

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

Т	EST REPORT			
Report No. ·····:	CTC20222157E01			
FCC ID······:	2AGKB-KM7PLUS			
Applicant:	VIDEOSTRONG TECHNOLOGY CO.	.,LTD		
Address	604, Lushi industrial Building, 28 District, Bao'an District, Shen- zhen, China			
Manufacturer:	VIDEOSTRONG TECHNOLOGY CO.	.,LTD		
Address	604, Lushi industrial Building, 28 Distr zhen, China	rict, Bao'an District, Shen-		
Product Name·····:	Android TV Box			
Trade Mark······:	MECOOL	MECOOL		
Model/Type reference······:	KM7 PLUS			
Listed Model(s) ······	9MAX,10MAX, KM2, KM2 PRO, KM2 PLUS, KD3, KD5, KM6, KM7,9S,10S,9P,10P, KM10, KM11, KD6, KD7, IPx1, IPx2			
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247			
Date of receipt of test sample:	Dec. 20, 2022			
Date of testing	Dec. 20, 2022 ~ Dec. 20, 2022			
Date of issue	Dec. 21, 2022			
Result:	PASS			
Compiled by:		him lan		
(Printed name+signature)	Lucy Lan	Thog Tore		
Supervised by:		Ti shang		
(Printed name+signature)	Eric Zhang	BACZA		
Approved by:		1 anas		
(Printed name+signature)	Totti Zhao			
Testing Laboratory Name:	CTC Laboratories, Inc.			
Address	1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China			
This test report may be duplicated completely for legal use with the approval of the applicant. It				

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1. TEST	SUMMARY	3
1.1.	Test Standards	.3
1.2.	REPORT VERSION	.3
1.3.	TEST DESCRIPTION	.4
1.4.	TEST FACILITY	.5
1.5.	MEASUREMENT UNCERTAINTY	.5
1.6.	Environmental conditions	6
2. GEN	ERAL INFORMATION	7
2.1.	CLIENT INFORMATION	.7
2.2.	GENERAL DESCRIPTION OF EUT	.7
2.3.	ACCESSORY EQUIPMENT INFORMATION	8
2.4.	OPERATION STATE	9
2.5.	Measurement Instruments List	.0
3. TEST	ITEM AND RESULTS1	1
3.1.	RADIATED EMISSION	.1

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

<u>RSS 247 Issue 2:</u> Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Dec. 21, 2022	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247)/ RSS 247 Issue 2			
Toot Itom	Standard Section	Decult	Toot Engineer
rest nem	FCC	Result	rest Engineer
Radiated Spurious Emission	15.247(d)&15.209	Pass	Lucy Lan

Note: The measurement uncertainty is not included in the test result.

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Radiated Emissions 30~1000MHz	4.51 dB	(1)
Radiated Emissions 1~18GHz	5.84 dB	(1)
Radiated Emissions 18~40GHz	6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C ~ 27°C
Relative Humidity:	40% ~ 60%
Air Pressure:	101kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	VIDEOSTRONG TECHNOLOGY CO.,LTD
Address:	604, Lushi industrial Building, 28 District, Bao'an District, Shenzhen, China
Manufacturer:	VIDEOSTRONG TECHNOLOGY CO.,LTD
Address:	604, Lushi industrial Building, 28 District, Bao'an District, Shenzhen, China

2.2. General Description of EUT

Product Name:	Android TV Box
Trade Mark:	MECOOL
Model/Type reference:	KM7 PLUS
Listed Model(s):	9MAX,10MAX, KM2, KM2 PRO, KM2 PLUS, KD3, KD5, KM6, KM7,9S,10S,9P,10P, KM10, KM11, KD6, KD7, IPx1, IPx2
Model Difference:	All these models are identical in the same PCB, layout and electrical circuit, Different is model number.
Power supply:	DC12V 1A from AC/DC Adapter
Adapter model 1:	RJ-SKY120100U60S ^{Note1} Input: 100-240V~ 50/60Hz 0.5A Output: 12Vdc/1A
Adapter model 2:	YS-SKY120100U00P ^{Note2} Input: 100-240V~ 50/60Hz 0.5A Output: 12Vdc/1A
Adapter model 3:	TEKA-TB120100US Input: 100-240V~ 50/60Hz 0.35A Output: 12Vdc/1A
Hardware version:	54024
Software version:	P2.0.3_20220929
Bluetooth 5.0/EDR	
Modulation:	GFSK, π/4-DQPSK, 8-DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Onboard Antenna
Antenna gain:	1.2dBi

