3. 2.4GHz WLAN and 5 GHz WLAN cannot transmit simultaneously.
- 4. This device supports 2x2 MIMO Tx for WLAN 802.11a/g/n/ac/ax. 802.11a/g/n/ac/ax supports CDD and STBC and 802.11n/ac/ax additionally supports SDM. Each WLAN antenna can transmit independently or together when operating with MIMO.
- 5. This device supports VoWIFI.

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Based on the maximum allowed power for the respective antennas, U-NII-2A was evaluated for Antenna WF8 and Antenna WF7a. Additional testing for U-NII-1 was not required since all reported SAR was less than 1.2 W/kg per FCC KDB Publication 248227 D01v02r02.

The WLAN/Bluetooth/802.15.4/NB UNII chipset in this device is produced by two different suppliers. The electrically identical modules are manufactured with identical mechanical structures to meet the same specifications and functions. Two device variants are referenced as Variant 1 and Variant 2 in this report. WLAN/Bluetooth/802.15.4/NB UNII SAR worst case configuration was spotchecked on Variant 1 and Variant 2. The Variant with the highest reported SAR value was evaluated for the remaining WLAN/Bluetooth/802.15.4/NB UNII configurations.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
		Technical Manager
DUT Type:		Dage 22 of 05
Tablet Device		Page 22 of 95
		REV 24.0
	he reproduced or utilized in any part form or by any means, electronic or mechanical, including photocopying and	05/01/2024

niess otherwise specified, no part of this report may be reproduced of utilized in any part, form or op yany means, electronic or mechanical, including photocopying and microfilm, withou rom Element. If you have any questions rehave an enquiry about bining additural rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM. This device supports channel 1-13 for 2.4 GHz WLAN. However, because channel 12/13 targets are not higher than that of channels 1-11, channels 1, 6, and 11 were considered for SAR testing per FCC KDB 248227 D01V02r02.

This device supports IEEE 802.11ac with the following features:

- a) Up to 160 MHz Bandwidth only for 5/6 GHz
- b) 3 Tx antenna output
- c) 256 QAM is supported
- d) TDWR and Band gap channels are supported

This device supports IEEE 802.11ax with the following features:

- a) Up to 160 MHz Bandwidth only for 5/6 GHz
- b) Up to 20 MHz Bandwidth only for 2.4 GHz
- c) No aggregate channel configurations
- d) 3 Tx antenna output
- e) Up to 1024 QAM is supported
- f) TDWR and Band gap channels are supported for 5 GHz
- g) MU-MIMO UL Operations are not supported

Per April 2019 TCB Workshop Notes, SAR testing was not required for 802.11ax when applying the initial test configuration procedures of KDB 248227, with 802.11ax considered a higher order 802.11 mode.

Per FCC guidance, SAR was performed using 6.5 GHz SAR probe calibration factors. FCC KDB 648474 and FCC KDB 248227 were followed for test positions, distances, and modes. Per TCB workshop October 2020 notes, 5 channels were tested. Absorbed power density (APD) using a 4cm2 averaging area is reported based on SAR measurements. Incident power density is evaluated at 2mm ensuring that the resolution is sufficient such that integrated power density (iPD) between d=2mm and d= λ /5mm is \geq -1dB per equipment manufacturer guidance. Power density results are scaled up for uncertainty above 30%.

1.7 Guidance Applied

- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D04v01 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 616217 D04v01r02 (Tablet)
- November 2017, October 2018, April 2019, November 2019, October 2020 TCB Workshop Notes (IEEE 802.11ax)
- SPEAG DASY6 System Handbook
- SPEAG DASY6 Application Note (Interim Procedures for Devices Operating at 6-10 GHz) (Nov 2021)
- IEEE 1528-2013
- IEC TR 63170:2018
- IEC 62479:2010

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 9.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 23 of 95
Tablet Device		Fage 23 01 95
		REV 24.0 05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

2 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

$SAR = \frac{a}{c}$	$d \left(dU \right)$	d	$\left(dU \right)$
$\beta A \Lambda = -$	lt (dm)	$\frac{dt}{dt}$	$\left(\overline{\rho dv} \right)$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

- ρ = mass density of the tissue-simulating material (kg/m³)
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
FCC ID. DEGA5200	RF EXPOSURE EVALUATION REPORT	Technical Manager
DUT Type:		Page 24 of 95
Tablet Device		Fage 24 01 95
		REV 24.0
		05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

3 DOSIMETRIC ASSESSMENT

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface, and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

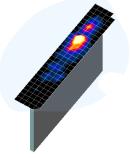


Figure 3-1 Sample SAR Area Scan

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

_	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (i	•	Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	Jniform Grid Graded Grid		Volume (mm) (x,y,z)
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	∆z _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
2-3 GHz	≤ 12	≤ 5	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≤3	≤ 1.5*∆z _{zoom} (n-1)	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	≤ 1.5*Δz _{zoom} (n-1)	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 22

Table 3-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 25 of 95
Tablet Device		Fage 25 01 95
		REV 24.0
a sthematic encodified as much of this second many	be reproduced or utilized in any part form or by any means electronic or mechanical including photocopying and mi	05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

4 TEST CONFIGURATION POSITIONS

4.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵ = 3 and loss tangent δ = 0.02.

4.2 SAR Testing for Tablet per KDB Publication 616217 D04v01r02

Per FCC KDB Publication 616217 D04v01r02, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D04v01 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 26 of 95
	duced or utilized in any part, form or by any means, electronic or mechanical, including photocopying ar out obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@E	

5 RF EXPOSURE LIMITS

Uncontrolled Environment 5.1

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

5.3 **RF Exposure Limits for Frequencies below 6 GHz**

HUMAN EXPOSURE LIMITS			
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)	
Peak Spatial Average SAR Head	1.6	8.0	
Whole Body SAR	0.08	0.4	
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20	

Table 5-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over 1. the appropriate averaging time.

The Spatial Average value of the SAR averaged over the whole body. 2.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and 3. over the appropriate averaging time.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 27 of 95
s otherwise specified, no part of this report may be repro	duced or utilized in any part, form or by any means, electronic or mechanical, including photocopying	REV 24.0 05/01/2024 g and microfilm, without permission

less otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, w m Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

RF Exposure Limits for Frequencies above 6 GHz 5.4

Per §1.1310 (d)(3), the MPE limits are applied for frequencies above 6 GHz. Power Density is expressed in units of W/m² or mW/cm².

Peak Spatially Averaged Power Density was evaluated over a circular area of 4 cm² per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes.

Table 5-2 Human Exposure Limits Specified in FCC 47 CFR §1.1310				
Human Exposure to Radiofrequency (RF) Radiation Limits				
Frequency Range [MHz]	Power Density [mW/cm ²]	Average Time [Minutes]		
(A) Limi	ts For Occupational / Controlled E	nvironments		
1,500 - 100,000	1,500 – 100,000 5.0 6			
(B) Limits For General Population / Uncontrolled Environments				
1,500 – 100,000	1.0	30		
Note: 1.0 mW/cm ² is 10 W/m ²				

Note: 1.0 mW/cm² is 10 W/m²

Approved by: Technical Manager
Page 28 of 95
REV 24.0 05/01/2024
ofil

6 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

6.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D04v01, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

6.2 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset-based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

6.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

6.2.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled. SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 29 of 95
s otherwise specified, no part of this report may be repro	oduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying ar	REV 24.0 05/01/2024 nd microfilm, without permission in wr

less otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, w m Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

6.2.4 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel, i.e., all channels require testing.

2.4 GHz 802.11 g/n/ax OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.5 **OFDM Transmission Mode and SAR Test Channel Selection**

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. Per April 2019 TCB Workshop guidance. 802.11ax was considered the highest order 802.11 mode. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

6.2.6 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 6.2.5). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.7 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band. SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 30 of 95
ess otherwise specified, no part of this report may	v be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and mic	REV 24.0 05/01/2024 profilm, without permission in writing

less otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, w m Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.8 MIMO SAR considerations

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D04v01 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 31 of 95
otherwise specified, no part of this report may be reprod	uced or utilized in any part, form or by any means, electronic or mechanical, including photocopyin ut obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFr	REV 24.0 05/01/2024 ng and microfilm, without permission in O@ELEMENT.COM.

7 RF CONDUCTED POWERS

7.1 2.4 GHz WLAN Maximum Time-Averaged Conducted Powers

2.4 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 1 2.4GHz WIFI (20MHz 802.11b SISO ANT WF8) Conducted Freq. Channel Detector [MHz] Power [dBm] 2412 17.53 1 17.59 2437 6 Average 2462 11 17.68 2.4GHz WIFI (20MHz 802.11g SISO ANT WF8) Freq. Conducted Channel Detector [MHz] Power [dBm] 15.28 2412 1 2437 6 Average 17.85 2462 17.46 11 2.4GHz WIFI (20MHz 802.11n SISO ANT WF8) Freq. Conducted Channel Detector Power [dBm] [MHz] 2412 15.31 1 17.82 2437 6 Average 2462 17.43 11 2.4GHz WIFI (20MHz 802.11ax SISO ANT WF8) Conducted Freq. Channel Detector [MHz] Power [dBm] 14.84 2412 1 2437 17.88 6 Average 2462 11 17.12

Table 7-1

Table 7-2

2.4 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 2 2.4GHz WIFI (20MHz 802.11b SISO ANT WF8)

Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		17.85
2437	6	Average	17.93
2462	11		17.98
2.4GHz	WIFI (20MHz	2 802.11g SI	SO ANT WF8)
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		15.09
2437	6	Average	17.65
2462	11	· 3 ·	17.74
2.4GHz	WIFI (20MHz	2 802.11n SI	SO ANT WF8)
Freq.	Channel	D	Conducted
[MHz]	Channel	Detector	Power [dBm]
[MHz] 2412	1	Detector	Power [dBm] 15.12
		Average	•••

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 32 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and quiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@EL	

2.4GHz WIFI (20MHz 802.11ax SISO ANT			
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		14.93
2437	6	Average	17.57
2462	11		17.32

Table 7-3

2.4 GHz WLAN Maximum Average RF Power – Antenna WF7b, Variant 1

2.4GHz WIFI (20MHz 802.11b SISO ANT WF7b)			
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		18.67
2437	6	Average	18.70
2462	11		18.87
2.4GHz W	IFI (20MHz	802.11g SI	SO ANT WF7b)
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		15.17
2437	6	Average	17.77
2462	11		17.58
2.4GHz WIFI (20MHz 802.11n SISO ANT WF7b)			
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		15.13
2437	6	Average	17.80
2462	11		17.62
2.4GHz W	VIFI (20MHz	802.11ax SI	SO ANT WF7b)
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		14.78
2437	6	Average	17.76
2462	11	-	17.43
	Τ-		

Table 7-4

2.4 GHz WLAN Maximum Average RF Power – Antenna WF7b, Variant 2 2.4GHz WIFI (20MHz 802.11b SISO ANT WF7b)

2.40 Hz WIFT (2000 Hz OUZ, 110 3030 ANT WF7D)			
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		18.60
2437	6	Average	18.63
2462	11		18.77
2.4GHz V	VIFI (20MHz	802.11g SIS	SO ANT WF7b)
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		15.20
2437	6	Average	17.76
2462	11	Ĵ	17.65
2.4GHz V	VIFI (20MHz	802.11n SIS	SO ANT WF7b)
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		15.21
2437	6	Average	17.77
2462	11		17.66

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 33 of 95
	produced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and m	REV 24.0 05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTJNFO@ELEMENT.COM.

2.4GHz WIFI (20MHz 802.11ax SISO ANT WF7b)			
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		15.06
2437	6	Average	17.79
2462	11		17.48

7.2 5 GHz WLAN Maximum Time-Averaged Conducted Powers

Table 7-5			
5 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 1			
	5GHz WIFI (40MHz 802.11n SISO ANT WF8)		

5GHz WIFI (40MHz 802.11n SISO ANT WF8)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
	5190	38	14.83
UNII-1	5230	46	15.21
UNII-2A	5270	54	16.42
UNII-ZA	5310	62	15.73
5GHz W	/IFI (40MHz	802.11ac SI	SO ANT WF8)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-1	5190	38	14.93
UNII-1	5230	46	16.13
UNII-2A	5270	54	15.95
UNII-2A	5310	62	15.46
5GHz W	/IFI (40MHz	802.11ax SI	SO ANT WF8)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-1	5190	38	13.38
	5230	46	16.15
UNII-2A	5270	54	15.98
	5310	62	14.41
5GHz W	/IFI (80MHz	802.11ac SI	SO ANT WF8)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
	5530	106	13.85
UNII-2C	5610	122	15.61
	5690	138	15.56
UNII-3	5775	155	16.32
5GHz WIFI (80MHz 802.11ax SISO ANT WF8)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
	5530	106	13.61
UNII-2C	5610	122	15.19
	5690	138	15.10
UNII-3	5775	155	16.36

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 34 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micr aquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMEN	

5GHz WIFI (40MHz 802.11n SISO ANT WF8)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
	5190	38	14.76
UNII-1	5230	46	15.13
UNII-2A	5270	54	16.40
UNIFZA	5310	62	16.02
5GHz W	/IFI (40MHz	802.11ac SI	SO ANT WF8)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
	5190	38	14.96
UNII-1	5230	46	16.13
UNII-2A	5270	54	16.09
UNII-ZA	5310	62	15.66
5GHz W	/IFI (40MHz	802.11ax SI	SO ANT WF8)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-1	5190	38	13.49
UNII-1	5230	46	16.07
UNII-2A	5270	54	16.09
	5310	62	14.40
5GHz W	/IFI (80MHz	802.11ac SI	SO ANT WF8)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
	5530	106	13.89
UNII-2C	5530 5610	106 122	13.89 15.62
	5610 5690	122 138	15.62 15.61
UNII-3	5610 5690 5775	122 138 155	15.62 15.61 16.19
UNII-3	5610 5690 5775	122 138 155	15.62 15.61
UNII-3	5610 5690 5775	122 138 155	15.62 15.61 16.19
UNII-3 5GHz W	5610 5690 5775 /IFI (80MHz Freq.	122 138 155 802.11ax SI	15.62 15.61 16.19 SO ANT WF8) Avg. Conducted
UNII-3 5GHz W	5610 5690 5775 /IFI (80MHz Freq. [MHz] 5530 5610	122 138 155 802.11ax SI Channel 106 122	15.62 15.61 16.19 SO ANT WF8) Avg. Conducted Power [dBm] 13.59 15.24
UNII-3 5GHz W Band	5610 5690 5775 //Fl (80MHz Freq. [MHz] 5530	122 138 155 802.11ax SI Channel 106	15.62 15.61 16.19 SO ANT WF8) Avg. Conducted Power [dBm] 13.59

Table 7-6 5 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 2 5GHz WIEI (40MHz 802 11n SISO ANT WE8)

Table 7-7

5 GHz WLAN Maximum Average RF Power – Antenna WF7a, Variant 1

5GHz WIFI (40MHz 802.11n SISO ANT WF7a)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-1	5190	38	14.88
	5230	46	14.55
5GHz WIFI (40MHz 802.11ac SISO ANT WF7a)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-1	5190	38	14.85
	5230	46	14.67

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 35 of 95
Tablet Device		REV 24.0
otherwise specified as part of this report may be repr	oduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying	05/01/2024

5GHz WIFI (40MHz 802.11ax SISO ANT WF7a)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-1	5190	38	13.39
UNII-1	5230	46	14.56
5GHz W	FI (80MHz 8	302.11ac SIS	SO ANT WF7a)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-2A	5290	58	14.99
	5530	106	14.26
UNII-2C	5610	122	14.28
	5690	138	14.08
UNII-3	5775	155	14.25
5GHz W	FI (80MHz 8	302.11ax SIS	SO ANT WF7a)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-2A	5290	58	14.62
	5530	106	13.49
UNII-2C	5610	122	14.04
	5690	138	13.93
UNII-3	5775	155	14.32

 Table 7-8

 5 GHz WLAN Maximum Average RF Power – Antenna WF7a, Variant 2

5GHz WIFI (40MHz 802.11n SISO ANT WF7a)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-1	5190	38	14.64
UNII-1	5230	46	14.91
5GHz WI	FI (40MHz 8	302.11ac SIS	SO ANT WF7a)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-1	5190	38	14.81
UNII-1	5230	46	14.77
5GHz W	FI (40MHz 8	302.11ax SIS	SO ANT WF7a)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-1	5190	38	13.39
UNII-1	5230	46	14.67
5GHz WIFI (80MHz 802.11ac SISO ANT WF7a)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-2A	5290	58	14.83
	5530	106	14.03
UNII-2C	5610	122	14.02
	5690	138	14.05
UNII-3	5775	155	14.18

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 36 of 95
	r be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and nquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELE	

5GHz WIFI (80MHz 802.11ax SISO ANT WF7a)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
UNII-2A	5290	58	14.76		
	5530	106	13.54		
UNII-2C	5610	122	13.89		
	5690	138	13.97		
UNII-3	5775	155	14.29		

Table 7-9

5 GHz WLAN Maximum Average RF Power – Antenna WF8 and WF7a MIMO, Variant 1 5GHz WIFI (40MHz 802.11n MIMO)

	5GHZ WIFI (40MHZ 802. I IN MIMO)						
Band	Freq [MHz]	Channel	Avg. Conducted Powers [dBm]				
			ANT WF8	ANT WF7a	MIMO		
UNII-1	5190	38	14.33	14.23	17.29		
UNII-1	5230	46	15.50	15.39	18.46		
UNII-2A	5270	54	15.61	15.60	18.62		
UNII-ZA	5310	62	14.41	14.37	17.40		
		5GHz WIFI	(80MHz 802.11a	c MIMO)			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]		
			ANT WF8	ANT WF7a	MIMO		
	5530	106	12.47	12.58	15.54		
UNII-2C	5610	122	14.67	14.47	17.58		
	5690	138	14.63	14.77	17.71		

Table 7-10

5 GHz WLAN Maximum Average RF Power – Antenna WF8 and WF7a MIMO, Variant 2 5GHz WIFI (40MHz 802.11n MIMO)

5GHZ WIFI (40MHZ 802.11h MIMO)						
Band	Freq [MHz]	Channel	Avg. Conducted Powers [dBm]			
			ANT WF8	ANT WF7a	MIMO	
UNII-1	5190	38	14.25	14.00	17.14	
UNII-1	5230	46	15.37	15.03	18.21	
UNII-2A	5270	54	15.53	15.10	18.33	
UNII-ZA	5310	62	14.27	14.48	17.39	
		5GHz WIFI	(80MHz 802.11a	c MIMO)		
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	
			ANT WF8	ANT WF7a	MIMO	
	5530	106	12.42	12.68	15.56	
UNII-2C	5610	122	14.65	14.48	17.58	
	5690	138	14.75	14.57	17.67	
UNII-3	5775	155	16.26	14.36	18.42	

6 GHz WLAN Maximum Time-Averaged Conducted Powers 7.3

Table 7-11 6 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 1 6GHz WIFI (160MHz 802.11ax SISO ANT WF8)

Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]	
UNII-5	6025	15	14.22	
UNII-5	6345	79	13.43	
UNII-6	6505	111	12.45	
UNII-7	6665	143	14.35	
UNII-8	6985	207	10.82	

	RF EXPOSURE EVALUATION REPORT	Approved by:
FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Technical Manager
DUT Type:		Page 37 of 95
Tablet Device		Fage 37 01 95
		REV 24.0
		05/01/2024
	oduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and n	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, w from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

OGHZ WIFI (TOUVINZ 802. TTAX SISU ANT WF8)				
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]	
UNII-5	6025	15	14.23	
0111-5	6345	79	13.39	
UNII-6	6505	111	12.70	
UNII-7	6665	143	14.37	
UNII-8	6985	207	10.28	

Table 7-12 6 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 2 6GHz WIFI (160MHz 802.11ax SISO ANT WF8)

Table 7-13

6 GHz WLAN Maximum Average RF Power – Antenna WF7a, Variant 1 6GHz WIFI (160MHz 802.11ax SISO ANT WF7a)

Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-5	6025	15	12.51
UNII-5	6345	79	12.00
UNII-6	6505	111	11.69
UNII-7	6665	143	12.23
UNII-8	6985	207	11.02

Table 7-14

6 GHz WLAN Maximum Average RF Power – Antenna WF7a, Variant 2 6GHz WIFI (160MHz 802.11ax SISO ANT WF7a)

Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]	
UNII-5	6025	15	12.26	
UNII-5	6345	79	11.74	
UNII-6	6505	111	11.44	
UNII-7	6665	143	12.00	
UNII-8	6985	207	11.01	

7.4 6 GHz WLAN Maximum Time-Averaged Conducted Powers

Table 7-15

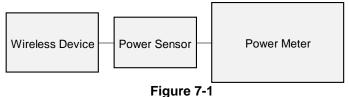
6 GHz WLAN Maximum Average RF Power – Antenna WF8 and WF7a MIMO, Variant 1 6GHz WIFI (160MHz 802.11ax MIMO)

Band	Freq [MHz]	Channel	Avg. Conducted Powers [dBm]					
			ANT WF8 ANT WF7a MIMO					
UNII-5	6025	15	13.90	12.66	16.33			
01011-5	6345	79	13.57	12.06	15.89			
UNII-6	6505	111	7.16	7.52	10.35			
UNII-7	6665	143	14.45	12.58	16.63			
UNII-8	6985	207	8.06 8.63 11.36					

Table 7-16

6 GHz WLAN Maximum Average RF Power – Antenna WF8 and WF7a MIMO, Variant 2 6GHz WIFI (160MHz 802.11ax MIMO)

Band	Freq [MHz]	Channel	Avg. Conducted Powers [dBm]				
			ANT WF8 ANT WF7a MIMO				
UNII-5	6025	15	14.20	12.87	16.60		
0111-5 634	6345	79	13.45	12.13	15.85		
UNII-6	6505	111	7.17	7.20	10.20		
UNII-7	6665	143	14.13	12.11	16.25		
UNII-8	6985	207	8.20	8.41	11.32		


FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 38 of 95
Tablet Device		Fage So OI 95
	se reproduced or utilized in any part form or by any means electronic or machanical including photocopying and m	REV 24.0 05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

7.5 Notes for WLAN

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The WLAN chipset in this device is produced by two different suppliers. The electrically identical modules are manufactured with identical mechanical structures to meet the same specifications and functions.
- Two device variants are referenced as Variant 1 and Variant 2 in this report.
- WLAN SAR worst case configuration was spotchecked on Variant 1 and Variant 2.

Power Measurement Setup

7.6 Bluetooth Maximum Conducted Powers

 Table 7-17

 Bluetooth Maximum Average RF Power – Antenna WF8, Variant 1

Frequency [MHz]	Modulation	Data Rate	Channel	Avg Conducted Power	
	Woodation	[Mbps] No.		[dBm]	[mW]
2402	GFSK	1.0	0	18.20	66.069
2441	GFSK	1.0	39	18.19	65.917
2480	GFSK	1.0	78	17.98	62.806

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 39 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and mic	

Avg Conducted Data Channel Power Frequency [MHz] Modulation Rate No. [dBm] [mW] [Mbps] 2402 GFSK 1.0 0 18.04 63.680 2441 GFSK 1.0 39 67.143 18.27 GFSK 2480 1.0 78 17.91 61.802

Table 7-18 Bluetooth Maximum Average RF Power – Antenna WF8, Variant 2

Table 7-19

Bluetooth Maximum Average RF Power – Antenna WF7b, Variant 1

Frequency [MHz]	Modulation Rate Channel		Channel	Avg Cor Pov	nducted wer
	Modulation	[Mbps]	No.	[dBm]	[mW]
2402	GFSK	1.0	0	19.39	86.896
2441	GFSK	1.0	39	19.35	86.099
2480	GFSK	1.0	78	19.48	88.716

Table 7-20

Bluetooth Maximum Average RF Power – Antenna WF7b, Variant 2					
Frequency [MHz]	Modulation Rate Channel		Modulation	-	wer
	Modulation	[Mbps]	No.	[dBm]	[mW]
2402	GFSK	1.0	0	19.43	87.700
2441	GFSK	1.0	39	19.25	84.140
2480	GFSK	1.0	78	19.49	88.920

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 40 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying an Iquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTJNFO@EI	

Bluetooth Reduced Conducted Powers 7.7

Bluetooth 7 dB Reduced Average RF Power – Antenna WF8, Variant 1					
Frequency [MHz]	Modulation	Data Rate	Channel	Avg Co Pov	nducted wer
	Modulation	[Mbps]	No.	[dBm]	[mW]
2402	GFSK	1.0	0	12.11	16.255
2441	GFSK	1.0	39	12.12	16.293
2480	GFSK	1.0	78	11.99	15.812
	-	Table 7-22			

Table 7-21

Table 7-22

Bluetooth 7 dB Reduced Average RF Power – Antenna WF8, Variant 2

Frequency [MHz]	Modulation	Data Channel		Avg Cor Pov	
	Woodlation	[Mbps]	No.	[dBm]	[mW]
2402	GFSK	1.0	0	12.27	16.866
2441	GFSK	1.0	39	12.09	16.181
2480	GFSK	1.0	78	12.29	16.943

Table 7-23 Bluetooth 7 dB Reduced Average RF Power – Antenna WF7b, Variant 1					
	Modulation	Data Channel		Avg Co Pov	nducted wer
Frequency [MHz]	wouldtion	[Mbps]	No.	[dBm]	[mW]
2402	GFSK	1.0	0	13.49	22.336
2441	GFSK	1.0	39	13.41	21.928
2480	GFSK	1.0	78	13.32	21.478

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 41 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micr iquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTJNFO@ELEMEN	

Frequency [MHz]	Modulation	Data Rate	Channel	Avg Co Po	nducted wer
	modulation	[Mbps]	No.	[dBm]	[mW]
2402	GFSK	1.0	0	13.03	20.091
2441	GFSK	1.0	39	13.21	20.941
2480	GFSK	1.0	78	13.07	20.277

 Table 7-24

 Bluetooth 7 dB Reduced Average RF Power – Antenna WF7b. Variant 2

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 42 of 95
Tablet Device		REV 24.0

7.8 Bluetooth Duty Cycle Plots

Keysight Spectrum Analyzer - Swept SA					- đ <mark>×</mark>
Marker 3 Δ 3.75200 ms	FINO, Fast	SENSE:INT	Avg Type: Log-Pwr	10:41:20 AM Oct 28, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N N	Marker
10 dB/div Ref 20.00 dBm	IFGain:Low	Atten: 30 db	Δ	Mkr3 3.752 ms -0.01 dB	Marker Table <u>On</u> Off
0.00	1		2∆1	<u>3∆1</u>	Marker Count
-10.0					Couple Markers On <u>Off</u>
-40.0 -50.0 -60.0	uppslacthyrogen		hay MPPA Products		
-70.0 Center 2.441000000 GHz Res BW 3.0 MHz	VBW 3.0	0 MHz	Sween 8	Span 0 Hz 000 ms (1001 pts)	
MKR MODE TRC SCL X	2.704 ms	Y FUN 2.43 dBm		FUNCTION VALUE	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.888 ms (∆) 3.752 ms (∆)	-0.19 dB -0.01 dB			All Markers Off
7 8 9 10 11					More 2 of 2
< MSG			STATUS	>	

Figure 7-2 Bluetooth Transmission Plot – Antenna WF8, Variant 1

Equation 7-1 Bluetooth Duty Cycle Calculation – Antenna WF8, Variant 1

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 43 of 95
ss otherwise specified, no part of this report ma	y be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and n	REV 24.0 05/01/2024 nicrofilm, without permission i

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micronium, withou from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTINFO@ELEMENT.COM.

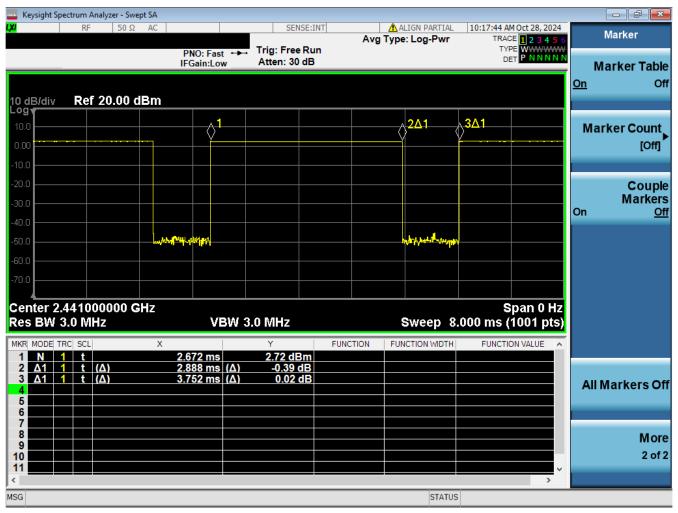


Figure 7-3 Bluetooth Transmission Plot – Antenna WF8, Variant 2

Equation 7-2 Bluetooth Duty Cycle Calculation – Antenna WF8, Variant 2

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 44 of 95
	uced or utilized in any part, form or by any means, electronic or mechanical, including photocopying an It obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@E	

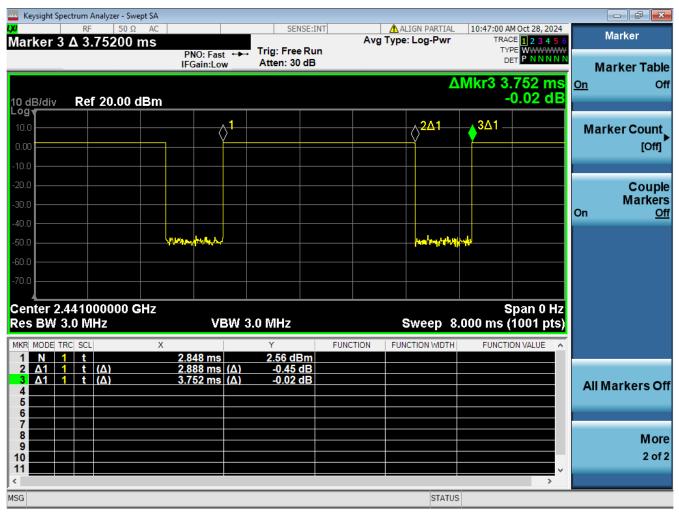


Figure 7-4 Bluetooth Transmission Plot – Antenna WF7b, Variant 1

Equation 7-3 Bluetooth Duty Cycle Calculation – Antenna WF7b, Variant 1

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
		Technical Manager
DUT Type:		Page 45 of 95
Tablet Device		Fage 45 01 95
		REV 24.0
		05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micronim, whith from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

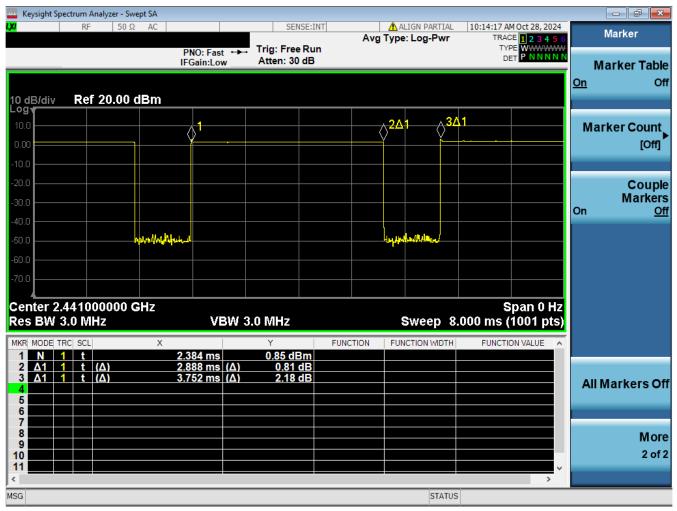


Figure 7-5 Bluetooth Transmission Plot – Antenna WF7b, Variant 2

Equation 7-4 Bluetooth Duty Cycle Calculation – Antenna WF7b, Variant 2

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:	
		Technical Manager	
DUT Type:		Page 46 of 95	
Tablet Device		Fage 46 01 95	
		REV 24.0	
		05/01/2024	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTJNFO@ELEMENT.COM.

7.9 802.15.4 Maximum Conducted Powers

802.15.4 Maximum Average RF Power – Antenna WF8, Variant 1							
Frequency [MHz]	Modulation	Data Rate	Channel	Avg Cor Pov	nducted wer		
	modulation	[Mbps] No.	[dBm]	[mW]			
2405	O-QPSK	1.0	11	19.48	88.716		
2440	O-QPSK	1.0	18	19.76	94.624		
2475	O-QPSK	1.0	25	19.72	93.756		

 Table 7-25

 802.15.4 Maximum Average RF Power – Antenna WF8, Variant 1

Table	7-26
1 4 8 1 9	

802.15.4 Maximum Average RF Power – Antenna WF8, Variant 2

Frequency [MHz]	Modulation	odulation Data [Mbps]		Channel	Avg Cor Pov	nducted wer
	Modulation		No.	[dBm]	[mW]	
2405	O-QPSK	1.0	11	19.30	85.114	
2440	O-QPSK	1.0	18	19.65	92.257	
2475	O-QPSK	1.0	25	19.64	92.045	

 Table 7-27

 802.15.4 Maximum Average RF Power – Antenna WF7b, Variant 1

Frequency [MHz]	Modulation	Data Rate	Channel	Avg Co Pov	nducted wer
		[Mbps]	No.	[dBm]	[mW]
2405	O-QPSK	1.0	11	20.68	116.950
2440	O-QPSK	1.0	18	20.39	109.396
2475	O-QPSK	1.0	25	20.35	108.393

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 47 of 95
Tablet Device		1 age +7 01 55
		REV 24.0
		05/01/2024
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and mi nquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEM	

802.15.4 Maximum Average RF Power – Antenna WF7b, Variant 2							
Frequency [MHz]	Modulation	Data Rate [Mbps] Channel	Channel Bower				
			No.	[dBm]	[mW]		
2405	O-QPSK	1.0	11	20.47	111.429		
2440	O-QPSK	1.0	18	20.67	116.681		
2475	O-QPSK	1.0	25	20.28	106.660		

Table 7-28

7.10 802.15.4 Reduced Conducted Powers

	٦	Table 7-29				
802.15.4 7 dB Reduced Average RF Power – Antenna WF8, Variant 1						

Frequency [MHz]	Hz] Modulation Data Rate [Mbps] No.	Channel	Avg Conducted Power		
		[dBm]	[mW]		
2405	O-QPSK	1.0	11	13.69	23.388
2440	O-QPSK	1.0	18	13.33	21.528
2475	O-QPSK	1.0	25	13.42	21.979

Table 7-30

Frequency [MHz]	Modulation	Data Rate	Channel	Avg Cor Pov	
	Woodlation	[Mbps]	No.	[dBm]	[mW]
2405	O-QPSK	1.0	11	13.71	23.496
2440	O-QPSK	1.0	18	13.42	21.979
2475	O-QPSK	1.0	25	13.63	23.067

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 48 of 95
		REV 24.0 05/01/2024
	ced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and n t obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEI	

Frequency [MHz]	Modulation	Data Rate	Channel	Avg Conducted Power		
	Modulation	[Mbps]	No.	[dBm]	[mW]	
2405	O-QPSK	1.0	11	14.07	25.527	
2440	O-QPSK	1.0	18	13.75	23.714	
2475	O-QPSK	1.0	25	13.85	24.266	

Table 7-31 802.15.4 7 dB Reduced Average RF Power – Antenna WF7b. Variant 1

Table 7-32

802.15.4 7 dB Reduced Average RF Power – Antenna WF7b, Variant 2

Frequency [MHz]	Modulation	Modulation Rate Channel		Avg Co Pov	
	Woodlation	[Mbps]	No.	[dBm]	[mW]
2405	O-QPSK	1.0	11	13.81	24.044
2440	O-QPSK	1.0	18	13.97	24.946
2475	O-QPSK	1.0	25	14.11	25.763

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 49 of 95
		REV 24.0 05/01/2024

7.11 802.15.4 Duty Cycle Plots

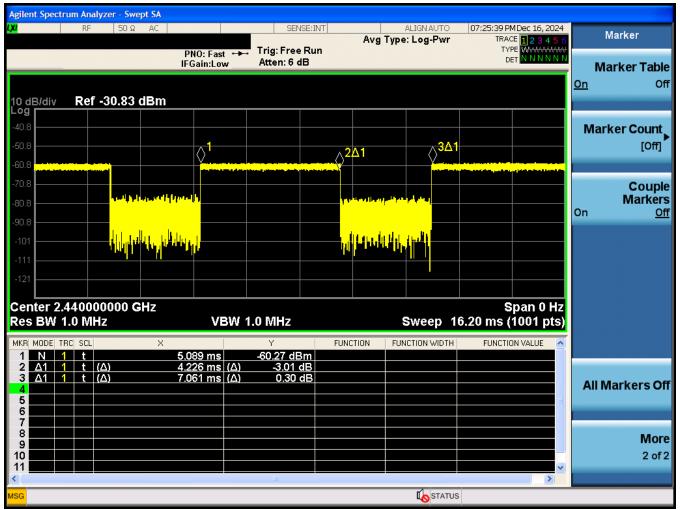


Figure 7-6 802.15.4 Transmission Plot – Antenna WF8 / WF7b, Variant 1

Equation 7-5 802.15.4 Duty Cycle Calculation – Antenna WF8 / WF7b, Variant 1

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{4.226 ms}{7.061 ms} * 100\% = 59.85\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 50 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and m	REV 24.0 05/01/2024 icrofilm, without permission in writi

Unless specified and the specified of th

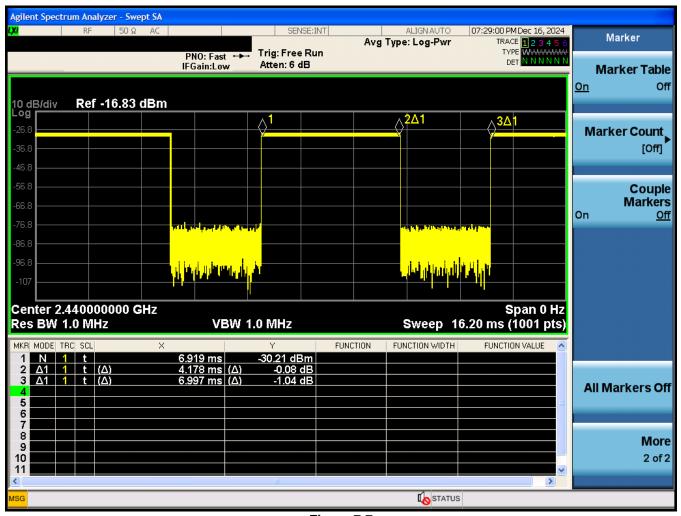


Figure 7-7 802.15.4 Transmission Plot – Antenna WF8 / WF7b, Variant 2

Equation 7-6 802.15.4 Duty Cycle Calculation – Antenna WF8 / WF7b, Variant 2

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{4.178 ms}{6.997 ms} * 100\% = 59.71\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
		Technical Manager
DUT Type:		Page 51 of 95
Tablet Device		Fage 51 01 95
		REV 24.0
ss otherwise specified, no part of this report may be repro		05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micronim, withou from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

🔤 Keysight Spectrum Analyzer - Swept SA					
ΙΧ΄ RF 50 Ω AC			09 : Log-Pwr	0:24:07 PM Nov 19, 2024 TRACE 1 2 3 4 5 6	Marker
	PNO: Fast Trig: Free IFGain:Low Atten: 40				Marker Table
					On Off
10 dB/div Ref 30.00 dBm					
20.0					Marker Count
10.0					[Off]
0.00					
-10.0					Couple
-20.0					On Off
-30.0					
-40.0					
-50.0					
-60.0					
Center 2.440000000 GHz				Span 0 Hz	
Res BW 3.0 MHz	VBW 3.0 MHz) ms (1001 pts)	
MKR MODE TRC SCL X	Y	FUNCTION FUN	ICTION WIDTH	FUNCTION VALUE	
2					
4 5				E	All Markers Off
6					
8					More
10					2 of 2
11 · [
MSG			STATUS		

Figure 7-8 802.15.4 Transmission Plot – Antenna WF8 / WF7b, Variant 1 and 2

Equation 7-7 802.15.4 Duty Cycle Calculation – Antenna WF8 / WF7b, Variant 1 and 2

Duty Cycle = 100%

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 52 of 95
	y be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and anquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@EL	

7.12 Bluetooth/802.15.4 Power Reduction Verification Summary

Antenna	Mode/Band	Condition (s)	Maximum Scenario Maximum Allowed Tune Up Power [dBm]	Reduced Scenario	Maximum Measured Power [dBm]	Reduced Measured Power [dBm]	Verdict
	2.4 GHz Bluetooth	5/6 GHz WLAN Ant WF7A ON	20.0	14.0	18.42	12.7	PASS
Ant WF7B	2.4 GHz Bluetooth	5/6 GHz WLAN Ant WF8 ON	20.0	14.0	18.42	12.7	PASS
	802.15.4	5/6 GHz WLAN Ant WF7A + Ant WF8 ON	21.5	15.0	19.94	14.00	PASS
	802.15.4	5/6 GHz WLAN Ant WF7A ON	21.0	14.0	18.55	12.42	PASS
Ant WF8	802.15.4	5/6 GHz WLAN Ant WF8 ON	21.0	14.0	18.55	12.42	PASS
	2.4 GHz Bluetooth	5/6 GHz WLAN Ant WF7A + Ant WF8 ON	18.5	13.0	17.49	11.42	PASS

 Table 7-33

 Bluetooth/802.15.4 Power Reduction Verification

Maximum power will not exceed minimum of (SAR max cap, Reg max cap). Power reduction backoff for simultaneous transmission is applied to SAR max cap for each antenna. Reduced power level will not exceed minimum of (SAR max cap-power reduction backoff, Reg max cap).

Per manufacturer, 2.4 GHz Bluetooth and 802.15.4 share the same antenna path and reduces with the same power backoff when it transmits simultaneously with cellular and 5/6 GHz WLAN antennas. Therefore, conducted power measurements were measured for both mode/band as shown above and applied condition. All conducted power measurements were verified to be below the maximum allowed.

7.13 Notes for Bluetooth/802.15.4

- The Bluetooth/802.15.4 chipset in this device is produced by two different suppliers. The electrically identical modules are manufactured with identical mechanical structures to meet the same specifications and functions. Two device variants are referenced as Variant 1 and Variant 2 in this report.
- Bluetooth/802.15.4 SAR worst case configuration was spotchecked on Variant 1 and Variant 2. The Variant with the highest reported SAR value was evaluated for the remaining Bluetooth/802.15.4 configurations.
- Full power measurements were performed for Variant 1 and Variant 2 per FCC KDB Procedures 248227.

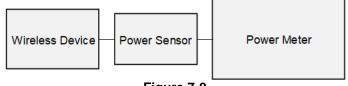


Figure 7-9 Power Measurement Setup

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 53 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micr iquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMEN	

7.14 NB UNII Maximum Conducted Powers

 Table 7-34

 NB UNII 1 Maximum Average RF Power – Antenna WF8, Variant 1

Туре	Band	Frequency	Channel	Average
		5162	Low	12.83
HDR-8	U-NII 1	5204	Mid	12.79
		5245	High	12.85

Table 7-35

NB UNII 1 Maximum Average RF Power – Antenna WF8, Variant 2

Туре	Band	Frequency	Channel	Average
HDR-8		5162	Low	12.76
	U-NII 1	5204	Mid	12.81
		5245	High	12.82

Table 7-36

NB UNII 1 Maximum Average RF Power – Antenna WF7a, Variant 1

Туре	Band	Frequency	Channel	Average
HDR-8		5162	Low	13.36
	U-NII 1	5204	Mid	13.23
		5245	High	13.20

Table 7-37

NB UNII 1 Maximum Average RF Power – Antenna WF7a, Variant 2

Туре	Band	Frequency	Channel	Average
HDR-8		5162	Low	13.15
	U-NII 1	5204	Mid	13.03
		5245	High	13.09

Table 7-38

NB UNII 3 Maximum Average RF Power – Antenna WF8, Variant 1

Туре	Band	Frequency	Channel	Average
BDR		5733	Low	12.50
	U-NII 3	5789	Mid	12.45
		5844	High	12.32

Table 7-39

NB UNII 3 Maximum Average RF Power – Antenna WF8, Variant 2

Туре	Band	Frequency	Channel	Average
		5733	Low	12.52
BDR	DR U-NII 3	5789	Mid	12.58
		5844	High	12.47

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 54 of 95
ess otherwise specified. no part of this report may	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and m	REV 24.0 05/01/2024 icrofilm, without permission in wr

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microtium, with from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

В	3 UNII 3 Maximum Average RF Power – Antenna WF7a, Variant					
	Туре	Band	Frequency	Channel	Average	
			5733	Low	12.40	
	BDR	U-NII 3	5789	Mid	12.60	
			5844	High	12.51	

 Table 7-40

 NB UNII 3 Maximum Average RF Power – Antenna WF7a, Variant 1

Table 7-41

NB UNII 3 Maximum Average RF Power – Antenna WF7a, Variant 2

J				
Туре	Band	Frequency	Channel	Average
		5733	Low	12.49
BDR	U-NII 3	5789	Mid	12.51
		5844	High	12.46

7.15 NB UNII Reduced Conducted Powers

Table 7-42
NB UNII-1 7 dB Reduced Average RF Power – Antenna WF8, Variant 1

Туре	Band	Frequency	Channel	Average
HDR-4	U-NII 1	5162	Low	9.42
		5204	Mid	9.36
		5245	High	9.48

Table 7-43

NB UNII-1 7 dB Reduced Average RF Power – Antenna WF8, Variant 2

Туре	Band	Frequency	Channel	Average
HDR-4		5162	Low	9.44
	U-NII 1	5204	Mid	9.46
		5245	High	9.58

Table 7-44

NB UNII-1 7 dB Reduced Average RF Power - Antenna WF7a, Variant 1

Туре	Band	Frequency	Channel	Average
BDR		5162	Low	8.56
	U-NII 1	5204	Mid	8.72
		5245	High	8.71

Table 7-45

NB UNII-1 7 dB Reduced Average RF Power – Antenna WF7a, Variant 2

Туре	Band	Frequency	Channel	Average
		5162	Low	8.91
BDR	U-NII 1	5204	Mid	8.84
		5245	High	8.86

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 55 of 95
ess otherwise specified, no part of this report may	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying an	REV 24.0 05/01/2024 d microfilm, without permission in

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microtium, without from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

Table 7-46
NB UNII-3 7 dB Reduced Average RF Power – Antenna WF8, Variant 1

Туре	Band	Frequency	Channel	Average
		5733	Low	8.36
BDR	U-NII 3	5789	Mid	8.30
		5844	High	8.05

Table 7-47

NB UNII-3 7 dB Reduced Average RF Power – Antenna WF8, Variant 2

Туре	Band	Frequency	Channel	Average
		5733	Low	8.57
BDR	U-NII 3	5789	Mid	8.46
		5844	High	8.24

Table 7-48

NB UNII-3 7 dB Reduced Average RF Power - Antenna WF7a, Variant 1

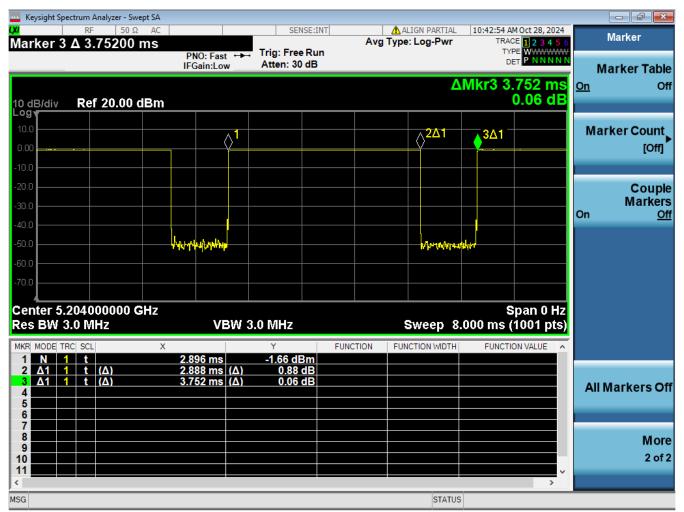
Туре	Band	Frequency	Channel	Average
		5733	Low	8.24
BDR	U-NII 3	5789	Mid	8.02
		5844	High	8.01

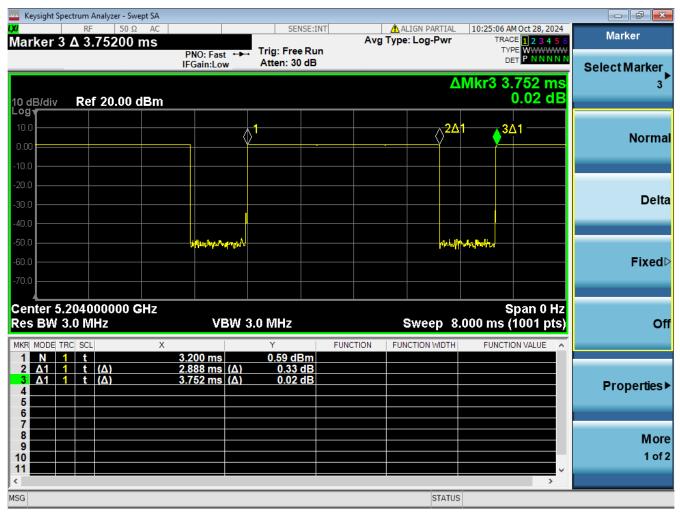
Table 7-49NB UNII-3 7 dB Reduced Average RF Power – Antenna WF7a, Variant 2

Туре	Band	Frequency	Channel	Average
		5733	Low	7.88
BDR		5789	Mid	7.89
		5844	High	7.99

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 56 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micr nguiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMEN	

7.16 NB UNII Duty Cycle Plots




Figure 7-10 NB UNII 1 (HDR8) Transmission Plot – Antenna WF8, Variant 1

Equation 7-8 NB UNII 1 (HDR8) Duty Cycle Calculation – Antenna WF8, Variant 1

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 57 of 95
ss otherwise specified, no part of this report ma	ay be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and	REV 24.0 05/01/2024 microfilm, without permission in

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

NB UNII 1 (HDR8) Transmission Plot – Antenna WF8, Variant 2

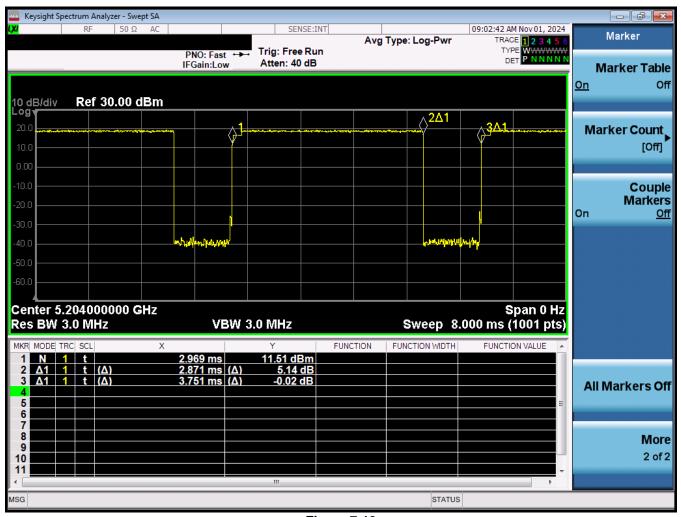
Equation 7-9 NB UNII 1 (HDR8) Duty Cycle Calculation – Antenna WF8, Variant 2

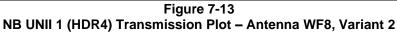
 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 58 of 95
ss otherwise specified, no part of this report may	y be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and n	REV 24.0 05/01/2024 nicrofilm, without permission in w

Oncess both the second s

🔤 Keysight Spectrum Analyzer - Swept SA				
L XI RF 50 Ω AC	SENSE:	Avg Type: Log-Pwr	09:03:20 AM Nov 01, 2024 TRACE 1 2 3 4 5 6	Marker
	PNO: Fast +++ Trig: Free Ru IFGain:Low Atten: 40 dB		TYPE WWWWWW DET P N N N N N	Marker Table
				<u>On</u> Off
10 dB/div Ref 30.00 dBm				
20.0		<u>2</u> <u>2</u> <u>0</u> 1	3∆1	Marker Count
10.0			+ ¥	[Off]
0.00				
-10.0				Couple
-20.0				Markers On <u>Off</u>
-30.0				
	adarah Madalah		(AAA)	
-50.0				
Center 5.204000000 GHz Res BW 3.0 MHz	VBW 3.0 MHz	Swoon	Span 0 Hz 8.000 ms (1001 pts)	
1 N 1 t	2.921 ms 11.50 dBm	FUNCTION FUNCTION WIDTE		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.871 ms (Δ) 2.40 dB 3.751 ms (Δ) 0.00 dB			All Markers Off
4 5			=	All Markers Off
6				
8				More
10				2 of 2
11	m		· · · · · · · · · · · · · · · · · · ·	
MSG		STATU	JS	

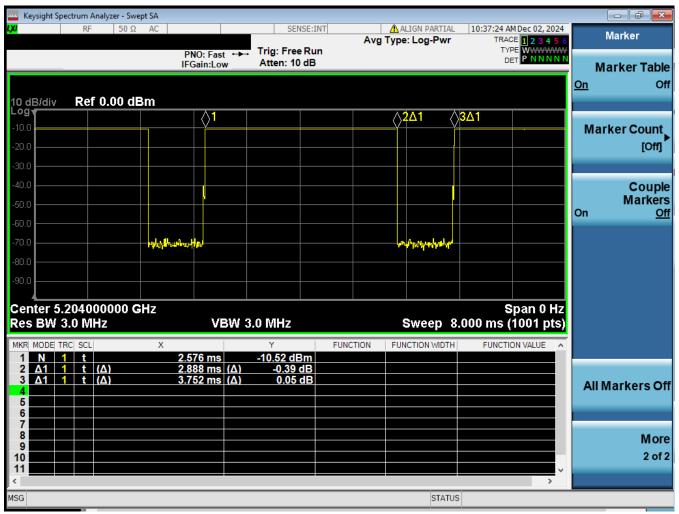

Figure 7-12 NB UNII 1 (HDR4) Transmission Plot – Antenna WF8, Variant 1


Equation 7-10 NB UNII 1 (HDR4) Duty Cycle Calculation – Antenna WF8, Variant 1

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.871 ms}{3.751 ms} * 100\% = 76.54\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 59 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and n	REV 24.0 05/01/2024 nicrofilm, without permission in w

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, wi from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.