Note:

1. RJ-SKY120100AXXS, (A = E or B, stands for different plug, E means for Europe plug, B means for UK plug, M or U means for US plug.XX = 00-99. stands for customer code) 2. YS-SKY120100N0XP (N = E, B, 1character indicate difference plug type: E denote EU plug, B denote UK plug, X = 0-9, 1 digit, only for marketing purpose, no impact on safety)

2.3. Accessory Equipment information

Equipment Information				
Name	Model	S/N	Manufacturer	
Displayer	EW3270-T	EW3270U	BenQ	
Notebook	ThinkBook 14G3 ACL		Lenovo	
Cable Information				
Name	Shielded Type	Ferrite Core	Length	
Lan Cable	Without	Without	1.5M	
HDMI	Without	Without	1.5M	
Test Software Information				
Name	/	/	/	
adb.exe	/	/	/	

2.4. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2403
÷	÷
38	2440
39	2441
40	2442
:	÷
77	2479
78	2480

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.5. Measurement Instruments List

Radiated emission(3m chamber 2)					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Jan. 12, 2023
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 16, 2023
3	Loop Antenna	LAPLAC	RF300	9138	Dec. 16, 2023
4	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023
5	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 15, 2023
6	Pre-Amplifier	SONOMA	310	186194	Dec. 16, 2023
7	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 16, 2023
8	Test Receiver	R&S	ESCI7	100967	Dec. 16, 2023
9	3m chamber 2	Frankonia	EE025	/	Oct. 23, 2024

Note: 1. The Cal. Interval was one year.

2. The Cal. Interval was three year of the chamber

3. The cable loss has calculated in test result which connection between each test instruments.

3.1. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS - Gen 8.9

Frequency	Limit (dBuV/m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
Above 1 GHz	54.00	Average
	74.00	Peak

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration

Below 1000MHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW \geq 1/T Peak detector for Average value.

Note 1: For the 1/T& Duty Cycle please refer to clause 3.10 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the per missible value has no need to be reported.
- 2. Only show worse case

-12.21

-13.34

-11.98

-8.78

QP

QP

QP

QP

46.00

46.00

46.00

46.00

Ant. Po	Ι.	Hor	izontal							
Test Mo	de:	TX (GFSK M	lode	2402MHz					
Remark		Only	Only worse case is reported							
90.0 dBu ¹	¥/m									
80										
70										
60						F	CC Part15 Class B 3	3M Radiation		
50						M	largin -6 dB			
40				2		3	. 5	- S		
30			M	Å.	e deta Det su	*	AM.	- M	we had a n	
20	h.a	M ^{APYPY}	Kyden "	· V	my when which	J. M.	Hurry M. H. John	waters they	- Anno Cara	
10	Man muchan Mar									
0										
-10										
30.000		60.00			(MHz)	30	D. 00		1000.000	
No.	Frequer (MHz	ncy)	Readi (dBu\	ng /)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	66.266	1	48.9	3	-19.78	29.15	40.00	-10.85	QP	
2	104.53	60	52.8	2	-20.54	32.28	43.50	-11.22	QP	

Remarks:

3

4

5

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

-19.23

-14.87

-12.64

-9.51

33.79

32.66

34.02

37.22

2.Margin value = Level -Limit value

232.5318

399.0302

501.1790

668.1422

53.02

47.53

46.66

46.73

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Fa	ctor
2.Margin value = Level -Limit value	

66.2662

98.4866

106.7587

53.88

58.26

56.03

-19.78

-20.98

-20.41

34.10

37.28

35.62

40.00

43.50

43.50

-5.90

-6.22

-7.88

QP

QP

QP

4 !