Equation 7-11 NB UNII 1 (HDR4) Duty Cycle Calculation – Antenna WF8, Variant 2

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.871 ms}{3.751 ms} * 100\% = 76.54\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 60 of 95
	iced or utilized in any part, form or by any means, electronic or mechanical, including photocopying a t obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@	

NB UNII 1 (BDR) Transmission Plot – Antenna WF8, Variant 1

Equation 7-12 NB UNII 1 (BDR) Duty Cycle Calculation – Antenna WF8, Variant 1

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
	KF EXPOSORE EVALUATION REPORT	Technical Manager
DUT Type:		Page 61 of 95
Tablet Device		Fage 61 01 95
		REV 24.0
s otherwise specified, no part of this report may be repro		05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTJNFO@ELEMENT.COM.

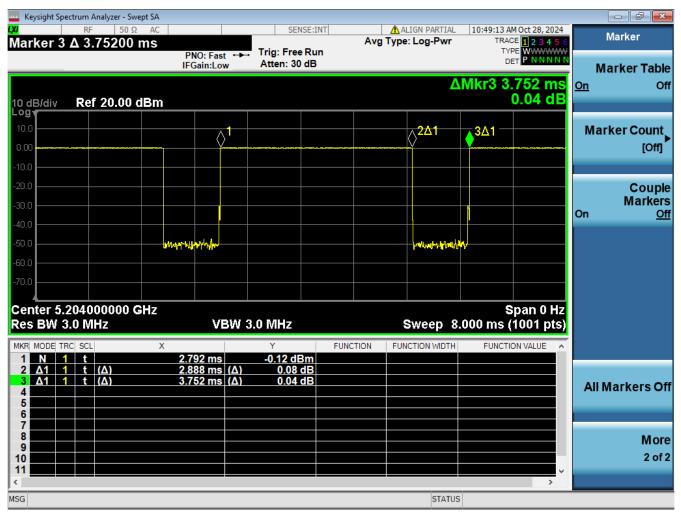
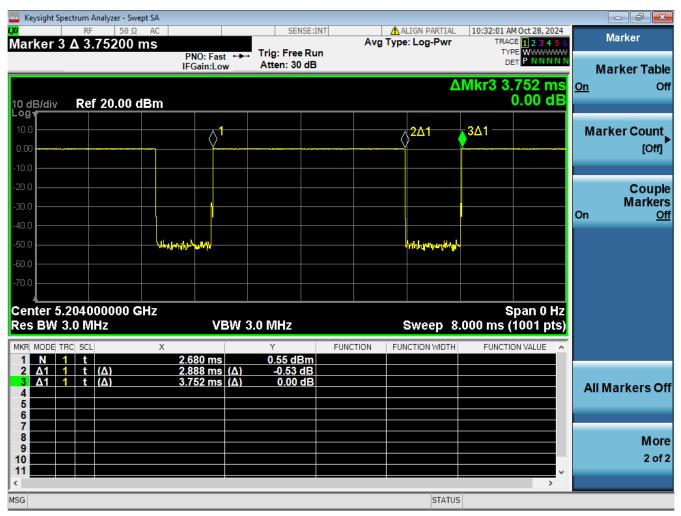

🔤 Keysight Sp	pectrum An	alyzer - Sv	vept SA										- ē 💌
KI	RF	50 \$	2 AC	PNO: Fast		Trig: Free		ALIGN PAR		TRA	M Dec 02, 20 CE 1 2 3 4 PE W W W DET P N N N	5 6	Save State
10 dB/div	Ref	0.00 d	IBm	IFGain:Lov		Atten: 10	dB				DET <u>PNNN</u>		To File .
- 0g				<u>1</u>) <mark>2∆1</mark>	\} <mark>3</mark> /	1			Edit Register Names
-40.0 -50.0 -60.0													Register (empty
70.0 80.0 90.0			nh julian	_{Юци} н _{ин} н				ntri hundestatation	e,I				Register (empty
enter 5 tes BW	3.0 MH			VE	SW 3.	0 MHz)00 ms	Span 0 H (1001 pt	lz s)	Register (empt
2 Δ1 3 Δ1 4 5 6	1 t 1 t (Δ) Δ)	X	2.480 ms 2.888 ms 3.752 ms	(Δ)	Y -10.36 d⊟ -0.11 (0.01 (lm dB	FUNCTION W	IDTH	FUNCT	ION VALUE	Â	Register (empty
7 8 9 10 11											>	~	Mor 1 of
SG								ST	TATUS				

Figure 7-15 NB UNII 1 (BDR) Transmission Plot – Antenna WF8, Variant 2

Equation 7-13 NB UNII 1 (BDR) Duty Cycle Calculation – Antenna WF8, Variant 2

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 62 of 95
ss otherwise specified, no part of this report may I Element. If you have any questions or have an en	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micr iquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMEN	REV 24.0 05/01/2024 ofilm, without permission in writ NT.COM.


NB UNII 1 (HDR8) Transmission Plot – Antenna WF7a, Variant 1

Equation 7-14 NB UNII 1 (HDR8) Duty Cycle Calculation – Antenna WF7a, Variant 1

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 63 of 95
ss otherwise specified, no part of this report may	r be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and n	REV 24.0 05/01/2024 hicrofilm, without permission in w

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTJNFO@ELEMENT.COM.

NB UNII 1 (HDR8) Transmission Plot – Antenna WF7a, Variant 2

Equation 7-15 NB UNII 1 (HDR8) Duty Cycle Calculation – Antenna WF7a, Variant 2

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 64 of 95
	r be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and mic nquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEME	

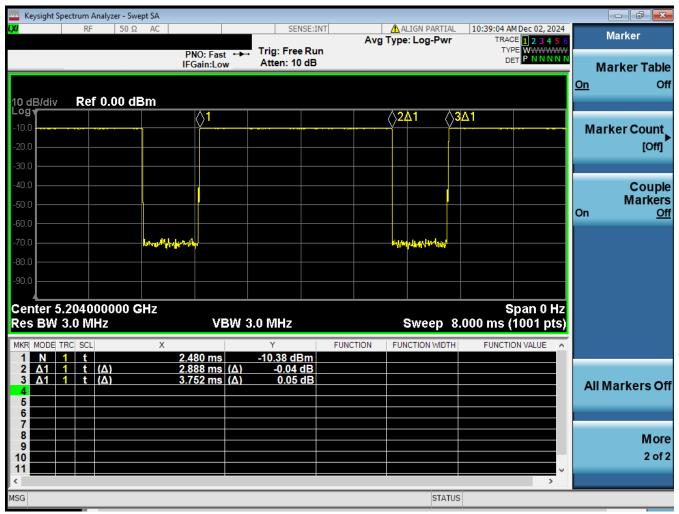
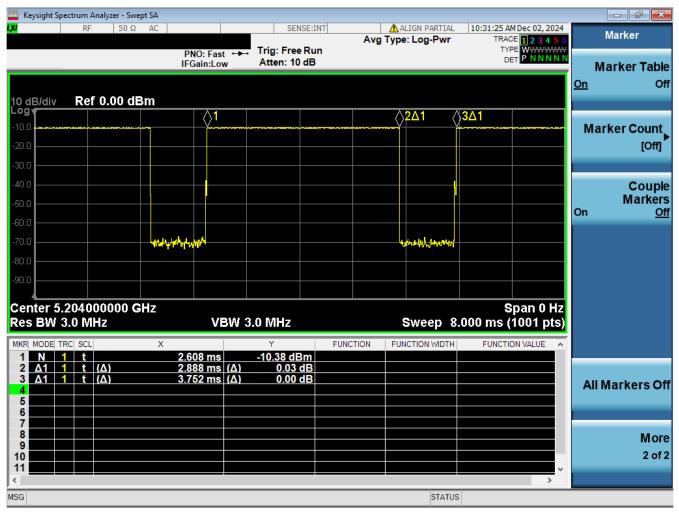


Figure 7-18

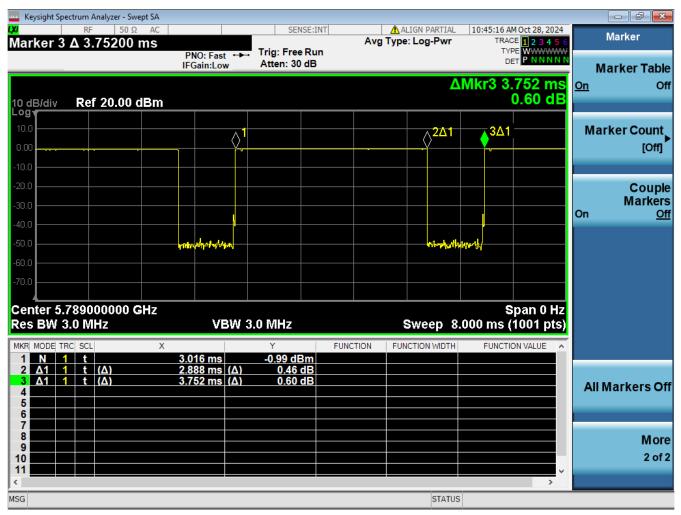

NB UNII 1 (BDR) Transmission Plot - Antenna WF7a, Variant 1

Equation 7-16 NB UNII 1 (BDR) Duty Cycle Calculation – Antenna WF7a, Variant 1

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device	·	Page 65 of 95
ss otherwise specified, no part of this report may	r be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and n	REV 24.0 05/01/2024 nicrofilm, without permission in w

from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

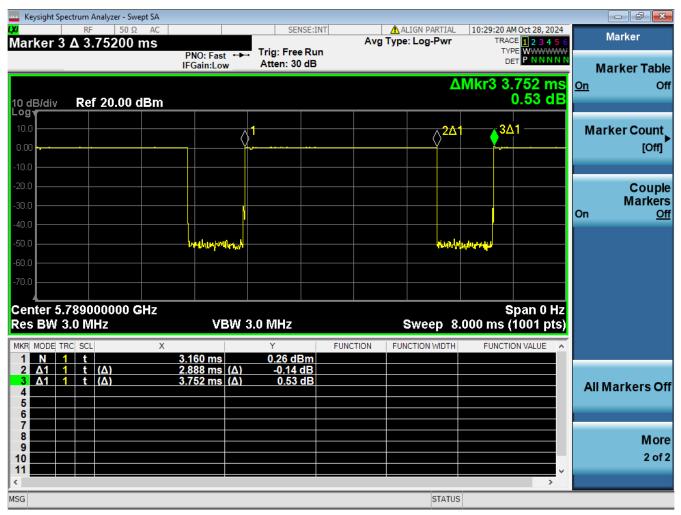

NB UNII 1 (BDR) Transmission Plot – Antenna WF7a, Variant 2

Equation 7-17 NB UNII 1 (BDR) Duty Cycle Calculation – Antenna WF7a, Variant 2

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
		Technical Manager
DUT Type:		Page 66 of 95
Tablet Device		Fage 00 01 95
		REV 24.0
s otherwise specified, no part of this report may be repro		05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microhim, without from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTJNFO@ELEMENT.COM.

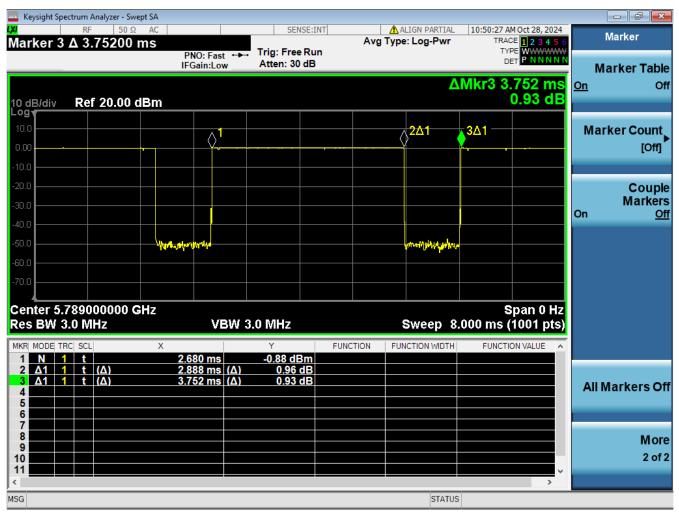

NB UNII 3 (BDR) Transmission Plot - Antenna WF8, Variant 1

Equation 7-18 NB UNII 3 (BDR) Duty Cycle Calculation – Antenna WF8, Variant 1

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 67 of 95
	y be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying an	REV 24.0 05/01/2024 d microfilm, without permission in

Unless otherwise specified, no part of this report may be reproduced or unized in any part, form or by any means, electronic or mechanical, including photocopying and including the original from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

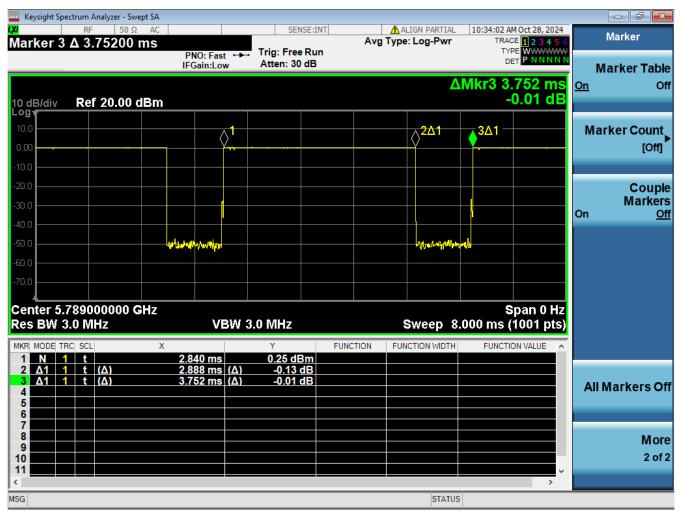

NB UNII 3 (BDR) Transmission Plot – Antenna WF8, Variant 2

Equation 7-19 NB UNII 3 (BDR) Duty Cycle Calculation – Antenna WF8, Variant 2

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
		Technical Manager
DUT Type:		Page 68 of 95
Tablet Device		Fage 68 01 95
		REV 24.0
		05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CTJNFO@ELEMENT.COM.


NB UNII 3 (BDR) Transmission Plot – Antenna WF7a, Variant 1

Equation 7-20 NB UNII 3 (BDR) Duty Cycle Calculation – Antenna W7a, Variant 1

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
	RF EXPOSORE EVALUATION REPORT	Technical Manager
DUT Type:		Page 69 of 95
Tablet Device		Fage 69 01 95
		REV 24.0
s otherwise specified, no part of this report may be repro		05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including proceeding and including from the second secon

NB UNII 3 (BDR) Transmission Plot - Antenna W7a, Variant 2

Equation 7-21 NB UNII 3 (BDR) Duty Cycle Calculation – Antenna WF7a, Variant 2

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.888 ms}{3.752 ms} * 100\% = 76.97\%$

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 70 of 95
	uced or utilized in any part, form or by any means, electronic or mechanical, including photocopying ar ut obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@E	

7.17 NB UNII Power Reduction Verification Summary

Antenna	Mode/Band	Condition (s)	Maximum Scenario Maximum Allowed Tune Up Power [dBm]	Reduced Scenario	Maximum Measured Power [dBm]	Reduced Measured Power [dBm]	Verdict
	NB UNII	2.4 GHz WLAN Ant WF7B ON	13.5	9.0	11.52	7.91	PASS
	NB UNII	2.4 GHz WLAN Ant WF8 ON	13.5	9.0	11.52	7.91	PASS
	NB UNII	2.4 GHz WLAN Ant WF7B + Ant WF8 ON	13.5	9.0	11.52	7.90	PASS
	NB UNII	2.4 GHz WLAN Ant WF7B ON	13.5	9.5	12.17	8.53	PASS
Ant WF8	NB UNII	2.4 GHz WLAN Ant WF8 ON	13.5	9.5	12.00	8.62	PASS
	NB UNII	2.4 GHz WLAN Ant WF7B + Ant WF8 ON	13.5	9.5	12.17	8.53	PASS

Table 7-50 NB UNII Power Reduction Verification

Maximum power will not exceed minimum of (SAR max cap, Reg max cap). Power reduction backoff for simultaneous transmission is applied to SAR max cap for each antenna. Reduced power level will not exceed minimum of (SAR max cap-power reduction backoff, Reg max cap).

Conducted powers were measured for each Mode/Band and applied condition. All conducted power measurements were verified to be within tolerance.

7.18 Notes for NB UNII

- The NB UNII chipset in this device is produced by two different suppliers. The electrically identical modules are manufactured with identical mechanical structure to meet the same specifications and functions. Two device variants are referenced as Variant 1 and Variant 2 in this report.
- NB UNII SAR worst case configuration was spotchecked on Variant 1 and Variant 2. The Variant with the highest reported SAR value was evaluated for the remaining NB UNII configurations.
- Full power measurements were performed for Variant 1 and Variant 2 per FCC KDB Procedures 248227.

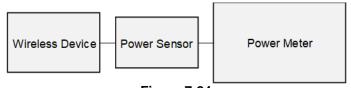


Figure 7-24

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 71 of 95
	eproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and m y about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEN	

8 SYSTEM VERIFICATION

8.1 Tissue Verification

			Measur	ed Tissue	Properties				
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			4	0.744	52.836	0.750	55.000	-0.80%	-3.93%
			6	0.744	52.794	0.750	55.000	-0.80%	-4.01%
12/11/2024	30 Head	24.8	12	0.744	52.531	0.750	55.000	-0.80%	-4.49%
			13	0.744	52.495	0.750	55.000	-0.80%	-4.55%
			14	0.745	52.422	0.750	55.000	-0.67%	-4.69%
			2300	1.693	38.525	1.670	39.500	1.38%	-2.47%
			2310	1.701	38.515	1.679	39.480	1.31%	-2.44%
			2320	1.709	38.501	1.687	39.460	1.30%	-2.43%
			2400	1.768	38.370	1.756	39.289	0.68%	-2.34%
			2450	1.806	38.292	1.800	39.200	0.33%	-2.32%
			2480	1.828	38.238	1.833	39.162	-0.27%	-2.36%
			2500	1.842	38.208	1.855	39.136	-0.70%	-2.37%
10/26/2024	2450 Head	19.6	2510	1.850	38.192	1.866	39.123	-0.86%	-2.38%
10/20/2024	2400 11000	10.0	2535	1.870	38.168	1.893	39.092	-1.22%	-2.36%
			2550	1.881	38.147	1.909	39.073	-1.47%	-2.37%
			2560	1.888	38.134	1.920	39.060	-1.67%	-2.37%
			2500	1.921	38.051	1.964	39.009	-2.19%	-2.37%
			2650	1.964	37.980	2.018	38.945	-2.68%	-2.48%
			2680	1.988	37.980	2.018	38.945	-3.07%	-2.46%
			2700	2.004	37.877	2.073	38.882	-3.33%	-2.58%
			2300	1.748	38.263	1.670	39.500	4.67%	-3.13%
			2310	1.754	38.229	1.679	39.480	4.47%	-3.17%
			2320	1.761	38.197	1.687	39.460	4.39%	-3.20%
			2400	1.841	38.119	1.756	39.289	4.84%	-2.98%
			2450	1.872	38.044	1.800	39.200	4.00%	-2.95%
			2480	1.887	37.949	1.833	39.162	2.95%	-3.10%
			2500	1.902	37.883	1.855	39.136	2.53%	-3.20%
11/03/2024	2450 Head	19.2	2510	1.911	37.857	1.866	39.123	2.41%	-3.24%
			2535	1.936	37.819	1.893	39.092	2.27%	-3.26%
			2550	1.951	37.811	1.909	39.073	2.20%	-3.23%
			2560	1.961	37.810	1.920	39.060	2.14%	-3.20%
			2600	1.990	37.756	1.964	39.009	1.32%	-3.21%
			2650	2.030	37.633	2.018	38.945	0.59%	-3.37%
			2680	2.063	37.571	2.051	38.907	0.59%	-3.43%
			2700	2.079	37.533	2.073	38.882	0.29%	-3.47%
			2300	1.743	38.641	1.670	39.500	4.37%	-2.17%
			2310	1.752	38.624	1.679	39.480	4.35%	-2.17%
			2320	1.760	38.611	1.687	39.460	4.33%	-2.15%
			2400	1.820	38.469	1.756	39.289	3.64%	-2.09%
			2450	1.862	38.386	1.800	39.200	3.44%	-2.08%
			2480	1.885	38.343	1.833	39.162	2.84%	-2.09%
			2500	1.901	38.294	1.855	39.136	2.48%	-2.15%
11/19/2024	2450 Head	19.3	2510	1.909	38.268	1.866	39.123	2.30%	-2.19%
			2535	1.931	38.214	1.893	39.092	2.01%	-2.25%
			2550	1.944	38.195	1.909	39.073	1.83%	-2.25%
			2560	1.953	38.180	1.920	39.060	1.72%	-2.25%
			2600	1.984	38.092	1.964	39.009	1.02%	-2.35%
			2650	2.028	37.982	2.018	38.945	0.50%	-2.47%
			2680	2.054	37.920	2.051	38.907	0.15%	-2.54%
			2700	2.069	37.878	2.073	38.882	-0.19%	-2.58%

٦	Гable	8-'	1
Measured	Tiss	ie	Propertie

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 72 of 95
Tablet Device		1 age 12 01 35
		REV 24.0
	reproduced or utilized in any part form or by any means, electronic or mechanical, including photoconving and m	05/01/2024

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in v from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

Calibrated for Tests Performed	Tissue Type	Tissue Temp During Calibration	Measured Frequency	Measured Conductivity,	Measured Dielectric	TARGET Conductivity,	TARGET Dielectric	% dev σ	% dev ε																					
on:	rissue rype	(°C)	(MHz)	σ (S/m)	Constant, ɛ	σ (S/m)	Constant, ε	78 UEV 0	70 UEV 2																					
			5150	4.526	34.972	4.608	36.050	-1.78%	-2.99%																					
			5160	4.536	34.969	4.618	36.040	-1.78%	-2.97%																					
			5170	4.544	34.949	4.629	36.030	-1.84%	-3.00%																					
			5180	4.555	34.926	4.635	36.009	-1.73%	-3.01%																					
			5190	4.567	34.906	4.645	35.998	-1.68%	-3.03%																					
			5200	4.582	34.889	4.655	35.986	-1.57%	-3.05%																					
				5210	4.590	34.877	4.666	35.975	-1.63%	-3.05%																				
			5220	4.594	34.856	4.676	35.963	-1.75%	-3.08%																					
			5240	4.618	34.822	4.696	35.940	-1.66%	-3.11%																					
						5250	4.632	34.812	4.706	35.929	-1.57%	-3.11%																		
			5260	4.642	34.807	4.717	35.917	-1.59%	-3.09%																					
			5270	4.652	34.793	4.727	35.906	-1.59%	-3.10%																					
			5280	4.665	34.774	4.737	35.894	-1.52%	-3.12%																					
			5290	4.678	34.751	4.748	35.883	-1.47%	-3.15%																					
			5300	4.687	34.738	4.758	35.871	-1.49%	-3.16%																					
									5310	4.692	34.730	4.768	35.860	-1.59%	-3.15%															
							5320	4.703	34.711	4.778	35.849	-1.57%	-3.17%																	
															5500	4.889	34.410	4.963	35.643	-1.49%	-3.46%									
										5510	4.898	34.403	4.973	35.632	-1.51%	-3.45%														
														5520	4.909	34.396	4.983	35.620	-1.49%	-3.44%										
											5530	4.921	34.371	4.994	35.609	-1.46%	-3.48%													
				5540	4.928	34.335	5.004	35.597	-1.52%	-3.55%																				
			5550	4.936	34.306	5.014	35.586	-1.56%	-3.60%																					
			-	5560	4.946	34.303	5.024	35.574	-1.55%	-3.57%																				
			5580	4.962	34.297	5.045	35.551	-1.65%	-3.53%																					
		19.6	19.6	5600	4.993	34.243	5.065	35.529	-1.42%	-3.62%																				
					5610	5.005	34.236	5.076	35.518	-1.40%	-3.61%																			
10/30/2024	5250-5850 Head			5620	5.016	34.231	5.086	35.506	-1.38%	-3.59%																				
10/30/2024	5250-5050 Ticad			5640	5.039	34.173	5.106	35.483	-1.31%	-3.69%																				
																5660	5.063	34.131	5.127	35.460	-1.25%	-3.75%								
																								5690	5.090	34.114	5.158	35.426	-1.32%	-3.70%
																							5700	5.102	34.090	5.168	35.414	-1.28%	-3.74%	
															5710	5.113	34.075	5.178	35.403	-1.26%	-3.75%									
							5720	5.121	34.064	5.188	35.391	-1.29%	-3.75%																	
										-	-			5745	5.148	34.003	5.214	35.363	-1.27%	-3.85%										
									5750	5.154	33.988	5.219	35.357	-1.25%	-3.87%															
			5755	5.157	33.976	5.224	35.351	-1.28%	-3.89%																					
			5765	5.168	33.963	5.234	35.340	-1.26%	-3.90%																					
			5775	5.180	33.956	5.245	35.329	-1.24%	-3.89%																					
			5785	5.193	33.942	5.255	35.317	-1.18%	-3.89%																					
			5795	5.203	33.925	5.265	35.305	-1.18%	-3.91%																					
			5800	5.208	33.912	5.270	35.300	-1.18%	-3.93%																					
			5800	5.208	33.912	5.270	35.300	-1.18%	-3.93%																					
			5805	5.213	33.899	5.275	35.294	-1.18%	-3.95%																					
			5825	5.236	33.887	5.296	35.271	-1.13%	-3.92%																					
			5835	5.245	33.887	5.305	35.230	-1.13%	-3.81%																					
			5845	5.258	33.880	5.315	35.210	-1.07%	-3.78%																					
			5850	5.263	33.866	5.320	35.200	-1.07%	-3.79%																					
			5855	5.269	33.849	5.325	35.197	-1.05%	-3.83%																					
			5865	5.285	33.822	5.336	35.190	-0.96%	-3.89%																					
			5865	5.285	33.822	5.336	35.190	-0.96%	-3.89%																					
			5865	5.285	33.822	5.336	35.190	-0.96%	-3.89%																					
			5865	5.285	33.822	5.336	35.190	-0.96%	-3.89%																					
			5875	5.298	33.801	5.347	35.183	-0.92%	-3.93%																					
			5885	5.306	33.789	5.357	35.177	-0.95%	-3.95%																					
			5905	5.323	33.751	5.379	35.163	-1.04%	-4.02%																					