5

6

Remarks:

New test data:

Ant. Pol.	Horizontal	
Test Mode:	TX GFSK Mode 2402MHz	
Remark:	Only worse case is reported	
90.0 dBu∀/m		
80		
70		
60		
	FCC Part15 Class B 3M Radiation	
50	Margin-6-dB	
40		
30	A A A A A A A A A A A A A A A A A A A	
20	when the way we want the way of t	
10 11 Marth 1		
0		
-10		
30.000	60.00 (MHz) 300.00 1000.0)00
Frequer	cy Reading Factor Level Limit Margin	Τ
No. (MHz	(dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB)	٢
1 90.855	4 50.36 -21.70 28.66 43.50 -14.84 QP	+
2 119.85	56 48.17 -19.32 28.85 43.50 -14.65 QP	+
3 130.83	69 46.04 -18.43 27.61 43.50 -15.89 QP	+
4 157.55	38 43.96 -16.91 27.05 43.50 -16.45 QP	+
5 315.48	06 49.07 -16.81 32.26 46.00 -13.74 QP	+
6 * 501.17	00 47.17 -12.64 34.53 46.00 -11.47 QP	+
Remarks:	Antonna Factor (dP/m), Cobla Factor (dP) Pro amplifice Factor	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. Pol. Horizontal									
Test Mo	ode:	TX	GFSK Mode	2402MHz					
Remark: No report for the emission which more than 10 dB be scribed limit.							pelow the	e pre-	
No.	Frequer (MHz	ncy)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	4803.4	91	43.10	2.16	45.26	74.00	-28.74	peak	
2 *	4804.0	62	33.16	2.16	35.32	54.00	-18.68	AVG	
Remark	s:								
1.Factor	r (dB/m) =	Anter	na Factor (d	dB/m)+Cabl	e Factor (dE	3)-Pre-ampli	fier Facto	or	
2.Margii	n value = L	evel	-Limit value						

Ant. Pol. Vertical											
•	Test Mo	de:	ТΧ	GFSK Mode	2402MHz						
I	Remark	:	No report for the emission which more than 10 dB below the pre- scribed limit.								
		-		Deseline	Fastar	Lavel	1.1				
	No.	⊢requer (MHz	ісу)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector		
	1 *	4804.0	37	28.90	2.16	31.06	54.00	-22.94	AVG		
	2	4804.2	73	42.19	2.16	44.35	74.00	-29.65	peak		
	Remark	S: (JD (m)	A (С Г			

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

		1									
Ant. Po	Ι.	Hori	zontal								
Test Mo	de:	тх (TX GFSK Mode 2441MHz								
Remark	:	No report for the emission which more than 10 dB below the pre- scribed limit.									
No.	Frequer (MHz	ncy)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1 *	4882.0	78	35.61	2.31	37.92	54.00	-16.08	AVG			
2	4882.3	63	44.09	2.31	46.40	74.00	-27.60	peak			
					-						
Remark	s:										
1.Factor	[.] (dB/m) = /	Anter	na Factor (d	dB/m)+Cabl	e Factor (dE	8)-Pre-ampli	fier Facto	or			
2.Margir	n value = L	evel ·	-Limit value								

Ant. Po	I.	Vert	ical							
Test Mo	de:	TX (GFSK Mode	2441MHz						
Remark	K:	No report for the emission which more than 10 dB below the pre- scribed limit.								
No.	Frequency (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1	4881.6	94	40.79	2.31	43.10	74.00	-30.90	peak		
2 *	4882.0	01	26.39	2.31	28.70	54.00	-25.30	AVG		
Remark	Remarks:									
2.Margi	(uв/m) = / n value = L	evel	Limit value	ab/m)+Cabi	e raciór (de	y-Pre-ampli	ner Facto	ונ		

Ant. Po	I.	Hor	zontal								
Test Mo	ode:	ТΧ	GFSK Mode	2480MHz							
Remark	K:	No scril	No report for the emission which more than 10 dB below the pre- scribed limit.								
No.	Frequency (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1	4959.8	81	43.24	2.48	45.72	74.00	-28.28	peak			
2 *	4959.8	83	34.56	2.48	37.04	54.00	-16.96	AVG			
Remark	S:						с. г . (
1.⊢actor	r (dB/m) = /	Anter	na ⊦actor (o	зв/m)+Cabl	e ⊢actor (dE	s)-Pre-ampli	tier ⊢acto	or			