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 73 of 95
	luced or utilized in any part, form or by any means, electronic or mechanical, including photocopying a	REV 24.0 05/01/2024

Calibrated for		Tissue Temp	Measured	Measured	Measured	TARGET	TARGET		
Tests Performed	Tissue Type	During Calibration	Frequency	Conductivity,	Dielectric	Conductivity,	Dielectric	% dev σ	% dev ε
on:		(°C)	(MHz)	σ (S/m)	Constant, ɛ	σ (S/m)	Constant, ε		
			5150	4.693	34.726	4.608	36.050	1.84%	-3.67%
			5160	4.707	34.702	4.618	36.040	1.93%	-3.71%
			5170	4.719	34.679	4.629	36.030	1.94%	-3.75%
			5180	4.732	34.664	4.635	36.009	2.09%	-3.74%
			5190	4.748	34.647	4.645	35.998	2.22%	-3.75%
			5200	4.760	34.641	4.655	35.986	2.26%	-3.74%
			5210	4.771	34.638	4.666	35.975	2.25%	-3.72%
			5220 5240	4.777 4.792	34.623	4.676	35.963 35.940	2.16% 2.04%	-3.73%
			5240	4.792	34.569 34.557	4.696 4.706	35.940	2.04%	-3.81% -3.82%
			5260	4.808	34.535	4.717	35.917	1.93%	-3.85%
			5270	4.821	34.501	4.727	35.906	1.99%	-3.91%
			5280	4.839	34.468	4.737	35.894	2.15%	-3.97%
			5290	4.854	34.440	4.748	35.883	2.23%	-4.02%
			5300	4.869	34.425	4.758	35.871	2.33%	-4.03%
			5310	4.889	34.415	4.768	35.860	2.54%	-4.03%
			5320	4.905	34.410	4.778	35.849	2.66%	-4.01%
			5500	5.099	34.124	4.963	35.643	2.74%	-4.26%
			5510	5.106	34.117	4.973	35.632	2.67%	-4.25%
			5520	5.114	34.110	4.983	35.620	2.63%	-4.24%
			5530	5.124	34.081	4.994	35.609	2.60%	-4.29%
			5540	5.136	34.062	5.004	35.597	2.64%	-4.31%
			5550	5.147	34.053	5.014	35.586	2.65%	-4.31%
			5560	5.157	34.051	5.024	35.574	2.65%	-4.28%
			5580	5.179	34.039	5.045	35.551	2.66%	-4.25%
			5600	5.212	34.001	5.065	35.529	2.90%	-4.30%
			5610	5.223	33.996	5.076	35.518	2.90%	-4.29%
			5640	5.237	33.980	5.106	35.483	2.57%	-4.24%
12/10/2024	5200-5800 Head	19.4	5660	5.248	33.939	5.127	35.460	2.36%	-4.29%
			5670	5.255	33.907	5.137	35.449	2.30%	-4.35%
			5680	5.264	33.883	5.147	35.437	2.27%	-4.39%
			5690	5.278	33.853	5.158	35.426	2.33%	-4.44%
			5700	5.298	33.831	5.168	35.414	2.52%	-4.47%
			5710	5.316	33.813	5.178	35.403	2.67%	-4.49%
			5720	5.331	33.800	5.188	35.391	2.76%	-4.50%
			5745	5.360	33.773	5.214	35.363	2.80%	-4.50%
			5750	5.364	33.770	5.219	35.357	2.78%	-4.49%
			5755	5.368	33.768	5.224	35.351	2.76%	-4.48%
			5765 5775	5.372 5.375	33.764 33.761	5.234 5.245	35.340 35.329	2.64% 2.48%	-4.46% -4.44%
			5785	5.380	33.751	5.255	35.317	2.48%	-4.43%
			5795	5.387	33.727	5.265	35.305	2.32%	-4.47%
			5800	5.389	33.711	5.200	35.300	2.26%	-4.50%
			5800	5.389	33.711	5.270	35.300	2.26%	-4.50%
			5805	5.392	33.694	5.275	35.294	2.22%	-4.53%
			5825	5.412	33.640	5.296	35.271	2.19%	-4.62%
			5835	5.426	33.630	5.305	35.230	2.28%	-4.54%
			5845	5.436	33.626	5.315	35.210	2.28%	-4.50%
			5850	5.442	33.618	5.320	35.200	2.29%	-4.49%
			5855	5.449	33.611	5.325	35.197	2.33%	-4.51%
			5865	5.462	33.587	5.336	35.190	2.36%	-4.56%
			5865	5.462	33.587	5.336	35.190	2.36%	-4.56%
			5865	5.462	33.587	5.336	35.190	2.36%	-4.56%
			5865	5.462	33.587	5.336	35.190	2.36%	-4.56%
			5875	5.477	33.559	5.347	35.183	2.43%	-4.62%
			5885	5.488	33.536	5.357	35.177	2.45%	-4.66%
			5905	5.503	33.493	5.379	35.163	2.31%	-4.75%

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 74 of 95
Tablet Device		5
		REV 24.0 05/01/2024

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε																
			5935	5.321	35.307	5.411	35.143	-1.66%	0.47%																
			5970	5.360	35.275	5.448	35.120	-1.62%	0.44%																
					5985	5.375	35.243	5.464	35.110	-1.63%	0.38%														
						6000	5.391	35.203	5.480	35.100	-1.62%	0.29%													
						6025	5.426	35.133	5.510	35.070	-1.52%	0.18%													
			6065	5.482	35.084	5.557	35.022	-1.35%	0.18%																
				6075	5.492	35.073	5.569	35.010	-1.38%	0.18%															
							6085	5.503	35.058	5.580	34.998	-1.38%	0.17%												
			6185	5.624	34.846	5.698	34.878	-1.30%	-0.09%																
			6275	5.743	34.662	5.805	34.770	-1.07%	-0.31%																
			6285	5.753	34.656	5.816	34.758	-1.08%	-0.29%																
			6305	5.772	34.628	5.840	34.734	-1.16%	-0.31%																
		19.2	19.2	19.2	19.2	10.2	19.2										6345	5.822	34.547	5.887	34.686	-1.10%	-0.40%		
																		6475	5.977	34.323	6.041	34.530	-1.06%	-0.60%	
											6485	5.987	34.311	6.052	34.518	-1.07%	-0.60%								
10/27/2024	6500 Head							6500	5.999	34.282	6.070	34.500	-1.17%	-0.63%											
10/2//2024	6500 Head					6505	6.003	34.269	6.076	34.494	-1.20%	-0.65%													
			6545	6.064	34.157	6.122	34.446	-0.95%	-0.84%																
				6665	6.218	33.942	6.265	34.302	-0.75%	-1.05%															
			6675	6.234	33.936	6.273	34.290	-0.62%	-1.03%																
																			6685	6.250	33.931	6.285	34.278	-0.56%	-1.01%
																		6715	6.277	33.912	6.319	34.242	-0.66%	-0.96%	
																	6785	6.353	33.742	6.400	34.158	-0.73%	-1.22%		
							6825	6.402	33.712	6.447	34.110	-0.70%	-1.17%												
			6985	6.595	33.400	6.633	33.918	-0.57%	-1.53%																
				-			6995	6.608	33.384	6.644	33.906	-0.54%	-1.54%												
							-				-	7000	6.611	33.384	6.650	33.900	-0.59%	-1.52%							
								7005	6.616	33.387	6.656	33.894	-0.60%	-1.50%											
								-	-		-	-	-	-	-			7025	6.645	33.381	6.680	33.870	-0.52%	-1.44%	
																7500	7.212	32.518	7.240	33.300	-0.39%	-2.35%			
			7980	7.812	31.695	7.816	32.724	-0.05%	-3.14%																
			8000	7.830	31.782	7.840	32.700	-0.13%	-2.81%																

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Note: Per April 2019 TCB Workshop Notes, single head-tissue simulating liquid specified in IEC 62209-1 is permitted to use for all SAR tests.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 75 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micr quiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMEN	

8.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in the SAR System Validation Appendix.

								Sys	tem	Table Verifica		sults					
	System Verification TARGET & MEASURED																
SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (C)	Liquid Temp. (C)	Input Power (W)	Source SN	Probe SN	DAE	Measured SAR 1g (W/kg)	1W Target SAR 1g (W/kg)	1W Normalized SAR 1g (W/kg)	Deviation 1g (%)	Measured 4cm ² APD (W/m ²)	1W Target 4cm ² APD (W/m ²)	1W Normalized 4cm ² APD (W/m ²)	Deviation 4cm ² APD (%)
AM14	13	HEAD	12/11/2024	21.9	24.0	1.00	1004	7308	534	0.566	0.575	0.566	-1.57%				
AM6	2450	HEAD	10/26/2024	21.5	20.6	0.10	855	7639	1403	5.100	52.400	51.000	-2.67%				
AM6	2450	HEAD	11/03/2024	22.8	19.2	0.10	855	7639	1403	5.440	52.400	54.400	3.82%				
AM6	2450	HEAD	11/19/2024	21.4	20.9	0.10	921	7639	1403	5.430	52.200	54.300	4.02%	-			
AM8	5250	HEAD	10/30/2024	21.3	19.4	0.05	1163	7427	467	3.970	79.600	79.400	-0.25%	-			
AM8	5250	HEAD	12/10/2024	20.1	19.0	0.05	1066	7427	467	4.190	77.900	83.800	7.57%				
AM8	5600	HEAD	10/30/2024	21.3	19.4	0.05	1163	7427	467	3.970	82.800	79.400	-4.11%				
AM8	5600	HEAD	12/10/2024	20.1	19.0	0.05	1066	7427	467	3.900	81.800	78.000	-4.65%				
AM8	5750	HEAD	10/30/2024	21.3	19.4	0.05	1163	7427	467	3.830	81.100	76.600	-5.55%				
AM8	5750	HEAD	12/10/2024	20.1	19.0	0.05	1066	7427	467	3.770	80.700	75.400	-6.57%				
AM8	5850	HEAD	10/30/2024	21.3	19.4	0.05	1163	7427	467	4.150	79.000	83.000	5.06%				
AM8	5850	HEAD	12/10/2024	20.1	19.0	0.05	1066	7427	467	3.890	77.400	77.800	0.52%				
AM2	6500	HEAD	10/27/2024	22.1	20.7	0.03	1019	3949	1684	7.720	300.000	308.800	2.93%	34.70	1340.00	1388.00	3.58%

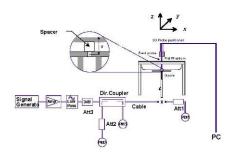


Figure 8-1 System Verification Setup Diagram

Figure 8-2 System Verification Setup Photo

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 76 of 95
Tablet Device		REV 24.0
		05/01/2024

8.3 Power Density Test System Verification

The system was verified to be within ± 0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check.

The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.

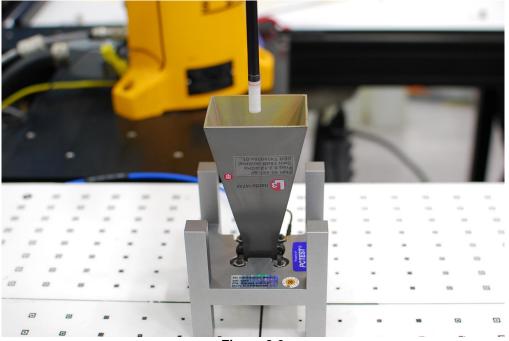
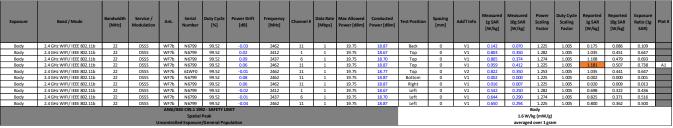


Figure 8-3 System Verification Setup Photo

Table 8-3
10 GHz Verification Results

								len needan	•			
System	System Frequency (GHz)	Date	Source	Probe	DAE	Prad	Normal psPD (W	//m² over 4 cm²)	Deviation (dB)	Total psPD (W/	′m² over 4 cm²)	Deviation (dB)
-,			S/N	S/N	S/N	(mW)	Measured	Target		Measured	Target	(,
AM5	10	01/02/2025	1006	9487	1333	93.3	58.9	58.5	0.03	58.9	59.2	0.02

Note: A 10 mm distance spacing was used from the reference horn antenna aperture to the probe element.


FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:					
FCC ID. BCGA3200							
DUT Type:		Dage 77 of 05					
Tablet Device		Page 77 of 95					
		REV 24.0					
	ced or utilized in any part, form or by any means, electronic or mechanical, including photocopying	05/01/2024					

9 SAR DATA SUMMARY

9.1 2.4 GHz WIFI SISO Standalone SAR

	Table 9-1 Antenna WF										-8												
Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]		Exposure Ratio (1g SAR)	Plot #
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	61WF0	99.52	0.01	2462	11	1	18.75	17.98	Back	0	V2	0.114	0.054	1.194	1.005	0.137	0.065	0.086	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	61WF0	99.52	-0.02	2412	1	1	18.75	17.85	Тор	0	V2	0.863	0.348	1.230	1.005	1.067	0.430	0.667	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	61WF0	99.52	-0.02	2437	6	1	18.75	17.93	Тор	0	V2	0.914	0.366	1.208	1.005	1.110	0.444	0.694	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	61WF0	99.52	-0.01	2462	11	1	18.75	17.98	Тор	0	V2	0.951	0.379	1.194	1.005	1.141	0.455	0.713	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	QMQ16	99.52	0.02	2462	11	1	18.75	17.68	Тор	0	V1	0.838	0.344	1.279	1.005	1.077	0.442	0.673	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	61WF0	99.52	0.06	2462	11	1	18.75	17.98	Bottom	0	V2	0.001	0.000	1.194	1.005	0.001	0.000	0.001	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	61WF0	99.52	-0.08	2462	11	1	18.75	17.98	Right	0	V2	0.010	0.005	1.194	1.005	0.012	0.006	0.008	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	61WF0	99.52	0.09	2462	11	1	18.75	17.98	Left	0	V2	0.002	0.000	1.194	1.005	0.002	0.000	0.001	
	ANS/JEECOLEUM 22 0000 ANS/JEECOLEUM 22 2000 22 2000 22 2000 22 2000 2000														1.6 W,	Body /kg (mW/g) d over 1 gra	m						

Table 9-2 Antenna WF7b

9.2 5 GHz WIFI SISO Standalone SAR

Table 9-3 Antenna WF8 Spacing [mm] Band / Mode andwidt [MHz] Service / Serial Number ity Cy [%] Ratio (1g SAR) Ant. requen [MHz] 1g SAR [W/kg] 10g SAR [W/kg] Scaling Scaling Factor 10g SAR [W/kg] 5 GHz WIFI/ IEEE 802.11 5 GHz WIFI/ IEEE 802.11 TGH66 JV4NH Body Body 97.72 5270 5270 1.143 1.023 0.070 40 WF8 WF8 U-NII-2 Body Body 5270 5310 0.746 WF8 WF8 1.023 0.386 Body 1.6 W/kg (mW/g) averaged over 1 gran Power Scaling Factor Duty Cycle Scaling Factor Exposure Ratio (1g SAR) Service / Modulation Serial Number Frequency [MHz] ata Rat [Mbps] Ant. uty Cy [%] Conducted Power [dBm] Spacing [mm] 1g SAR [W/kg] 10g SAR [W/kg] 10g SAR [W/kg] Max Allov Power (d) Exposure Body Body Body Body WF8 4D14K 95.24 5 GHz WIFI/ IEEE 802.11ac 80 OFDM 5610 122 U-NII-2C 106 U-NII-2C 29.3 16.25 Back 0.022 1.156 1.050 0.073 0.027 0.904 0.274 0.046 0.02 15.62 0 0.060 Тор 0.274 0.337 0.346 OFDM OFDM 100 U-NII-2C 122 U-NII-2C 138 U-NII-2C 16.2 1.156 1.050 1.145 0.716 80 80 5610 5690 29.3 29.3 0.278 1.6 W/kg (mW/g) averaged over 1 grar Power Scaling Factor Exposure Ratio (1g SAR) Service / Modulation Serial Number Bandwidtl [MHz] Ant. Outy Cy [%] Frequency [MHz] Data Rate [Mbps] Max Allow Power [dBr Conducted Power [dBm Spacing [mm] 1g SAR [W/kg] 10g SAR [W/kg] Reported 1g SAR [W/kg] 10g SAR [W/kg] Scaling N6799 4D14K N6799 N6799 N6799 Body Body 5 GHz WIFI/ IEEE 802.11ac 5 GHz WIFI/ IEEE 802.11ac 80 OFDM OFDM WF8 WF8 95.24 95.24 5775 5775 U-NII-3 29.3 29.3 Back 1.239 1.050 0.144 0.057 0.090 OFDM OFDM OFDM 0.745 1.239 Body 0.000 Body 1.6 W/kg (mW/g) weraged over 1 grar

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
FCC ID. BCGA3200	RF EXPOSORE EVALUATION REPORT	Technical Manager
DUT Type:		Page 78 of 95
Tablet Device		Fage 70 01 95
		REV 24.0
		05/01/2024

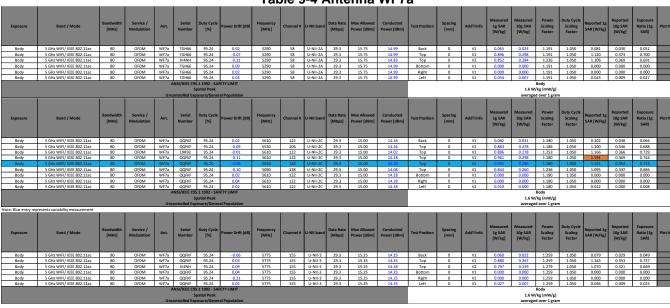


Table 9-5 MIMO

Table 9-4 Antenna WF7a

5 GHz WIFI MIMO Standalone SAR 9.3

U-NII band 1g SAR [W/kg] 10g SAR (W/kg) [MHz] [MHz] Power 10g SAF [W/kg] 5 GHz WIFI/ IEEE 802.11n OFDM QMQJ6 97.72 5270 54 17.00 40 U-NII-2A 27 V1 Body Тор 0 Body 5 GHz WIFI/ IEEE 802.11n 40 OFDM 61FW0 97.72 5270 54 U-NII-2A 27 Тор 0 V2 WF7a WF8 1.161 1.285 0.379 0.256 0.684 40 QMQJ6 97.72 5310 Body 5 GHz WIFI/ IEEE 802.11n OFDM 62 U-NII-2/ 27 Тор 0 V1 E C95.1 1992 - SAF 1.6 W/kg (mW/g) veraged over 1 grar Exposure Ratio (1g SAR) ty Cy [%] Service / Modulatio U-NII band Ant. 1g SAR [W/kg] Scaling Factor 10g SAR [W/kg] Exp [MHz] ata kat [Mbos] pacing [mm] 1g SAR [W/kg] [MHz] Power [dBm] Scaling Factor 1.050 0.676 0.216 0.423 1.050 0.741 0.248 0.463 Body 5 GHz WIFI/ IEEE 802.11ac 80 OFDM WF8 WF7a N6799 95.24 5530 106 U-NII-2C 58.5 13.50 13.50 Тор 0 V1 0.508 1.268 16.25 15.00 14.67 14.47 1.439 1.130 1.050 1.117 1.050 1.119 0.364 0.367 0.698 WF8 WF7a Body 5 GHz WIFI/ IEEE 802.11ac 80 OFDM N6799 95.24 5610 122 U-NII-2C 58.5 Тор 0 V1 95.24 5610 58.5 1.445 OFDM WF8 WF7a L9R93 122 J-NII-2C Тор V2 5 GHz WIFI/ IEEE 802.11ac 80 Body Rody 5 GHz WIEL/ IEEE 802 11ac 80 OEDM N6799 95.24 5690 138 LI-NII-20 58.5 Тор V1 U-NII band Scaling Factor Ratio (1g SAR) Power [dBm] 1g SAR [W/kg] 10g SAR [W/kg] Scaling Factor 1g SAR [W/kg] 10g SAR [W/kg] (MHz) 1.233 1.023 1.162 0.406 0.726 1.023 0.974 0.321 0.600 58.5 17.25 Body 5 GHz WIFI/ IEEE 802.11ac 80 OFDM WF8 QQFKF 97.72 5775 155 U-NII-3 16.34 Top 0 V1 Body 5 GHz WIFI/ IEEE 802.11ac 80 OFDM WF8 61FW0 97.72 -0.03 5775 155 U-NII-3 58.5 1525 16.26 Тор 0 V2 1.25 Body 1.6 W/kg (mW/g)

Note: Due to the spatial separation of Antenna WF7a and Antenna WF8, two measurement cubes were evaluated during MIMO SAR testing. Cubes 1 and 2 are located over the SAR distributions produced by Antenna WF8 and WF7a, respectively. Due to the spatial separation of the distributions, the conduct power of each antenna was individually considered for each measurement cube to determine the reported SAR.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 79 of 95
	oduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and	

								Tab	ole 9	-6 A	nten	na V	VF8											
Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequenc [MHz]	Channel	Uata Rat [Mbps]	e Max Allowe Power [dBr			Position Spa		i'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	QMQ/6	97.95	0.03	6345	79	68.1	15.25	13.43	Bi	ack	0	V1	0.028	0.011	1.521	1.021	0.043	0.017	0.027	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	QMQ16	97.95	0.01	6025	15	68.1	14.50	14.22	T	ор	D	V1	0.814	0.249	1.067	1.021	0.887	0.271	0.554	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	JV4NH	97.95	0.03	6025	15	68.1	14.50	14.23	T	op	0	V2	0.787	0.239	1.064	1.021	0.855	0.260	0.534	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	QMQ/6	97.95	0.01	6345	79	68.1	15.25	13.43	T	op	0	V1	0.538	0.165	1.521	1.021	0.835	0.256	0.522	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	QMQ/6	97.95	0.03	6505	111	68.1	13.00	12.45	T	ор	0	V1	0.265	0.089	1.135	1.021	0.307	0.103	0.192	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	QMQJ6	97.95	-0.18	6665	143	68.1	14.50	14.35	T	ор	0	V1	0.740	0.236	1.035	1.021	0.782	0.249	0.489	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	QMQ16	97.95	-0.08	6985	207	68.1	12.00	10.82	T	op	0	V1	0.507	0.143	1.312	1.021	0.679	0.192	0.424	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	QMQ16	97.95	0.01	6345	79	68.1	15.25	13.43	Bot	ttom	0	V1	0.012	0.002	1.521	1.021	0.019	0.003	0.012	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	QMQ16	97.95	0.02	6345	79	68.1	15.25	13.43	Ri	ight	0	V1	0.026	0.010	1.521	1.021	0.040	0.016	0.025	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	QMQ/6	97.95	0.09	6345	79	68.1	15.25	13.43	Li Li	eft	0	V1	0.001	0.000	1.521	1.021	0.002	0.000	0.001	
			L		Spatial	92 - SAFETY L Peak :/General Po												1.6 W/	Body 'kg (mW/g) d over 1 graa	m				
Exposure	Band/ Mode	Bandwic [MHz]			Ant. Seria	l Number			uency [Hz] Ch	annel #	Data Rate Ma [Mbps] Po	x Allowed wer (dBm) P	Conducted Power [dBm]	Test Position	Spacing [r	nm] A	dd'l Info	Measured APD [W/m ² (4cm ²)]	Power Sc Facto		Cycle Re g Factor [W	ported APD / /m² (4cm²)]	APD Exposure Ratio	Plot #
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	1	NF8 (QMQ/6	97.95	.03 63	145	79	68.1	15.25	13.43	Back	0		V1	0.250	1.52	1 1.	021	0.388	0.019	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	1	VF8 0	QMQ16	97.95	.01 60	025	15	68.1	14.50	14.22	Тор	0		V1	5.710	1.06	7 1.	021	6.221	0.311	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	1	NF8 J	V4NH	97.95	0.03 60	025	15	68.1	14.50	14.23	Тор	0		V2	5.460	1.06	4 1.	021	5.931	0.297	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	1	NF8 (QMQ16	97.95	0.01 63	45	79	68.1	15.25	13.43	Тор	0		V1	3.760	1.52	1 1.	021	5.839	0.292	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	1	NF8 C	QMQ/6	97.95	0.03 65	605	111	68.1	13.00	12.45	Тор	0		V1	2.000	1.13	5 1.	021	2.318	0.116	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	1	VF8 0	QMQ16	97.95 -	0.18 66	i65	143	68.1	14.50	14.35	Тор	0		V1	5.290	1.03	5 1.	021	5.590	0.280	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	1	VF8 C	QMQ/6	97.95	0.08 69	185	207	68.1	12.00	10.82	Тор	0		V1	3.280	1.31	2 1.	021	4.394	0.220	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	1	NF8 C	QMQJ6	97.95	.01 63	845	79	68.1	15.25	13.43	Bottom	0		V1	0.051	1.52	1 1.	021	0.079	0.004	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM			0MQ16			45	79 79	68.1	15.25	13.43	Right	0		V1	0.222	1.52		021	0.345	0.017	

9.4 6 GHz WIFI SISO Standalone SAR and APD

Table 9-7 Antenna WF7a

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power (dBm)	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	I Reported 10g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	JV4NH	97.95	0.04	6025	15	68.1	13.50	12.26	Back	0	V2	0.033	0.013	1.330	1.021	0.045	0.018	0.028	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	4PYLJ	97.95	0.09	6025	15	68.1	13.50	12.51	Тор	0	V1	0.600	0.187	1.256	1.021	0.769	0.240	0.481	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	4PYLJ	97.95	-0.20	6345	79	68.1	12.75	12.00	Тор	0	V1	0.612	0.182	1.189	1.021	0.743	0.221	0.464	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	4PYLJ	97.95	-0.03	6505	111	68.1	12.00	11.69	Тор	0	V1	0.867	0.249	1.074	1.021	0.951	0.273	0.594	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	4PYLJ	97.95	0.03	6665	143	68.1	13.00	12.23	Тор	0	V1	0.868	0.246	1.194	1.021	1.058	0.300	0.661	A3
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	JV4NH	97.95	-0.16	6665	143	68.1	13.00	12.00	Тор	0	V2	0.834	0.234	1.259	1.021	1.072	0.301	0.670	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	4PYLJ	97.95	-0.20	6665	143	68.1	13.00	12.23	Тор	0	V1	0.833	0.237	1.194	1.021	1.015	0.289	0.634	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	4PYLJ	97.95	-0.07	6985	207	68.1	13.00	11.02	Тор	0	V1	0.652	0.174	1.578	1.021	1.050	0.280	0.656	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	JV4NH	97.95	-0.13	6025	15	68.1	13.50	12.26	Bottom	0	V2	0.004	0.002	1.330	1.021	0.005	0.003	0.003	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	JV4NH	97.95	0.02	6025	15	68.1	13.50	12.26	Right	0	V2	0.004	0.002	1.330	1.021	0.005	0.003	0.003	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	JV4NH	97.95	0.09	6025	15	68.1	13.50	12.26	Left	0	V2	0.007	0.003	1.330	1.021	0.010	0.004	0.006	
Note: Blue entry re	presents variability measureme	ent	u	Incontroll	Spatial ed Exposure	Peak /General Po	pulation											/kg (mW/g) d over 1 gran	m				
Note: Blue entry re Exposure	presents variability measureme Band/ Mode	ent Bandwid [MHz]	ith Service	/	ed Exposure	/General Po	pulation uty Cycle [%] Poi Drift			nnel#		Allowed Con er (dBm) Powe	ducted tr (dBm)	Position Sp	acing (mm)	Add'l Info			aling Duty		ported APD A //m² (4cm²)]	APD Exposure Ratio	Plot #
		Bandwic [MHz]	th Service	/ A	ed Exposure	l Number	uty Cycle Por	(dB) [MH	z] Cha	nnel #	Mbps] Pow	er (dBm) Powe	er [dBm]	Position Sp Back	acing [mm]	Add'l Info V2	average Measured APD [W/m ²	d over 1 gran	aling Duty r Scaling				Plot #
Exposure	Band/ Mode	Bandwic [MHz]	dth Service Modulati	/ A	nt. Seria	V4NH	uty Cycle Por [%] Drift	(dB) (MH	z] Cha	nnel #	Mbps] Pow 68.1	er (dBm) Powe	er [dBm] Test 2.26 E				Average Measured APD [W/m ² (4cm ²)]	Power Sc Facto	aling Duty Scaling	g Factor [W	//m² (4cm²)]	Ratio	Plot #
Exposure Body	Band/Mode 6 GHz WIFI/ IEEE 802.11ax	Bandwic [MHz] : 160 : 160	dth Service Modulati	/ A	nt. Seria	VANH 4PYU	uty Cycle Por [%] Drift 97.95 0.	(dB) (MH 04 602 09 602	z] Cna 5	15	Mbps] Pow 68.1 1 68.1 1	er [dBm] Powe 13.50 1 13.50 1	2.26 E	3ack	0	V2	Averaged Measured APD [W/m ² (4cm ²)] 0.289	Power Sc Facto	taling Duty Scaling 0 1.1 6 1.1	Factor [W	//m ² (4cm ²)]	Ratio 0.020	Plot #
Exposure Body Body	Band/ Mode 6 GHz WIFI/ IEEE 802.11ax 6 GHz WIFI/ IEEE 802.11ax	Bandwic [MHz] (MHz) (160 (160) (160)	tth Service Modulati OFDM OFDM	A A W W	nt. Seria F7a . F7a . F7a	V4NH 4PYU 4PYU	uty Cycle Por [%] Drift 97.95 0. 97.95 0.	(dB) (MH 04 602 09 602 20 634	z] Cha	nnel #	Mbps] Pow 68.1 3 68.1 3 68.1 3	L3.50 1 L3.50 1 L3.75 1	2.26 E 2.51 2.00 -	Back Top	0	V2 V1	averaged Measured APD [W/m ² (4cm ²)] 0.289 4.250	Power Sc Facto	Duty Scaling Duty Scaling 1. 5 1.	021 021	0.392 5.450	Ratio 0.020 0.273	Plot
Exposure Body Body Body	Band/ Mode 6 GHz WIFI/ IEEE 802.11ax 6 GHz WIFI/ IEEE 802.11ax 6 GHz WIFI/ IEEE 802.11ax	Bandwic [MHz] (MHz] (160 (160) (160) (160)	tth Service Modulati OFDM OFDM OFDM	/ A w w w	nt. Seria F7a . F7a . F7a . F7a .	V4NH 4PYU 4PYU	uty Cycle Por [%] Drift 97.95 0. 97.95 0. 97.95 -0.	(dB) (MH 04 602 09 602 20 634 03 650	z] Cha 55 55 55	nnel #	Mbps] Pow 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1	Image: state	r (dBm) Test I 2.26 E 2.51 - 2.00 - 1.69 -	Back Top Top	0 0 0	V2 V1 V1	averaged Measured APD [W/m ² (4cm ²)] 0.289 4.250 4.180	Power Sc Facto 1.33 1.250 1.18	aling Duty r Scaling 0 1.1 6 1.1 9 1.1 4 1.1	021 021 021 021 021 021 021 021 021 021	0.392 5.450 5.074	Ratio 0.020 0.273 0.254	Plot W
Exposure Body Body Body Body	Band/ Mode 6 GHz WIFI/ IEEE 802.11ax	Bandwic [MHz] 3 160 3 160 4 160 4 160 4 160	tth Service Modulati OFDM OFDM OFDM OFDM	A A W	ed Exposure nt. Seria F7a . F7a . F7a . F7a . F7a .	VGeneral Po I Number D V4NH I 4PYLI I 4PYLI I 4PYLI I 4PYLI I	uty Cycle Por [%] Drift 97.95 0. 97.95 0. 97.95 -0. 97.95 -0.	(dB) (MH 04 602 09 602 20 634 03 650 03 666	zj Cha 5 5 5 5 5 5 5	nnel #	Mbps] Pow 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1	Image: rest (dBm) Power 13.50 1 13.50 1 12.75 1 12.00 1 13.00 1	r (dBm) Test i 2.26 E 2.51 C 2.00 C 1.69 C 2.23 C	Back Fop Fop Fop	0 0 0 0	V2 V1 V1 V1 V1	Averaged APD [W/m ² (4cm ²)] 0.289 4.250 4.180 5.710	Power Sc Factor 1.331 1.256 1.181 1.074	Duty Scaling 0 1.1 6 9 1.1 4 1.1	Factor [W 021 021 021 021 021 021	0.392 5.450 5.074 6.261	Ratio 0.020 0.273 0.254 0.313	
Exposure Body Body Body Body Body	Band/ Mode 6 GHz WIFI/IEEE 802.11ax	Bandwice [MHz] 160 160 160 160 160 160 160	th Service Modulati OFDM OFDM OFDM OFDM	A www ww ww ww ww ww ww ww ww	ed Exposure nt. Seria F7a F7a F7a F7a F7a	VGeneral Po II Number D V4NH 4 4PYLJ 4 4PYLJ 4 4PYLJ 4 4PYLJ 4 V4NH 1	uty Cycle Por [%] Drift 97.95 0. 97.95 0. 97.95 0. 97.95 0. 97.95 0.	(dB) (MH 04 602 09 602 20 634 03 650 03 666 16 666	zj Cha 55 55 55 55 55 55	nnel # 15 15 79 111 143 143	Mbps] Pow 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1	Image: rest of the second se	r (dBm) 7 est 1 2.26 E 2.51 2.00 2.10 1.69 2.23 2.00 2.23	Back Top Top Top Top	0 0 0 0 0	V2 V1 V1 V1 V1 V1 V1	averager Measured APD [W/m ² (4cm ²)] 0.289 4.250 4.180 5.710 5.640	Power Sc Facto 1.330 1.256 1.188 1.07/ 1.194	caling r Duty Scaling 0 1.1 6 1.1 9 1.1 4 1.1 9 1.1 9 1.1	Factor [W 021 021 021 021 021 021 021 021 021 021	0.392 5.450 5.074 6.261 6.876	Ratio 0.020 0.273 0.254 0.313 0.344	
Exposure Body Body Body Body Body	Band/ Mode 6 GHz WIF/ IEEE 802.11ax 6 GHz WIF/ IEEE 802.11ax	Bandwice [MHz] 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160	Service Modulati OFDM OFDM OFDM OFDM OFDM OFDM OFDM OFDM OFDM OFDM	A with a	ed Exposure nt. Seria F7a . F7a . F7a . F7a . F7a . F7a . F7a . F7a .	V4NH D 4PYU 4PYU 4PYU 4PYU 4PYU 4PYU 4PYU 4PYU 4PYU 4PYU	uty Cycle Por [%] Drift 97.95 0. 97.95 0. 97.95 0. 97.95 0. 97.95 0. 97.95 0. 97.95 0.	[dB] [MH 04 602 09 602 20 634 03 650 15 666 20 6666 07 698	z] Cha	nnel # 15 15 79 111 143 143	Mbps] Pow 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1	er [dBm] Powe 13.50 1 13.50 1 12.75 1 12.00 1 13.00 1 13.00 1 13.00 1 13.00 1	r (dBm) Test l 2.26 E 2.51 C 2.23 C 2.23 C 2.23 C 2.23 C 2.23 C 2.23 C 2.23 C 2.23 C 2.23 C 2.25 C 2.55 C	Back Fop Fop Fop Fop Fop	0 0 0 0 0 0 0	V2 V1 V1 V1 V1 V1 V2	Averages APD [W/m ² (4cm ²)] 0.289 4.250 4.180 5.710 5.640 5.380 5.430 4.020	Power Sc Facto 1.333 1.255 1.18 1.07 1.19 1.259 1.19 1.577	caling re Duty Scaling 0 1.0 6 1.0 9 1.0 4 1.0 9 1.0 4 1.0 9 1.0 4 1.0 9 1.0 8 1.0	g Factor [W 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0	0.392 5.450 5.074 6.261 6.876 6.916 6.620 6.477	Ratio 0.020 0.273 0.254 0.313 0.344 0.346 0.331 0.324	
Exposure Body Body Body Body Body Body Body	Band/ Mode 6 GHz WIF// IEEE 802.11ax	Bandwice [MHz] 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160	th Service Modulati OFDM OFDM OFDM OFDM OFDM OFDM	/ A	ed Exposure nt. Seria F7a . F7a .	V4NH D 4PYU 4PYU 4PYU 4PYU 4PYU 4PYU 4PYU 4PYU 4PYU 4PYU	uty Cycle Pon [%] Drift 97.95 0. 97.95 -0. 97.95 -0. 97.95 -0. 97.95 -0. 97.95 -0. 97.95 -0. 97.95 -0. 97.95 -0. 97.95 -0. 97.95 -0. 97.95 -0. 97.95 -0.	[dB] [MH 04 602 09 602 20 634 03 650 15 666 20 6666 07 698	z] Cha	nnel #	Mbps] Pow 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1	er [dBm] Powe 13.50 1 13.50 1 12.75 1 12.00 1 13.00 1 13.00 1 13.00 1 13.00 1	r (dBm) Test I 2.26 I 2.51 C 2.00 C 1.69 C 2.23 C 2.25 C 2	Back Top	0 0 0 0 0 0 0 0 0	V2 V1 V1 V1 V1 V2 V1	Averaged APD [W/m ² (4cm ²)] 0.289 4.250 4.180 5.710 5.640 5.380 5.430	Power Sc Facto 1.33 1.25 1.18 1.07 1.19 1.25 1.19	caling re Duty Scaling 0 1.0 6 1.0 9 1.0 4 1.0 9 1.0 4 1.0 9 1.0 4 1.0 9 1.0 8 1.0	g Factor [W 021 021 021 021 021 021 021 021 021 021	0.392 5.450 5.074 6.261 6.876 6.916 6.620	Ratio 0.020 0.273 0.254 0.313 0.344 0.346 0.331	
Exposure Body Body Body Body Body Body Body	Band/ Mode 6 GHz WIF/ IEEE 802.11ax 6 GHz WIF/ IEEE 802.11ax	Bandwic [MHz] 1 160 1	Service Modulati OFDM OFDM OFDM OFDM OFDM OFDM OFDM OFDM OFDM OFDM	/ A	ed Exposure nt. Seria F7a F7a F7a F7a F7a F7a F7a F7	/General Po I Number D V4NH 4PYL 4PYL 4PYL 4PYL 4PYL 4PYL 4PYL 4PYL V4NH V4NH V4NH	uty Cycle Por [%] Drift 97.95 0. 97.95 0. 97.95 0. 97.95 0. 97.95 0. 97.95 0. 97.95 0.	[dB] [MH] 04 602 09 602 03 650 03 656 15 666 20 666 07 698 13 602 02 602	z] Char 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	nnel #	Mbpsj Pow 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1 68.1 1	er [dBm] Powe 13.50 1 13.50 1 12.75 1 12.00 1 13.00 1 13.00 1 13.00 1 13.00 1 13.00 1 13.50 1 13.50 1	r (dBm) Test li 2.26 E 2.51 C 2.00 C 2.23 C 2.23 C 2.23 C 2.23 C 2.23 C 2.24 C 2.25 BC	Back Top Top Top Top Top Top	0 0 0 0 0 0 0 0 0	V2 V1 V1 V1 V1 V2 V1 V1 V1 V1 V1	Averages APD [W/m ² (4cm ²)] 0.289 4.250 4.180 5.710 5.640 5.380 5.430 4.020	Power Sc Facto 1.333 1.255 1.18 1.07 1.19 1.259 1.19 1.577	Duty Scaling 0 1.0 6 1.0 9 1.0 4 1.0 9 1.0 4 1.0 9 1.0 10 1.0	Factor [W 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0	0.392 5.450 5.074 6.261 6.876 6.916 6.620 6.477	Ratio 0.020 0.273 0.254 0.313 0.344 0.346 0.331 0.324	

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 80 of 95
Unless otherwise specified, no part of this report may I from Element. If you have any questions or have an en	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micr quiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMEN	REV 24.0 05/01/2024 ofilm, without permission in writin NT.COM.

							10															
Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial I Number	Duty Cycle [%] I	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Infe	Measur 1g SAI [W/kg	R Scaling	Scaling	e Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8 WF7a	JMJQ6	97.95	-0.12 -0.04	6025 6025	15	136.1	14.50 13.50	13.90 12.66	Тор	0	V1	0.795			0.932	0.305	0.583	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8 WF7a	JMJQ6	97.95	-0.01	6345 6345	79	136.1	15.25	13.57	Тор	0	V1	0.582	1.472	1.021	0.875	0.289	0.547	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8 WF7a	4D14K	97.95	0.02	6345 6345	79	136.1	15.25	13.45	Тор	0	V2	0.495	1.514	1.021	0.765	0.259	0.478	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	JMJQ6	97.95	0.00	6505	111	136.1	8.25	7.16	Тор	0	V1	0.079	1.285	1.021	0.104	0.029	0.065	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a WF8	JMJQ6	97.95	0.04	6505 6665	143	136.1	8.25 14.50	7.52 14.45	Тор	0	V1	0.322	1.012	1.021	0.389	0.109	0.243	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a WF8	1MJQ6	97.95	-0.02 0.06	6665 6985	207	136.1	13.00 9.25	12.58 8.06	Тор	0	V1	0.802	1.315	1.021	0.902	0.255 0.097	0.564 0.284	-
bouy	0 GH2 WHY IEEE 802.118X	100		WF7a		57.55	0.02	6985	207	130.1	9.25	8.63	төр	0	*1	0.377		1.021	0.444	0.117	0.278	
			ANSI/IEEE	C95.1 1992 - SA Spatial Peak	FETY LIMIT												Boo 1.6 W/kg					
			Uncontrolled	Exposure/Gene	ral Populatio	n											averaged of					
Exposure	Band/ Mode	Bandwidtl [MHz]		Ant.	Serial Number	Duty Cyc	ile Powe Drift [d			nol#	Rate Al bps] P	owed	ducted wer Test F Bm]		Spacing [mm]	dd'l Info	Measured APD [W/m ² (4cm ²)]		Duty Cycle Scaling Factor	Reporte d APD [W/m ² (4cm ²)]	APD Exposure Ratio	Plot #
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8 WF7a	JMJQ6	97.95	-0.1		5 15	5 13			3.90 T	op	0	V1	5.860 5.610	1.148	1.021	6.869 6.948	0.343	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8 WF7a	JMJQ6	97.95	-0.0	1 634	5 79	9 13	16 1	.5.25 1	3.57	ор	0	V1	4.310	1.472	1.021	6.478 6.809	0.324	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	4D14K	97.95	0.18	634	5 79) 13	161	5.25 1	3.45 T	ор	0	V2	3.750	1.514	1.021	5.797	0.290	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a WF8	JMIO6	97,95	0.03		5 11	1 1:			2.13 .16	op	0	V1	5.390 0.503	1.153 1.285	1.021	6.345 0.660	0.317	
bouy	0 0112 WWI I/ IEEE 002.110X	100	OFDIVI	WF7a	JIVIJUO	97.95	0.04		5 11	1 1			.52	op	0	* 1	2.070	1.183	1.021	2.500	0.125	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8 WF7a	JMJQ6	97.95	-0.0		5 14	3 13			1.45 T	ор	0	V1	4.490 5.190	1.012	1.021	4.639 5.839	0.232	
	1			WF8	1		0.06						06				1.710	1.315	1.021	2.296	0.115	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WE7a	JMJQ6	97.95	0.02		5 20	7 13			.63 T	ор	0	V1	2,290	1.153	1.021	2.696	0.135	

9.5 6 GHz WIFI MIMO Standalone SAR and APD Table 9-8 MIMO

Note: Due to the spatial separation of Antenna WF7a and Antenna WF8, two measurement cubes were evaluated during MIMO SAR testing. Cubes 1 and 2 are located over the SAR distributions produced by Antenna WF8 and WF7a, respectively. Due to the spatial separation of the distributions, the conduct power of each antenna was individually considered for each measurement cube to determine the reported SAR.

9.6 2.4 GHz Bluetooth SISO Standalone SAR

				_	_		Т	able	9-9	Ante	nna V	VF8	-		_	_		-				
Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift (dB)	Frequency [MHz]	Channel #		Max Allowed Power (dBm)	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #
Body	2.4 GHz Bluetooth	FHSS	WF8	61FW0	76.97	0.08	2441	39	1	18.50	18.27	Back	0	V2	0.133	0.062	1.054	1.007	0.141	0.066	0.088	
Body	2.4 GHz Bluetooth	FHSS	WF8	61FW0	76.97	-0.02	2402	0	1	18.50	18.04	Тор	0	V2	0.812	0.324	1.112	1.007	0.909	0.363	0.568	
Body	2.4 GHz Bluetooth	FHSS	WF8	61FW0	76.97	-0.09	2441	39	1	18.50	18.27	Тор	0	V2	0.954	0.376	1.054	1.007	1.012	0.399	0.633	
Body	2.4 GHz Bluetooth	FHSS	WF8	61FW0	76.97	0.04	2480	78	1	18.50	17.91	Тор	0	V2	0.991	0.381	1.146	1.007	1.144	0.440	0.715	A4
Body	2.4 GHz Bluetooth	FHSS	WF8	M06GF	76.97	-0.16	2480	78	1	18.50	17.98	Тор	0	V1	0.912	0.361	1.127	1.007	1.035	0.410	0.647	
Body	2.4 GHz Bluetooth	FHSS	WF8	61FW0	76.97	0.02	2441	39	1	18.50	18.27	Bottom	0	V2	0.010	0.004	1.054	1.007	0.011	0.004	0.007	
Body	2.4 GHz Bluetooth	FHSS	WF8	61FW0	76.97	0.01	2441	39	1	18.50	18.27	Right	0	V2	0.014	0.008	1.054	1.007	0.015	0.008	0.009	
Body	2.4 GHz Bluetooth	FHSS	WF8	61FW0	76.97	0.06	2441	39	1	18.50	18.27	Left	0	V2	0.001	0.000	1.054	1.007	0.001	0.000	0.001	
Body	2.4 GHz Bluetooth	FHSS	WF8	61FW0	76.97	0.14	2480	78	1	13.00	12.29	Back	0	V2	0.024	0.011	1.178	1.007	0.028	0.013	0.018	
Body	2.4 GHz Bluetooth	FHSS	WF8	61FW0	76.97	-0.06	2480	78	1	13.00	12.29	Тор	0	V2	0.187	0.076	1.178	1.007	0.222	0.090	0.139	
					Spatial Peak	FETY LIMIT										1.6 W	Body /kg (mW/g) d over 1 gran	n				

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
		Technical Manager
DUT Type:		Page 81 of 95
Tablet Device		Fage 81 01 95
		REV 24.0
		05/01/2024

										/												
Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift (dB)	Frequency [MHz]	Channel #		Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #
Body	2.4 GHz Bluetooth	FHSS	WF7b	61FW0	76.97	0.01	2480	78	1	20.00	19.49	Back	0	V2	0.138	0.068	1.125	1.007	0.156	0.077	0.098	
Body	2.4 GHz Bluetooth	FHSS	WF7b	61FW0	76.97	0.06	2402	0	1	20.00	19.43	Тор	0	V2	0.701	0.310	1.140	1.007	0.805	0.356	0.503	
Body	2.4 GHz Bluetooth	FHSS	WF7b	61FW0	76.97	0.03	2441	39	1	20.00	19.25	Тор	0	V2	0.850	0.377	1.189	1.007	1.018	0.451	0.636	
Body	2.4 GHz Bluetooth	FHSS	WF7b	TGH66	76.97	-0.04	2441	39	1	20.00	19.35	Тор	0	V1	0.867	0.388	1.161	1.007	1.014	0.454	0.634	
Body	2.4 GHz Bluetooth	FHSS	WF7b	61FW0	76.97	0.01	2480	78	1	20.00	19.49	Тор	0	V2	0.873	0.376	1.125	1.007	0.989	0.426	0.618	
Body	2.4 GHz Bluetooth	FHSS	WF7b	61FW0	76.97	0.04	2480	78	1	20.00	19.49	Bottom	0	V2	0.002	0.000	1.125	1.007	0.002	0.000	0.001	
Body	2.4 GHz Bluetooth	FHSS	WF7b	61FW0	76.97	0.01	2480	78	1	20.00	19.49	Right	0	V2	0.008	0.003	1.125	1.007	0.009	0.003	0.006	
Body	2.4 GHz Bluetooth	FHSS	WF7b	61FW0	76.97	0.04	2480	78	1	20.00	19.49	Left	0	V2	0.612	0.282	1.125	1.007	0.693	0.319	0.433	
Body	2.4 GHz Bluetooth	FHSS	WF7b	61FW0	76.97	-0.12	2441	39	1	14.00	13.21	Back	0	V2	0.027	0.013	1.199	1.007	0.033	0.016	0.021	
Body	2.4 GHz Bluetooth	FHSS	WF7b	61FW0	76.97	0.02	2441	39	1	14.00	13.21	Тор	0	V2	0.165	0.071	1.199	1.007	0.199	0.086	0.124	
Body	2.4 GHz Bluetooth	FHSS	WF7b	61FW0	76.97	0.09	2441	39	1	14.00	13.21	Left	0	V2	0.118	0.052	1.199	1.007	0.142	0.063	0.089	
					5.1 1992 - SA Spatial Peak	FETY LIMIT											Body /kg (mW/g)					
			Uni	controlled Ex	posure/Gene	ral Population										average	d over 1 gran	n				

Table 9-10 Antenna WF7b

9.7 802.15.4 Standalone SAR

Table 9-11 Antenna WF8

Exposure	Band / Mode	Ant.	Serial Number	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#
Body	802.15.4	WF8	M06GF	-0.01	2440	18	1	21.00	19.76	Back	0	V1	0.148	0.071	1.330	0.118	0.057	0.074	
Body	802.15.4	WF8	M06GF	0.00	2405	11	1	21.00	19.48	Тор	0	V1	0.847	0.353	1.419	0.721	0.301	0.451	
Body	802.15.4	WF8	M06GF	0.02	2440	18	1	21.00	19.76	Тор	0	V1	1.140	0.466	1.330	0.910	0.372	0.569	
Body	802.15.4	WF8	M06GF	-0.03	2475	25	1	21.00	19.72	Тор	0	V1	1.480	0.584	1.343	1.193	0.471	0.746	A5
Body	802.15.4	WF8	M06GF	0.03	2475	25	1	21.00	19.72	Тор	0	V1	1.400	0.567	1.343	1.128	0.457	0.705	
Body	802.15.4	WF8	61FW0	0.05	2475	25	1	21.00	19.64	Тор	0	V2	1.420	0.566	1.368	1.166	0.465	0.729	
Body	802.15.4	WF8	M06GF	-0.01	2475	25	1	21.00	19.72	Тор	0	V1	1.390	0.544	1.343	1.120	0.438	0.700	
Body	802.15.4	WF8	M06GF	0.07	2440	18	1	21.00	19.76	Bottom	0	V1	0.016	0.007	1.330	0.013	0.006	0.008	
Body	802.15.4	WF8	M06GF	0.11	2440	18	1	21.00	19.76	Right	0	V1	0.021	0.012	1.330	0.017	0.010	0.011	
Body	802.15.4	WF8	M06GF	0.01	2440	18	1	21.00	19.76	Left	0	V1	0.001	0.000	1.330	0.001	0.000	0.001	
Body	802.15.4	WF8	M06GF	0.04	2405	11	1	14.00	13.69	Back	0	V1	0.045	0.022	1.074	0.029	0.014	0.018	
Body	802.15.4	WF8	M06GF	-0.04	2405	11	1	14.00	13.69	Тор	0	V1	0.273	0.112	1.074	0.176	0.072	0.110	
Note: Blue entry rer	presents variability measurement	U		C95.1 1992 - SAFET Spatial Peak Exposure/General										Body 1.6 W/kg (m) veraged over					

Note: Manufacturer declared that maximum source-based duty cycle of 802.15.4 mode is permanently limited to 60%. SAR measurement for 802.15.4 is evaluated at higher duty cycle of 100% and scaled down to 60%.