Ant. Pol. Vertical											
-	Test Mo	de:	ТХ (GFSK Mode	2480MHz						
	Remark	:	No report for the emission which more than 10 dB below the pre- scribed limit.								
	No.	Frequency (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	4959.2	25	39.98	2.48	42.46	74.00	-31.54	peak		
	2 *	4959.8	61	25.61	2.48	28.09	54.00	-25.91	AVG		
	Demorter										
	1.Factor 2.Margir	s. (dB/m) = / n value = L	Anter evel ·	na Factor (Limit value	dB/m)+Cabl	e Factor (dE	8)-Pre-ampli	fier Facto	or		

Ant. Pol. Horizontal									
Test Mode: TX GFSK Mode 2402MHz									
Remark: No report for the emission which more than 10 dB below the pre- scribed limit.	No report for the emission which more than 10 dB below the pre- scribed limit.								
	Т								
No.Frequency (MHz)Reading (dBuV)Factor (dB/m)Level (dBuV/m)Limit (dBuV/m)Margin (dB)No.(MHz)(dBuV)(dB/m)(dBuV/m)(dBuV/m)(dB)									
1 * 4804.036 38.49 -3.48 35.01 54.00 -18.99 AVG	Ť.								
2 4804.325 48.70 -3.48 45.22 74.00 -28.78 peak									
Remarks:									
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor									
2.Margin value = Level -Limit value									

Ant. Po	I.	Vert	ical							
Test Mo	ode:	тх о	GFSK Mode	2402MHz						
Remarl	K:	No report for the emission which more than 10 dB below the pre- scribed limit.								
No.	Frequer (MHz	ncy :)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1 *	4803.9	89	34.48	-3.48	31.00	54.00	-23.00	AVG		
2	4804.2	78	46.59	-3.48	43.11	74.00	-30.89	peak		
Remark	Remarks:									
1.Facto 2.Margi	1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value									

Ant. Po	l.	Hori	izontal								
Test Mo	de:	тх (GFSK Mode	2441MHz							
Remark	:	No i scrit	report for the bed limit.	emission v	which more t	than 10 dB t	pelow the	pre-			
					1						
No.	Frequency (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1 *	4881.9	06	40.61	-3.30	37.31	54.00	-16.69	AVG			
2	4881.9	78	49.41	-3.30	46.11	74.00	-27.89	peak			
Remark	S: : (dB/m) –	Antor	na Factor (a		o Eactor (dE	2) Pro ampli	fior Fact	or.			
	(ub/iii) = i	-inter	IIIA FACIUL (C	ль/тт)+€арі		p-r-ie-ampli	ner Facil	, I			

Ant. Pol.		Vertical							
Test Mode:		TX GFSK Mode 2441MHz							
Remark:		No report for the emission which more than 10 dB below the pre- scribed limit.							
No.	Frequency (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	4881.970		30.51	-3.30	27.21	54.00	-26.79	AVG	
2	4882.266		46.20	-3.30	42.90	74.00	-31.10	peak	
Remarks: 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value									

Ant. Pol.	Horizontal								
Test Mode:	TX GFSK Mode 2480MHz								
Remark:	No report for the emission which more than 10 dB below the pre- scribed limit.								
No. Frequer (MHz	ncy F)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1 4959.9	50	48.84	-3.12	45.72	74.00	-28.28	peak		
2 * 4959.9	75	39.06	-3.12	35.94	54.00	-18.06	AVG		
Remarks: 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor									

Ant. Pol.		Vertical							
Test Mode:		TX GFSK Mode 2480MHz							
Remark:		No report for the emission which more than 10 dB below the pre- scribed limit.							
No.	Frequency (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	4959.812		44.21	-3.12	41.09	74.00	-32.91	peak	
2 *	4960.065		30.66	-3.12	27.54	54.00	-26.46	AVG	
·									
Pomorkoj									
1 Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor									
2.Margin value = Level -Limit value									