						Tac	bie a.	-12 Ar	itenna		0								
Exposure	Band / Mode	Ant.	Serial Number	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]		Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#
Body	802.15.4	WF7b	TGH66	-0.08	2405	11	1	21.50	20.68	Back	0	V1	0.162	0.085	1.208	0.117	0.062	0.073	
Body	802.15.4	WF7b	TGH66	-0.04	2405	11	1	21.50	20.68	Тор	0	V1	1.020	0.444	1.208	0.739	0.322	0.462	
Body	802.15.4	WF7b	TGH66	0.00	2440	18	1	21.50	20.39	Тор	0	V1	1.100	0.482	1.291	0.852	0.373	0.533	
Body	802.15.4	WF7b	TGH66	-0.03	2475	25	1	21.50	20.35	Тор	0	V1	1.290	0.554	1.303	1.009	0.433	0.631	
Body	802.15.4	WF7b	61FW0	-0.01	2475	25	1	21.50	20.28	Тор	0	V2	1.260	0.540	1.324	1.001	0.429	0.626	
Body	802.15.4	WF7b	TGH66	0.02	2405	11	1	21.50	20.68	Bottom	0	V1	0.010	0.004	1.208	0.007	0.003	0.004	
Body	802.15.4	WF7b	TGH66	-0.10	2405	11	1	21.50	20.68	Right	0	V1	0.012	0.004	1.208	0.009	0.003	0.006	
Body	802.15.4	WF7b	TGH66	-0.01	2405	11	1	21.50	20.68	Left	0	V1	0.669	0.309	1.208	0.485	0.224	0.303	
Body	802.15.4	WF7b	TGH66	0.02	2405	11	1	15.00	14.07	Back	0	V1	0.043	0.021	1.239	0.032	0.016	0.020	
Body	802.15.4	WF7b	TGH66	-0.03	2405	11	1	15.00	14.07	Тор	0	V1	0.226	0.100	1.239	0.168	0.074	0.105	
Body	802.15.4	WF7b	TGH66	-0.06	2405	11	1	15.00	14.07	Left	0	V1	0.190	0.086	1.239	0.141	0.064	0.088	
			ANSI/IEEE	C95.1 1992 - SAFET	TY LIMIT									Body					
			Incontrolled	Spatial Peak Exposure/General	Population									1.6 W/kg (m					
		- U	mcontrolled	cxposure/General	Population								a	veraged over	r Brau				

Table 9-12 Antenna WF7b

Note: Manufacturer declared that maximum source-based duty cycle of 802.15.4 mode is permanently limited to 60%. SAR measurement for 802.15.4 is evaluated at higher duty cycle of 100% and scaled down to 60%.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 82 of 95
	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and n nquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEN	

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

NB U-NII 1 Standalone SAR 9.8

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power [dBm]		Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]		Reported 1g SAR [W/kg]		Exposure Ratio (1g SAR)	Plot i
Body	NB U-NII 1	HDR	WF8	TGH66	76.97	0.14	5245	High	8	13.50	12.85	Back	0	V1	0.037	0.013	1.161	0.043	0.015	0.027	
Body	NB U-NII 1	HDR	WF8	TGH66	76.97	-0.05	5245	High	8	13.50	12.85	Тор	0	V1	0.391	0.126	1.161	0.457	0.147	0.286	
Body	NB U-NII 1	HDR	WF8	61FW0	76.97	-0.04	5245	High	8	13.50	12.82	Тор	0	V2	0.376	0.122	1.169	0.443	0.144	0.277	
Body	NB U-NII 1	HDR	WF8	TGH66	76.97	0.09	5245	High	8	13.50	12.85	Bottom	0	V1	0.000	0.000	1.161	0.000	0.000	0.000	
Body	NB U-NII 1	HDR	WF8	TGH66	76.97	0.03	5245	High	8	13.50	12.85	Right	0	V1	0.000	0.000	1.161	0.000	0.000	0.000	
Body	NB U-NII 1	HDR	WF8	TGH66	76.97	0.05	5245	High	8	13.50	12.85	Left	0	V1	0.002	0.000	1.161	0.002	0.000	0.001	
Body	NB U-NII 1	HDR	WF8	TGH66	76.54	0.02	5245	High	4	10.50	9.48	Тор	0	V1	0.142	0.045	1.265	0.182	0.058	0.114	
	-				15.1 1992 - SA Spatial Peak posure/Gene	FETY LIMIT										Body 1.6 W/kg (m veraged over					

Table 9-13 Antenna WF8

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

Table 9-14 Antenna WF7a

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]		Test Position	Spacing [mm]	Add'l info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #
Body	NB U-NII 1	HDR	WF7a	N6799	76.97	0.07	5162	Low	8	13.50	13.36	Back	0	V1	0.045	0.016	1.033	0.047	0.017	0.029	
Body	NB U-NII 1	HDR	WF7a	N6799	76.97	0.03	5162	Low	8	13.50	13.36	Тор	0	V1	0.436	0.151	1.033	0.453	0.157	0.283	
Body	NB U-NII 1	HDR	WF7a	61FW0	76.97	0.14	5162	Low	8	13.50	13.15	Тор	0	V2	0.454	0.154	1.084	0.496	0.168	0.310	
Body	NB U-NII 1	HDR	WF7a	N6799	76.97	0.04	5162	Low	8	13.50	13.36	Bottom	0	V1	0.002	0.000	1.033	0.002	0.000	0.001	
Body	NB U-NII 1	HDR	WF7a	N6799	76.97	0.02	5162	Low	8	13.50	13.36	Right	0	V1	0.000	0.000	1.033	0.000	0.000	0.000	
Body	NB U-NII 1	HDR	WF7a	N6799	76.97	0.06	5162	Low	8	13.50	13.36	Left	0	V1	0.010	0.002	1.033	0.010	0.002	0.006	
Body	NB U-NII 1	FHSS	WF7a	61FW0	76.97	0.16	5162	Low	1	10.00	8.91	Тор	0	V2	0.151	0.050	1.285	0.195	0.065	0.122	
	•	·			95.1 1992 - SA Spatial Peak posure/Gene	FETY LIMIT			•	·						Body 1.6 W/kg (m veraged over		•			
NI /																					

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

9.9 **NB U-NII 3 Standalone SAR**

Uncontrolled Exposure/General Population

Table 9-15 Antenna WF8

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]		Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]		Exposure Ratio (1g SAR)	Plot #
Body	NB U-NII 3	FHSS	WF8	4D14K	76.97	0.06	5789	Mid	1	13.50	12.58	Back	0	V2	0.034	0.011	1.236	0.042	0.014	0.026	
Body	NB U-NII 3	FHSS	WF8	4D14K	76.97	-0.05	5789	Mid	1	13.50	12.58	Тор	0	V2	0.469	0.141	1.236	0.584	0.175	0.365	
Body	NB U-NII 3	FHSS	WF8	N6799	76.97	-0.03	5789	Mid	1	13.50	12.45	Тор	0	V1	0.410	0.123	1.274	0.526	0.158	0.329	
Body	NB U-NII 3	FHSS	WF8	4D14K	76.97	0.01	5789	Mid	1	13.50	12.58	Bottom	0	V2	0.008	0.000	1.236	0.010	0.000	0.006	
Body	NB U-NII 3	FHSS	WF8	4D14K	76.97	0.04	5789	Mid	1	13.50	12.58	Right	0	V2	0.003	0.000	1.236	0.004	0.000	0.003	
Body	NB U-NII 3	FHSS	WF8	4D14K	76.97	0.06	5789	Mid	1	13.50	12.58	Left	0	V2	0.000	0.000	1.236	0.000	0.000	0.000	
Body	NB U-NII 3	FHSS	WF8	4D14K	76.97	0.01	5733	Low	1	9.50	8.57	Тор	0	V2	0.106	0.028	1.239	0.132	0.035	0.083	
					5.1 1992 - SA	FETY LIMIT										Body					
		Spatial Peak Uncontrolled Exposure/General Population														1.6 W/kg (m veraged over					
			011	.ona olieu ex											a	eragea over	1 grann				

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

							Tabl	e 9-1	6 A	ntenn	a WF	7a								
Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power (dBm)	Conducted Power (dBm)	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]		Reported 1g SAR [W/kg]		Expo Ratio SAI
Body	NB U-NII 3	FHSS	WF7a	JV4NH	76.97	0.08	5789	Mid	1	13.50	12.51	Back	0	V2	0.050	0.019	1.256	0.063	0.024	0.0
Body	NB U-NII 3	FHSS	WF7a	N6799	76.97	-0.04	5789	Mid	1	13.50	12.60	Тор	0	V1	0.513	0.158	1.230	0.635	0.196	0.3
Body	NB U-NII 3	FHSS	WF7a	JV4NH	76.97	0.07	5789	Mid	1	13.50	12.51	Тор	0	V2	0.526	0.161	1.256	0.665	0.204	0.43
Body	NB U-NII 3	FHSS	WF7a	JV4NH	76.97	0.02	5789	Mid	1	13.50	12.51	Bottom	0	V2	0.000	0.000	1.256	0.000	0.000	0.00
Body	NB U-NII 3	FHSS	WF7a	JV4NH	76.97	0.05	5789	Mid	1	13.50	12.51	Right	0	V2	0.000	0.000	1.256	0.000	0.000	0.00
Body	NB U-NII 3	FHSS	WF7a	JV4NH	76.97	0.02	5789	Mid	1	13.50	12.51	Left	0	V2	0.000	0.000	1.256	0.000	0.000	0.00
Body	NB U-NII 3	FHSS	WF7a	JV4NH	76.97	-0.09	5844	High	1	9.00	7.99	Тор	0	V2	0.138	0.041	1.262	0.175	0.052	0.10
					95.1 1992 - SA	FETY LIMIT										Body				

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
		Technical Manager
DUT Type:		Page 83 of 95
Tablet Device		Fage 85 01 95
		REV 24.0
		05/01/2024

9.10 WPT Standalone SAR

Table 9-17

					-					
Exposure	Band / Mode	Service / Modulation	Serial Number	Power Drift [dB]	Frequency [MHz]	Test Position	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #
Body	WPT	CW	PMQP5	0.09	13.60	Back	0.024	0.005	0.015	A7
Body	WPT	CW	PMQP5	0.07	13.60	Тор	0.000	0.000	0.000	
Body	WPT	CW	PMQP5	-0.15	13.60	Bottom	0.000	0.000	0.000	
Body	WPT	CW	PMQP5	0.21	13.60	Right	0.002	0.000	0.001	
Body	WPT	CW	PMQP5	0.01	13.60	Left	0.000	0.000	0.000	
	ANSI/IEEE C95.1	1992 - SAFETY L	IMIT					Body		
	Spa	tial Peak					1.6 \	N/kg (mW/g)		
	Uncontrolled Expos	ure/General Pop	ulation				averag	ged over 1 gram		

9.11 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 616217 D04v01r02, and FCC KDB Publication 447498 D04v01.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D04v01.
- 6. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 10 for variability analysis.
- FČC KDB Publication 616217 D04v01r02 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D04v01 was applied to determine SAR test exclusion for adjacent edge configurations.
- This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.2. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.
- 9. The orange highlights throughout the report represent the highest scaled SAR per Equipment Class.
- Per FCC guidance, SAR was performed using 6.5 GHz SAR probe calibration factors. Per October 2020 TCB Workshop notes, 5 channels were tested. Absorbed power density (APD) using a 4cm² averaging area is reported based on SAR measurements.

WLAN Notes:

- 1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n/ax) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 6.2.4 for more information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 6.2.5 for more information.
- Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D04v01 by either evaluating the sum of the 1g SAR values

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 84 of 95
Tablet Device		Fage 64 01 95
		REV 24.0 05/01/2024

of each antenna transmitting independently or making a SAR measurement with both antennas transmitting simultaneously. Please see Appendix E for complete analysis.

- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 6. The time-averaged mechanism for WLAN operations was disabled for the above SAR measurements. The SAR was scaled to the maximum time-averaged output power.

Bluetooth/NB UNII Notes

1. Bluetooth SAR was evaluated with a test mode with hopping disabled with DH5 operation. The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is limited to 77.5% per manufacturer. See Section 7.11 and 7.19 for the time domain plot and calculation for the duty factor of the device.

802.15.4 Notes:

1. The manufacturer declared that the maximum source-based duty cycle of 802.15.4 mode is permanently limited to 60%. SAR measurement for 802.15.4 is evaluated at a higher duty cycle of 100% and scaled down to 60%. See Section 7.5 for the time domain plot for the duty factor of the device at the maximum source-based duty cycle of 60% and at the test mode during SAR measurement of 100%.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 85 of 95
Inless otherwise specified, no part of this report may	be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micr quiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMEI	

9.12 Power Density Data

												MEASURE	MENT RESUL	.TS										
Frequency (MHz)	Channel	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift (dB)	Spacing (mm)	Antenna Config.	Variant	DUT Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Grid Step (A)	iPD (W/m²)	Scaling Factor for Measurement Uncertainty per IEC 62479	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Normal psPD (W/m²)	Scaled Normal psPD (W/m²)	Total psPD (W/m²)	Scaled Total psPD (W/m²)	Plot #
6025	15	802.11ax	OFDM	160	13.50	12.51	-0.05	2	WF7a	VI	4PYLJ	68.1	Back	97.95	0.25	1.550	1.554	1.256	1.021	0.511	1.018	0.689	1.373	
6025	15	802.11ax	OFDM	160	13.50	12.51	-0.04	2	WF7a	VI	4PYLJ	68.1	Тор	97.95	0.041	1.330	1.554	1.256	1.021	3.100	6.178	3.550	7.074	
6345	79	802.11ax	OFDM	160	12.75	12.00	0.08	2	WF7a	V1	4PYLJ	68.1	Тор	97.95	0.041	1.500	1.554	1.189	1.021	2.940	5.546	3.750	7.074	
6505	111	802.11ax	OFDM	160	12.00	11.69	-0.03	2	WF7a	VI	4PYLJ	68.1	Тор	97.95	0.041	1.690	1.554	1.074	1.021	3.640	6.203	4.150	7.072	
6665	143	802.11ax	OFDM	160	13.00	12.23	0.19	2	WF7a	V1	4PYLJ	68.1	Тор	97.95	0.041	1.560	1.554	1.194	1.021	3.232	6.123	3.730	7.066	
6985	207	802.11ax	OFDM	160	13.00	11.02	0.14	2	WF7a	V1	4PYLJ	68.1	Тор	97.95	0.041	1.230	1.554	1.578	1.021	2.380	5.959	2.790	6.985	
6025	15	802.11ax	OFDM	160	13.50	12.51	-0.06	2	WF7a	VI	4PYLJ	68.1	Bottom	97.95	0.25	1.340	1.554	1.256	1.021	0.195	0.389	0.202	0.403	
6025	15	802.11ax	OFDM	160	13.50	12.51	-0.10	2	WF7a	V1	4PYLJ	68.1	Left	97.95	0.25	1.960	1.554	1.256	1.021	0.213	0.424	0.216	0.430	
6025	15	802.11ax	OFDM	160	13.50	12.51	-0.05	2	WF7a	V1	4PYLJ	68.1	Right	97.95	0.25	1.510	1.554	1.256	1.021	0.236	0.470	0.264	0.526	
6025	15	802.11ax	OFDM	160	13.50	12.51	0.16	9.95	WF7a	V1	4PYLJ	68.1	Back	97.95	0.25	1.690	1.554	1.256	1.021	0.317	0.632	0.339	0.676	
6345	79	802.11ax	OFDM	160	12.75	12.00	0.02	9.45	WF7a	V1	4PYLJ	68.1	Тор	97.95	0.041	0.722	1.554	1.189	1.021	0.987	1.862	1.180	2.226	
6345	79	802.11ax	OFDM	160	15.25	13.43	0.17	2	WF8	V1	QMQJ6	68.1	Back	97.95	0.25	1.740	1.554	1.521	1.021	0.402	0.970	0.466	1.125	
6025	15	802.11ax	OFDM	160	14.50	14.22	-0.05	2	WF8	V1	QMQJ6	68.1	Тор	97.95	0.041	1.750	1.554	1.067	1.021	3.150	5.333	4.180	7.076	
6345	79	802.11ax	OFDM	160	15.25	13.43	0.05	2	WF8	V1	QMQJ6	68.1	Тор	97.95	0.041	1.260	1.554	1.521	1.021	2.670	6.443	2.930	7.071	
6505	111	802.11ax	OFDM	160	13.00	12.45	-0.03	2	WF8	V1	QMQJ6	68.1	Тор	97.95	0.041	0.944	1.554	1.135	1.021	1.310	2.359	1.480	2.665	
6665	143	802.11ax	OFDM	160	14.50	14.35	0.01	2	WF8	V1	QMQJ6	68.1	Тор	97.95	0.041	1.930	1.554	1.035	1.021	3.960	6.503	4.310	7.078	
6985	207	802.11ax	OFDM	160	12.00	10.82	0.18	2	WF8	VI	QMQJ6	68.1	Тор	97.95	0.041	1.450	1.554	1.312	1.021	2.920	6.078	3.380	7.036	
6345	79	802.11ax	OFDM	160	15.25	13.43	-0.02	2	WF8	V1	QMQJ6	68.1	Bottom	97.95	0.25	1.290	1.554	1.521	1.021	0.272	0.656	0.378	0.912	
6345	79	802.11ax	OFDM	160	15.25	13.43	-0.16	2	WF8	V1	QMQJ6	68.1	Left	97.95	0.25	1.360	1.554	1.521	1.021	0.333	0.804	0.338	0.816	
6345	79	802.11ax	OFDM	160	15.25	13.43	-0.11	2	WF8	V1	QMQJ6	68.1	Right	97.95	0.25	1.260	1.554	1.521	1.021	0.259	0.625	0.287	0.693	
6345	79	802.11ax	OFDM	160	15.25	13.43	-0.03	9.45	WF8	V1	QMQJ6	68.1	Back	97.95	0.25	1.620	1.554	1.521	1.021	0.268	0.647	0.289	0.697	
6665	143	802.11ax	OFDM	160	14.50	14.36	-0.18	9	WF8	V1	QMQJ6	68.1	Тор	97.95	0.041	1.160	1.554	1.033	1.021	1.260	2.065	1.410	2.311	
			L	s	I.1310 - SAFET) patial Average posure / Gener													Power Density 10 W/m ² araged over 4 cm ²						

												MEASURE	MENT RESU	LTS										
Frequency (MHz)	Channel	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift (dB)	Spacing (mm)	Antenna Config.	Variant	DUT Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Grid Step (A)	iPD (W/m²)	Scaling Factor for Measurement Uncertainty per IEC 62479	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Normal psPD (W/m²)	Scaled Normal psPD (W/m²)	Total psPD (W/m²)	Scaled Total psPD (Witn*)	Plot #
6025	15	802.11ax	OFDM	160	14.50	13.90	0.13	2	WF8	V1	QMQJ6	68.1	Тор	97.95	0.041	1.530	1.554	1.148	1.021	3.330	6.065	3.730	6.794	
6025	15	802.11ax	OFDM	160	13.50	13.26	-0.07	2	WF7a	V1	4PYLJ	68.1	Тор	97.95	0.041	1.210	1.554	1.057	1.021	3.620	6.071	4.230	7.094	
6345	79	802.11ax	OFDM	160	15.25	13.57	0.29	2	WF8	V1	QMQJ6	68.1	Тор	97.95	0.041	1.400	1.554	1.472	1.021	2.490	5.815	2.710	6.329	
6345	79	802.11ax	OFDM	160	12.75	12.06	0.19	2	WF7a	V1	4PYLJ	68.1	Тор	97.95	0.041	1.670	1.554	1.172	1.021	3.330	6.192	4.090	7.605	
6505	111	802.11ax	OFDM	160	8.25	7.16	-0.16	2	WF8	V1	QMQJ6	68.1	Тор	97.95	0.041	0.494	1.554	1.285	1.021	0.629	1.282	0.698	1.423	
6505	111	802.11ax	OFDM	160	8.25	7.52	-0.02	2	WF7a	V1	4PYLJ	68.1	Тор	97.95	0.041	0.940	1.554	1.183	1.021	1.800	3.379	1.940	3.641	
6665	143	802.11ax	OFDM	160	14.50	14.45	0.11	2	WF8	V1	QMQJ6	68.1	Тор	97.95	0.041	2.320	1.554	1.012	1.021	3.970	6.375	4.380	7.033	AB
6665	143	802.11ax	OFDM	160	13.00	12.58	0.18	2	WF7a	V1	4PYLJ	68.1	Тор	97.95	0.041	1.600	1.554	1.102	1.021	2.850	4.983	3.550	6.207	
6985	207	802.11ax	OFDM	160	9.25	8.06	0.05	2	WF8	V1	QMQJ6	68.1	Тор	97.95	0.041	0.968	1.554	1.315	1.021	1.580	3.297	1.770	3.693	
6985	5 207 802.11ax OFDM 160 9.25 8.63 -0.07 2 WF										4PYLJ	68.1	Тор	97.95	0.041	0.681	1.554	1.153	1.021	0.857	1.568	1.120	2.049	
		47 CFR §1.1310-SAFETY LIMT Spatial Average Uncontrolled Exposure / General Population																Power Density 10 W/m ² eraged over 4 cm ²						

Note: Due to the spatial separation of Antenna WF7a and Antenna WF8, two measurement cubes were evaluated during MIMO SAR testing. Cubes 1 and 2 are located over the SAR distributions produced by Antenna WF8 and WF7a, respectively. Due to the spatial separation of the distributions, the conduct power of each antenna was individually considered for each measurement cube to determine the reported SAR.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 86 of 95
Tablet Device		Fage 60 01 95
		REV 24.0 05/01/2024

9.13 Power Density Notes

- 1. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 2. Batteries are fully charged at the beginning of the measurements. The DUT was connected to a wall charger for some measurements due to the test duration. It was confirmed that the charger plugged into this DUT did not impact the near-field PD test results.
- 3. Power density was calculated by repeated E-field measurements on two measurement planes separated by $\lambda/4$.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools.
- 5. Per FCC guidance and equipment manufacturer guidance, power density results were scaled according to IEC 62479:2010 for the portion of the measurement uncertainty > 30%. Total expanded uncertainty of 2.68 dB (85.4%) was used to determine the psPD measurement scaling factor.
- 6. Per equipment manufacturer guidance, power density was measured at d=2mm and d=λ/5mm using the same grid size and grid step size for some frequencies and surfaces. The integrated Power Density (iPD) was calculated based on these measurements. Since iPD ratio between the two distances is ≥ -1dB, the grid step was sufficient for determining compliance at d=2mm.
- 7. PD results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D04v01.
- 8. PTP-PR algorithm was used during psPD measurement and calculations.

FCC ID: BO	CGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Devic	ce		Page 87 of 95
		r be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micre nquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMEN	

10 SAR MEASUREMENT VARIABILITY

10.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg.
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 10-1
Body SAR Measurement Variability Results

								BODY VARIABILITY RESULTS										
2450 2475.00 25 802.15.4, 22 MHz Bandwidth CW Ant WF8 1 Top 0 mm 1.480 1.400 1.06 5250 5270.00 54 5 GHz WFI/IEEE 802.11n, 40 MHz Bandwidth MIMO OFDM Ant WF8 13.5 Top 0 mm 1.080 1.030 1.05			Service	Ant		Side			Repeated	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio				
5250 5270.00 54 5 GHz WIF/ IEEE 802.11n, 40 MHz Bandwidth MIMO OFDM Ant WF8 13.5 Top 0 mm 1.080 1.030 1.030		MHz Ch.						(W/kg)	(W/kg)		(W/kg)		(W/kg)	1				
	1	2475.00 25 802.15.4, 22 MHz Bandwidth	CW	Ant WF8	1	Тор	0 m m	1.480	1.400	1.06	1.39	1.06	N/A	N/A				
5600 5610.00 122 5 GHz WIF/ IEEE 802.11ac, 80 MHz Bandwidth OFDM Ant WF7a 29 Top 0 mm 0.961 0.921 1.04	5250 5270.00 54 5 GHz WIFI/ IEEE 802.11n, 40 MHz Bandwidth MIMO		OFDM	Ant WF8	13.5	Тор	0 m m	1.080	1.030	1.05	N/A	N/A	N/A	N/A				
	5600 5610.00 122 5 GHz WIFI/ IEEE 802.11ac, 80 MHz Bandwidth		OFDM	Ant WF7a	29	Тор	0 m m	0.961	0.921	1.04	N/A	N/A	N/A	N/A				
5750 5775.00 155 5 GHz WIFI/ IEEE 802.11ac, 80 MHz Bandwidth MIMO OFDM Ant WF8 29.3 Top 0 mm 0.921 0.903 1.02	Τ	5775.00 155 5 GHz WIFI/ IEEE 802.11ac, 80 MHz Bandwidth MIMO	OFDM	Ant WF8	29.3	Тор	0 m m	0.921	0.903	1.02	N/A	N/A	N/A	N/A				
6500 6665.00 143 6 GHz WIF/ IEEE 802.11ax, 160 MHz Bandwidth OFDM Ant WF7a 68.1 Top 0 mm 0.868 0.833 1.04		6665.00 143 6 GHz WIFI/ IEEE 802.11ax, 160 MHz Bandwidth	OFDM	Ant WF7a	68.1	Тор	0 m m	0.868	0.833	1.04	N/A	N/A	N/A	N/A				
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Body	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Bo	dy								
Spatial Peak 1.6 W/kg (Spatial Peak								1.6 W/kg	(mW/g)								
Uncontrolled Exposure/General Population averaged over		Uncontrolled Exposure/General Po	opulation						ave	eraged o	ver 1 gram							

10.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
		Technical Manager
DUT Type:		Page 88 of 95
Tablet Device		Fage 88 01 95
		REV 24.0
		05/01/2024

11 EQUIPMENT LIST

Agelent 16408 Spectrum Naviger NA NA NA MA MA Agelent E453C 1550 vector systel Generator 03/2/2020 Annual 07/2/2025 MM427002 Agelent H5152A M650 vector systel Generator 03/7/2024 Annual 07/07/2024 MM427002 Agelent H5152A M650 vector systel Generator 03/07/2024 Annual 01/07/2025 MM422003 Agelent B5155 5 Parameter Vector Vector Vector Statul Annual 01/2/2024 Annual 01/2/2025 MM422003 Agelent B5156 5 Parameter Vector Vec	Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Aglent E4482 E55 Vector Signal Generator 92/21/020 Annal 92/21/020 Anna							
Aglent E448C B55 Vetor Spal Generator 0.02/2020 Annal 0.02/2020 Annal </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
Aglient N512A M68 Vector Speal Generator 030/0702 Annal 030/0705 M47420083 Aglient 87535 5 Farameter Vector Network Analyzer 01/10/202 Annal 01/10/205 M47420083 Aglient 87535 5 Farameter Vector Network Analyzer 01/21/2024 Annal 01/10/205 M47420083 Aglient 87535 5 Farameter Vector Network Analyzer 01/21/2024 Annal 01/10/205 M4700081 Angliffer Research 155165 Angliffer CET N/A CET 43873 Annitau M01500 U/O Adaptor CET N/A CET 55032 Annitau M0266A Prover Netter 01/2/2024 Annal 01/2/2025 138001 Annitau M0266A Prover Netter 01/2/2024 Annal 01/2/2026 126202 Annitau M02402A U/D Adaptor 01/2/2024 Analal 01/2/2026 126202 Annitau M02402B U/D Netwer Sensor 00/2/2024 Analal 01/2/2026 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Aglent NSIEA MM3 Vector signal Generator Q37/7228 Amala Q37/7228 MM4702083 Aglent 87585 5-Parameter Vector Network Analyzer Q7/7208 Annala Q37/7228 MM4000512 Aglent N87555 5-Parameter Vector Network Analyzer Q7/7208 Annala Q37/7228 MM4000512 Aglent N82056 Anguliter Research N1A N1A CRT MAA CRT MAA CRT MAA CRT 433374 Anguliter Research 155166 Anguliter CRT N1A CRT 433374 Antisu MAB108 10/0 Adapto CRT N1A CRT 5017081 Antisu MA2056A Phyle Power Sentor 07170214 Annala 07070205 1270205 Antisu MA2105A Phyle Power Sentor 07170204 Annala 07070205 1270205 Antisu MA2105A USB Power Sentor 07170204 Ananala 07170205 1270205 1270205 1270205 1270205 1270							
Aglent #7325 5-Farameter vector Network Analyzer QU/19/202 Annual QU/19/202 MM000811 Aglent M0103A Wireles Connectivity Fis St. N/A N/A N/A GBI Angliert M010A Wireles Connectivity Fis St. N/A CRT M010A Angliffer Research 1553.66 Angliffer CRT N/A CRT 433973 Andrisu M0150B U/O Adaptor CRT N/A CRT 43074 Andrisu M0150B U/O Adaptor CRT N/A CRT 4501022 Andrisu M0266A Power Neter 002/2020 Annual 002/2020 Annual </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Aglent B7335 GF-Parameter Vector Network Analyser 09/25/2024 Annual 09/25/2055 M-Maudia Ampliffer Research 155166 Ampliffer CBT N/A CBT 433974 Ampliffer Research 155166 Ampliffer CBT N/A CBT 433974 Amflith MB1050 U/O Adaptor CGT N/A CBT 35012 Anritsu MA286A Power Neter 07/15/2024 Annual 07/15/205 158005 Anritsu MA286A Power Neter 07/15/2024 Annual 07/15/205 158005 Anritsu MA24118 Pulse Power Sensor 09/05/204 Annual 01/12/025 120728 Anritsu MA24106A LGB Power Sensor 07/12/204 Annual 01/12/205 120728 Anritsu MA24106A LGB Power Sensor 00/12/204 Annual 01/12/205 120728 Corrota Company 4G2 LGB Power Sensor 00/12/204 Annual 01/12/205 120728							
Agiltert N/A N/A N/A N/A N/A Elbest Carrier Amgilter Research 155166 Angilter CT N/A CBT 43373 Amgilter Research 1553166 Angilter CT N/A CBT 43374 Amgilter Research 1553106 Angilter CT N/A CBT 43373 Anritu MM8108 I/O Adsptor CT N/A CBT 606/3202 Anritu MM286A Power Meter 005/2024 Annual 07/57025 138005 Anritu MA286A Dever Sensor 902/12024 Annual 07/12025 327330 Anritu MA2405A USB Power Sensor 01/12024 Annual 01/12025 327330 Anritu MA2405A USB Power Sensor 01/12024 Annual 02/17026 24017496 Control Company 4052 Long Sem Thermoneter 02/27024 Biernial 02/27026 24017496 Control Company 4062 Long Sem Thermone							
Amplifer Research 155166 Amplifer CT N/A CTT 43374 Amplifer Research 1550.60 Anglifer CT N/A CT 43374 Amflas MN8108 U/O Adaptor CT N/A CT S0.13 Anfisu MN8108 U/O Adaptor CT N/A CT S0.13 Anfisu M.2386A Power Neter 60/15/2024 Annual 60/27/2053 118005 Anfisu MA2118 Pulze Power Sensor 60/15/2024 Annual 60/15/2053 112723 Antisu MA2106A USB Power Sensor 60/15/2024 Annual 60/15/2053 112723 Antisu MA2106A USB Power Sensor 60/15/2044 Annual 60/15/2053 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/15/051 120/	-						
Amglifer Researd 153166 Amglifer GT N/A GT 43378 Anritu MM81108 I/O Asgrbr GT N/A CBT 6201783 Anritu MM2108 I/O Asgrbr GT N/A CBT 62017821 Anritu MM286A Power Meter 00/2/2024 Annual 07/1/2025 138002 Anritu MM286A Power Meter 00/2/2024 Annual 03/2/2055 138002 Anritu MA2118 Pulse Power Sensor 01/2/2024 Annual 01/2/2055 132738 Anritu MA2166A USB Power Sensor 01/2/2024 Annual 02/1/2/025 22017465 Control Company 4662 Long Stem Thermoneter 02/2/2/024 Annual 02/2/2065 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495 22017495							
Amfigue 193A100C Amfigue OFT N/A C9T SN12 Anrisy M4206A Power Meter 07/15/202 Annual 07/15/202 1338001 Anrisy M4206A Power Meter 07/15/202 Annual 07/25/202 1338001 Anrisy M4201B Pulze Power Sensor 00/05/202 Annual 07/25/202 1327302 Anrisy M4200A USB Power Sensor 01/17/2024 Annual 0/05/2025 1327302 Anrisy M4200A USB Power Sensor 0/17/2024 Annual 0/07/2020 23017095 Control Company M052 Long Stem Thermometer 0/27/2024 Annual 0/27/2026 24017046 Control Company 4092 Long Stem Thermometer 0/27/2024 Biennial 0/15/2026 24010706 Control Company 4090 Therm/Clock/ Humidity Montor 0/15/2024 Biennial 0/15/2026 24010205 Control Company 56679 Therm/Clock/ Humidity Montor 0/15/2024 Biennial 0/15/2026 <td></td> <td></td> <td>-</td> <td>CBT</td> <td></td> <td>CBT</td> <td></td>			-	CBT		CBT	
Anritsu M481108 //O Adaptor OFT N/A CPT 66/747881 Anritsu M.206A Power Meter 07/17/2074 Annual 07/27/205 1138001 Anritsu M.206A Power Meter 07/07/204 Annual 07/07/205 1127573 Anritsu M.206A Power Sensor 07/17/204 Annual 07/17/205 127257 Anritsu M.2400A USB Power Sensor 07/17/204 Annual 07/17/205 12927305 Anritsu M.2400A UsB Power Sensor 07/17/204 Annual 07/17/205 202012705 Control Company 4052 Long Stem Thermometer 07/17/204 Bennial 07/27/205 22011395 Control Company 4090 Therm./Cody Humdity MonItor 07/17/204 Bennial 07/17/205 22011395 Control Company 4090 Therm./Cody Humdity MonItor 07/17/204 Bennial 07/17/205 22011305 Control Company 4090 Therm./Cody Humdity MonItor 07/17/204 Bennial 0			-	-	1	-	
Anrity M.2466A Power (Meter 07/15/202 Annual 07/15/2025 138001 Anrity M.2466A Power (Meter 06/21/2024 Annual 06/21/2025 138001 Anrity M.24118 Pulse Power Sensor 09/10/2024 Annual 09/12/2024 Annual 10/21/2025 132739 Anrity M.24106A USB Power Sensor 09/12/2024 Annual 09/12/2025 132739 Anrity M.24106A USB Power Sensor 09/12/2024 Annual 09/12/2025 132739 Anrity M.24016A USB Power Sensor 09/12/2024 Annual 09/12/2025 1220124M Cantrol Company 4052 Long Stem Themmoneter 00/27/2034 Biernmal 02/12/2036 2461125 Control Company 4000 Therm./Cock/ Humidity Montor 01/12/2044 Biernmal 02/12/2036 2420124M Control Company 500 196-30 CO-67 ASS ench Oigral Calleper 01/12/2044 Biernmal 02/12/2056 2420124M Kreight Technologies N000A				Î		Î	
Antisu M2496A Power Meter 06/24 (2024) Annual 09/24/2025 139005 Antisu MM3411B Pulse Power Sensor 10/21/204 Annual 10/21/2025 12/2305 Antisu MM3411B Pulse Power Sensor 10/21/204 Annual 10/21/2025 12/2305 Antisu MM3411B USB Power Sensor 00/15/204 Annual 0/15/2025 12/2026 12/201705 12/2025 12/2026 12/201706 12/2026 12/201706 12/2026 12/201706 12/2026 12/201706 12/2026 12/201706							
Antisu MA211B Pulse Power Sensor 09/05/2024 Annual 09/05/2025 1.72662 Antisu MA2106A USB Power Sensor 07/11/2024 Annual 07/11/2025 132733 Antisu MA2106A USB Power Sensor 07/11/2024 Annual 07/11/2025 132738 Mini-Oracits PWH-4015 USB Power Sensor 06/11/2024 Annual 09/12/2026 240012084 Control Company 4053 Long Stem Thermometer 02/77/2044 Biennial 02/72/205 240012084 Control Company 4062 Long Stem Thermometer 02/77/2044 Biennial 02/72/205 240012085 Control Company 4040 Therm./Clock/Humdity Montor 02/15/2044 Biennial 02/15/205 240012082 Control Company 4040 Therm./Clock/Humdity Montor 02/15/2044 Biennial 02/15/205 2405/2056 Control Company 4040 Montor 02/15/2044 Biennial 02/15/2056 2405/2056 Verging Technologies My82/20A Montor							
Antisu MA211B Pulse Power Sensor 107/11/204 Annual 107/21/205 1127230 Antisu MA2105A USB Power Sensor 0/116/204 Annual 0/115/2005 132733 Antisu MA2105A USB Power Sensor 0/115/2014 Annual 0/115/2005 132733 Control Company 4052 Long Stem Thermometer 0/27/2014 Biennial 0/27/2006 24/072406 Control Company 4052 Long Stem Thermometer 0/27/2014 Biennial 0/27/2006 24/071206 Control Company 4040 Therm./Clock/Humidity Monitor 0/15/2024 Biennial 0/27/2006 24/071206 Control Company 4040 Therm./Clock/Humidity Monitor 0/216/2024 Biennial 0/215/205 24/03005 Control Company 560279 Therm./Clock/Humidity Monitor 0/216/2024 Annual 0/116/205 A2021084 Keyish Technologies N9020A MAA Signal Analyser 0/714/204 Annual 0/116/205 A2024913 Mini-Circuits NU2-Moor Se							
Antisu MA2406A USB Power Sensor Of/202024 Annual Of/202055 132738 Mini-Crouits PWR-8dv5 USB Power Sensor Odf/22024 Annual Od/15/0025 1200107001 Control Company Ad952 Long Stam Thermometer 02/27/024 Biennial 02/27/0266 240172956 Control Company Ad92 Long Stam Thermometer 02/27/0264 Biennial 02/27/0266 240172956 Control Company Ad92 Long Stam Thermometer 02/27/0264 Biennial 04/15/0266 240310282 Control Company Ad90 Therm./ Clock/ Humidity Monitor 04/15/0264 240310282 Control Company Ad90 Therm./ Clock/ Humidity Monitor 02/15/0204 Biennial 02/15/0265 240310282 Control Company S662/9 Therm./ Clock/ Humidity Monitor 02/16/0202 Thermal 06/16/0202							
Antistu MA2405A UBB Power Sensor Odf.22024 Annual Odf.12025 128728 Mini-Crouits PPR-AG+5 LUSB Power Sensor Odf.22024 Bennial 00/12/025 120070013 Control Company 4052 Long Stem Thermometer 02/27/024 Bennial 00/27/0265 24017486 Control Company 4052 Long Stem Thermometer 02/27/024 Bennial 00/27/0265 24031082 Control Company 4040 Therm/Clock/Humidity Monitor 0/15/0204 Bennial 00/15/0205 24031082 Control Company 4040 Therm/Clock/Humidity Monitor 0/15/0204 Allinota MA216/0204 Allinota 0/15/0205 Allinota Control Company 566279 Therm/Clock/Humidity Monitor 0/15/0204 Annual 0/16/0205 MA201062 MA2010620 MA216000 MA216000 MA216000 MA216000 MA216000 MA2160000 MA2167000 MA2016000 MA2167000 MA2028411 MA216000 MA2167000 MA2016000 MA2167000 MA20180000 MA2160000 <							
Mmi-Circuits PWR-64/51 UBB Power Sensor 06/12/2024 Annual 06/12/2025 12001070013 Control Company 4052 Long Stem Thermoneter 02/27/2024 Biennial 02/27/2026 240121086 Control Company 4052 Long Stem Thermoneter 02/27/2024 Biennial 02/27/2026 240121086 Control Company 4040 Therm,/ Clock/ Humidity Monitor 04/15/2026 24012105 24012105 Control Company 4040 Therm,/ Clock/ Humidity Monitor 04/15/2024 Biennial 02/15/2026 2401205 Control Company 6500 5503 CD-FASK finch Digital Caliper 02/15/2024 Biennial 02/15/2025 A2023613 Kysight Technologies N9020A MKAS Sigral Analyzer 60/14/2024 Annual 06/14/2025 M7587026 Mici-Grauits FW-ROM5+ DC 18 16/14 Precision Finder 20 dB Attenuator CBT N/A CBT 1/16/2025 31534 Mici-Grauits FW-ROM5+ DC 18 16/14 Precision Finder 20 dB Attenuator CBT N/A CBT 1/26							
Control Company 4952 Long Stem Thermometer 00/27/2024 Biennial 00/27/2026 24017936 Control Company 4052 Long Stem Thermometer 00/27/2024 Biennial 00/27/2026 240171059 Control Company 4040 Therm./ Clock/ Humidity Monitor 00/15/2024 Biennial 00/15/2026 240312080 Control Company 4040 Therm./ Clock/ Humidity Monitor 00/15/2024 Biennial 00/15/2026 240310280 Control Company 566279 Therm./ Clock/ Humidity Monitor 00/15/2024 Annual 02/16/2025 240310023 Keysight Technologies N9020A MMX Signal Analyzer 07/6/2024 Annual 07/8/2025 Mr645000 Mill<-Circuits							
Control Company 4952 Long Stem Thermometer 09/27/2024 Biennial 09/27/2025 2403/12985 Control Company 4040 Therm./Clock/ Humidity Monitor 04/15/2024 Biennial 04/15/2025 2403/12985 Control Company 4040 Therm./Clock/ Humidity Monitor 04/15/2024 Biennial 04/15/2025 2403/10282 Control Company 566279 Therm./Clock/ Humidity Monitor 01/16/2024 Biennial 02/16/2025 2403/0021 Mittoryo 500-196-30 Cb-6*ASC sinch bigtal Caliper 07/16/2024 Annual 07/06/2024 Annual 07/06/2025 31634 Mini-Circuits BV+N6W5 Cb and Sick Precision Filed 20 db Attenuator CBT N/A CBT N/A 2015 N/A 1138 Mini-Circuits BV+20W5 Cb and Sick Precision Filed 20 db Attenuator CBT N/A CBT N/A 2016 N/A <td></td> <td></td> <td></td> <td></td> <td></td> <td>.,,,.</td> <td></td>						.,,,.	
Control Company 4052 Long Stem Thermometer 09/17/2024 Biennial 09/17/2026 24037059 Control Company 4040 Therm./ Clock/ Humidity Monitor 04/15/2026 240310282 240310282 Control Company 566279 Therm./ Clock/ Humidity Monitor 04/15/2024 Biennial 04/15/2026 240310282 Keyight Technologies M9020A MoX Signal Analyzer 07/16/2024 Annual 07/16/2025 4203400213 Aglent M9020A MXA Signal Analyzer 07/16/2024 Annual 06/14/2024 Annual 06/14/2024 Annual 06/14/2024 Annual 06/14/2024 Annual 07/16/2025 34534 Mini-Grauits BW-H6W5+ GBB Attenuator CBT N/A CBT 1139 Mini-Grauits BW-H2905+ DC to 18 OH Presision Fixed 20 dH Attenuator CBT N/A CBT N/A Mini-Grauits BW-H2095+ Directional Coupler CBT N/A CBT 1226 Mini-Grauits BW-H2095+ Directric Assesment Kit SPIA							
Control Company 4040 Therm./ Clock/ Humidity Monitor 04/15/2024 Blennial 04/15/2025 240310281 Control Company 566279 Therm./ Clock/ Humidity Monitor 02/16/2024 Blennial 02/16/2025 240310281 Mitutoyo 500 195-30 CD-67AS Kinch Digital Caliper 02/16/2024 Annual 02/16/2025 A42031023 Aglient N9020A MXA Signal Analyzer 07/08/2024 Annual 07/08/2025 MY8401023 Mini-Circuits NV-N6V5- 668 Attenuator CBT N/A CBT 1139 Mini-Circuits NV-16000+ Low Pass Filter DC to 0000 Mtz 07/10/2024 Annual 07/10/2025 31634 Mini-Circuits NV-2600+ Low Pass Filter DC to 2000 Mtz 07/10/2024 Annual 07/10/2025 11628 Mini-Circuits BW-20005+ Low Pass Filter DC to 2000 Mtz 07/10/2024 Annual 07/10/2025 1262 Mini-Circuits BW-20005+ Directional Coupler CBT N/A CBT 2050 Narda 4772-3 <							
Control Company 400 Therm./ Clock/ Humidity Monitor 04/15/2024 Biennial 04/15/2025 240310281 Control Company S66279 Therm./ Clock/ Humidity Monitor 04/15/2024 Biennial 02/15/2025 A20140281 Mituryo S000 196-30 CD6*ASS finity Digital Calipier 02/16/2024 Treennial 02/15/2025 AX028413 Keyight Technologies N9020A MKA Signal Analyzer 06/14/2024 Annual 06/14/2025 MYR670222 MCL BW-N0WS+ 6dB Attenuator CBT N/A CBT N/A Mini-Circuits BW-N2WS+ Dc to 18/6rit Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits BW-N2WS+ Dc to 18/6rit Precision Fixed 20 dB Attenuator CBT N/A CBT 12/25 Mini-Circuits BW-N2WS+ Dc to 18/6rit Precision Fixed 20 dB Attenuator CBT N/A CBT 12/26 Mini-Circuits BW-N2WS+ Decto 18/6rit Precision Fixed 20 dB Attenuator CBT N/A CBT 12/26 Mini-Circuits							
Control Company S5627n Therm / Clodyl Humidity Monitor 02/15/2024 Biennial 02/16/2025 240140051 Mitutoyo 500 196-30 CD-FXSK 6inch Digital Caliper 02/16/2021 Triennial 02/16/2025 A20238413 Kysight Technologies N9020A MKA Signal Analyzer 07/08/2024 Annual 06/14/2025 Mr48010233 Aglient N9020A MKA Signal Analyzer 06/14/2024 Annual 06/14/2025 Mr48010233 Mini-Circuits VLF-6000+ Low Pass Filter DC to 6000 MHz 07/10/2024 Annual 07/10/2025 31634 Mini-Circuits NLP-2950+ Low Pass Filter DC to 2000 MHz 07/10/2024 Annual 07/10/2025 1628 Mini-Circuits ZUDC10-83-5+ Directional Coupler CBT N/A CBT 126 Narda 4772-3 Attenuator (348) CBT N/A CBT 9405 Narda MX-35 Dielectric Assessment Xit 11/05/2024 Annual 05/14/2025 1227 SPEAG DAK-35 Dielectric Assessment							
Mitutoyo 500-196-30 CD-6*ASK Binch Digital Caliper 02/15/2022 Triennial 02/16/2025 AA023841 Keysight Technologies N9020A MKAA Signal Analyzer 06/14/2024 Annual 07/08/2025 Mrt68010233 Aglient N9020A MKAA Signal Analyzer 06/14/2024 Annual 07/08/2025 Mrt6607022 MCL BW-N6W05+ G6B Attenuator CET N/A CET SEA Delettric Assessment Kit S/J/A/2024 Annual							
Keysight Technologies N9020A NKXA Signal Analyzer 07/08/2024 Annual 07/08/2025 MY48010232 Aglient N9020A MKA Signal Analyzer 06/14/2024 Annual 06/14/2025 MY6602020 MCL BW-N6W5+ GGB Attenuator CET N/A CET I139 Mini-Circuits UVE-6000+ Low Pass Filter DC to 6000 MHz 07/10/2024 Annual 07/10/2025 31634 Mini-Circuits NIV-2059+ DC to 18 GHz Precision Fixed 20 dB Attenuator CET N/A CET 1226 Mini-Circuits BW-N20W5+ DE to 10 GHZ Precisional Coupler CET N/A CET 1226 Mini-Circuits ZUDC10-83-5+ Directional Coupler CET N/A CET 9406 Narda 4772-3 Attenuator (3dB) CET N/A CET 9405 SPEAG DAK-3.5 Dielectric Assessment Kit 11/05/2024 Annual 10/02/2025 11262 SPEAG DAK-3.5 Dielectric Assessment Kit 11/02/2024 Annual							
Agilent N9020A MKA Signal Analyzer 05/14/2024 Annual 06/14/2025 MYrS670202 MCL BW-N6W5+ 6dB Attenuator CBT N/A CBT 1139 Mini-Circuits VLF-6000+ Low Pass Filter DC to 6000 MHz 07/10/2024 Annual 07/10/2025 31634 Mini-Circuits BW-N20W5+ DC to 18 GM-Precision Fixed 20 B Attenuator CBT N/A CBT N/A Mini-Circuits BW-N20W5+ Devet Attenuator CBT N/A CBT 2050 Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 2050 Narda 4772-3 Attenuator (3dB) CBT N/A CBT 9406 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Seekonk N-C100 Torque Wrench 04/02/2024 Biennial 04/02/2025 1277 SPEAG DAK-3.5 Delectric Assessment Kit 11/05/2024 Annual 05/14/2025 1102 SP							
MCL BW-N6W5+ 668 Attenuator CBT N/A CBT 1139 Mini-Circuits U/L=6000+ Low Pass Filter DC to 6000 MHz 07/10/2024 Annual 07/10/2025 31634 Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT 1225 Mini-Circuits ZUDC10-83-S+ Directional Coupler CBT N/A CBT 2050 Narda 4772-3 Attenuator (3dB) CBT N/A CBT 9406 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Seekonk NC-100 Torque Wrench 04/02/2024 Annual 05/14/2025 1207 SPEAG DAK-3.5 Dielectric Assessment Kit 110/5/2024 Annual 05/14/2025 1207 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1313							
Mini-Circuits VLF-6000+ Low Pass Filter DC to 6000 MHz 07/10/2024 Annual 07/10/2025 31634 Mini-Circuits BW-N220V5+ DC to 18 GHz Predision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits BW-N220V5 Low Pass Filter DC to 2700 MHz O7/10/2024 Annual 07/10/2025 1628 Mini-Circuits BW-N220V5 Power Attenuator CBT N/A CBT 2026 Mini-Circuits 2UDC10-83-5+ Directional Coupler CBT N/A CBT 9406 Narda 4772-3 Attenuator (3dB) CBT N/A CBT 1262 SPEAG DAK-3.5 Dielectric Assessment Kit 5/14/2024 Annual 04/02/2025 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 11/05/2024 Annual 08/07/2025 1277 SPEAG DAK-3.5 Portable Dielectric Assessment Kit 08/07/2024 Annual 08/07/2025 1071 SPEAG MAIA Modulation and Audio Interference Analyzer N/A							
Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CET N/A CBT N/A Mini-Circuits NIP-2950+ Low Pass Filter DC to 2700 MHz 07/10/2024 Annual 07/10/2025 1628 Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 2265 Mini-Circuits ZUDC10.83-S+ Directional Coupler CBT N/A CBT 2050 Narda 4772-3 Attenuator (3dB) CBT N/A CBT 120 Seekonk NC100 Torque Wrench 04/02/2024 Annual 06/14/2025 1272 SPEAG DAK-3.5 Dielectric Assessment Kit 11/05/2024 Annual 06/07/2025 1277 SPEAG DAK-3.5 Portable Dielectric Assessment Kit 10/07/2024 Annual 08/07/2025 1010 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1330 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/	iiiide						
Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz 07/10/2024 Annual 07/10/2025 1628 Mini-Circuits BW-N20WS Power Attenuator CBT N/A CBT 1226 Mini-Circuits ZUDC10-83-5+ Directional Coupler CBT N/A CBT 2260 Narda 4772-3 Attenuator (3dB) CBT N/A CBT 120 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 SPEAG DAK-3.5 Dielectric Assessment Kit 5/14/2024 Annual 05/14/2025 1262 SPEAG DAK-3.5 Portable Dielectric Assessment Kit 11/05/2024 Annual 05/14/2025 1070 SPEAG DAK-3.5 Portable Dielectric Assessment Kit 08/07/2024 Annual 08/07/2025 1041 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1331 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A							
Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 Mini-Circuits ZUDC10-83-5+ Directional Coupler CBT N/A CBT 2050 Narda 4772-3 Attenuator (3dB) CBT N/A CBT 9406 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Seekonk NC-100 Torque Wrench Q4/02/2024 Biennial 04/02/2026 1252 SPEAG DAK-3.5 Dielectric Assessment Kit 5/14/2024 Annual 08/07/2025 1070 SPEAG DAK-3.5 Portable Dielectric Assessment Kit 11/05/2024 Annual 08/07/2025 1041 SPEAG MAKA Modulation and Audio Interference Analyzer N/A N/A N/A 1331 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1331 SPEAG DAK-12 Dielectric Assessment Kit 03/11/2024 Annual 03/11/2025 11002							
Mini-Circuits ZUDC10-83-5+ Directional Coupler CBT N/A CBT 2050 Narda 4772-3 Attenuator (3dB) CBT N/A CBT 9406 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Seekonk NC-100 Torque Wrench 04/02/2024 Biennial 04/02/2025 1262 SPEAG DAK-3.5 Dielectric Assessment Kit 5/14/2024 Annual 05/14/2025 1277 SPEAG DAK-3.5 Portable Dielectric Assessment Kit 10/05/2024 Annual 04/02/2025 1041 SPEAG MAKA Modulation and Audio Interference Analyzer N/A N/A N/A 131 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 131 SPEAG DAK-12 Dielectric Assessment Kit (4MHz - 3GHz) 03/11/2024 Annual 03/11/2025 1102 SPEAG DAK-12 Dielectric Assessment Kit (4MHz - 3GHz) 03/11/2024 Annual 10/08/2025							
Narda 4772-3 Attenuator (3dB) CBT N/A CBT 9406 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Seekonk NC-100 Torque Wrench 04/02/2024 Biennial 05/14/2025 1120 SPEAG DAK-3.5 Dielectric Assessment Kit 5/14/2024 Annual 05/14/2025 11070 SPEAG DAK-3.5 Dielectric Assessment Kit 11/05/2024 Annual 08/07/2025 1277 SPEAG DAK-3.5 Portable Dielectric Assessment Kit 08/07/2024 Annual 08/07/2025 1041 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1041 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1330 SPEAG DAK-12 Dielectric Assessment Kit (MHz-3GHz) 03/11/2024 Annual 10/08/2025 1102 SPEAG DAK-12 Dielectric Assessment Kit (MHz-3GHz) 03/11/2025 11006 1006							
Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Seekonk NC-100 Torque Wrench 04/02/2024 Biennial 04/02/2026 1262 SPEAG DAK-3.5 Dielectric Assessment Kit 5/14/2024 Annual 05/14/2025 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 11/05/2024 Annual 08/07/2025 1041 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 08/07/2024 Annual 08/07/2025 1041 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1331 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1330 SPEAG DAK-12 Dielectric Assessment Kit (MMz - 3GHz) 03/11/2024 Annual 10/08/2025 1006 SPEAG CLA-13 Confined Loop Antenna 11/08/2024 Annual 10/12/2025 1004 SPEAG D2450V2 2450 MHz SAR Dipole 10/12/2024 Annual 10/1				-		-	
Seekonk NC-100 Torque Wrench 04/02/2024 Biennial 04/02/2026 1262 SPEAG DAK-3.5 Dielectric Assessment Kit 5/14/2024 Annual 05/14/2025 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 11/05/2024 Annual 03/14/2025 1277 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 08/07/2024 Annual 03/07/2025 1041 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 11/05/2025 1027 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 11/02 1028 SPEAG DAK-12 Dielectric Assessment Kit (AMI2- 3GH2) 03/11/2024 Annual 03/11/2025 1102 SPEAG CLA-13 Confined Loop Antenna 11/11/2024 Annual 10/08/2025 1004 SPEAG D2450V2 2450 MH2 SAR Dipole 11/15/2025 1102 1102 SPEAG D2450V2 SGH2 SAR Dipole 11/15/2024				-		-	
SPEAG DAK-3.5 Dielectric Assessment Kit \$/14/2024 Annual 05/14/2025 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 11/05/2024 Annual 11/05/2025 1277 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 08/07/2024 Annual 08/07/2025 1041 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1331 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1331 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1331 SPEAG DAK-12 Dielectric Assessment Kit (4MHz - 3GHz) 03/11/2024 Annual 10/08/2025 1002 SPEAG CLA-13 Confined Loop Antenna 11/11/2024 Annual 10/08/2025 1004 SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 10/23/2025 921 SPEAG D2450V2 SGHz SAR Dipole 11/15/2025 855 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
SPEAG DAK-3.5 Dielectric Assessment Kit 11/05/2024 Annual 11/05/2025 1277 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 08/07/2024 Annual 08/07/2025 1041 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 11/05 1041 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1331 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1330 SPEAG DAK-12 Dielectric Assessment Kit (4MHz - 3GHz) 03/11/2024 Annual 03/11/2025 1102 SPEAG DAK-12 Dielectric Assessment Kit (4MHz - 3GHz) 03/11/2024 Annual 10/08/2025 1006 SPEAG CLA-13 Confined Loop Antenna 11/11/2024 Annual 10/23/2025 921 SPEAG D2450V2 2450 MHz SAR Dipole 11/15/2022 Triennial 111/15/2025 855 SPEAG D5GHzV2 S GHz SAR Dipole							
SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 08/07/2024 Annual 08/07/2025 1041 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1237 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1311 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1330 SPEAG DAK-12 Dielectric Assessment Kit (4MHz - 3GHz) 03/11/2024 Annual 03/11/2025 1102 SPEAG CA-13 Confined Loop Antenna 110/08/2024 Annual 10/08/2025 1004 SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 10/23/2025 1004 SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 10/23/2025 1031 SPEAG D5GHzV2 SGHz SAR Dipole 10/15/2024 Annual 10/23/2025 1163 SPEAG D5GHzV3 G G12 SAR Dipole 11/15/2024 Annual							
SPEAGMAIAModulation and Audio Interference AnalyzerN/AN/AN/A1237SPEAGMAIAModulation and Audio Interference AnalyzerN/AN/AN/AN/A1331SPEAGMAIAModulation and Audio Interference AnalyzerN/AN/AN/A1331SPEAGDAK-12Dielectric Assessment Kit (4MHz - 3GHz)03/11/2024Annual03/11/20251102SPEAGSG Verification Source 10GHz10GHz System Verification Antenna10/08/2024Annual10/08/20251006SPEAGCLA-13Confined Loop Antenna11/11/2024Annual11/11/2025921SPEAGD2450V22450 MHz SAR Dipole10/12/2024Annual10/23/2025921SPEAGD2450V22450 MHz SAR Dipole11/15/2022Triennial11/15/2025855SPEAGD2450V22450 MHz SAR Dipole11/18/2024Annual06/12/20251163SPEAGD5GHzV2SGHz SAR Dipole11/18/2024Annual10/08/20251066SPEAGD5GHzV36 GHz SAR Dipole11/18/2024Annual10/10/202511019SPEAGD6.5GHzV26.5 GHz SAR Dipole10/10/2024Annual03/06/2025534SPEAGDAE4Dasy Data Acquisition Electronics03/06/2024Annual09/04/20251403SPEAGDAE4Dasy Data Acquisition Electronics09/04/2024Annual09/04/20251467SPEAGDAE4Dasy Data Acquisition Electronics09/04/2							
SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1331 SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1390 SPEAG DAK-12 Dielectric Assessment Kit (4MHz - 3GHz) 03/11/2024 Annual 03/11/2025 1102 SPEAG 5G Verification Source 10GHz 10GHz System Verification Antenna 10/08/2024 Annual 10/08/2025 1006 SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 11/11/2025 921 SPEAG D2450V2 2450 MHz SAR Dipole 11/15/2022 Triennial 11/15/2025 921 SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 06/12/2025 1163 SPEAG D5GHzV2 5 GHz SAR Dipole 11/15/2022 Triennial 11/108/2025 1066 SPEAG D6.5GHzV2 6 GHz SAR Dipole 11/18/2024 Annual 03/06/2025 534 SPEAG DAE4 Dasy Data Acquisition Electronics 03/06/2024 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
SPEAG MAIA Modulation and Audio Interference Analyzer N/A N/A N/A 1390 SPEAG DAK-12 Dielectric Assessment Kit (4MHz - 3GHz) 03/11/2024 Annual 03/11/2025 1102 SPEAG 5G Verification Source 10GHz 10GHz System Verification Antenna 10/08/2024 Annual 10/08/2025 1006 SPEAG CLA-13 Confined Loop Antenna 11/11/2024 Annual 10/23/2025 921 SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 10/23/2025 921 SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 10/23/2025 921 SPEAG D2450V2 2450 MHz SAR Dipole 10/15/2022 Trienrial 11/15/2025 855 SPEAG D5GHzV2 5 GHz SAR Dipole 06/12/2024 Annual 06/12/2025 1163 SPEAG D6.5GHzV2 6.5 GHz SAR Dipole 10/10/2024 Annual 10/10/2025 1066 SPEAG D6.5GHzV2 6.5 GHz SAR Dipole 10/10/2024							
SPEAG DAK-12 Dielectric Assessment Kit (4MHz - 3GHz) 03/11/2024 Annual 03/11/2025 1102 SPEAG 5G Verification Source 10GHz 10GHz System Verification Antenna 10/08/2024 Annual 10/08/2025 1006 SPEAG CLA-13 Confined Loop Antenna 11/11/2024 Annual 11/11/2025 1004 SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 10/13/2025 921 SPEAG D2450V2 2450 MHz SAR Dipole 11/15/2022 Triennial 11/15/205 855 SPEAG D5GHzV2 SGHz SAR Dipole 06/12/2024 Annual 06/12/2025 1163 SPEAG D5GHzV3 6 GHz SAR Dipole 11/8/2024 Annual 11/08/2025 1066 SPEAG D6.5GHzV3 6 GHz SAR Dipole 10/10/2024 Annual 10/10/2025 1019 SPEAG D6.5GHzV3 6 GHz SAR Dipole 10/10/2024 Annual 03/06/2025 534 SPEAG DAE4 Dasy Data Acquisition Electronics 03/06/2024 A							
SPEAG 5G Verification Source 10GHz 10GHz System Verification Antenna 10/08/2024 Annual 10/08/2025 1006 SPEAG CLA-13 Confined Loop Antenna 11/11/2024 Annual 11/11/2025 1004 SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 10/23/2025 921 SPEAG D2450V2 2450 MHz SAR Dipole 11/15/2024 Annual 10/08/2025 921 SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 10/05/2025 1163 SPEAG D5GHzV2 5 GHz SAR Dipole 06/12/2024 Annual 10/10/2025 1163 SPEAG D5GHzV3 6 GHz SAR Dipole 10/10/2024 Annual 10/10/2025 1016 SPEAG D65GHzV2 6.5 GHz SAR Dipole 10/10/2024 Annual 03/06/2025 534 SPEAG DAE4 Dasy Data Acquisition Electronics 03/06/2024 Annual 03/06/2025 1403 SPEAG DAE4 Dasy Data Acquisition Electronics 02/09/2024 Annual<						,	
SPEAG CLA-13 Confined Loop Antenna 11/11/2024 Annual 11/11/2025 1004 SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 10/23/2025 921 SPEAG D2450V2 2450 MHz SAR Dipole 11/15/2022 Triennial 11/15/2025 855 SPEAG D5GHzV2 SGHz SAR Dipole 06/12/2024 Annual 06/12/2025 1163 SPEAG D5GHzV2 SGHz SAR Dipole 01/18/2024 Annual 01/10/2025 1163 SPEAG D5GHzV3 6 GHz SAR Dipole 11/18/2024 Annual 01/10/2025 1166 SPEAG D65GHzV2 6.5 GHz SAR Dipole 11/18/2024 Annual 01/10/2025 1066 SPEAG D65GHzV2 6.5 GHz SAR Dipole 10/10/2024 Annual 01/10/2025 1019 SPEAG DAE4 Dasy Data Acquisition Electronics 03/06/2024 Annual 09/04/2025 1403 SPEAG DAE4 Dasy Data Acquisition Electronics 02/09/2024 Annual 02/09/2025							
SPEAG D2450V2 2450 MHz SAR Dipole 10/23/2024 Annual 10/23/2025 921 SPEAG D2450V2 2450 MHz SAR Dipole 11/15/2022 Triennial 11/15/2025 855 SPEAG D5GHzV2 SGHz SAR Dipole 06/12/2024 Annual 06/12/2025 1163 SPEAG D5GHzV3 6 GHz SAR Dipole 06/12/2024 Annual 01/02/025 1163 SPEAG D5GHzV3 6 GHz SAR Dipole 10/10/2024 Annual 01/10/2025 1066 SPEAG D6.5GHzV2 6.5 Hz SAR Dipole 10/10/2024 Annual 03/06/2025 534 SPEAG DA54 Dasy Data Acquisition Electronics 03/06/2024 Annual 09/04/2025 1403 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1403 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1403 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
SPEAG D2450V2 2450 MHz SAR Dipole 11/15/2022 Triennial 11/15/2025 855 SPEAG D5GHzV2 5 GHz SAR Dipole 06/12/2024 Annual 06/12/2025 1163 SPEAG D5GHzV3 6 GHz SAR Dipole 11/8/2024 Annual 11/08/2025 1066 SPEAG D6.5GHzV2 6.5 GHz SAR Dipole 10/10/2024 Annual 11/08/2025 1019 SPEAG D6.5GHzV2 6.5 GHz SAR Dipole 10/10/2024 Annual 03/06/2025 1019 SPEAG DAE4 Dasy Data Acquisition Electronics 03/06/2024 Annual 09/04/2025 1033 SPEAG DAE4 Dasy Data Acquisition Electronics 02/09/2024 Annual 02/09/2025 1684 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 10/9/2024 Annual 09/09/2025 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 10/9/2024 Annual			-				
SPEAG D5GHzV2 5 GHz SAR Dipole 06/12/2024 Annual 06/12/2025 1163 SPEAG D5GHzV3 6 GHz SAR Dipole 11/8/2024 Annual 11/08/2025 1066 SPEAG D6.5GHzV2 6.5 GHz SAR Dipole 10/10/2024 Annual 10/10/2025 1019 SPEAG D6.5GHzV2 6.5 GHz SAR Dipole 10/10/2024 Annual 03/06/2025 1039 SPEAG DAE4 Dasy Data Acquisition Electronics 03/06/2024 Annual 03/06/2025 534 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1403 SPEAG DAE4 Dasy Data Acquisition Electronics 02/09/2024 Annual 02/09/2025 467 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1684 SPEAG DAE4 Dasy Data Acquisition Electronics 10/9/2024 Annual 09/04/2025 1333 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual							
SPEAG D5GHzV3 6 GHz SAR Dipole 11/8/2024 Annual 11/08/2025 1066 SPEAG D6.5GHzV2 6.5 GHz SAR Dipole 10/10/2024 Annual 10/10/2025 1019 SPEAG DAE4 Dasy Data Acquisition Electronics 03/06/2024 Annual 03/06/2025 534 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1403 SPEAG DAE4 Dasy Data Acquisition Electronics 02/09/2024 Annual 02/09/2025 467 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1684 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1684 SPEAG DAE4 Dasy Data Acquisition Electronics 10/9/2024 Annual 09/04/2025 1333 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 7427 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual			-				
SPEAG D6.5GHzV2 6.5 GHz SAR Dipole 10/10/2024 Annual 10/10/2025 1019 SPEAG DAE4 Dasy Data Acquisition Electronics 03/06/2024 Annual 03/06/2025 534 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1403 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 02/09/2025 467 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1684 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1684 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/09/2025 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 00/09/2024 Annual 02/09/2025 1333 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 7427 SPEAG EX3DV4 SAR Probe 09/09/2024 An							
SPEAGDAE4Dasy Data Acquisition Electronics03/06/2024Annual03/06/2025534SPEAGDAE4Dasy Data Acquisition Electronics09/04/2024Annual09/04/20251403SPEAGDAE4Dasy Data Acquisition Electronics02/09/2024Annual02/09/2025467SPEAGDAE4Dasy Data Acquisition Electronics09/04/2024Annual09/04/20251684SPEAGDAE4Dasy Data Acquisition Electronics09/04/2024Annual09/04/20251333SPEAGDAE4Dasy Data Acquisition Electronics10/9/2024Annual10/09/20251333SPEAGEX3DV4SAR Probe02/09/2024Annual02/09/20257427SPEAGEX3DV4SAR Probe09/09/2024Annual09/09/20253949SPEAGEX3DV4SAR Probe02/09/2024Annual02/09/20257308SPEAGEX3DV4SAR Probe09/09/2024Annual02/09/20257308SPEAGEX3DV4SAR Probe09/09/2024Annual09/09/20257308SPEAGEX3DV4SAR Probe09/09/2024Annual09/09/20257639			-				
SPEAGDAE4Dasy Data Acquisition Electronics09/04/2024Annual09/04/20251403SPEAGDAE4Dasy Data Acquisition Electronics02/09/2024Annual02/09/2025467SPEAGDAE4Dasy Data Acquisition Electronics09/04/2024Annual09/04/20251684SPEAGDAE4Dasy Data Acquisition Electronics09/04/2024Annual09/04/20251333SPEAGDAE4Dasy Data Acquisition Electronics10/9/2024Annual02/09/20251333SPEAGEX3DV4SAR Probe02/09/2024Annual02/09/20257427SPEAGEX3DV4SAR Probe09/09/2024Annual09/09/20253949SPEAGEX3DV4SAR Probe02/09/2024Annual02/09/20257308SPEAGEX3DV4SAR Probe09/09/2024Annual02/09/20257639SPEAGEX3DV4SAR Probe09/09/2024Annual09/09/20257639				-, -, -			
SPEAG DAE4 Dasy Data Acquisition Electronics 02/09/2024 Annual 02/09/2025 467 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1684 SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1333 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 7427 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 3949 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 7308 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 02/09/2025 7338 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 7338 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 7639							
SPEAG DAE4 Dasy Data Acquisition Electronics 09/04/2024 Annual 09/04/2025 1684 SPEAG DAE4 Dasy Data Acquisition Electronics 10/9/2024 Annual 10/09/2025 1333 SPEAG EX3DV4 GARA Probe 02/09/2024 Annual 02/09/2025 7427 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 3394 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 3394 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 7378 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 02/09/2025 7339 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 02/09/2025 7339							
SPEAG DAE4 Dasy Data Acquisition Electronics 10/9/2024 Annual 10/09/2025 1333 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 7427 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 3949 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 09/09/2025 3949 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 7308 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 7308 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 7639							
SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 7427 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 3949 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 3949 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 7308 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 7639			Dasy Data Acquisition Electronics		Annual		
SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 3349 SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 7308 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 02/09/2025 7308 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 7639	SPEAG	DAE4	Dasy Data Acquisition Electronics	10/9/2024	Annual	10/09/2025	1333
SPEAG EX3DV4 SAR Probe 02/09/2024 Annual 02/09/2025 7308 SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 7639	SPEAG	EX3DV4	SAR Probe	02/09/2024	Annual	02/09/2025	7427
SPEAG EX3DV4 SAR Probe 09/09/2024 Annual 09/09/2025 7639	SPEAG	EX3DV4	SAR Probe	09/09/2024	Annual	09/09/2025	3949
	SPEAG	EX3DV4	SAR Probe	02/09/2024	Annual	02/09/2025	7308
SPEAG EX3DV4 EU mm WV4 Probe 04/08/2024 Annual 04/08/2025 9487	SPEAG	EX3DV4	SAR Probe	09/09/2024	Annual	09/09/2025	7639
	SPEAG	EX3DV4	EU mm WV4 Probe	04/08/2024	Annual	04/08/2025	9487

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
FCC ID. BCGA3200	RF EXPOSORE EVALUATION REPORT	Technical Manager
DUT Type:		Page 89 of 95
Tablet Device		Fage 09 01 95
		REV 24.0 05/01/2024

12 MEASUREMENT UNCERTAINTIES

Applicable for SAR measurements < 6 GHz:

e for SAR measurements < 6 GHz:								1	
а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
	IEEE	Tol.	Prob.		Ci	C _i	1gm	10gms	
Uncertainty Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u,	u,	v,
	Sec.	(,			5		(± %)	(± %)	
Measurement System								•	
Probe Calibration	E2.1	7	Ν	1	1	1	7.0	7.0	∞
Axial Isotropy	E2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E2.2	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E2.3	2	R	1.732	1	1	1.2	1.2	8
Linearity	E2.4	0.3	Ν	1	1	1	0.3	0.3	8
System Detection Limits	E2.4	0.25	R	1.732	1	1	0.1	0.1	8
Modulation Response	E2.5	4.8	R	1.732	1	1	2.8	2.8	∞
Readout Electronics	E2.6	0.3	Ν	1	1	1	0.3	0.3	∞
Response Time	E2.7	0.8	R	1.732	1	1	0.5	0.5	8
Integration Time	E2.8	2.6	R	1.732	1	1	1.5	1.5	8
RF Ambient Conditions - Noise	E6.1	3	R	1.732	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E6.1	3	R	1.732	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	0.8	R	1.732	1	1	0.5	0.5	8
Probe Positioning w/ respect to Phantom	E6.3	6.7	R	1.732	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation		4	R	1.732	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E4.2	3.12	Ν	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E4.1	1.67	Ν	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E6.5	0	R	1.732	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	E3.3	4.3	Ν	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E3.3	4.2	Ν	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)			RSS			•	12.2	12.0	191
Expanded Uncertainty			k=2				24.4	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: BCGA3266	ID: BCGA3266 RF EXPOSURE EVALUATION REPORT	
DUT Type:		Page 90 of 95
Tablet Device		Fage 90 01 95
		REV 24.0 05/01/2024

Applicable for SAR measurements >	6	GHz:

a	b	с	d	e=	f	g	h =	i =	k
a	b	C	u		1	9			ĸ
				f(d,k)			c x f/e	c x g/e	
	IEEE 1528	Tol.	Prob.		Ci	C _i	1gm	10gms	
Uncertainty Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	u	u	v_i
							(± %)	(± %)	
Measurement System									
Probe Calibration	E2.1	9.3	Ν	1	1	1	9.3	9.3	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	0.7	0.7	0.9	0.9	8
Boundary Effect	E.2.3	2	R	1.732	1	1	1.2	1.2	8
Linearity	E.2.4	0.3	Ν	1	1	1	0.3	0.3	8
System Detection Limits	E.2.4	0.25	R	1.732	1	1	0.1	0.1	8
Modulation Response	E.2.5	4.8	R	1.732	1	1	2.8	2.8	∞
Readout Electronics	E.2.6	0.3	Ν	1	1	1	0.3	0.3	8
Response Time	E.2.7	0.8	R	1.732	1	1	0.5	0.5	8
Integration Time	E.2.8	2.6	R	1.732	1	1	1.5	1.5	8
RF Ambient Conditions - Noise	E.6.1	3	R	1.732	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	3	R	1.732	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.732	1	1	0.5	0.5	8
Probe Positioning w/ respect to Phantom		6.7	R	1.732	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E5	4	R	1.732	1	1	2.3	2.3	8
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	Ν	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.732	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	Ν	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)	<u> </u>		RSS				13.8	13.6	191
Expanded Uncertainty			k=2				27.6	27.1	
(95% CONFIDENCE LEVEL)							-		

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type:		Page 91 of 95
Tablet Device		REV 24.0 05/01/2024

Applicable for Power Density measurements:

wer Density measurements:						
а	b	с	d	е	f =	g
					c x f/e	
	Unc.	Prob.			u	
Uncertainty Component	(± dB)	Dist.	Div.	C _i	(± dB)	v _i
Measurement System						
Calibration	0.49	Ν	1	1	0.49	∞
Probe Correction	0.00	R	1.73	1	0.00	8
Frequency Response	0.20	R	1.73	1	0.12	8
Sensor Cross Coupling	0.00	R	1.73	1	0.00	8
Isotropy	0.50	R	1.73	1	0.29	8
Linearity	0.20	R	1.73	1	0.12	8
Probe Scattering	0.00	R	1.73	1	0.00	∞
Probe Positioning offset	0.30	R	1.73	1	0.17	∞
Probe Positioning Repeatability	0.04	R	1.73	1	0.02	∞
Sensor MechanicalOffset	0.00	R	1.73	1	0.00	∞
Probe Spatial Resolution	0.00	R	1.73	1	0.00	∞
Field Impedence Dependance	0.00	R	1.73	1	0.00	∞
Amplitude and Phase Drift	0.00	R	1.73	1	0.00	∞
Amplitude and Phase Noise	0.04	R	1.73	1	0.02	∞
Measurement Area Truncation	0.00	R	1.73	1	0.00	∞
Data Acquisition	0.03	Ν	1	1	0.03	∞
Sampling	0.00	R	1.73	1	0.00	∞
Field Reconstruction	2.00	R	1.73	1	1.15	∞
Forward Transformation	0.00	R	1.73	1	0.00	8
Power Density Scaling	0.00	R	1.73	1	0.00	∞
Spatial Averaging	0.10	R	1.73	1	0.06	∞
System Detection Limit	0.04	R	1.73	1	0.02	ø
Test Sample Related						
Probe Coupling with DUT	0.00	R	1.73	1	0.00	∞
Modulation Response	0.40	R	1.73	1	0.23	8
Integration Time	0.00	R	1.73	1	0.00	8
Response Time	0.00	R	1.73	1	0.00	8
Device Holder Influence	0.10	R	1.73	1	0.06	8
DUT alignment	0.00	R	1.73	1	0.00	∞
RF Ambient Conditions	0.04	R	1.73	1	0.02	∞
Ambient Reflections	0.04	R	1.73	1	0.02	8
Immunity/Secondary Reception	0.00	R	1.73	1	0.00	∞
Drift of DUT	0.21	R	1.73	1	0.12	8
Combined Standard Uncertainty (k=1)		RSS			1.34	8
Expanded Uncertainty		k=2			2.68	
(95% CONFIDENCE LEVEL)						

FCC ID: BCGA3266		RF EXPOSURE EVALUATION REPORT	Approved by:	
			Technical Manager	
	DUT Type:		Page 92 of 95	
	Tablet Device		Fage 92 01 95	
			REV 24.0	
			05/01/2024	
nles		be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micro	ofilm, without permission in writi	١g

13 CONCLUSION

13.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g., ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g., age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Tablet Device		Page 93 of 95
	duced or utilized in any part, form or by any means, electronic or mechanical, including photocopy out obtaining additional rights to this report or assembly of contents thereof, please contact CT.IN	

14 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by:
FCC ID. BCGA3200		Technical Manager
DUT Type:		Page 94 of 95
Tablet Device		Page 94 01 95
		REV 24.0

sion in writing

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID: BCGA3266	RF EXPOSURE EVALUATION REPORT	Approved by: Technical Manager
	DUT Type: Tablet Device		Page 95 of 95
		be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and micro nquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@LLEMEN	